
Math. Program., Ser. A (2019) 178:327–360
https://doi.org/10.1007/s10107-018-1293-1

FULL LENGTH PAPER

Oracle complexity of second-order methods for smooth
convex optimization

Yossi Arjevani1 · Ohad Shamir1 · Ron Shiff1

Received: 12 September 2017 / Accepted: 7 May 2018 / Published online: 28 May 2018
© Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2018

Abstract Second-order methods, which utilize gradients as well as Hessians to opti-
mize a given function, are of major importance in mathematical optimization. In this
work, we prove tight bounds on the oracle complexity of such methods for smooth
convex functions, or equivalently, the worst-case number of iterations required to
optimize such functions to a given accuracy. In particular, these bounds indicate when
such methods can or cannot improve on gradient-based methods, whose oracle com-
plexity is much better understood. We also provide generalizations of our results to
higher-order methods.

Keywords Smooth convex optimization · Oracle complexity

Mathematics Subject Classification 90C25 · 65K05 · 49M37

1 Introduction

We consider an unconstrained optimization problem of the form

min
w∈Rd

f (w), (1)

B Ron Shiff
ron.shiff1@gmail.com

Yossi Arjevani
yossi.arjevani@weizmann.ac.il

Ohad Shamir
ohad.shamir@weizmann.ac.il

1 Department of Computer Science, Weizmann Institute of Science, Rehovot, Israel

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-018-1293-1&domain=pdf
http://orcid.org/0000-0002-2502-8160

328 Y. Arjevani et al.

where f is a generic smooth and convex function. A natural and fundamental question
is how efficiently can we optimize such functions.

We study this question through the well-known framework of oracle complexity
[13], which focuses on iterative methods relying on local information. Specifically, it
is assumed that the algorithm’s access to the function f is limited to an oracle, which
given a pointw, returns the values and derivatives of the function f atw. This naturally
models standard optimization approaches to unstructured problems such as (1), and
allows one to study their efficiency, by bounding the number of oracle calls required
to reach a given optimization error. Different classes of methods can be distinguished
by the type of oracle they use. For example, gradient-based methods (such as gradient
descent or accelerated gradient descent) rely on a first-order oracle, which returns
gradients, whereas methods such as the Newton method rely on a second-order oracle,
which returns gradients as well as Hessians.

The theory of first-order oracle complexity is quite well developed [12,13,15]. For
example, if the dimension is unrestricted, f in (1) has μ1-Lipschitz gradients, and the
algorithm makes its first oracle query at a point w1, then the worst-case number of
queries T required to attain a point wT satisfying f (wT) − minw f (w) ≤ ε is

Θ

⎛
⎝
√

μ1D2

ε

⎞
⎠ , (2)

where D is an upper bound on the distance between w1 and the nearest minimizer of
f . Moreover, if the function f is also λ-strongly convex for some λ > 01, then the
oracle complexity bound is

Θ

(√
μ1

λ
· log
(

μ1D2

ε

))
. (3)

Both bounds are achievable using accelerated gradient descent [14].
However, these bounds do not capture the attainable performance of second-order

methods, which rely on gradient as well as Hessian information. This is a central class
of optimization methods, including the well-known Newton method and its many
variants. Clearly, since these methods rely on Hessians as well as gradients, their
oracle complexity can only be better than first-order methods. On the flip side, the
per-iteration computational complexity is generally higher, in order to process the
additional Hessian information (especially in high-dimensional problems where the
Hessian matrix may be very large). Thus, it is natural to ask howmuch does this added
per-iteration complexity pay off in terms of oracle complexity.

To answer this question, oneneeds goodoracle complexity lower bounds for second-
order methods, which establish the limits of attainable performance using any such
algorithm. Perhaps surprisingly, such results do not seem to currently exist in the liter-
ature, and clarifying the oracle complexity of such methods was posed as an important
open question (see for example [16]). The goal of this paper is to address this gap.

1 Assuming f is twice-differentiable, this corresponds to ∇2 f (w) � λI for all w.

123

Oracle complexity of second-order methods… 329

Specifically, we prove that when the dimension is sufficiently large, for the class of
convex functions with μ1-Lipschitz gradients and μ2-Lipschitz Hessians, the worst-
case oracle complexity of any deterministic algorithm is

Ω

⎛
⎝min

⎧⎨
⎩

√
μ1D2

ε
,

(
μ2D3

ε

)2/7⎫⎬
⎭

⎞
⎠ . (4)

This bound is tight up to constants, as it is matched by a combination of existing
methods in the literature (see discussion below). Moreover, if we restrict ourselves to
functions which are λ-strongly convex, we prove an oracle complexity lower bound of

Ω

((
min

{√
μ1

λ
,
(μ2

λ
D
)2/7}+ log log18

(
λ3/μ2

2

ε

)))
. (5)

Moreover, we establish that this bound is tight up to logarithmic factors (indepen-
dent of ε), utilizing a novel adaptation of the A-NPE algorithm proposed in [10] (see
“Appendix A”). These new lower bounds have several implications:

– Perhaps unexpectedly, (5) establishes that one cannot avoid in general a polyno-
mial dependence on geometry-dependent “condition numbers” of the form μ1/λ

or μ2D/λ, even with second-order methods. This is despite the ability of such
methods to favorably alter the geometry of the problem (for example, the Newton
method is well-known to be affine invariant).

– To improve on the oracle complexity of first-order methods for strongly-convex
problems ((3)) by more than logarithmic factors, one cannot avoid a polynomial
dependence on the initial distance D to the optimum. This is despite the fact that
the dependence on D with first-order methods is only logarithmic. In fact, when

D is sufficiently large (of order
μ
7/4
1

μ2λ3/4
or larger), second-order methods cannot

improve on the oracle complexity of first-order methods by more than logarithmic
factors.

– In the convex case, second-order methods are again no better than first-order meth-
ods in certain parameter regimes (i.e., when μ2 ≥ μ

7/4
1

√
D/ε3/4), despite the

availability of more information.

Finally, we show how our proof techniques can be generalized, to establish lower
bounds for methods employing higher-order derivatives. In particular, for methods
using all derivatives up to order k, we show that for convex functionswithμk-Lipschitz
k-th order derivatives, the oracle complexity is

Ω

((
μk Dk+1

(k + 1)!kε
)2/(3k+1))

.

This directly generalizes (2) for k = 1, and (4) when k = 2 and μ1 is unrestricted.
We note that in this paper, we focus on deterministic algorithms, in view of the fact

that all state-of-the-art algorithms for our problem are deterministic, and following
most existing literature on oracle complexity lower bounds. However, we believe our

123

330 Y. Arjevani et al.

results can be readily extended to randomized algorithms as well (see Remark 1 for
more details).

1.1 Related work

Below, we review some pertinent results in the context of second-order methods.
Related results in the context of k-th order methods are discussed in Sect. 2.2.

Perhaps the most well-known and fundamental second-order method is the Newton
method, which relies on iterations of the form wt+1 = wt − (∇2 f (w))−1∇ f (w) (see
e.g., [6]). It is well-known that this method exhibits local quadratic convergence, in the
sense that if f is strictly convex, and the method is initialized close enough to the opti-
mumw∗ = argminw f (w), thenO(log log(1/ε)) iterations suffice to reach a solution
w such that f (w)− f (w∗) ≤ ε. However, in order to get global convergence (starting
from an arbitrary point not necessarily close to the optimum), one needs to make some
algorithmic modifications. For the Newton method with a line search, the number of

iterations can be upper bounded byO
(

μ2
1μ

2
2

λ5
(f (w1) − f (w∗)) + log log2

(
λ3/μ2

2
ε

))
,

where μ1, μ2 are the Lipschitz parameters of the gradients and Hessians respectively,
and assuming the function is λ-strongly convex [9]. Note that the first term captures
the initial phase required to get sufficiently close to w∗, and is easily the dominant
term in the bound (unless ε is exceedingly small). If f is self-concordant 2, this
can be improved to O ((f (w1) − f (w∗)) + log log2

(1
ε

))
, independent of the strong

convexity and Lipschitz parameters ([17]). Unfortunately, not all practically relevant
objective functions are self-concordant (or at least cannot be made self-concordant
without strongly affecting other problem parameters).

Returning to our setting of generic convex and smooth functions, and focusing on
strongly convex functions for now, the best existing upper bounds (we are aware of)
were obtained for cubic-regularized variants of the Newton method [8,16,18]. The
existing analysis (see section 6 of [16]) implies an oracle complexity bound of at most

O
((

μ2
λ
D
)1/3 + log log2

(
λ3/μ2

2
ε

))
, where D = ‖w1 − w∗‖ is the distance from the

initialization point w1 to the optimum w∗. However, as we show in “Appendix A”,
a better oracle complexity bound can be obtained, by adapting the A-NPE method
proposed in [10] and analyzed for convex functions, to the strongly convex case. The
resulting complexity upper bound is

O
((μ2

λ
D
)2/7

log

(
μ1μ

2
2D

2

λ3

)
+ log log2

(
λ3/μ2

2

ε

))
. (6)

An alternative to the above is to use a hybrid scheme, startingwith accelerated gradient
descent (which is an optimal first-order method for strongly convex functions with
Lipschitz gradients) andwhen close enough to the optimal solution, switch to aNewton
based method The required number of iterations can be shown to be at most

2 That is, for any vectors v,w, the function g(t) = f (w + tv) satisfies |g′′′(t)| ≤ 2g′′(t)3/2.

123

Oracle complexity of second-order methods… 331

O
(√

μ1

λ
· log
(

μ1μ
2
2D

2

λ3

)
+ log log2

(
λ3/μ2

2

ε

))
, (7)

where D = ‖w1 − w∗‖ (see [15,16]). Clearly, by taking the best of (6) and (7)
(depending on the parameters), one can theoretically attain an oracle complexitywhich
is the minimum of (6) and (7). This minimum matches (up to a logarithmic factors)
the lower bound in (5), which we establish in this paper.

It is interesting to note that the bounds in (6) and (7) are not directly comparable: The
first bound has a polynomial dependence on μ2/λ and ‖w1 −w∗‖, and a logarithmic
dependence on μ1, whereas the second bound has a polynomial dependence on μ1/λ,
logarithmic dependence on ‖w1 − w∗‖, and a logarithmic dependence on μ2. In a
rather wide parameter regime (e.g. when D is reasonably large, as often occurs in
practice), the bound of the hybrid scheme can be better than that of pure second-order
methods. In light of this, [16] raised the question of whether second-order schemes
are indeed useful at the initial stage of the optimization process, for these types of
problems. Our results indicate that indeed, in certain parameter regimes, this is not the
case.

