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Abstract While many classes of cutting-planes are at the disposal of integer pro-
gramming solvers, our scientific understanding is far from complete with regards to
cutting-plane selection, i.e., the task of selecting a portfolio of cutting-planes to be
added to the LP relaxation at a given node of the branch-and-bound tree. In this paper
we review the different classes of cutting-planes available, known theoretical results
about their relative strength, important issues pertaining to cut selection, and dis-
cuss some possible new directions to be pursued in order to accomplish cutting-plane
selection in a more principled manner. Finally, we review some lines of work that we
undertook to provide a preliminary theoretical underpinning for some of the issues
related to cut selection.

Mathematics Subject Classification 90C11 · 90C57

1 Introduction

Mixed-integer linear programming (MILP) has become a mature area of research
both in theory and practice, with powerful commercial and non-commercial solvers
available, like CPLEX, GUROBI, XPRESS, and SCIP, to name a few. These modern
state-of-the-art solvers use linear programming (LP) relaxation as the primary work-
horse to provide dual bounds, which is further enhanced with the use of cutting-planes:
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linear inequalities that are valid for all integral feasible solutions but not implied
by the LP relaxation. We assume familiarity with basic cutting-plane theory; for an
introduction to this subject, we refer to the books [77,179].

We recount here a well-known anecdote about the complete change in outlook
towards the use of general-purpose cutting-planes within solvers. Until the early 90s
the research community was unanimous:

“In order to solve integer programs of meaningful sizes, one had to exploit the
structure of the underlying combinatorial problem” [87].

In particular, general-purpose cutting-planes were seen as mostly of theoretical inter-
est. However, in the mid 90s a breakthrough came with a series of papers by Balas,
Ceria, Cornuéjols, and Natraj, where they obtained striking computational results
using Gomory Mixed Integer cuts and the then newly discovered Lift-and-Project
cuts, within the branch-and-bound framework [29,30]. These papers show the effi-
cacy of general-purpose cutting-planes, when properly selected and employed.

Today, even more families of cutting-planes are known. While we do not attempt
to survey the vast literature on cutting-planes, we discuss the broad perspectives from
which they are derived, with some representative examples.

Geometric cuts A set Q ⊆ R
n is called lattice-free if int(Q) ∩ Z

n = ∅. Given a
mixed-integer set P ∩ (Zn × R

q) and a lattice-free set Q, observe that

P ∩ (Zn × R
q) ⊆ P\(int(Q) × R

q),

and therefore valid inequalities for P\(int(Q)×R
q) are valid for P∩(Zn×R

q).We call
such cuts geometric cuts. A set Q is amaximal lattice-free convex set if it is lattice-free,
convex, and no other lattice-free convex set properly contains it. A beautiful structural
result is that all maximal lattice-free convex sets are polyhedral [38,169]. Note that
when Q is a polyhedral set {x ∈ R

n | (ai )�x ≤ bi , i ∈ [m]} one can generate a
geometric cut by ensuring its validity for all the disjunctions identified with the facets
of Q, i.e., P ∩ {(x, y) ∈ R

n+q | (ai )�x ≥ bi } for i ∈ [m].
Famous geometric cuts include the Chvátal–Gomory (CG) cuts [65,120,131,164],

implied bounds [145], and more generally split cuts [27,34,85]. For all these cuts, the
underlying lattice-free set is the so-called split set: {x ∈ R

n | π0 ≤ π�x ≤ π0 + 1},
where π0 ∈ Z and π ∈ Z

n . More general geometric cuts include cuts from maximal
lattice-free convex sets [12,62] (see the excellent survey [39]) and the closely related
intersection cuts developed byBalas in 1970s [25]. Geometric cuts calledmulti-branch
split cuts [99,104,165] are based on non-convex lattice-free sets obtained as the union
of split sets.

Structured relaxations Given a mixed-integer set P ∩ (Zn × R
q), the basic idea is to

construct a relaxation of P , say R ⊇ P , and analyze the mixed-integer set R ∩ (Zn ×
R

q). Valid inequalities for the relaxation then serve as cutting-planes for the original
set, and the additional structure of R eases the search for facets or strong inequalities.
Two excellent review articles discussing these cutting-planes are [152,171].

One of the most important families of structured relaxations are the single con-
straint relaxations, i.e., relaxations described by one non-trivial constraint together
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with various variable bounds and integrality restrictions. Given a mixed-integer linear
set, a single constraint relaxation can be obtained by taking a positive combina-
tion of the original constraints. We discuss this in more detail in Sect. 3. Single
constraint relaxations include knapsack constraint with binary and continuous vari-
ables [26,35,67,97,142,200,202,204,210] (which yield the much used lifted cover
inequalities), and knapsack constraints with general integer and continuous vari-
ables [15–17,101,190], of which a special case is theMIR set [180,206]. As a concrete
example, themixed-integer rounding (MIR) set is defined as {(x, y) ∈ Z×R+ | x+y ≥
b}. The only facet missing in this description is the MIR inequality

x + 1

f
· y ≥ 
b�,

where f = b −�b > 0. The general MIR inequality can be obtained by embedding a
generalmixed-integer set into theMIR set through columnand constraint aggregations,
see [107] for details.

Multiple constraint relaxations have also been studied, i.e., when the relaxation
is described using multiple non-trivial constraints. Multiple constraint relaxations
include those studied in [6] and the mixing set [103,121,140,193] (both general-
izing the MIR set), stable sets [19,153] (which yield the useful clique inequalities
applied on conflict graphs by solvers), fixed-charge networks [18,138,183,205] (used
to obtain flow cover, path cover, and pack inequalities), and the corner and group
relaxations [133–135,149,151]. The most important cuts obtained via the latter are
the Gomory mixed-integer cuts (GMIC) [132]; also see [10,92] for important variants
of GMICs. Given an equalitiy constraint of the form

n∑

j=1

a j x j +
q∑

j=1

g j y j = b

where x j ∈ Z+ and y j ∈ R+, the GMIC inequality is given by:

n∑

j=1

min

{
f j

f0
,
1 − f j

1 − f0

}
x j +

q∑

j=1

max

{
g j

f0
,

−g j

1 − f0

}
y j ≥ 1,

where f j = a j − �a j and f0 = b − �b.
The study of the group relaxation has been very popular in the last 10-15 years

[14,22,32,41,49,76,102,118,119,123,136,137,156,157,175]. Many beautiful and
non-trivial structural results have been proved regarding valid inequalities for these
relaxations [44,47,48,122,208]. See [39,45,46,189] for reviews on the group relax-
ation and its variants.

Subadditive cutting-planes An important concept that was first discovered in relation
to the group relaxation is the notion of subadditive cutting-planes [149]. We state it
here for a general pure-integer program: Consider a set S := {x ∈ Z

n+ | Ax ≥ b},
where A ∈ Q

m×n , and a function f : R
m → R that satisfies the following:
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1. f is subadditive, i.e., f (u) + f (v) ≥ f (u + v) for all u, v ∈ R
m ,

2. f is non-decreasing, i.e., f (u) ≥ f (v) for all u − v ∈ R
m+,

3. f (0) = 0.

It is straightforward to verify that
∑n

j=1 f (A j )x j ≥ f (b) is a valid cutting-plane for
S. More importanty, it can be shown that the convex hull of S can be obtained by such
valid inequalities. See [51,141,147,148,150,177] for generalizations tomixed-integer
sets and other extensions.