Analogous results can be obtained for convex (not necessarily strongly convex)
smooth functions. The best upper bounds we are aware are for the (second-order)
A-NPE method of [10], and for the (first order) accelerated gradient descent method,
which are

O
((

μ2D3

ε

)2/7)
and O

⎛
⎝
√

μ1D2

ε

⎞
⎠

respectively. Clearly, by taking the best of these two methods (depending on the prob-
lem parameters), one can attain an oracle complexity equal to the minimum of the
two bounds. This is matched (up to constants) by the lower bound in (4), which we
establish in this paper.

Finally, we discuss the few existing lower bounds known for second-order methods.
Ifμ2 is not bounded (i.e.,the Hessians are not Lipschitz), it is easy to show that Hessian
information is not useful. Specifically, the lower bound of (2) for first-order methods
will then also apply to second-order methods, and in fact, to anymethod based on local
information (see [13, section 7.2.6] and [4]).Of course, this lower bound does not apply
to second-order methods whenμ2 is bounded. In our setting, it is also possible to prove
an Ω(log log(1/ε)) lower bound, even in one dimension [13, section 8.1.1], but this
does not capture the dependence on the strong convexity and Lipschitz parameters.
Some algorithm-specific lower bounds in the context of non-convex optimization are
provided in [7]. Finally, wewere recently informed of a newwork ([1], yet unpublished
at the time of writing), which uses a clean and elegant smoothing approach, to derive
second- and higher-order oracle lower bounds directly from known first-order oracle
lower bounds, as well as extensions to randomized algorithms. However, the resulting
bounds are not as tight as ours.

123

332 Y. Arjevani et al.

2 Main results

In this section, we formally present our main results, starting with second-order oracle
complexity bounds (Sect. 2.1), and then discussing extensions to higher-order oracles
(Sect. 2.2).

2.1 Second-order oracle

We consider a second-order oracle, which given a pointw returns the function’s value
f (w), its gradient ∇ f (w) and its Hessian ∇2 f (w), and algorithms, which produce a
sequence of points w1,w2, . . . ,wT , with each wt being some deterministic function
of the oracle’s responses at w1, . . . ,wt−1. Our main results (for strongly convex and
convex functions f respectively) are provided below.

Theorem 1 For any positive μ1, μ2, λ, D, ε such that μ1
λ

≥ c1,
μ2
λ
D ≥ c2 and

ε < c3λ3

μ2
2

(for some positive universal constants c1, c2, c3), and any algorithm as

above with initialization pointw1, there exists a function f : Rd → R (for some finite
d) such that

– f is λ-strongly convex, twice-differentiable, has μ1-Lipschitz gradients and μ2-
Lipschitz Hessians, and has a global minimum w∗ satisfying ‖w1 − w∗‖ ≤ D.

– For some universal constant c > 0, the index T required to ensure f (wT) −
f (w∗) ≤ ε is at least

c ·
(
min

{√
μ1

λ
,
(μ2

λ
D
)2/7}+ log log18

(
λ3/μ2

2

ε

))
.

Theorem 2 For any positive μ1, μ2, D, ε and any algorithm as above with initial-
ization point w1, there exists a function f : Rd → R (for some finite d) such that

– f is convex, twice-differentiable, has μ1-Lipschitz gradients and μ2-Lipschitz
Hessians, and has a global minimum w∗ satisfying ‖w1 − w∗‖ ≤ D.

– For some universal constant c > 0, the index T required to ensure f (wT) −
f (w∗) ≤ ε is at least

c · min

⎧⎨
⎩

√
μ1D2

ε
,

(
μ2D3

ε

)2/7⎫⎬
⎭ .

We emphasize that the theorems focus on the high-dimensional setting, where the
dimension d is not necessarily fixed and may depend on other problem parameters
(more specifically, we require the dimension to be at least 2T). Also, we note that the
parameter constraints in Theorem 1 are purely for technical reasons (they imply that
the different terms in the bound are at least some positive constant), and can probably
be relaxed somewhat.

123

Oracle complexity of second-order methods… 333

Let us compare these theorems to the upper bounds discussed in the related work
section, which are

O
(
min

{√
μ1

λ
,

(
μ2D

λ

)2/7}
· log
(

μ1μ
2
2D

2

λ3

)
+ log log2

(
λ3/μ2

2

ε

))
.

in the strongly convex case, and

O
⎛
⎝min

⎧⎨
⎩

√
μ1D2

ε
,

(
μ2D3

ε

)2/7⎫⎬
⎭

⎞
⎠ .

in the convex case. Our bound in the convex case is tight up to constants, and in the
strongly convex case, up to a log(μ1μ

2
2D

2/λ3) factor. We conjecture that some such
logarithmic factor (possibly a smaller one) is indeed necessary, in order to get a tight
interpolation to the Ω(

√
μ1/λ · log(μ1D2/ε)) lower bound of first-order methods as

μ2 → ∞ (see [13, section 7.2.6] and [4]), and that it can be recovered with a more
careful analysis of our construction. However, this involves some non-trivial technical
challenges, which we leave to future work.

Remark 1 (Randomized Algorithms) In this paper, we focus on deterministic algo-
rithms, where each point wt produced is a deterministic function of the oracle’s
responses at w1, . . . ,wt−1. This follows most existing works on oracle complexity
lower bounds, and is without much loss of generality, since all existing state-of-the-art
algorithms for this problem are deterministic. In any case, we believe our bounds can
be readily extended to randomized algorithms, using the same techniques that extend
first-order oracle complexity lower bounds to randomized algorithms (see [13] and
the explicit construction in [20]). In a nutshell, for deterministic algorithms we can
tailor the “hard” function to the algorithm, whereas for randomized algorithms, we
construct some fixed distribution over “hard” functions, so that any algorithm (random
or not) will fail to achieve a certain optimization error with high probability. Since the
formal proof is considerably more involved than in the deterministic case, we leave
its formal derivation to future work.

2.2 Higher order oracles

In addition to first-order and second-order oracles, it is of interest to understand what
can be achieved with methods employing higher order derivatives. It turns out that the
techniqueswe use to establish our second-order lower bounds can be easily generalized
to such higher-order methods.

More explicitly, we consider methods which can be modelled as interacting with
a k-th order oracle, which given a point w returns the function’s value and all of
its derivatives up to order k, namely, f (w),∇ f (w),∇2 f (w), . . . ,∇k f (w). Given
access to such an oracle, the method produces a sequence of points w1,w2, . . . ,wT

as before (where eachwt is a deterministic function of the previous oracle responses).

123

334 Y. Arjevani et al.

For simplicity, we will focus here on the case of convex functions (not necessarily
strongly convex), where the k-th order derivative is Lipschitz continuous.

Theorem 3 For any positive integer k, positive μk, D, ε, and algorithm based on a
k-th order oracle as above, there exists a function f : Rd → R (for some finite d)
such that

– f is convex, k times differentiable, k-order smooth (i.e., ‖∇k f (u) − ∇k f (v)‖
≤ μk‖u − v‖) and has a global minimum w∗ satisfying ‖w1 − w∗‖ ≤ D.

– For some universal constant c > 0, the index T required to ensure f (wT) −
f (w∗) ≤ ε is at least

c

(
μk Dk+1

(k + 1)!kε
)2/(3k+1)

.

Note that this result directly generalizes existing results for first-order oracles (k = 1),
as well as our results for second-order oracles (k = 2, when μ1 is unrestricted).

Finally, we compare our lower bound to the best upper bound we are aware of,
established by [5] using a high-order method with oracle complexity of

O
(√

k

(
f (w1) − f (w∗)

ε
+ μk Dk+1

(k + 1)!ε
)1/(k+1)

)
.

Note that the upper bound contains an additional (f (w1)− f (w∗))/ε term, and more-
over, the exponent (as a function of k) is larger than ours (1/(k + 1) vs. 2/(3k + 1)).
Based on our results, we know that this upper bound is loose in the k = 2 case, so we
conjecture that it is indeed loose for all k, and can be improved.

3 Proof ideas

The proofs of our theorems are based on a careful modification of a known lower
bound construction for first-order methods (see [15]). That construction uses quadratic
functions, which in the convex case and ignoring various parameters, have a basic
structure of the form

fT (w) = fT (w1, w2, . . .) = w2
1 +

T−1∑
j=1

(w j − w j+1)
2 + w2

T − w1

(more precisely, one considers fT (Vw) for a certain orthogonal matrix V , and use
additional parameters depending on the smoothness). A crucial ingredient of the proof
is that the function x → x2 has a value and derivative of zero at the origin, which
allows us to construct a function which “hides” information from an algorithm relying
solely on values and gradients. This can be shown to lead to an optimization error lower
bound of the form minw fT (w)−minw f2T (w) after T oracle queries, which for first-
order methods leads to an Ω(μ1D2/T 2) lower bound on the error, translating to an

123

Oracle complexity of second-order methods… 335

Ω(
√

μ1D2/ε) lower bound on T . However, this construction leads to trivial bounds for
second-order methods, since given the Hessian and a gradient of a quadratic function
at just a single point, one can already compute the exact minimizer.

Our approach to handle second-order (and more generally, k-order) methods is
quite simple: Instead of x → x2, we rely on mappings of the form x → |x |k+1, and
use functions with the basic structure

fT (w) = |w1|k+1 +
T−1∑
j=1

|w j − w j+1|k+1 + |wT |k+1 − w1.

The intuition is that x → |x |k+1 has a value and first k derivatives of zero at the
origin, and therefore variants of the function above can be used to “hide” information
from the algorithm, even if it can receive Hessians or higher-order derivatives of the
function. Another motivation for choosing such functions is that they are generally not
self-concordant, and therefore the upper bounds relevant to self-concordant functions
do not apply. We rely on this construction and arguments similar to those of first-order
oracle lower bounds, to get our results.

In the derivation of our results for second-order methods, there are two technical
challenges that need to be overcome: The first is that fT , as defined above (for k = 2),
can be shown to have globally Lipschitz Hessians, but not globally Lipschitz gradients
as required by our theorems. To tackle this, we replace the mapping x → |x |3 by a
more complicated mapping, which is cubic close to the origin and quadratic further
away. This necessarily complicates the proof. The second challenge is that due to the
cubic terms, computing the minimizer of fT and its minimal value is more challenging
than in first-order lower bounds, especially in the strongly convex case (where we are
unable to even find a closed-form expression for the minimizer, and resort to bounds
instead). Again, this makes the analysis more complicated.

We conclude this section by sketching how our bounds can be derived in case
of second-order methods, and in the simplest possible setting, where we wish to
obtain an Ω((D3/ε)2/7) lower bound for the class of convex functions with Lipschitz
Hessians (and no assumptions on the Lipschitz parameter of the gradients), assuming
the algorithm makes its first query at the origin:

Proposition 1 For any positiveμ2, D, ε andany algorithmwith an initialization point
w1 in the origin, there exists a function f : Rd → R (for some finite d) such that

– f is convex, twice-differentiable, has μ2-Lipschitz Hessians, and has a global
minimum w∗ satisfying ‖w1 − w∗‖ ≤ D.

– The index T required to ensure f (wT) − f (w∗) ≤ ε is Ω((D3/ε)2/7).

Proof Sketch Consider the function fT in this class of the form

fT (w) = |w1|3 +
T−1∑
j=1

|w j − w j+1|3 + |wT |3 − 3γ · w1,

123

336 Y. Arjevani et al.

where γ is a parameter to be chosen later. Computing the derivatives and setting to
zero, and arguing that the minimizer must have non-negative coordinates, we get that
the optimum satisfies

w2
1 + (w1 − w2)

2 = γ, w2
T = (wT−1 − wT)2

and

∀ j = 2, 3, . . . , T − 1, (w j−1 − w j)
2 = (w j − w j+1)

2.

It can be verified that this is satisfied by w j = (T + 1 − j)
√

γ

T 2+1
for all j =

1, 2, . . . , T , and that this is the uniqueminimizer of fT as a function onRT . Moreover,
assuming γ ≤ D2/T , the norm of this minimizer (and hence the initial distance to
it from the algorithm’s first query point, by assumption) is at most D as required.
Plugging this w into fT , we get that

min
w

fT (w) = − 2γ 3/2T√
T 2 + 1

.

Now, using arguments very similar to those in the first-order oracle complexity lower
bounds in [15], it is possible to construct a function for which the optimization error of
the algorithm is lower bounded by minw fT (w) − minw f2T (w). By the calculations
above, this in turn equals

2γ 3/2
(

2T√
4T 2 + 1

− T√
T 2 + 1

)
= 2γ 3/2

⎛
⎝ 1√

1 + 1
4T 2

− 1√
1 + 1

T 2

⎞
⎠ .

Using the fact that 1√
1+x

≈ 1 − 1
2 x for small x , this equals Ω(γ 3/2/T 2). Choosing

γ on the order of D2/T (as required earlier to satisfy the norm constraint on the
minimizer), we get a lower bound of Ω(D3/T 7/2) on the optimization error ε, or
equivalently, a lower bound of Ω((D3/ε)2/7) on T . ��

4 Proof of Theorem 1

We will assume without loss of generality that the algorithm initializes at w1 = 0
(if that is not the case, one can simply replace the “hard” function f (w) below by
f (w − w1), and the same proof holds verbatim). Thus, the theorem requires that our
function has a minimizer w∗ satisfying ‖w∗‖ ≤ D.

Let �, γ be parameters to be chosen later3. Define g : R → R as

g(x) =
{

1
3 |x |3 |x | ≤ �

�x2 − �2|x | + 1
3�

3 |x | > �,
.

3 Ultimately, we will choose γ = min

{(
3(μ1−λ)

2μ2

)2
, 7

√
D8(12λ)6

24μ6
2

}
and � = √

γ , see Subsection 4.3.

123

Oracle complexity of second-order methods… 337

which is easily verified to be convex and twice continuously differentiable, and let
v1, v2, . . . , vT̃ be orthogonal unit vectors in R

d which will be specified later. Letting
the number of iterations T be fixed, we consider the function

f (w) = μ2

12

⎛
⎝

T̃−1∑
i=1

g(〈vi ,w〉 − 〈vi+1,w〉) − γ 〈v1,w〉
⎞
⎠+ λ

2
‖w‖2,

where T̃ ≥ max
{
4γ
(

μ2
6λ

)2 + 1, 2T,
γμ2
6λ + 1

}
is some sufficiently large number, and

the dimension d is at least 2T̃ .
The proof is constructed of several parts: First, we analyze properties of the global

minimum of f (Sect. 4.1). Then, we prove the oracle complexity lower bound in
Sect. 4.2 (depending on �, γ), and finally, in Sect. 4.3, we choose the parameters so
that f indeed has the various geometric properties specified in the theorem.

4.1 Minimizer of f

The goal of this subsection is to prove the following proposition, which characterizes
key properties of the global minimum of f :

Proposition 2 Suppose that γ ≥ 104
(

λ
μ2

)2
and� ≥ √

γ . Then for any unit orthogo-

nal v1, v2, . . ., the function f has a unique minimizerw∗ which satisfies the following:

1. For any t ∈ {1, 2, . . . , T̃ }, it holds that
〈vt ,w∗〉 ≥ max

{
0 ,

γ 3/4

7
√
12λ/μ2

+ √
γ
(1
2 − t

)}
.

2. There exists some t0 ≤ T̃ /2 such that for all indices k ∈ {0, 1, . . . , T̃ − t0}, it
holds that 〈vt0+k,w∗〉 ≥ 108λ

μ2
· (18)−2k .

3. ‖w∗‖2 ≤ 2γ 7/4

(12λ/μ2)3/2
.

Since f is strongly convex, its global minimizer is unique and well-defined. To
prove the proposition, we will consider the simpler strongly-convex function

f̃ (w) = 1

3

T̃−1∑
i=1

|wi − wi+1|3 + λ̃

2
‖w‖2 − γ · w1, (8)

where λ̃ := 12λ
μ2

, and prove that its minimizer w̃∗ satisfies the following:

1. For any t ∈ {1, 2, . . . , T̃ }, it holds that w̃∗
t ≥ max

{
0, γ 3/4

7
√

λ
+ √

γ
(1
2 − t

)}

(Lemma 2).
2. There exists some t0 ≤ T̃ /2 such that for all k ∈ {0, 1, . . . , T̃ − t0}, it holds that

w̃∗
t0+k ≥ 9λ̃ · (18)−2k (Lemma 3).

3.
∑T̃

i=1 w̃∗2
i ≤ 2γ 7/4

λ̃3/2
(Lemma 4)

123

338 Y. Arjevani et al.

We then argue that the minimizer w∗ of f satisfies 〈vi ,w∗〉 = w̃∗
i for all i =

1, 2, . . . , T̃ (Lemma 5), and that ‖w∗‖2 = ∑T̃
i=1〈vi ,w∗〉2 (Lemma 6), from which

Proposition 2 follows.
We begin with the following technical key result:

Lemma 1 It holds that w̃∗
1 ≥ w̃∗

2 ≥ · · · ≥ w̃∗
T̃

≥ 0, and

w̃∗
t+1 = w∗

t −
√√√√γ − λ̃

t∑
j=1

w̃∗
j ∀t ∈ {1, 2, . . . , T̃ − 1}.

Moreover,
∑T̃

j=1 w̃∗
j = γ

λ̃
.

Proof We begin by showing that w̃∗
j ≥ 0 for all j , first for j = 1 and then for

j > 1. To do so, note that f̃ (0) = 0 yet ∇ f̃ (0) = −γ · e1 �= 0, and therefore 0 is
a sub-optimal point. Thus, we must have f̃ (w̃∗) < 0. The only negative term in the
definition of f̃ (·) is −γ ·w1, so we must have w̃∗

1 > 0. We now argue that w̃∗
j ≥ 0 for

all j > 1: Otherwise, let w be the vector which equals w j = |w̃∗
j | for all j , and note

that w1 = w̃∗
1 since we just showed w̃∗

1 > 0. Based on this, it is easily verified that

f̃ (w) − f̃ (w̃∗) = 1

3

T̃−1∑
i=1

(∣∣|w̃∗
i | − |w̃∗

i+1|
∣∣3 − |w̃∗

i − w̃∗
i+1|3

)
≤ 0,

which means that w is the (unique) minimum of f̃ , hence w = w̃∗. By definition of
w, this implies w̃∗

j = |w̃∗
j | for all j , hence w̃∗

j ≥ 0 for all j .
We now turn to prove that w̃∗

j is monotonically decreasing in j . Suppose on the
contrary that this is not the case, and let j0 be the smallest index forwhich w̃∗

j0
< w̃∗

j0+1,
and let δ := w̃∗

j0+1 − w̃∗
j0

> 0. Define the vector w to be

wi =
{

w̃∗
i i ≤ j0

max{0, w̃∗
i − δ} d ≥ i > j0

.

Note that this vector must be different than w, as w j0+1 = max{0, w̃∗
j0+1 − δ} =

max{0, w̃∗
j0
} = w̃∗

j0
= w j0 , hence w j0+1 = w j0 yet w̃

∗
j0+1 > w̃∗

j0
by assumption. On

the other hand, it is easily verified that |wi −wi+1|3 ≤ |w̃∗
i − w̃∗

i+1|3 and w2
i ≤ (w̃∗

i)
2

for all4 i , and therefore f̃ (w) ≤ f̃ (w̃∗). But since w̃∗ is the unique global minimizer
and w �= w̃∗, we get a contradiction, so we must have w̃∗

j monotonically decreasing
for all j .

4 This is trivially true for i < j0. For i = j0, we have |w j0 − w j0+1|3 = 0 < |w̃∗
j0

− w̃∗
j0+1|3 and

w2
j0

= (w̃∗
j0

)2. For i > j0, we have |wi − wi+1|3 = |max{0, w̃∗
i − �} − max{0, w̃∗

i+1 − �}|3 ≤
|(w̃∗

i − �) − (w̃∗
i+1 − �)|3 = |w̃∗

i − w̃∗
i+1|3, and moreover, w2

i = max{0, w̃∗
i − �}2, which is 0 (hence

≤ (w̃∗
i)2) if w̃∗

i ≤ � and less than (w̃∗
i)2 if w̃∗

i > �.

123

Oracle complexity of second-order methods… 339

We now turn to prove the recursive relation w̃∗
t+1 = w∗

t −
√

γ − λ̃
∑t

j=1 w̃∗
j . By

differentiating f̃ and setting to zero (and using the fact that w̃∗
j is monotonically

decreasing in j), we get that

(w̃∗
1 − w̃∗

2)
2 = γ − λ̃w∗

1, (w̃∗
T̃−1

− w̃∗
T̃
)2 = λ̃w∗

T̃
(9)

and
(w̃∗

t − w̃∗
t+1)

2 = (w̃∗
t−1 − w̃∗

t)
2 − λ̃w̃∗

t ∀t ∈ {2, 3, . . . , T̃ − 1}. (10)

By unrolling this recursive form, we get

(w̃∗
t − w̃∗

t+1)
2 = γ − λ̃

t∑
j=1

w̃∗
j ∀t ∈ {1, 2, . . . , T̃ − 1},

from which the equation

w̃∗
t+1 = w∗

t −
√√√√γ − λ̃

t∑
j=1

w̃∗
j ∀t ∈ {1, 2, . . . , T̃ − 1} (11)

follows, again using the monotonicity of w̃∗
t in t .