Convexification via extended formulations and algebraic properties The key idea here
is to go to a higher dimension, usually the space of products of variables, and then use
algebraic properties of the matrix of these variables to imply non-trivial inequalities
in the original space. Some of these methods include generating standard cuts like
split cuts for extended formulations [55,60], the LP based hierarchies Reformulation-
linearization technique (RLT) [196–198], Lift-and-project cuts (L&P) [29,34], the
semidefinite programming hierarchies due to Lovász and Schrijver (N+) [170], the
Bienstock and Zuckerberg (BZ) hierarchy [53], and the more general Lasserre hierar-
chy [161]. See the excellent article by Rothvoß [191] on applications of these cuts to
develop approximation algorithms.

1.1 Theoretical analysis of the strength of cutting-planes

Given this wealth of cuts at our disposal, a crucial question is that of cutting-plane
selection: Which cuts should a solver employ at a given point in time? Motivated by
this issue, there is a large literature on theoretical analysis of cutting-planes trying to
better understand the strength of different families of cuts. While the overall goal is
be able to solve MILP models efficiently, given the complexity of solvers one cannot
expect to be able to perform a theoretical analysis of this performance metric directly,
and thus proxy measures are required. In fact, many notions of usefulness or strength
of cuts have been proposed. We briefly survey known results in this area.

Finite cutting-plane algorithmsOne natural question is: canwe solve anMILP in finite
time using solely cuts from a given family without branching or any other operation?
Gomory gave the first finitely convergent cutting-plane algorithm for pure integer
programs [131], using CG cuts. There have been very few results since then on finite
cutting-plane algorithms, see [181] and references therein. See [68] for a polynomial-
time cutting-plane algorithm for matching, [69] for a finite cutting-plane algorithm
for bounded MILPs, and [104] for a finite cutting-plane algorithm for general MILPs.
There are also lower bounds on the length of cutting-plane proofs (length of sequence
of cuts needed to prove optimality or infeasibility) [73]. For example, generalizing
previous work of Pudlák [188], Dash [98] presents exponential lower bounds for
proofs via branch-and-cut procedures that use L&P and CG cuts.

Closure inclusion Given a polyhedron P and a family M of cutting-planes, we define
the closure M(P) as the intersection of all cuts from this family valid for the (mixed-)
integer solutions in P . For any family of cuts the closure M(P) contains the integer
hull, and a smaller closure means a stronger approximation of the latter.
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A fundamental result is that the GMIC closure, the MIR closure, and the split
closure are equal [90,180]. The L&P closure [29], defined only for binary MILPs,
is weaker than these other closures. Marchand and Wolsey [172] prove that various
well-know classes of cutting-planes are all MIR cuts; thus, the split closure is stronger
than the closures of these classes of cuts. Cornuéjols and Li [90] provide compar-
isons between several basic closures, including the split, L&P, and RLT closures. The
papers [104,165] show that the t-branch closure can be strictly stronger than infinitely
many iterations of the k-branch closure whenever t > k. See also [99,105,108].
Laurent [162] compares RLT, N+, and the Lasserre closures for 0/1 polytopes and
shows that the Lasserre construction provides the tightest relaxations. See [174] for
an augmented version of the Lasserre hierarchy for 0/1 problems using high-degree
polynomials that implies the BZ hierarchy, and comparison with the CG closure.

Rank Rank is a very popular measure of strength, measuring the number of “round”
of cuts needed to obtain the integer hull. More precisely, the i th closure Mi (P) is
defined inductively by applying the closure operator to the set Mi−1(P); the rank of
P with respect to the family of cuts M is then the smallest integer i such that Mi (P)

is the integer hull of P .
Schrijver [194] showed that the CG rank is finite for any rational polyhedron P .

The paper [128] showed that the rank is finite for polytopes, even when restricting
to the subclass of mod-2 CG cuts. Chv́atal, Cook, and Hartmann [72] proved lower
bounds on the CG rank for natural formulations of various combinatorial problems.
It was shown in [82] that for polyhedra with no integer points the CG rank can be
upper bounded by a function of the dimension of the ambient space. For polyhedra
in [0, 1]n , Eisenbrand and Schulz showed that the CG rank is always upper bounded
by O(n2 log n). Recently, Rothvoß and Sanitá [192], showed that there are binary
knapsack instances with CG rank�(n2). Also see [186,187]. The paper [95] provides
conditions for a binary IP, in terms of the subgraph induced by the infeasible 0/1
vertices in the skeleton graph of the 0/1-cube, that guarantee small CG rank. See [52]
for generalizations that characterize polytopes in the 0/1-cube with bounded CGRank.

The L&P closure [29], defined only for binary MILPs, has rank at most n, the
number of binary variables; since this closure is weaker than the GMIC, MIR, and
split closures, this yields the same rank upper bound for these cuts on binary MILPs.
Moreover, these results are tight, since [91] gives an example of a binary MILP for
which the rank of n is achieved for the split closure. In contrast, for generalMILPs [85]
showed that the rank with respect to split cuts may not be finite, although the i th split
closure converges to the integer hull in the limit as i tends to infinity [109,182].

Since the N+ operator is also stronger than the L&P operator, it also has a rank
upper bound of n for binary MILPs. Cook and Dash [83] show that this rank n can be
achieved even when N+ is combined with CG cuts. See [160] for a characterization
of 0/1 instances that have rank n for the Lasserre hierarchy. Au and Tuncel [20,21]
prove a comprehensive set of results on the rank of the N+, BZ, and Lasserre closures
and extensions. Also see [71] for related results.

The lattice-free cut approach and the subbadditive dual approach can be viewed
as “dual” of each other, see [75,122] for concrete results along these lines. Indeed
the GMIC cut is the subadditive functional version of the geometric cut from a split
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set. Therefore, it is expected that even for general MILPs lattice-free cuts should have
finite rank, since subadditive functions are known to yield the convex hull. An integral
lattice-free polyhedron is a lattice-free polyhedron whose vertices are integral; the
collection of these lattice-free sets is a proper subset of all possible lattice-free convex
sets. Del Pia and Weismantel [109] prove that the rank of general MILPs with respect
to integral lattice-free disjunctive cuts is finite.

If the integrality gaps of an instance is high, we expect that it is difficult to solve this
instance, and in particular we expect that more rounds of cutting-planes are needed to
obtain the integer hull. The papers [56,57,187], present lower bounds on rank of CG,
split cuts, lattice-free cuts, and closures of cut frommultiple-constraint relaxations that
increase as the integrality gap increases for packing and covering integer programs
(see definition below).

One measure to compare a cut against split cuts is the so-called split rank. This is
defined to be the smallest integer i such that the cut under study is valid for the i th
split closure. The paper [111] gave a general construction of lower bounds on the split
rank of intersection cuts. The papers [42,115] analyze the split rank of the lattice-free
cuts. In fact, given any family of lattice-free convex cuts, one can define the rank with
respect to this family. The paper [110] characterizes when this rank is finite.

See [199] for examples showing when low rank CG cuts close the integrality gap
significantly and compare these CG cuts to the performance of RLT hierarchy.