It remains to prove that
∑T̃

j=1 w̃∗
j = γ

λ̃
. By summing both sides of (10) from t = 2

to t = T̃ − 1 we have that:

(w̃∗
T̃−1

− w̃∗
T̃
)2 = (w̃∗

1 − w̃∗
2)

2 − λ̃

T̃−1∑
t=2

w̃∗
t

So by using (9) we get the desired equality. ��
Lemma 2 For any t ∈ {1, 2, . . . , T̃ },

w̃∗
t ≥ max

{
0 ,

γ 3/4

7
√

λ̃
+ √

γ

(
1

2
− t

)}
.

Proof By the displayed equation in Lemma 1, we clearly have w̃∗
t+1 ≥ w̃∗

t − √
γ for

all t ≤ T̃ − 1, and therefore

w̃∗
t ≥ w̃∗

1 − (t − 1)
√

γ ∀t ∈ {1, 2, . . . , T̃ }. (12)

Using the facts that w̃∗
t is also always non-negative, that T̃ ≥ γμ2

6λ + 1 = γ

λ̃
+ 1 ≥

w̃∗
1 + 1, and by Lemma 1,

γ

λ̃
=

T̃∑
t=1

w̃∗
t ≥

T̃∑
t=1

max{0, w̃∗
1 − (t − 1)

√
γ } =

�w̃∗
1/

√
γ+1�∑

t=1

(
w̃∗
1 − (t − 1)

√
γ
)

123

340 Y. Arjevani et al.

=
⌊

w̃∗
1√
γ

+ 1

⌋
w̃∗
1 − √

γ

(⌊
w̃∗
1√
γ

+ 1
⌋

− 1
) ⌊

w̃∗
1√
γ

+ 1
⌋

2
≥ (w̃∗

1)2√
γ

− √
γ

w̃∗
1√
γ

(
w∗
1√
γ

+ 1
)

2
,

which implies that (w̃∗
1)

2 − √
γ · w∗

1 − 2γ 3/2

λ̃
≤ 0, which implies in turn

w̃∗
1 ≤

√
γ +
√

γ + 8γ 3/2/λ̃

2
≤

√
γ + √

γ +
√
8γ 3/2/λ̃

2
= √

γ +
√
2γ 3/2

λ̃
. (13)

On the other hand, again by Lemma 1, we know that

w̃∗
t+1 ≤ w̃∗

t −
√

γ

2
, ∀t ∈ {1, 2, . . . , T̃ − 1} :

t∑
j=1

w̃∗
j ≤ 3γ

4λ̃
,

and hence

w̃∗
t+1 ≤ w̃∗

1 − t
√

γ

2
, ∀t ∈ {1, 2, . . . , T̃ − 1} :

t∑
j=1

w̃∗
j ≤ 3γ

4λ̃
. (14)

Let t0 ∈ {1, 2, . . . , T̃ } be the smallest index such that
∑t0

j=1 w̃∗
j >

3γ
4λ̃

(such

an index must exist since
∑T̃

j=1 w̃∗
j = γ

λ̃
). Since 3γ

4λ̃
<
∑t0

j=1 w̃∗
j ≤ t0w̃∗

1 ≤
t0

(√
γ +
√
2γ 3/2/λ̃

)
by (13), it follows that

t0 ≥ 3γ

4λ̃

(√
γ +
√
2γ 3/2/λ̃

) = 3
√

γ

4

(
λ̃ +
√
2γ 1/2λ̃

) .

According to (14) and the fact that w̃∗
t0 ≥ 0, it follows that

0 ≤ w̃∗
t0 ≤ w̃∗

1 − (t0 − 1)
√

γ

2
,

and hence

w̃∗
1 ≥ (t0 − 1)

√
γ

2
≥ 3γ

8(λ̃ +
√
2γ 1/2λ̃)

−
√

γ

2
.

Using this and (12), it follows that for all t ≤ T̃ ,

w̃∗
t ≥ 3γ

8(λ̃ +
√
2γ 1/2λ̃)

+ √
γ

(
1

2
− t

)
.

123

Oracle complexity of second-order methods… 341

Since we assumed γ ≥ 104(λ/μ2)
2 > (12λ/μ2)

2 = λ̃2, we have λ̃ <

√
γ 1/2λ̃, so

the above can be lower bounded by the simpler expression γ 3/4/7
√

λ̃+√
γ (1/2− t).

Since we also know that w̃∗
t is non-negative, the result follows. ��

Lemma 3 There exists an index t0 ≤ T̃ /2 such that

w̃∗
t0+k ≥ 9λ̃ · (18)−2k ∀k ∈ {0, 1, . . . , T̃ − t0}

Proof By Lemma 1, it holds for any t ∈ {1, 2, . . . , T̃ − 1} that

w̃∗
t − w̃∗

t+1 =
√√√√γ − λ̃

t∑
j=1

w̃∗
j =

√√√√√γ − λ̃

⎛
⎝γ

λ̃
−

T̃∑
j=t+1

w̃∗
j

⎞
⎠ =

√√√√√λ̃

T̃∑
j=t+1

w̃∗
j .

(15)

In particular, since w̃∗
j ≥ 0 for all j ≤ T̃ , it follows that w̃∗

t ≥
√

λ̃
∑T̃

j=t+1 w̃∗
j ≥

√
λ̃w̃∗

t+1, and therefore

w̃∗
t+1 ≤ 1

λ̃
(w̃∗

t)
2 ∀t ∈ {1, 2, . . . , T̃ − 1}. (16)

Let t ≤ T̃ − 1 be any index such that5 w̃∗
t+1 ≤ λ̃

2 . By (16), this implies that

T̃∑
j=t+1

w̃∗
j ≤

T̃−t−1∑
k=0

λ̃

(
w̃∗
t+1

λ̃

)2k
=

T̃−t−1∑
k=0

w̃∗
t+1

(
w̃∗
t+1

λ̃

)2k−1

≤
T̃−t−1∑
k=0

w̃∗
t+1

(
1

2

)2k−1

< 2 · w̃∗
t+1.

Using the inequality above together with (15) and the monotonicity of w̃∗
t , we get that

for all t ≤ T̃ − 1 such that w̃∗
t+1 ≤ λ̃

2 ,

w̃∗
t = w̃∗

t+1 +

√√√√√λ̃

T̃∑
j=t+1

w̃∗
j ≤ w̃∗

t+1 +
√
2λ̃w̃∗

t+1 =
√

w̃∗
t+1

(√
w̃∗
t+1 +

√
2λ̃
)

≤
√

w̃∗
t+1

⎛
⎝
√

λ̃

2
+
√
2λ̃

⎞
⎠ ≤ 3

√
λ̃w̃∗

t+1.

5 Such an index must exist: By assumption, T̃ ≥ 2γ
(μ2
6λ
)2 = 2γ

λ̃2
, so by Lemma 1, γ

λ̃
= ∑T̃

t=1 w̃∗
t ≥

T̃ w̃∗
T̃

≥ 2γ
λ̃2

w̃∗
T̃
, hence w̃T̃ ≤ λ̃/2.

123

342 Y. Arjevani et al.

This chain of inequalities implies that

wt+1 ≥ (w̃∗
t)

2

9λ̃
∀t ∈ {1, 2, . . . , T̃ − 1} : w̃∗

t+1 ≤ λ̃

2
.

Let t0 ≤ T̃ /2 denote the unique index that satisfies w̃∗
t0 > λ̃

2 , as well as w̃∗
t0+1 ≤ λ̃

2

for all t between t0 and T̃ − 1 6. Using the displayed inequality above, we get that for
any k ≤ T̃ − t0,

w̃∗
t0+k ≥ (w̃∗

t0+k−1)
2

9λ̃
≥ (w̃∗

t0+k−2)
4

(9λ̃)3
≥ · · · ≥ 9λ̃

(
w̃∗
t0

9λ̃

)2k
> 9λ̃

(
λ̃/2

9λ̃

)2k
,

so we get w̃∗
t0+k ≥ 9λ̃ · (18)−2k as required. ��

Lemma 4
∑T̃

i=1(w̃
∗
i)

2 ≤ 2γ 7/4/λ̃3/2

Proof We need to upper bound the squared Euclidean norm of (w̃∗
1, . . . , w̃

∗
T̃
). Note

that for any vectorw, we have ‖w‖2 =∑i w
2
i ≤ (maxi |wi |)∑i |wi | = ‖w‖∞‖w‖1.

Thus, by Lemma 1, (13), and the assumption that γ ≥ 104(λ/μ2)
2 > 277λ̃2, the

squared norm is at most

⎛
⎝√

γ +
√
2γ 3/2

λ̃

⎞
⎠ γ

λ̃
=
⎛
⎝1 +

√
2γ 1/2

λ̃

⎞
⎠ γ 3/2

λ̃
≤
⎛
⎝
√

γ 1/2
√
277λ̃

+
√
2γ 1/2

λ̃

⎞
⎠ γ 3/2

λ̃
,

which is at most 2
√

γ 1/2/λ̃ · γ 3/2/λ̃ = 2γ 7/4/λ̃3/2 ��

Lemma 5 w∗ = argminw f (w) satisfies 〈vi ,w∗〉 = w̃∗
i for all i = 1, . . . , T̃ , where

w̃∗ = argminw f̃ (w).

Proof First, we argue that w̃∗, which minimizes

f̃ (w) = 1

3

T̃−1∑
i=1

|wi − wi+1|3 + λ̃

2
‖w‖2 − γ · w1 ,

6 Since w̃∗
t monotonically decrease in t , such an index must exist: On the one hand, w̃∗

1 can be verified

to be at least λ̃ > λ̃/2 (by Lemma 2 and the assumption γ ≥ 104(λ/μ2)
2, hence γ ≥ 277λ̃2). On

the other hand, if we let t1 be the largest index ≤ T̃ satisfying w̃∗
t1

> λ̃/2, we have by Lemma 1 that
γ

λ̃
≥∑t1

t=1 w̃∗
t ≥ t1w̃

∗
t1

>
t1λ̃
2 , which implies that t1 ≤ 2γ

λ̃2
, which is less than T̃ /2 by the assumption on

T̃ being large enough. Therefore, t0 is at most T̃ /2 as well.

123

Oracle complexity of second-order methods… 343

also minimizes

f̂ (w) =
T̃−1∑
i=1

g(wi − wi+1) + λ̃

2
‖w‖2 − γ · w1.

To see this, note that f̃ and f̂ differ only in that g(x) is replaced by 1
3 |x |3. By definition

of g, we have that g(x) and 1
3 |x |3 coincide for any |x | ≤ �, from which it is easily

verified that f and f̃ have the same values and gradients at any w for which |wi −
wi+1| ≤ � for all i ≤ T̃ − 1. By Lemma 1 and the assumption � ≥ √

γ , the global
minimizer w̃∗ of f̃ belongs to this set, and therefore ∇ f̃ (w̃∗) = ∇ f̂ (w̃∗) = 0. But
f̂ is strongly convex, hence has a unique point (the global minimizer) at which the
gradient of f̂ is zero, hence w̃∗ is indeed the global minimizer of f̂ .

Next, since the global minimizer is invariant to multiplying the function by a fixed
positive factor, we get that w̃∗ is also the global minimizer of

μ2

12
f̂ (w) = μ2

12

⎛
⎝

T̃−1∑
i=1

g(wi − wi+1) + λ̃

2
‖w‖2 − γ · w1

⎞
⎠

= μ2

12

⎛
⎝

T̃−1∑
i=1

g(wi − wi+1) − γ · w1

⎞
⎠+ λ

2
‖w‖2,

where in the last step we used the fact that λ̃ = 12λ/μ2. Recalling that

f (w) = μ

12

⎛
⎝

T̃−1∑
i=1

g(〈vi ,w〉 − 〈vi+1,w〉) − 〈v1,w〉
⎞
⎠+ λ

2
‖w‖2,

and that v1, v2, . . . are orthogonal, we can write f (w) as μ
12 · f̂ (Vw), where V is any

orthogonal matrix with the first T̃ columns being v1, . . . , vT̃ . Therefore, theminimizer
w∗ of f satisfies Vw∗ = (〈v1,w∗〉, 〈v2,w∗

2〉, . . .) = w̃∗. ��

Lemma 6 ‖w∗‖2 =∑T̃
i=1〈vi ,w∗〉2

Proof f (w) is a function which can be written in the form h(〈v1,w〉, 〈v2,w〉,
. . . , 〈vT̃ ,w〉) + λ

2‖w‖2, so by the Representer theorem, its minimizer w∗ must lie
in the span of v1, v2, . . . , vT̃ . Moreover, since these vectors are orthogonal and of unit

norm, we have w∗ =∑T̃
i=1〈vi ,w∗〉vi , and thus ‖w∗‖2 =∑T̃

i=1〈vi ,w∗〉2. ��

4.2 Oracle complexity lower bound

In this subsection, we prove the following oracle complexity lower bound, depending
on the free parameter γ :

123

344 Y. Arjevani et al.

Proposition 3 Assume that ε < min

{
1082·λ3

μ2
2

,
γ λ
8

}
. Under the conditions of Propo-

sition 2, it is possible to choose the vectors v1, v2, . . . , vT̃ in the function f , such that
the number of iterations T required to have f (wT) − f (w∗) ≤ ε is at least

max

{
γ 1/4

7
√
12λ/μ2

, log2 log18

(
1082 · λ3

μ2
2ε

)
− 1

}

To prove the theorem, we will need the following key lemma, which establishes
that oracle information at certain points w do not leak any information on some of the
v1, v2, . . . vectors.

Lemma 7 For any w ∈ R
d orthogonal to vt , vt+1, . . . , vT̃ , it holds that

f (w),∇ f (w),∇2 f (w) do not depend on vt+1, vt+2, . . . , vT̃ .

Proof Since the regularization term λ
2‖w‖2 doesn’t depend on vt+1, vt+2, . . . , vT̃ we

can define h(w) := f (w)− λ
2‖w‖2 and prove the result on h(w). Using the definition

of h and differentiating, we have that

h(w) = μ2

12

⎛
⎝

T̃−1∑
i=1

g(〈vi − vi+1,w〉) − γ 〈v1,w〉
⎞
⎠

∇h(w) = μ2

12

⎛
⎝

T̃−1∑
i=1

g′(〈vi − vi+1,w〉)(vi − vi+1) − γ v1

⎞
⎠

∇2h(w) = μ2

12

⎛
⎝

T̃−1∑
i=1

g′′(〈vi − vi+1,w〉)(vi − vi+1)(vi − vi+1)
T

⎞
⎠

By the assumption 〈vt ,w〉 = 〈vt+1,w〉 = . . . = 0, and the fact that g(0) =
g′(0) = g′′(0) = 0, we have that g(〈vi − vi+1,w〉) = g′(〈vi − vi+1,w〉) =
g′′(〈vi − vi+1,w〉) = 0 for all i ∈ {t, t + 1, . . . , T̃ − 1}. Therefore, it is easily
verified that the expressions above indeed do not depend on vt+1, vt+2, . . . , vT̃ . ��

Let us now fix any number of iterations T ≤ T̃ . Using the previous results, we now
argue that given any deterministic algorithm, we can choose v1, . . . , vT̃ so that one of
them will necessarily be orthogonal to wT , the algorithm’s output after T iterations:

Lemma 8 For any deterministic algorithm, it is possible to choose v1, . . . , vT̃ , so that
vT , vT+1, . . . , vT̃ are orthogonal to both w1, . . . ,wT and v1, . . . , vT .

Proof The proof is constructive, and uses an argument similar to other oracle com-
plexity lower bounds in the literature. It proceeds as follows: ��
– First, we compute w1 (which is possible since the algorithm is deterministic and
w1 is chosen before any oracle calls are made).

123

Oracle complexity of second-order methods… 345

– We pick v1 to be some unit vector orthogonal tow1. Assuming v2, . . . , vT̃ will also
be orthogonal to w1 (which will be ensured by the construction which follows),
we have by Lemma 7 that the information F(w1),∇F(w1), ∇2F(w1) provided
by the oracle to the algorithm does not depend on {v2, . . . , vT̃ }, and thus depends
only on v1 which was already fixed. Since the algorithm is deterministic, this fixes
the next query point w2.

– For t = 2, 3, . . . , T −1, we repeat the process above: We computewt , and pick vt
to be some unit vectors orthogonal tow1,w2, . . . ,wt , as well as all previously con-
structed v’s (this is always possible since the dimension is sufficiently large). By
Lemma 7, as long as all vectors thus constructed are orthogonal to wt , the infor-
mation {F(wt),∇F(wt),∇2F(wt)} provided to the algorithm does not depend
on vt+1, . . . , vT̃ , and only depends on v1, . . . , vt which were already determined.
Therefore, the next query point wt+1 is fixed.

– At the end of the process, we pick vT , vT+1, . . . , vT̃ to be some unit vectors
orthogonal to all previously chosen v’s as well as w1, . . . ,wT (this is possible
since the dimension is large enough). ��
Using the facts that v1, v2, . . . , vT̃ are orthogonal (and thus act as an orthonormal

basis to a subspace ofRd), thatwT is orthogonal to vT , vT+1, . . . vT̃ , and that t0+T ≤
T̃
2 + T̃

2 = T̃ (where t0 is as defined in Proposition 2), we have ‖wT − w∗‖2 ≥∑T̃
i=1〈vi ,wT − w∗〉2 ≥ 〈vt0+T ,wT − w∗〉2 = 〈vt0+T ,w∗〉2. By Proposition 2, we

can lower bound the above by 1082λ2

μ2
2

· (18)−2(T+1)
. Using the strong convexity of f ,

we therefore get

f (wT) − f (w∗) ≥ λ

2
· ‖wT − w∗‖2 ≥ 1082 · λ3

μ2
2

(18)−2(T+1)
.

To make the right-hand side smaller than ε, T must satisfy (18)−2(T+1) ≤ μ2
2ε

1082·λ3 ,

which is equivalent to 2(T+1) ≥ log18

(
1082·λ3

μ2
2ε

)
. Assuming ε < 1082·λ3

μ2
2

, then

T ≥ log2 log18

(
1082 · λ3

μ2
2ε

)
− 1.

We now turn to argue that we can also lower bound T by γ 1/4

7
√
12λ/μ2

. Otherwise,

suppose by contradiction that we can have f (wT) − f (w∗) ≤ ε for some T <
γ 1/4

7
√
12λ/μ2

. From Proposition 2 we know that 〈vT ,w∗〉 ≥ γ 3/4

7
√
12λ/μ2

+ √
γ
(1
2 − T

)
,

so as before, we have that ‖wT −w∗‖2 ≥∑T̃
i=1〈vi ,wT −w∗〉2 ≥ 〈vT ,wT −w∗〉2 =

〈vT ,w∗〉2, and thus

f (wT) − f (w∗) ≥ λ

2
· ‖wT − w∗‖2 ≥ λ

2
· 〈vT ,w∗〉2

≥ λ

2

(
γ 3/4

7
√
12λ/μ2

+ √
γ

(
1

2
− T

))2
.

123

346 Y. Arjevani et al.

To make the right-hand side smaller than ε, T must satisfy(
γ 3/4

7
√
12λ/μ2

+ √
γ
(1
2 − T

))2 ≤ 2ε
λ
, or equivalently T ≥ γ 1/4

7
√
12λ/μ2

+ 1
2 −
√

2ε
γ λ

. But

sincewe assume ε <
γλ
8 , this is at least γ 1/4

7
√
12λ/μ2

, contradicting our earlier assumption.

Overall, we showed that T is lower bounded by both γ 1/4

7
√
12λ/μ2

, as well as

log2 log18

(
1082·λ3

μ2
2ε

)
− 1, hence proving Proposition 3.

4.3 Setting the γ,� Parameters

In the following lemma, we establish the strong convexity and smoothness parameters
of f (depending on the parameter � which is still free at this point).

Lemma 9 f isλ-strongly convex and twice-differentiable, withμ2-LipschitzHessians

and
(
2μ2�
3 + λ

)
-Lipschitz gradients.

Proof Since f is a sum of convex, twice-differentiable functions and the λ-strongly
convex function λ

2‖w‖2, it is clearly λ-strongly convex and twice-differentiable. Thus,
it only remains to calculate the Lipschitz parameter of the gradients and Hessians.

To simplify the proof, we note that Lipschitz smoothness is a property invari-
ant to the coordinate system used, so we can assume without loss of generality that
v1, v2, . . . , vT̃ correspond to the standard basis e1, e2, . . . , eT̃ , and consider the Lip-
schitz properties of the function

f̂ (w) = μ2

12

⎛
⎝

T̃−1∑
i=1

g(wi − wi+1) − γ · w1

⎞
⎠+ λ

2
‖w‖2

By definition of g, it is easily verified that g′′(x) = 2 · min{�, |x |}, which is
a 2-Lipschitz function bounded in [0, 2�]. This implies that g′(x) is 2�-Lipschitz.