Blow-up measure One can develop a more refined measure of strength than closure
inclusion for packing and covering sets. We say that P ⊆ R

n+ is a covering set if it
is upwards closed, namely if x ∈ P and y ≥ x , then y ∈ P . Given two covering
sets Q ⊇ P (so Q is a relaxation of P), we say that Q is an α-approximation of P
if P ⊇ αQ := {αx | x ∈ Q}, i.e., pushing the bigger set up by an α factor makes it
be contained in the smaller set. Equivalently, Q is an α-approximation of P if for all
nonnegative objective functions c ∈ R

n+

min{c�x | x ∈ Q} ≥ 1

α
· min{c�x | x ∈ P}, (1)

see [130] and Lemma 23 of [176]. This measure can be defined for packing sets in an
analogous way, see Sect. 3.1.

While originally defined in this context for comparing inequalities for the Trav-
eling Salesman Problem [130], this measure prominently appears in the analysis
of inequalities for the continuous group relaxation, namely MILPs defined by k
equations with k free integer variables and nonnegative continuous variables (whose
projection onto the continuous variables is a covering set). For the case k = 2, it
is known that all facet-defining inequalities are geometric cuts from three types of
lattice-free sets: split, lattice-free triangle, or lattice-free quadrilateral inequalities.
The paper [37] shows that the triangle closure (and the quadrilateral closure) is a
2-approximation of the integer hull, while the split closure can be arbitrarily weak
under this measure. See [24] for improved bounds. However, several computational
experiments [36,106,114,124,168] have indicated that triangle and quadrilateral cuts
do not work as well as split cuts in practice. In order to better understand this phe-
nomenon, the paper [43] analyzed uniformly generated MILPs and showed that with
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high probability both split and triangle closures provide very good approximations for
the integer hull, thus triangle cuts do not add much over split cuts. Also see [144,185].

This measure has also been used to analyze the related corner relaxation. For exam-
ple, Averkov, Basu, and Paat [23] recently showed that for each natural number n, a
corner polyhedron with n basic integer variables and an arbitrary number of contin-
uous non-basic variables is approximated up to a constant factor by intersection cuts
from lattice-free sets with at most i facets if i > 2n−1, and that no such approximation
is possible if i ≤ 2n−1.

Minimality, extremality, and facetness Unlike the above measures, these attempt to
measure the strength of individual cuts. Given a polyhedron P ⊆ R

n , a valid inequality
a�x ≤ b isminimal if there is no other valid inequality c�x ≤ d that strictly dominates
it, i.e., {x | c�x ≤ d} � {x | a�x ≤ b}. An inequality is facet-defining (or extreme)
if it cannot be strictly dominated by a positive combination of other valid inequalities.
Notice that facet-defining inequalities are a subset of minimal inequalities, which are
a subset of all valid inequalities, and it is well-known that facet-defining inequalities
are necessary and sufficient to describe a polyhedron; thus, these give a hierarchy of
importance of inequalities.

There is a wealth of results on facet-defining inequalities for specific combinatorial
optimization problems, and their use has led to vast computational improvements
in the 80s and 90s. These notions are also heavily used in the study of the group
relaxations. Gomory and Johnson [134] characterize the minimal inequalities for the
infinite group relaxation in terms of subadditive functions. Also see [158]. For the
infinite group relaxation with 1 equation, [134] also provides a sufficient condition
for an inequality to be extreme, the so-called 2-Slope Theorem [135]. This was later
generalized to an arbitrary number of equations [47,96]. For the case of 2 equations,
Basu et al. [44,50] provide algorithms for testing whether a minimal valid function is
extreme.

Note that a polyhedron P has a finite number of facet-defining inequalities and,
excluding degenerate cases, infinitely many minimal inequalities; thus, restricting to
facet-defining inequalities really narrows down the inequalities under consideration.
However, interestingly, for the infinite group relaxation (which is infinite dimensional),
it was recently proved that the facet-defining inequalities form a dense setwithin the set
of minimal inequalities [48,163]. This casts doubts on whether being a facet-defining
inequality is really useful in this context. See the surveys [45,46] for a comprehensive
list of results on the infinite group relaxation.

1.2 Cutting-plane selection: the need to ask different questions

As described in the sections above, many different classes of general-purpose cutting-
planes are known today and awealth of results have been obtained about their strengths.
However, when it comes to cutting-plane use and selection our scientific understanding
is far from complete. Indeed, the seminal work of Balas, Ceria, Cornuejols, Natraj [30]
were the first to obtain good results using the same GMI cuts that were already avail-
able in the 60s and tested in multiple papers. In order to better appreciate the design
challenges in implementing cutting-planes, a quote from [13] is fitting:
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“Branch-and-cut designers often have to face an Hamletic question: to cut or not
to cut?”

Indeed, adding cuts in a naïve way could well reduce the number of branching nodes,
but the overall computing time may increase dramatically, for example, due to an
increase in time to solve the LPs in the branch-and-bound tree. Extreme care is needed
regarding how cuts are added. To quote [30], one of the reason of their success is

“The cuts are used selectively, i.e., not all cuts from the pool are part of the
formulation solved at every iteration. This helps us avoid the “clogging” of the
linear programs with constraints that are locally useless.”

Modern solvers break down the problem of cut selection in two steps. In the Step
1, they maintain a list of valid cutting-planes called cut-pool that contains cuts that
separate the current fractional point, together with all previously non-discarded cuts
(but not added to LP) [4,13]. Then in Step 2 the solver ranks the cuts from this pool and
adds a few of them to the LP. As we illustrate next, several issues need to be considered
in this selection process. We also point out why unfortunately the traditional analyses
of strength of cuts offer only limited help in understanding and addressing these issues.

Measuring the effectiveness of cutting-planes While most theoretical analyses focus
on the strength of a whole family of cuts, it is clear that solvers cannot add all of these
cuts. Thus, it is important to have measures of the potential effectiveness of individual
(or a small set of) cuts as a guide for selection. A common measure of effectiveness of

a cut α�x ≤ β separating a fractional point x∗ is the depth-of-cut, i.e., α�x∗−β
||α||2 . This

measure has its drawbacks, and while counter-intuitive, it may rank higher weaker
cuts: suppose the problem has non-negativity constraints and x∗

i = 0; to obtain larger
depth-of-cut one should try to set αi = 0, while the same cut with αi > 0 dominates
the latter [13] (see [9] for concrete examples). Another potential measure is the volume
cut off of a given LP [136]. The recent paper [40] proves that, for the group relaxation,
the depth-of-cut measure may select very weak cuts, while a volume measure is able
to single out GMICs, arguably one of the strongest cuts in practice, as the best one.
It would be very interesting to better understand cuts with large volume measure and
to be able to separate them efficiently. Also see [166] for an efficiency measure based
on counting integer points, and [203] for other measures of efficiency.

Cuts from multiple sources Many solvers walk on the optimal face of the LP relaxation
and collect cuts from different bases. (These multiple bases can also be helpful for
primal heuristics.) One inspiration for this is how Gomory’s finite cutting-plane algo-
rithm makes progress by incrementally cutting off the optimal face [1,2,209]. This
may also help with obtaining stronger cuts; for example, the paper [94] shows how
different corner relaxations for the Stable Set problem have very different strengths.
Moreover, it is known that the split closure can be obtained from generating split cuts
from multiple bases [11] (see [34,100,126] for computational uses of this idea). The
paper [30] also shows how cuts from different parts of a branch and bound tree can
be used in a different part of the branch-and-bound tree for binary MILPs. However,
access to multiple sources of cuts leads to many questions: Should the cuts selected
separate all the known optimal bases?What happens if none of the cuts separates all the
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known bases? How to adapt the measures of effectiveness to incorporate information
of two or more fractional points?