Letting ri := ei − ei+1, we can write f̂ as μ2
12

(∑T̃−1
i=1 g(〈ri ,w〉) − γ · w1

)
+λ

2‖w‖2.
Differentiating twice, we get ∇2 f̂ (w) = μ2

12

∑T̃−1
i=1 g′′(〈ri ,w〉) · rir�

i + λI . Since
this is a sum of positive-semidefinite matrices with non-negative coefficients (as we
showed that g′′(x) ∈ [0, 2�] for all x), it follows that its spectral norm is at most
μ2�
6 ·
∥∥∥∑T̃−1

i=1 rir�
i

∥∥∥+ λ, and the first term equals

μ2�

6
· max

x

∑T̃−1
i=1 〈ri , x〉2

‖x‖2 = μ2�

6
· max

x

∑T̃−1
i=1 (xi − xi+1)

2

‖x‖2

≤ μ2�

6
· max

x

∑T̃−1
i=1 (2x2i + 2x2i+1)∑d

i=1 x
2
i

≤ 2μ2�

3
.

123

Oracle complexity of second-order methods… 347

Overall, we showed that ‖∇2 f̂ (w)‖ ≤ 2μ2�
3 +λ, so the gradients of f are

(
2μ2�
3 + λ

)
-

Lipschitz.
It remains to show that ∇2 f̂ (w) is μ2-Lipschitz. Using the formula for ∇2 f̂ (w),

and recalling that g′′(x) is 2-Lipschitz, and ‖ri‖ = √
2 by definition, we have that for

any w, w̃,

‖∇2 f̂ (w) − ∇2 f̂ (w̃)‖ = μ2

12
·
∥∥∥∥∥∥
T̃−1∑
i=1

(g′′(〈ri ,w〉) − g′′(〈ri , w̃〉)) · rir�
i

∥∥∥∥∥∥

≤ μ2

12
·
∥∥∥∥∥∥
T̃−1∑
i=1

|g′′(〈ri ,w〉) − g′′(〈ri , w̃〉)| · rir�
i

∥∥∥∥∥∥

≤ μ2

12
·
∥∥∥∥∥∥
T̃−1∑
i=1

2|〈ri ,w − w′〉| · rir�
i

∥∥∥∥∥∥
≤ μ2

12
· 2√2 · ‖w − w̃‖ ·

∥∥∥∥∥∥
T̃−1∑
i=1

rir�
i

∥∥∥∥∥∥
.

Using the same calculations as earlier, we have
∥∥∥∑T̃−1

i=1 rir�
i

∥∥∥ ≤ 4, and therefore we

showed overall that ‖∇2 f̂ (w) − ∇2 f̂ (w̃)‖ ≤ μ2·8
√
2

12 · ‖w − w̃‖ < μ2 · ‖w − w̃‖,
hence ∇2 f̂ (w) is μ2-Lipschitz. ��

We now collect the ingredients necessary to fix γ,� and hence prove our theorem.
Combining the previous lemma, Proposition 2 and Proposition 3, and recalling that we
want f to have μ1-Lipschitz gradients and μ2-Lipschitz Hessians, with an optimizer
w∗ satisfying ‖w∗‖ ≤ D, we have an oracle complexity lower bound of the form

T ≥ max

{
γ 1/4

7
√
12λ/μ2

, log2 log18

(
1082 · λ3

μ2
2ε

)
− 1

}
, (17)

assuming the following conditions: γ ≥ 104
(

λ
μ2

)2
,� ≥ √

γ , ε < min

{
1082·λ3

μ2
2

,
γ λ
8

}
,

2μ2�
3 + λ ≤ μ1,

√
2γ 7/4

(12λ/μ2)3/2
≤ D. Picking � = √

γ , using the fact that μ1 ≥ λ (as
any λ-strongly convex function must have gradients with Lipschitz parameter at least
λ), and rewriting the last two conditions, this is equivalent to

γ ≥ 104
(

λ

μ2

)2
, ε < min

{
1082 · λ3

μ2
2

,
γ λ

8

}
, γ ≤

(
3(μ1 − λ)

2μ2

)2
, γ ≤ 7

√
D8(12λ)6

24μ6
2

.

Since the first condition needs to hold anyway, we can allow ourself tomake the second
condition stronger, by substituting 104(λ/μ2)

2 in lieu of γ in the second condition.
Doing this, simplifying, andmerging the last two conditions, the set of condition above
is implied by requiring

123

348 Y. Arjevani et al.

γ ≥ 104
(

λ

μ2

)2
, ε <

104λ3

8μ2
2

, γ ≤ min

{(
3(μ1 − λ)

2μ2

)2
, 7

√
D8(12λ)6

24μ6
2

}
.

Clearly, tomake the lower bound in (17) as large as possible, we should pick the largest

possible γ , namely γ = min

{(
3(μ1−λ)

2μ2

)2
, 7

√
D8(12λ)6

24μ6
2

}
, and to ensure that the other

conditions hold, require that

min

{(
3(μ1 − λ)

2μ2

)2
, 7

√
D8(12λ)6

24μ6
2

}
≥ 104

(
λ

μ2

)2
, ε <

104λ3

8μ2
2

.

Simplifying a bit, these two conditions are implied by requiring

μ1

λ
≥ 68,

μ2

λ
D ≥ 694, ε <

104λ3

8μ2
2

, (18)

Finally, let us plug our choice of γ = min

{(
3(μ1−λ)

2μ2

)2
, 7

√
D8(12λ)6

24μ6
2

}
into the lower

bound in (17). We thus get an oracle complexity lower bound of

max

{ √
μ2

7
√
12λ

min

{√
3(μ1 − λ)

2μ2
,
D2/7(12λ)3/14

21/7μ3/14
2

}
, log2 log18

(
1082λ3

μ2
2ε

)
− 1

}

= max

{
min

{
1

14

√
μ1 − λ

2λ
,
(Dμ2/12λ)2/7

7 · 21/7
}

, log2 log18

(
1082 · λ3

μ2
2ε

)
− 1

}
,

under the conditions of (18).
To simplify the bound a bit, we note that we can lower bound μ1 − λ by 67

68μ1

(possible by (18)), and lower bound log2 log18

(
1082·λ3

μ2
2ε

)
− 1 by 1

2 log log18

(
λ3

μ2
2ε

)
,

by assuming that ε ≤ cλ3/μ2
2 for some small enough c (in other words, increasing

the constant in the third condition in (18)). Finally, using the fact that max{a, b} ≥
(a + b)/2, the result in the theorem follows.

5 Proof of Theorem 2

The proof follows the lines of Proposition 1 and its proof sketch, but with a more
complicated construction (as we need to capture the dependence on the Lipschitz
parameters of both the gradients and the Hessians).

Similarly to the strongly convex case, we will assume without loss of generality
that the algorithm initializes at w1 = 0, since otherwise one can simply replace the
“hard” function f (w) below by f (w−w1), and the same proof holds verbatim. Thus,
the theorem requires that our function has a minimizer w∗ satisfying ‖w∗‖ ≤ D.

123

Oracle complexity of second-order methods… 349

Define g : R → R as

g(x) =
{

1
3 |x |3 |x | ≤ �

�x2 − �2|x | + 1
3�

3 |x | > �,
.

where � := 3μ1
2μ2

. The function g can be easily verified to be twice continuously

differentiable. Assume that d ≥ 2T̄ , and let v1, v2, . . . , vT̄ be orthogonal unit vectors
in R

d which will be specified later. Given T̄ , and letting γ > 0 be a parameter to be
specified later, define the function fT̄ as

fT̄ (w) = μ2

12

⎛
⎝g(〈v1,w〉) + g(〈vT̄ ,w〉) +

T̄−1∑
i=1

g(〈vi ,w〉 − 〈vi+1,w〉) − γ 〈v1,w〉
⎞
⎠

= μ2

12

⎛
⎝g(〈v1,w〉) + g(〈vT̄ ,w〉) +

T̄−1∑
i=1

g(〈vi − vi+1,w〉) − γ 〈v1,w〉
⎞
⎠

This function is easily shown to be convex and twice-differentiable, withμ1-Lipschitz
gradients and μ2-Lipschitz Hessians (the proof is identical to the proof of Lemma 9).
Our goal will be to show a lower bound on the optimization error using this type of
function.

5.1 Minimizer of fT̄

In this subsection, we analyze the properties of a minimizer of fT̄ . To that end, we

introduce the following function in RT̄ :

f̂ T̄ (w) = g(w1) + g(wT̄) +
T̄−1∑
i=1

g(wi − wi+1) − γw1.

It is easily verified that theminimal values of μ2
12 f̂ T̄ and fT̄ are the same, andmoreover,

if ŵ ∈ R
T̄ is a minimizer of f̂ T̄ , then w

∗ =∑T̄
j=1 ŵ∗

j · v j ∈ R
d is a minimizer of fT̄ ,

and with the same Euclidean norm as ŵ∗.
We begin with the following technical lemma:

Lemma 10 f̂ T̄ has a unique minimizer ŵ∗ ∈ R
T̄ , which satisfies

ŵ∗
t = δ · (T̄ + 1) ·

(
1 − t

T̄ + 1

)
,

for all t = 1, 2, . . . , T̄ , where δ is non-negative and independent of t. Moreover,

g′(ŵ∗
1) + g′(ŵ∗̄

T
) = γ.

123

350 Y. Arjevani et al.

Proof Taking the derivative and setting to zero, we get that the

g′(ŵ∗
1) + g′(ŵ∗

1 − ŵ∗
2) = γ, g′(ŵ∗̄

T−1
− ŵ∗̄

T
) = g′(ŵ∗̄

T
)

as well as

g′(ŵ∗
j−1 − ŵ∗

j) = g′(ŵ∗
j − ŵ∗

j+1)

for all j ∈ {2, 3, . . . , T̄ − 1}. By definition of g, it is easily verified that g′ is a strictly
monotonic (hence invertible) function, so the above implies ŵ∗

j−1 − ŵ∗
j = ŵ∗

j − ŵ∗
j+1

for all j ∈ {2, 3, . . . , T̄ − 1}, as well as ŵ∗̄
T−1

− ŵ∗̄
T

= ŵ∗̄
T
. From this, it follows

by straightforward induction that ŵ∗
T+1−t = t · ŵ∗̄

T
, from which the first displayed

equation in the lemma follows. This also implies g′(T̄ ŵ∗̄
T
) + g′(ŵ∗̄

T
) = γ , and since

g′ is strictly monotonic, we have that ŵ∗̄
T
is uniquely defined, and since the other

coordinates of ŵ∗ are also uniquely defined given ŵ∗̄
T
, we get that ŵ∗ is unique.

Finally, δ (and hence ŵ∗
t for all t) is necessarily non-negative, since otherwise ŵ∗

1 is
negative, which would imply f̂ T̄ (ŵ∗) > 0, even though f̂ T̄ (0) = 0, violating the fact
that ŵ∗ minimizes f̂ T̄ . ��

The main technical result in this subsection is the following proposition, which
characterizes ‖ŵ∗‖ and f̂ T̄ (ŵ∗) under various parameter regimes. By the discussion
above and definition of fT̄ , we have

‖w∗‖ = ‖ŵ∗‖ and fT̄ (w∗) = μ2

12
· f̂ T̄ (ŵ∗), (19)

which will be used in the remainder of the proof of our theorem.