Parallelism between cuts/objective function It has been observed that it is very
important to use “cuts that improve the polyhedron in diverse directions” [31]. The
dot-product between the normalized values of left-hand sides of two cuts is usually
used as measure of parallelism. See the papers [4,13] on how the performance of
cutting-plane non-trivially depends on the setting of this parameter. The paper [9]
presents cut generation explicitly optimizing also for parallelism using a bilevel opti-
mization strategy. The paper [4] indicates that considering parallelism with respect
to the objective function (favoring cuts in similar direction) may be ineffective. See
also [81] for an MILP-based strategy for adding in a coordinated way the set of k
cuts that provides the largest improvement to the relaxation’s objective value. To the
best of our knowledge, there are no theoretical results/understanding pertaining to
parallelism.

How many cuts to add A natural design parameter is the decision on how many cuts
to add in each round. The importance of this parameter is gauged by the success of
the the results in [30]. In particular, [30] prescribed adding a large number of GMIC
simultaneously obtained from different rows of a simplex tableau corresponding to
fractional basic variables. Previous to [30], most implementations added one cut at a
time, which lead to very poor convergence. Also [30] observes that adding multiple
cuts in rounds leads to less parallel cuts. Some options used are setting a fixed upper
bound on the maximum number to be generated [3] and making this upper bound
a fixed parameter times the number of constraints in the original formulation [13].
Whether these are the best ways to decide on the number of cuts to be added is not
clear. For example, one may expect the number of integer variables to play a role, but
to the best of our knowledge no such study has been conducted.

Whether to use facet-defining or simply minimal inequalities of a relaxation Given a
relaxation whose valid inequalities will be used as cutting-planes, we may choose to
restrict our search for cutting-planes to only facet-defining inequalities or use any valid
inequality. If we do not use only facet-defining inequalities of the relaxation, a natural
option is to use a cut measure, such as violation, for separating valid inequalities from
it. For some families of cutting-planes, such as L&P, it is possible to write the separa-
tion problem as an LP. An important design choice is the selection of normalization
used in the resulting LP; see for example [28,61,70]. In a recent paper, Wolsey and
Conforti [80] address the problem of efficiently finding an inequality that is violated
and either defines an improper face or a facet by the proper use of normalization. They
also provide some evidence that this method works on structured and unstructured
problems. Cadoux [64] proposes a projection-based method for generating a set of
inequalities that are facet defining for the relaxation and that together dominate the
separating inequality with largest depth-of-cut (see also [89]).

As mentioned above, other recent papers [48,163] considered the question of sep-
arating faces versus facet-defining inequalities in the context of the (infinite) group
relaxation. Surprisingly, it was shown that for any minimal inequality, there exists
an extreme inequality that approximates the minimal inequality as closely as desired.
Thus, in this context separating faces is effectively “equal to” separating facets. While
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some special cases are understood,many open problems remain regarding the selection
of cuts from relaxations.

Cut sparsity It is well established that LP solvers performmuch better with sparse for-
mulations. Therefore, it is important to add sparser cutting-planes to maintain sparsity
of the LP. We expand on the discussion pertaining to sparsity in Sect. 2.

Numerical properties, validity, and stability There are two main issues related to
numerical properties of cuts. The first is that of validity: because most implementa-
tions use finite-precision arithmetic, round off errors may induce the generation and
use of invalid cuts [93,173]. This has motivated the line of research on numerically
safe computations in integer programs; see for example [84] for the numerically safe
MIR/GMI cuts. An alternative method is to have solvers using exact rational arith-
metic [86,129]. The second issue is that of numerical stability (e.g., ill conditioning of
LPs), which is particularly salient when multiple rounds of cuts are generated [209].
To avoid this, typically cuts with large dynamism, i.e., ratio of largest to smallest abso-
lute value of coefficients, are discarded [126]. Perhaps more interestingly, there have
been a few proposed methods for generating cuts in a branch-and-cut framework to
mitigate this issue, such as the use of rank-1 cuts [58,100], the relax-and-cut frame-
work [126], using a simplified version of the lexicographic simplex [209], and the
use of generalized intersection cuts [33]. More research would be welcome to better
understand the source of instability introduced by cut generation and how to avoid it
in an efficient way.

Strength of cutting-planes with respect to problem being solved It is well-known that
clique cuts are extremely useful for the stable set IPs, and flow covers are extremely
important for certain fixed-charge network flow sub-structures [5]. However, very few
results of this nature are known, i.e., that connect the performance of a particular
general purpose cut to broad sub-classes of problems. Indeed, much of the results on
the strength of cutting-planes, as discussed in Sect. 1.1, is via worst-case results. Such
results only provide a coarse indication of which families of cuts seem to be strong,
while not indicating which class of cutting-planes is good (or, equally importantly,
bad) for a given class of instances. Recently, the notion of reverse rank was introduced
and studied (for CG and split cuts) [78,79] which connects instances to cut strength.
In particular, the question asked is the following: for which problems, can there exist
an LP relaxation with arbitrarily bad rank for a given class of cuts? While this is an
important first step, many questions in this direction remain to be explored.

Balancing the different goals The points above illustrate that many, possibly conflict-
ing, goals should be taken into account when generating cuts; the question is then how
to balance these goals. Overall, the common strategy is to: (1) first generate a collection
of violated cuts from different families using heuristics that typically aim at obtaining
cuts with maximum effectiveness; (2) discard cuts whose performance on one of the
goals (e.g., parallelism) is worse than a given (possibly dynamic) amount (possibly
skipping this step for cuts with particularly high “quality”); (3) rank the remaining cuts
using a linear combination of the different goals, and add the top cuts [4,13,203]. To
the best of our knowledge, there are very few works that during cut generation explic-
itly attempt to optimize on more than one goal simultaneously. Here we can cite [9],
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which simultaneously optimizes efficiency and parallelism by solving a bilevel opti-
mization problem, and [64] (mentioned above) that generates cuts that are facets for
a relaxation and also dominate the separating cut with largest depth-of-cut.

We hope that the above discussion illustrates that there are many important issues
pertaining to cut generation and selection, and also several exciting directions that
can lead to a better understanding of cutting-plane selection. In the next two sections
we review some lines of work that we undertook to provide a preliminary theoretical
underpinning for someof the issues appearing in cut-selection discussed above, namely
sparsity in Sect. 2 and use of knapsack relaxation cuts for packing and covering
instances (i.e. connecting some family of cut to important sub-family of instances) in
Sect. 3.

2 Sparsity

Sparsity is a very important topic in all areas of scientific computing. Consider the
following statistics: The average number (median) of non-zero entries in the constraint
matrix of MIPLIB 2010 [155] instances is 1.63% (0.17%).

Sparse LPs can be solved efficiently [74, Chapter 3] [139,184]. An IP solver typi-
cally solves a large number of LPs in a branch-and-bound tree to solve one IP instance.
Therefore, clearly one of the biggest benefits of sparsity for state-of-the-art IP solvers
is the sparsity of the underlying LP. In a very revealing study [201], the authors con-
ducted the following experiment: They added a very dense valid equality constraint
to a few constraints of the LP relaxation at each node while solving IP instances from
MIPLIB using CPLEX. This does not change the underlying polyhedron, but makes
the constraints dense. They observed approximately 25% increase in time to solve the
instances if 9 constraints were made artificially dense.

In order to keep the underlying LP sparse, most commercialMILPs solvers consider
sparsity of cuts as an important criterion for cutting-plane selection and use. The use
of sparse cutting-planes may be viewed as a compromise between two competing
objectives. As discussed above, on the one hand, the use of sparse cutting-planes aids
in solving the linear programs encountered in the branch-&-bound tree faster. On the
other hand, it is possible that ‘important’ facet-defining or valid inequalities for the
convex hull of the feasible solutions are dense and thus without adding these cuts, one
may not be able to attain significant integrality gap closure. This may lead to a larger
branch-&-bound tree and thus result in the solution time to increase.

It is challenging to simultaneously study both the competing objectives in relation
to cutting-plane sparsity. Therefore, a first approach to understanding usage of sparse
cutting-planes is the following: How much do we lose in the closure of integrality gap
if we only use (some of the) sparse cuts (as against dense cuts)?

2.1 Using all sparse cuts

The paper [117] considers the following starting point for understanding better this
issue: If we are able to separate and use all valid inequalities with a given level of
sparsity how much does this cost in terms of loss in closure of integrality gap?
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Considered more abstractly, consider a polytope P contained in the [0, 1]n hyper-
cube, representing the integer hull of an integer program. (The assumption P ⊆ [0, 1]n

is WLOG and just a normalization.) A cut ax ≤ b is called k-sparse if the vector a
has at most k nonzero components. For the polytope P , define Pk as the best outer-
approximation obtained from k-sparse cuts, that is, it is the intersection of all k-sparse
cuts valid for P . Consider the following natural measure of quality of approximation
of P by sparse inequalities: d(P, Pk) := maxx∈Pk

(
miny∈P‖x − y‖), where ‖ · ‖ is

the �2 norm. Note that d(P, Pk) is an upper bound on the depth of cut measure dis-
cussed in Sect. 1.2 when the left-hand-side of the cut is normalized to be a unit vector.
The largest distance between any two points in the [0, 1]n hypercube is at most

√
n.

Therefore we will compare the value of d(P, Pk) to
√

n.
We were able to obtain the following result in [117] to understand how well sparse

cuts approximate the actual shape of the integer hull.

Theorem 1 (Upper Bound on d(P, Pk)) Let n ≥ 2. Let P ⊆ [0, 1]n be the convex
hull of points {p1, . . . , pt }. Then

d(P, Pk) ≤ min

{
8

√
n√
k

√
2 log 4tn, 2

√
n

(n

k
− 1

)}
.

In particular, consider polytopes with ‘few’ vertices, say nq vertices for some con-
stant q. Suppose we decide to use cutting-planes with half sparsity (i.e. k = n

2 ), a
reasonable assumption in practice. Then plugging in these values, it is easily verified
that d(P, Pk) ≤ 16

√
(q + 1) log n ≈ c

√
log n for a constant c, which is a signifi-

cantly small quantity in comparison to
√

n. In other words, if the number of vertices
is small, independent of the location of the vertices, using half sparsity cutting-planes
allows us to approximate the integer hull very well. We believe that as the number of
vertices increase, the structure of the polytope becomesmore important in determining
d(P, Pk) and Theorem 1 only captures the worst-case scenario.

In the paper [117], it was also shown that the bound presented in Theorem 1 is tight
for random 0-1 polytopes.

The proof of Theorem 1 uses probabilistic techniques which we outline below.

Proof sketch of Theorem 1 Consider a polytope P = Conv{p1, p2, . . . , pt } in [0, 1]n .
We only prove the first bound in the theorem, that is, we show that d(P, Pk) is at most
4λ∗ for

λ∗ = 2n1/2

√
k

√
2 log 4tn.

Equivalently, we show that every point at distance more than 4λ∗ away from P is cut
off by a k-sparse inequality valid for P . Assume that 4λ∗ is at most

√
n, otherwise the

result is trivial.
Let u ∈ R

n be a point at distance more than 4λ∗ away from P . Let v be the closest
point in P to u. We can write u = v + λd for some vector d with ‖d‖2 = 1 and
λ > 4λ∗. The inequality dx ≤ dv is valid for P , so in particular dpi ≤ dv for all
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i ∈ [t]. In addition, this inequality cuts off u: du = dv + λ > dv. The idea is to
use this extra slack factor λ in the previous equation to show we can sparsify the
inequality dx ≤ dv while maintaining separation of P and u. It then suffices to prove
the following lemma.

Lemma 1 There is a vector d̃ ∈ R
n such that: d̃ is k-sparse, d̃ pi ≤ d̃v + λ

2 for all

i ∈ [t], and d̃u > d̃v + λ
2 .

To prove the lemma we construct a random vector D̃ ∈ R
n satisfying these three

properties simultaneously with non-zero probability. Let α = k
2
√

n
. Assume for sim-

plicity that no coordinate of d is too big, that is, α|di | ≤ 1 for all i ; bigger coordinates
can be handled with simple modifications of the proof. Then define D̃ as the random
vector with independent coordinates where D̃i takes value sign(di )/α with probabil-
ity α|di | and takes value 0 with probability 1 − α|di |. (For convenience we define
sign(0) = 1.)

Property 1. The probability that D̃ is not k-sparse is at most 1
4n . Note that

this vector is sparse in expectation, since the expected number of non-zero coor-
dinates is α‖d‖1 ≤ k/2. A simple calculation also upper bound the variance
Var(#of non-zero coords. of D̃) ≤ k

2 . Since the coordinates of this vector are inde-

pendent, by the Central Limit Theorem we expect it has approximately k
2 ±

√
k
2 � k

non-zero coordinates. In fact, one can make this quantitative by using Bernstein’s
Inequality [63], obtaining that the probability that D̃ is not k-sparse is at most 1

4n (this
uses the assumption 4λ∗ ≤ √

n).

Property 2. The probability that for some vertex pi we have D̃pi ≥ D̃v + λ
2 is

at most 1/4n. Given the “slack of λ” (which is at least 4λ∗) mentioned before, it
suffices to show that Pr(maxi∈[t]( D̃(pi − v) − d(pi − v)) ≥ 2λ∗) is at most 1/4n.
Define the centered random variable Z = D̃− d. Triangle inequality and the fact that
v ∈ Conv{p1, p2, . . . , pn} give that maxi∈[t] Z(pi − v) ≤ 2maxi∈[t] |Zpi |; so we
upper bound the probability that the right-hand side is larger than λ∗.

First, fix a single i ∈ [t]. Since Z is centered we have E[Zpi ] = 0. Simple
calculations show that

Var(Zpi ) = Var( D̃pi ) ≤
√

n

α
≤ (λ∗)2

4 log 4tn
.

Then, again we expect that Zpi is approximately 0 ± √
Var(Zpi ) � λ∗, and using

Bernstein’s inequality one actually obtains Pr(|Zpi | ≥ λ∗) ≤ 1
4tn .

This analysis only considered a single i ∈ [t]. But employing a union bound we
can put all these bounds together and obtain that the probability that any i ∈ [t] has
|Zpi | ≥ λ∗ is at most t

4tn = 1
4n , and thus Pr(maxi∈[t] |Zpi | ≥ λ∗) ≤ 1

4n as desired.