Proposition 4 The values of the minimizer of f̂T̄ and the corresponding minimum
f̂T̄ (ŵ∗) for different γ regimes (which depend on � and T̄) are summarized in
Table 1.

Table 1 Properties of f̂ T̄ (ŵ∗) and ‖ŵ∗‖2 for different γ regimes

Regimes

γ ≤ �2
(
1+T̄ 2

)

T̄ 2

�2
(
1+T̄ 2

)

T̄ 2 < γ ≤ 2�2 T̄ γ > 2�2 T̄

f̂T̄ (ŵ∗) − 2μ2γ
3/2 T̄

3
√(

1+T̄ 2
) 1

3 T̄ δ3 + �T̄ 2δ2 −
T̄
(
�2 + γ

)
δ + �3

3

where δ = −�T̄ +
�T̄

√
1 + γ+�2

�2 T̄ 2

− T̄
(
γ+2�2

)2

4�(T̄+1)
+ (T̄+1)�3

3

‖ŵ∗‖2 ≤ γ (1+T̄)3

3
(
1+T̄ 2

) ≤
(
γ+�2

)2
(T̄+1)3

12�2 T̄ 2 ≤ (T̄+1)
(
γ+2�2

)2

12�2

123

Oracle complexity of second-order methods… 351

Proof To prove the proposition, we will consider three regimes, depending on T̄ , δ,�

(Table 1): Namely, T̄ δ ≤ �, �

T̄
< δ ≤ � and δ > �. We will show that each regime

corresponds to one of the three regimes specified in the proposition, and prove the
relevant bounds.

Case 1: T̄ δ ≤ �. In that case, ŵ∗
1, ŵ

∗̄
T
as well as ŵ∗

i −ŵ∗
i+1 for all i = 2, . . . , T̄ −1

in the definition of f̂ T̄ all lie in the interval where g is a cubic function. Using Lemma

10, g′(w∗
1) + g′(w∗̄

T
) = w∗2

1 + w∗2
T̄

= γ , hence δ2T̄ 2 + δ2 = γ and δ =
√

γ

1+T̄ 2 .

Therefore, our condition T̄ δ ≤ � is exactly equivalent to γ ≤ �2
(
1+T̄ 2

)
T̄ 2 , namely the

first regime discussed in the proposition. We now establish the relevant bounds. By
plugging the optimal solution ŵ∗ in f̂ T̄ (w), we have that

f̂ T̄ (ŵ∗) = − 2γ 3/2T̄

3
√(

1 + T̄ 2
)

and

‖ŵ∗‖22 =
T̄∑
t=1

ŵ∗2
t = γ (1 + T̄)2(

1 + T̄ 2
)

T̄∑
t=1

(
1 − t

1 + T̄

)2
≤ γ (1 + T̄)3

3
(
1 + T̄ 2

) ,

where in the calculation above we used fact
∑T̄

t=1 t
2 ≤ ∫ T̄+1

1 t2dt <
(T̄+1)3

3 .
Case 2: �

T̄
< δ ≤ �. In this case, by Lemma 10, ŵ∗̄

T
≤ � but ŵ∗

1 > �. Therefore,

in the definition f̂ T̄ (ŵ∗), g(ŵ∗
1) lies in the quadratic region of g, whereas g(ŵ∗̄

T
)

and g′(ŵ∗
i − ŵ∗

i+1) for all i lies in the cubic region of g. As a result, g′(w∗
1) +

g′(w∗̄
T
) = 2�w∗

1 − �2 + w∗2
T̄

= γ . Plugging in w∗̄
T

= δ and w∗
1 = T̄ · δ, we get

δ2 + 2�δ · T̄ − (γ + �2
) = 0, and therefore (using the fact δ ≥ 0, see Lemma 10),

δ = −�T̄ + �T̄
√
1 + γ+�2

�2 T̄ 2 . This, plus the assumption �

T̄
< δ ≤ �, is equivalent to

�2
(
1+T̄ 2

)
T̄ 2 < γ ≤ 2�2T̄ , hence showing that we are indeed in the second regime as

specified in our proposition.
Turning to calculate the relevant bounds, we have f̂ T̄ (ŵ∗) = T̄ δ3 + �2T̄ 2δ2 −

T̄
(
�2 + γ

)
δ + �3

3 . Moreover, ‖ŵ∗‖2 = δ2(T̄ + 1)2
∑T̄

t=1

(
1 − t

1+T̄

)2
, which by

definition of δ above and the inequality
√
1 + x ≤ 1 + 1

2 x for all x ≥ 0, is at most(
γ+�2

)2
(T̄+1)3

12�2 T̄ 2 .
Case 3: δ > �. In this case, by Lemma 10, we have ŵ∗

1 > ŵ∗̄
T

= ŵ∗
i − ŵ∗

i+1 > �,

which implies that in the definition of f̂t (ŵ∗), these terms all lie in the quadratic
region of g. Therefore, g′(w∗

1) + g′(w∗̄
T
) = 2�w∗

1 − �2 + 2�w∗̄
T

− �2 = γ , and

thus 2�(T̄ + 1)δ = γ + 2�2, or equivalently δ = γ+2�2

2�(T̄+1)
. Note that this, plus our

assumption δ > �, is equivalent to γ > 2�2T̄ , which shows that we are indeed in the
third regime as specified in our proposition. Turning to calculate ‖ŵ∗‖ and f̂ T̄ (ŵ∗),
we have

123

352 Y. Arjevani et al.

f̂ T̄ (ŵ∗) = − T̄
(
γ + 2�2

)2
4�(T̄ + 1)

+ (T̄ + 1)�3

3
,

and ‖ŵ∗‖2 =
(
γ+2�2

)2
4�2

∑T̄
t=1

(
1 − t

1+T̄

)2 ≤ (T̄+1)
(
γ+2�2

)2
12�2 . ��

5.2 Oracle complexity lower bound

Given the expressions on the optimal value of f̂ T̄ , derived in the previous subsection,
we turn to explain how the oracle complexity lower bound is derived. The argument is
very similar to the strongly convex case (proof of Theorem 1, Sect. 4.2). Specifically,
consider the case when T̄ = 2T , given by

f2T (w) = μ2

12

(
g(〈v1,w〉) + g(〈v2T ,w〉) +

2T−1∑
i=1

g(〈vi − vi+1,w〉) − γ 〈v1,w〉
)

.

Given an algorithm, we choose v1, v2, . . . , v2T to be orthogonal unit vectors, so that
each vt is orthogonal to the first t points w1,w2, . . . ,wt computed by the algorithm
(this is possible by an argument identical to Lemma 8).

With this choice, it is easily verified that f2T (wT) equals

μ2

12

(
g(〈v1,wT 〉) + g(〈vT ,wT 〉) +

T−1∑
i=1

g(〈vi − vi+1,wT 〉) − γ 〈v1,wT 〉
)

,

which is clearly greater than minw fT (w), where fT is defined with the same
v1, . . . , vT . Therefore, we can lower bound the optimization error f2T (wT) −
minw f2T (w) by minw fT (w) − minw f2T (w). Moreover, by (19), this equals
μ2
12

(
minw f̂T (w) − minw f̂2T (w)

)
. Using Proposition 4, we can now plug in these

minimal values, depending on the various parameter regimes, and get an oracle com-
plexity lower bound. Computing these bounds and parameter regimes (while picking
the free parameter γ appropriately) is performed in the next subsection.

5.3 Setting the γ Parameter

To simplify notation,we let f̂ ∗
T and f̂ ∗

2T be shorthand forminw f̂T (w) andminw f̂2T (w)

respectively, with minimizers ŵ∗
T and ŵ∗

2T . We will consider three regimes, depending
on the relationships between D,�, T .

5.3.1 Case 1: D2

48�2T 3 ≤ 1
T 2

In this setting, we choose γ = D2

48T . Using this and the assumption on the parameters,

we get that γ ≤ �2 <
�2
(
1+4T 2

)
4T 2 <

�2
(
1+T 2

)
T 2 , and therefore, we are in the first

regime for both fT and f2T as specified in Proposition 4. Plugging in the bound on

123

Oracle complexity of second-order methods… 353

‖ŵ∗‖2 in that regime, and using the fact that �2 ≤ γ by the assumption above, we

have ‖ŵ∗
2T ‖22 ≤ γ (1+2T)3

3(1+4T 2)
≤ 27D2T 3

576T 2 ≤ D2 as required.

Using the results from Proposition 4 for the first regime we can compute the opti-
mization error bound

f̂ ∗
T − f̂ ∗

2T = 4γ 3/2T

3
√

(1 + 4T 2)
− 2γ 3/2T

3
√

(1 + T 2)

= 2γ 3/2

3

⎛
⎜⎜⎝

1√(
1 + 1

4T 2

) − 1√(
1 + 1

T 2

)

⎞
⎟⎟⎠

≥ 2γ 3/2

3

(
1 − 1

8T 2 −
(
1 − 1

2T 2 + 3

8T 4

))

= 2γ 3/2

3

(
3

8T 2 − 3

8T 4

)
= γ 3/2

(
T 2 − 1

)
4T 4 ≥ D3

1331T 7/2

Where in the first inequality we used the fact that 1− 1
2 x ≤ 1√

1+x
≤ 1− 1

2 x + 3
8 x

2

for all x ≥ 0 and for the last inequality we assumed that T ≥ 2. In the case that T = 1,

the final result still holds. Hence, the suboptimality is at least μ2D3

16,000T 7/2 .

5.3.2 Case 2: 1
T 2 < D2

48�2T 3 ≤ 1

In this setting, we choose γ = D�√
12T

. Using this and the assumption on the parameters,

we get that
�2
(
1+T 2

)
T 2 < γ < 2�2T , and therefore, we are in the second regime for

both fT and f2T as specified in Proposition 4. Plugging in the bound on ‖ŵ∗‖2
in that regime, and using the fact that �2 < γ by the assumption above, we have

‖ŵ∗
2T ‖2 ≤

(
γ+�2

)2
(2T+1)3

48�2T 2 ≤ γ 2(2T+1)3

12�2T 2 = D2(2T+1)3

144T 3 , which is at most D2 as
required.

Turning to compute the optimization error bound, and letting δT , δ2T denote the
quantity δ in Proposition 4 for f̂T and f̂2T respectively, we have

f ∗
T − f ∗

2T = (2δ2T − δT)
(
T
(
�2 + γ

)
− �T 2 (2δ2T + δT)

)
+ 1

3
T
(
δ3T − 2δ32T

)
.