Property 3. The probability that D̃u > D̃v+ λ
2 is at most 1

2n−1 . Recalling u−v = λd,

it is equivalent to upper bound Pr( D̃d ≤ 1/2). In expectation we haveE[ D̃d] = dd =
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1, and simple calculations (using 4λ∗ ≤ √
n) show that for every scenario we have

D̃d ≤ n. Then employing Markov’s inequality to the non-negative random variable
n − D̃d, we get Pr( D̃d ≤ 1/2) ≤ 1 − 1

2n−1 .
To prove Lemma 1, simply employ a union bound to see that with positive proba-

bility D̃ satisfies the three properties simultaneously.
One drawback of this result is that it considers a very stylized situation, since almost

always some dense cutting-planes are used or one is interested in approximating the
integer hull only along certain directions or we may be able to use reformulations.
Therefore, the paper [112] studies the following questions: (i) Are there polytopes,
where the quality of approximation by sparse inequalities cannot be significantly
improved by adding polynomial (or even exponential) number of arbitrary valid
inequalities? (ii) Are there polytopes that are difficult to approximate under every rota-
tion? (iii) Are there polytopes that are difficult to approximate in almost all directions
using sparse inequalities? it was shown that the answer each of the above questions in
the positive. This is perhaps not surprising: an indication that sparse inequalities do
not always approximate integer hulls well even in the more realistic settings discussed
above.

2.2 Sparse cuts for sparse formulations

Another feature missing from the previous results is that they work on worst-case
instances. However, as mentioned before, in practice most instances in practice have
a sparse LP formulation. For one, it is reasonable to expect that sparse cut perform
better on sparse formulations. Moreover, the sparsity structure of the formulation can
serve as a guide to choosing the support of the which sparse cuts to use.

As an extreme example, consider the feasible region of the following separable
MILP:

A1x1 ≤ b1

A2x2 ≤ b2

x1 ∈ Z
p1 × R

q1 , x2 ∈ Z
p2 × R

q2

Since the constraints are completely disjoint in the x1 and x2 variables, the convex hull
is obtained by adding valid inequalities in the support of the first p1+q1 variables and
another set of valid inequalities for the second p2 + q2 variables. Therefore, sparse
cutting-planes, in the sense that their support is not on all the variables, are sufficient
to obtain the convex hull. Now one would like to extend such a observation even if the
constraints are not entirely decomposable, but “loosely decomposable”. Indeed this is
the hypothesis that is mentioned in the classical computational paper [97]. This paper
solves fairly large-scale 0-1 integer programs (up to a few thousand variables) within
an hour in the early 80s, using various preprocessing techniques and the lifted cover
inequalities within a cut-and-branch scheme. To quote from this paper:

“the inequalities that we generate preserve the sparsity of the constraint matrix.”
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The paper [116] examines this interplay between formulation sparsity and sparse
cuts. While the paper considers packing MILPs, covering MILPs, and a more gen-
eral form of MILPs where the feasible region is arbitrary together with assumptions
guaranteeing that the objective function value is non-negative, here we focus only on
packing problems. So consider a packing problem of the form:

max cT x (P)

s.t. Ax ≤ b

x j ∈ Z+,∀ j ∈ L
x j ∈ R+,∀ j ∈ [n]\L,

with A ∈ Q
m×n+ , b ∈ Q

m+, c ∈ Q
n+ and L ⊆ [n].

In order to formalize the notion of “almost decomposable”, [116] uses an interaction
graph of the columns of the constraint matrix A.

Definition 1 (Packing interaction graph of A) Consider a matrix A ∈ Q
m×n . Let

J := {J1, J2 . . . , Jq} be a partition of the index set of columns of A (that is [n]). We

define the packing interaction graph Gpack
A,J = (V, E) as follows: (i) There is one node

v j ∈ V for every part J j ∈ J . (ii) For all vi , v j ∈ V , there is an edge (vi , v j ) ∈ E if
and only if there is a row in A with non-zero entries in both parts Ji and J j , namely
there are k ∈ [m], u ∈ Ji and w ∈ J j such that Aku �= 0 and Akw �= 0.

Now we turn to the control over the sparsity structure of cuts one is willing to use.
For that, [116] uses a list of allowed supports of the cuts and considers the result of
adding all the valid cuts within these supports.

Definition 2 (Column block-sparse closure) Given the problem (P), let J :=
{J1, J2, . . . , Jq} be a partition of the index set of columns of A (that is [n]) and consider
the packing interaction graph Gpack

A,J = (V, E). With slight overload in notation, for a
set of nodes S ⊆ V we say that inequality αx ≤ β is a sparse cut on S if its support is

contained in
⋃

v j ∈S J j . The closure of these cuts is denoted by P(S) := P
(
⋃

v j ∈S J j ).

Given a collection V of subsets of the vertices V (the support list), we use PV,pack to
denote the closure obtained by adding all sparse cuts on the sets in V’s, namely

PV,pack :=
⋂

S∈V
P(S).

Example 1 (Two-stage stochastic packing program) The deterministic equivalent of a
two-stage stochastic program with finitely many realizations of uncertain parameters
in the second stage has the following form:
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max
K∑

i=0

(ci )T xi (2-SSP)

s.t. Ax0 ≤ b

Ai x0 + Bi xi ≤ bi ∀i ∈ [k]
x0, . . . , xk integral,

where x0 are the first stage variables and the xi ’s for i ≥ 1 correspond to each
realization in the second stage.Note that there are no constraints involving twodifferent
realizations.

It is natural to put all the first stage variables x0 into one block and each of the
second stage variables xi (for i ≥ 1) into a separate block of variables. So we have a
graph Gpack

A,J with vertex set {v0, v1, . . . , vk} and edges (v0, v1), (v0, v2), . . . , (v0, vk).
Consider the cuts on the support of first stages variables together with the variables

corresponding to one second stage realization, the so-called single-scenario cuts. Such
cutting-planes are well-studied, see for example [54,66,195,211].

Intuitively, the “fewer edges” the graphGpack
A,J has, themore “almost decomposable”

the blocks of variables J1, J2 . . . , Jq are. However, it is also crucial to capture the
interplay between this graph structure and the supports of the sparse cuts to be used.
For that, [116] defines the notion of mixed stable sets and fractional mixed chromatic
number (denoted by ηV ) based on them (we refer to the paper for the exact definition).
In the case the support listV consists of just the individual nodes ofGpack

A,J these notions
reduce to the standard stable sets and fractional chromatic number.

With these definitions at hand, the main result of [116] for packing problem is a
bound on the strength of sparse cuts, where the support of the sparse cuts is in a given
list V , such that the bound solely depends on the fractional mixed chromatic number
of Gpack

A,J . In particular, it is independent of the dimension and the data of the problem.

Theorem 2 Consider a packing integer program as defined in (P). Let J ⊆ 2[n] be a
partition of the index set of columns of A and let G = Gpack

A,J = (V, E) be the packing

interaction graph of A. Then for any sparse cut support list V ⊆ 2V we have

zV,pack ≤ ηV (G) · z I ,

where zV,pack is the optimal value over the sparse closure PV,pack and zI is the optimal
value of the original integer program (P).

Since the definitions involved in this theorem are a mouthful, we consider the more
concrete case of the 2-stage stochastic packingprogram (2-SSP).Consider graphGpack

A,J
defined as in Example 1, and consider the support listV consisting of just the individual
nodes of Gpack

A,J . In this case, only xi -cuts are allowed (for i = 0, 1, . . . , k), i.e., cuts

supported only on the xi variables. As mentioned above, in this case the fractional
mixed chromatic number reduces to the standard fractional chromatic number, which
equals 2 for the star graph Gpack

A,J . Therefore, Theorem 2 reduces to the following.

123



Theoretical challenges towards cutting-plane selection… 253

Corollary 1 Consider a 2-stage stochastic integer program (2-SSP). If z I is the opti-
mal value of this integer program and zsparse is the optimal value of the relaxation
consisting only of all xi -cuts (for i = 0, . . . , k), then

zsparse ≤ 2z I .

We prove this corollary to illustrate the simple ideas behind the the proof of Theo-
rem 2.

Proof of Corollary 1 Let P I denote the integer hull of the integer program. Let x̄ =
(x̄0, . . . , x̄ k) be a feasible solution for the relaxation consisting only of all the xi -cuts
cuts (for i = 0, . . . , k). Wewill upper bound its objective value by 2z I by constructing
two good integer solutions in P I .

Let x̃ i be the optimal solution just for the i th block of the problem, namely

x̃ i ∈ argmax

{
(ci )T xi : (0, . . . , 0, xi , 0, . . . , 0) ∈ P I

}
.

Because we assumed the problem to be of packing-type, this is equivalent to

x̃ i ∈ argmax

{
(ci )T xi : xi ∈ projxi P I

}
, (2)

where projxi denotes the projection onto the variables xi . Assume without loss of
generality that x̃ i is integral.

By definition, (x̃0, 0, . . . , 0) is a feasible solution for (2-SSP); moreover, because
there are no constraints in (2-SSP) connecting any pair of different blocks xi , x j for
i, j ≥ 1, we obtain that (0, x̃1, . . . , x̃ k) is also a feasible solution. (This indicates the
importance of stable sets in this context.) Each of these two solutions has value at most
the optimum z I , thus

k∑

i=0

(ci )T x̃ i ≤ 2z I . (3)

Now we claim that x̄ i ∈ projxi P I : this is because every valid inequality αi x i ≤ β

for projxi P I naturally yields the xi -cut (0, . . . , 0, αi , 0 . . . , 0)x ≤ β in the original
space, which is satisfied by x̄ , and hence αi x̄ i ≤ β. The optimality of x̃ i in (2) then
gives that (ci )T x̄ i ≤ (ci )T x̃ i (for all i = 0, . . . , k), and so

k∑

i=0

(ci )T x̄ i ≤
k∑

i=0

(ci )T x̃ i .

Together with inequality (3) this concludes the proof.
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The paper [116] also present similar phenomena for covering problems, and for
more general MILPs where the feasible region is arbitrary together with assumptions
guaranteeing that the objective function value is non-negative. This requires a different
notion of interaction graph, and also the so-called “corrected average density” of the
support list to be taken into account. The paper also present examples where these
bounds are tight.

3 Selecting knapsack relaxation cuts

Recall that an important class of cuts via themethod of structured relaxation (Sect. 1), is
obtained via the knapsack relaxation. There are numerous ways to generate a knapsack
relaxation: one can just use the original constraints, but more generally, we can take a
linear combination of the constraints and obtain a knapsack relaxation. We call such
cuts as aggregation cuts. Most cuts used by modern IP solvers (except perhaps clique
cuts) can be described as aggregation cuts.

The set of all aggregation cuts have been studied empirically [127], but not much
is known from a theoretical perspective. An important question from the perspective
of cutting-plane selection is: How should we construct these relaxations? What mul-
tipliers should we use? What happens if we select cuts from relaxations obtained only
using individual constraints, without aggregating?

3.1 Aggregation cuts and packing and covering MILPs

The paper [56] examines the strength of aggregation cuts for packing and covering
MILPs. The main result is that for these classes of problems, even considering all
infinitely many aggregations, offers limited help. More precisely, they show that the
CG and more generally aggregation closures can be 2-approximated by simply gen-
erating the respective closures for each of the original constraints, without using any
aggregations. Therefore, for these problems, in order to obtain cuts that are much
stronger than original constraint cuts, one needs to consider more complicated cuts
that cannot be generated through aggregations (e.g. clique cuts).

To give an idea of what is behind these results, we focus here on a weaker version
of the result for aggregation cuts and packing polyhedra. We say that a packing poly-
hedron {x ∈ R

n+ : Ax ≤ b} is pre-processed if 0 ≤ Ai j ≤ bi for all i, j (notice that
otherwise all integer solutions have x j = 0 so we can simply exclude this variable).
Given a packing polyhedron Q, its aggregation closure is defined as

A(Q) :=
⋂

λ∈Rm+

Conv({x ∈ Z
n+ | λ� Ax ≤ λ�b}).

Given two packing sets1 U ⊇ V , we say that U is an α-approximation of V if for all
non-negative objective functions c ∈ R

n+ we have

1 Packing sets are of the form {x ∈ R
n+ | (ai )�x ≤ bi , ∀i ∈ I } for a possibly infinite set I where all

(ai , bi )’s are non-negative, i.e., it is not necessarily polyhedral. This generalization is required because
while the aggregation closure is a packing set, it is not known if it is polyhedral.
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max{c�x | x ∈ U } ≤ α · max{c�x | x ∈ V }. (4)

Notice that since U ⊇ V , we have α ≥ 1.
One of the results present in [56] is that the for pre-processed packing polyhedra

the aggregation closure is quite close to the LP relaxation.

Theorem 3 For any pre-processed packing polyhedron P, P itself is a 2-approximation
of the aggregation closure A(P).

We remark that the LP relaxation P can have a gap of factor up to �(n) to the
integer hull (for example, in the standard formulation of the stable set problem), thus
this result says that the aggregation closure can make very little progress.

We now present the proof of Theorem 3. At a very high level it stems from the
following simple principle, which may be useful in guiding the choice of relaxations
to be used for generating cuts:

“Relaxations with small integrality gap may yield weak cuts.”

This can be formalized in the case of packing sets as follows. Given a set Q, let QI

denote its integer hull.

Lemma 2 Let P ∈ R
n+ be packing set. Let Q be a family of packing sets containing P

(e.g., relaxations). Suppose there is α such that for all Q ∈ Q, Q is an α-approximation
of QI . Let P̃ = P ∩ ⋂

Q∈Q QI , i.e., the effect of the addition of all valid cuts for the

sets Q. Then P itself is an α-approximation of P̃.2

Proof One can show that given any two packing setsU ⊆ V , V is an α-approximation
of U if and only if V ⊆ αU := {αx : x ∈ U } (see [130] and the extension to the
non-polyhedral case in [56]). Thus, by our assumptions we have P ⊆ Q ⊆ αQI for
all Q ∈ Q, and since α ≥ 1 we also have P ⊆ αP . Therefore

P ⊆ αP ∩
⋂

Q∈Q
αQI = α

⎛

⎝
⋂

Q∈Q
αQI

⎞

⎠ = α P̃,

concluding the proof.

Theorem 3 is a quick consequence of this principle.

Proof of Theorem 3 For a fixed multiplier vector λ, let Pλ = {x ∈ R
d+ : λ� Ax ≤

λ�b} be the relaxation obtaining by the corresponding aggregation. Notice that Pλ

is also a pre-processed packing polyhedron that is actually a knapsack. It is well-
known and easy to show that for pre-processed knapsacks the LP relaxation is a
2-approximation of the IP hull [56], thus Pλ is a 2-approximation of (Pλ)

I . The
aggregation closureA(P) is precisely the intersection of all the sets (Pλ)

I , and so the
result follows from the Lemma 2.

2 One can show that the integer hull of a packing set is also a packing set [56], and thus so is P̃ .

123



256 S. S. Dey, M. Molinaro

The paper [56] shows that results also hold for covering problem (with and without
bounds) as well with suitable notions of “pre-processed” polyhedra. Moreover, the
paper shows that all these pre-processings of arbitrary packing/covering polyhedra
can be achieved by generating CG cuts for each of the rows individually, thus yielding
a bound between the 1-row CG/aggregation closures and the full aggregation closure
(see [56] for more detail).

3.2 Aggregations for general MIPs

The paper [56] also shows that for general MILPs the aggregation closure can be
much stronger than the closure of the cuts implied by the original constraints of the
MILPs individually. More precisely, the 1-row closure 1A(P) of a mixed-integer set
P = {x ∈ R

d × Z
n : Ax ≤ b, x ≥ 0} is obtained by intersecting the integer hulls

of all relaxations {x ∈ R
d × Z

n : (ai )
�x ≤ bi , x ≥ 0} where ai is the i th row of A.

They show the following result.

Theorem 4 ([56]) There is a family of mixed-integer sets where the 1-row closure
is arbitrarily worse than the aggregation closure, namely for every α ≥ 0 there is a
mixed-integer set P and objective function c such that

max{c�x : x ∈ 1A(P)} ≥ α · max{c�x : x ∈ A(P)}.

As always, such worst-case examples could be very artificial and this phenomenon
might not appear in practice. Given the availability of reasonably robust CG cut sepa-
rating procedure [125], in our experimentwe compare 1-rowCGcuts (CGcuts for each
{x ∈ R

d × Z
n : (ai )

�x ≤ bi , x ≥ 0}) versus general CG cuts. We study two classes
of instances: random equality instances and the so-called market split instances [88].
See details of instances in [56]. It was empirically observed that the 1-row CG are
significantly weaker than general CG cuts.

The message for cutting-plane selection is clear: For packing and covering IPs, it
may be sufficient to generate cuts from knapsack cuts from original single constraints,
while for more general IPs aggregations can be significantly useful.

3.3 Aggregations with sign patterns

We dig deeper into this question of packing and covering vs general IPs and the
performance of aggregation cuts. Note that aggregation cuts can be generalized to
multi-row aggregation: apply a k different set of multipliers to the original constraints
to obtain a k-constraint relaxation and add cut valid for this set.

Observe that for packing and covering IPs all the coefficients of all the variables in
all the constraints have the same sign. Therefore when we aggregate constraints we are
not able to “cancel” variables, i.e., the support of an aggregated constraint is exactly
equal to the union of supports of the original constraints used for the aggregation.
A natural conjecture for the fact that the aggregation (resp. multi-row aggregation,
i.e.) closure is well approximated by the original (resp. multi-row) 1-row closure for
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packing and covering problems, is the fact that such cancellations do not occur for
these problems. Indeed one of the key ideas used to obtain good candidate aggregations
in the heuristic described in [172] is to use aggregations that maximize the chances of
a cancellation.

In order to study the effect of cancellations, the paper [113] examines the strength
of aggregation closures vis-à-vis original row constraints for sign-pattern IPs. A sign-
pattern IP is a problem of the form {x ∈ Z

n+ : Ax ≤ b} where a given variable has
exactly the same sign in every constraint, i.e. for a given j , Ai, j is either non-negative
for all i or non-positive for all i . Thus aggregations do not create cancellations. The
results are interesting: On the one handwe are able to show that the aggregation closure
for such sign-pattern IPs is 2-approximated by the original 1-row closure. On the other
hand, the multi-row aggregation closure cannot be well approximated by the original
multi-row closure. Therefore, these classes of integer programs show results that are
in between packing and covering IPs on one side and general IPs on the other side.

4 Final remarks

In Sect. 1, we discussed various types of cutting-planes available tomodern day solvers
and the theoretical analysis of these cutting-planes that has been conducted. As we
discussed, while the theoretical analysis conducted thus far is important, these results
have so far failed to directly help in actual cutting-plane selection. In Sect. 1.2, we
then highlighted the need to focus on alternative questions in order to better develop
the science of cutting-plane selection. We would like to throw a word of caution here.
While the questions we have indicatedmay eventually be important ones to pursue, the
answers may not be unique. Indeed, modern day solvers have become complex, highly
integrated engineering marvels, where different components of the solvers are heavily
inter-dependent, and therefore it may be altogether possible that one kind of cutting-
plane selection improves the average solution time in the context of one code and
miserably fails in conjunction with other codes! Moreover, different tasks performed
by a solver need allocation of time and resource (memory) and the task of obtaining
dual bounds is not necessarily the “top priority” for many industrial users of solvers.
Given solvers must “please all”, the choice of cutting-plane selection definitely must
speak to different requirements and compulsions. Overall, all of this points to the fact
that the questions asked in Sect. 1 must be pursued rigorously, but specific answers for
each solver may lie in balancing various competing goals in cutting-plane selection
(as mentioned in Sect. 1.2).

Based on the above discussion, one is also tempted to ask if there is any value in
attempting to pursue “principled and scientific” theory for cutting-plane selection at
all. We believe that the answer is yes. Most solvers have implemented heuristics for
cutting-planes selection that can be run cheaply and do not put too much pressure on
other components of the solvers. To go back to the example of GMICs, one reason
that most codes, before the work by [30], perhaps separated one cut and resolved
LP was that it was considered expensive to add too many cuts and increase the size
of LPs significantly. As computer speeds improve and specific architectures (such as
parallel computing, GPUs etc.) steadily get better, it may be possible to revisit all the
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heuristics that current day solvers implement and improve them on the basis of hard
science of integer programming and cutting-plane selection. Therefore, we believe
a better understanding of cutting-plane selection in a systematic fashion is likely to
improve solvers in the long run.

We also hope that there are some specific take-aways related to cut-selection from
the results presented in Sects. 2 and 3: For example, if we have a structured sparse
packing IP, Sect. 3 indicates that if we generate aggregation cuts, then we may restrict
the selection of cuts from knapsack relaxations of the original constraints. The result
of Sect. 2.2 presents indication of specific sparsity patterns of cuts to be selected,
based on the sparsity pattern of the packing IP. We recognize that these results are
very preliminary results; as such, we are very far from answering the questions raised
in Sect. 1.2.

We end this paper with another important question: Is it possible to solve all (or any
of) the questions raised in Sect. 1.2 using machine learning? Indeed, there is a signif-
icant trend of applying machine learning to integer programming. Recently this has
been applied to branching [7,154,167], node selection [143], decompositions [159],
solver parameter selection [146,207], load balancing in parallel branch-and-bound [8],
probing inMINLPs [178], and selecting solution methods for mixed-integer quadratic
programs [59]. To the best of our knowledge machine learning has not been applied
to cut generation and selection. We believe that the answer to improved and princi-
pled cut-selection may be somewhere in between using only machine learning or only
theoretical analysis. It is possible to envisage that results from theoretical analysis of
cutting-plane selection work in concert with learning algorithms. Indeed, learning task
models may be able to leverage specific theoretical knowledge about cutting planes
selection.

Overall, we hope that this review fosters inquiry into new questions and techniques
that aid in cutting-plane selection, integrating practical knowledge and considerations
with theoretical tools.
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