(20)
To continue, we use the following auxiliary lemma:

Lemma 11 (2δ2T − δT)
(
T
(
�2 + γ

)− �T 2 (2δ2T + δT)
) ≥ 0

Proof First we will prove that T
(
�2 + γ

) − �T 2 (2δ2T + δT) ≥ 0: Since δT =
−�T + �T

√
1 + γ+�2

�2T 2 and using
√
1 + x ≤ 1 + 1

2 x for x ≥ 0 we have that δT ≤

123

354 Y. Arjevani et al.

(
γ+�2

)
2�T , so T

(
�2 + γ

) − �T 2 (2δ2T + δT) ≥ T
(
�2 + γ

) − �T 2
(
γ+�2

)
�T = 0. To

complete the proof, it remains to show that 2δ2T − δT ≥ 0. We have

2δ2T − δT = − 4�T + 4�T

√
1 + γ + �2

4�2T 2 + �T − �T

√
1 + γ + �2

�2T 2

Define α := γ+�2

�2T 2 ≥ 0. Hence, we need to prove−4+4
√
1 + 1

4α+1−√
1 + α ≥ 0.

By straightforward manipulations this is equivalent to 6 + 3α ≥ 6
√
1 + α, which is

true since
√
1 + α ≤ 1 + 1

2α. ��
With this lemma, we can lower bound the optimization error in (20) by

1

3
T
(
δ3T − 2δ32T

)
. (21)

To continue, we note that by definition of δT , δ2T and the fact that 1 + 1
2 x − 1

8 x
2 ≤

√
1 + x ≤ 1 + 1

2 x , we have
(
γ+�2

)
2�T −

(
γ+�2

)2
8�3T 3 ≤ δT ≤

(
γ+�2

)
2�T . Therefore,

δT − 3
√
2δ2T ≥

(
γ + �2

)
2�T

−
(
γ + �2

)2
8�3T 3 −

3
√
2
(
γ + �2

)
4�T

≥
(
γ + �2

)
20�T

+
(
γ + �2

)
8�T

(
1 − γ + �2

�2T 2

)
≥
(
γ + �2

)
20�T

.

Using this inequality, and the fact (a − b)3 ≤ a3 − b3 for a ≥ b ≥ 0, we can lower

bound (21) by 1
3T
(
δT − 3

√
2δ2T
)3 ≥

(
γ+�2

)3
60�3T 2 ≥ D3

2500T 7/2 . Hence, the suboptimality

is at least μ2D3

30000T 7/2 .

5.3.3 Case 3: D2

48�2T 3 > 1

In this setting, we choose γ = D�√
3T

. Using this and the assumption on the param-

eters, we get that γ > 4�2T , and therefore, we are in the third regime for both
fT and f2T as specified in Proposition 4. Plugging in the bound on ‖ŵ∗

2T ‖2 in
that regime, and using the fact that 2�2 < γ by the assumption above, we have

‖ŵ∗
2T ‖2 ≤

(
γ+2�2

)2
(2T+1)

12�2 ≤ 4γ 2(2T+1)
12�2 = D2(2T+1)

9T ≤ D2. Now, by the assump-

tions that T�3 < �D2

48T 2 and by using the fact that

1 − x ≤ 1
1+x ≤ 1 − x + x2 for all x ≥ 0, the optimization error bound is

f̂ ∗
T − f̂ ∗

2T ≥ 2T
(
γ + 2�2

)2
4�(2T + 1)

− T
(
γ + 2�2

)2
4�(T + 1)

+ (T + 1)�3

3
− (2T + 1)�3

3

123

Oracle complexity of second-order methods… 355

=
(
γ + 2�2

)2
4�

(
1

1 + 1
2T

− 1

1 + 1
T

)
− T�3

3

≥ D2�

12T

(
1

2T
− 1

T 2

)
− T�3

3
≥ D2�

72T 2 − D2�

144T 2 = D2�

144T 2

In the last inequality we assumed that T ≥ 3. For T = 1, 2 it can be easily verified
that the inequality f̂ ∗

T − f̂ ∗
2T ≥ D2�

144T 2 holds. Hence, using � = 3μ1
2μ2

the suboptimality

is at least μ1D2

576T 2 .

5.4 Wrapping up

Combining the three cases from the previous subsection, we see that we get the fol-
lowing lower bound

f2T (wT) − min
w

f2T (w) ≥
⎧⎨
⎩

μ2D3

30000T 7/2
D2

48�2T 3 ≤ 1
μ1D2

576T 2
D2

48�2T 3 > 1
.

Thus, we get that f2T (wT)−minw f2T (w) ≥ min
{

μ2D3

30,000T 7/2 ,
μ1D2

576T 2

}
. Equating these

bounds to ε, and solving for T , the theorem follows.

6 Proof of Theorem 3

The Proof of Theorem 3 will follow the same outline of the proof of 2. We are again
going to assume without loss of generality that w1 = 0, and we will thus require that
‖w∗‖ ≤ D (see discussion in the Proof of Theorem 2). We define g : R → R as
g(x) = 1

k+1 |x |k+1 and

fT (w) = μk

k!2 k+3
2

(
g(〈v1,w〉) + g(〈vT ,w〉) +

T−1∑
i=1

g(〈vi − vi+1,w〉) − γ 〈v1,w〉
)

.

Lemma 12 fT (w) is k-times differentiable, with μk-Lipschitz k-th order derivative
tensor.

Proof Similarly to Lemma 9,we can assumewithout loss of generality, that the vectors
v1, v2, . . . , vT correspond to the standard basis vectors e1, e2, . . . , eT , so we can
examine the Lipschitz properties of

f̂ (w) = μk

k!2 k+3
2

(
g(w1) + g(wT) +

T−1∑
i=1

g(wi − wi+1) − γw1

)
.

123

356 Y. Arjevani et al.

Letting r0 = e1, rT = eT and ri = ei − ei+1 for all 1 ≤ i ≤ T − 1. Differentiating k
times, we have that

∇(k) f̂ (w) = μk

k!2 k+3
2

(
g(k)(w1)r

⊗k
0 + g(k)(wT)r⊗k

T +
T−1∑
i=1

g(k)(〈ri ,w〉)r⊗k
i

)

= μk

k!2 k+3
2

(
T∑
i=0

g(k)(〈ri ,w〉)r⊗k
i

)
,

Where v⊗p = v ⊗ v ⊗ · · · v︸ ︷︷ ︸
p times

. Since g(k)(x) = k!x , we get that ‖∇(k) f̂ (w) −

∇(k) f̂ (w̃)‖ equals

μk

k!2 k+3
2

∥∥∥∥∥
T∑
i=0

(
g(k)(〈ri ,w〉) − g(k)(〈ri , w̃〉)

)
r⊗k
i

∥∥∥∥∥ = μk

2
k+3
2

∥∥∥∥∥
T∑
i=0

〈ri ,w − w̃〉r⊗k
i

∥∥∥∥∥ .

(22)
Note that for a k-th order symmetric tensor T , the operator norm equals ‖T ‖ =

max‖x‖=1

∣∣∣∑i1,i2,...,ik Ti1,i2,...,ik xi1xi2 . . . xik

∣∣∣ (see for example [11]). So,

∥∥∥∥∥
T∑
i=0

〈ri ,w − w̃〉r⊗k
i

∥∥∥∥∥ = max‖x‖=1

∣∣∣∣∣∣
∑

i1,i2,...,ik

T∑
i=0

〈ri ,w − w̃〉ri,i1ri,i2 . . . ri,ik xi1xi2 . . . xik

∣∣∣∣∣∣

= max‖x‖=1

∣∣∣∣∣∣
T∑
i=0

〈ri ,w − w̃〉
∑
i1

ri,i1xi1 . . .
∑
ik

ri,ik xik

∣∣∣∣∣∣
= max‖x‖=1

∣∣∣∣∣
T∑
i=0

〈ri ,w − w̃〉〈ri , x〉k
∣∣∣∣∣

≤ 2
k
2 max‖x‖=1

T∑
i=0

|〈ri ,w − w̃〉|
∣∣∣∣
〈
ri√
2
, x
〉∣∣∣∣
k

≤ 2
k+1
2 ‖w − w̃‖ max‖x‖=1

T∑
i=0

〈
ri√
2
, x
〉2

= 2
k−1
2 ‖w − w̃‖ max‖x‖=1

x21 + x2T +
T−1∑
i=1

(xi − xi+1)
2

≤ 2
k−1
2 ‖w − w̃‖ max‖x‖=1

x21 + x2T + 2
T−1∑
i=1

x2i + 2
T∑
i=2

x2i ≤ 2
k+3
2 ‖w − w̃‖

where in the first inequality we used ‖ri‖ ≤ √
2 for all i . Plugging this into (22) we

have
∥∥∥∇(k) f̂ (w) − ∇(k) f̂ (w̃

∥∥∥ ≤ μk‖w − w̃‖ as required. ��

123

Oracle complexity of second-order methods… 357

6.1 Minimizer of fT

In order to derive the complexity bound, we will first analyze f̂T , which is a simplified
version of fT , as defined in Sect. 5.1. It is easily verified that minw fT (w) = μk

k!2 k+3
2

·
minw w f̂T (ŵ), and moreover, if ŵ ∈ R

T is a minimizer of f̂T , then w∗ =∑T
j=1 ŵ∗

j ·
v j ∈ R

d is a minimizer of fT , and with the same Euclidean norm as ŵ∗.
Using an identical proof to Lemma 10 we can have that f̂T has a unique minimizer

ŵ∗ ∈ R
T , which satisfies ŵ∗

t = δ · (T + 1) ·
(
1 − t

T+1

)
for some δ > 0 and all

t = 1, 2, . . . , T , and g′(w∗
1) + g′(w∗

T) = (δT)k + δk = δk(T k + 1) =. Hence,

δ =
(

γ

T k+1

) 1
k
. Plugging this and performing some algebraic manipulations, we get

f̂T (ŵ∗) = 1

k + 1
(δT)k+1 + T

k + 1
δk+1 − γ δT

= T

k + 1

(
T k + 1

)(γ

T k + 1

) k+1
k − γ T

(
γ

T p−1 + 1

) 1
p−1 = − kT γ

k+1
k

(k + 1)
(
T k + 1

) 1
k

(23)

‖ŵ∗‖22 =
T∑
t=1

ŵ∗2
t = δ2 (1 + T)2

T∑
t=1

(
1 − t

1 + T

)2
≤ 1

3

(
γ

T k + 1

) 2
k

(1 + T)3 ,

(24)
where we used

∑T
t=1(1 − t

1+T)2 ≤ 1
3 (1 + T) as in Proposition 4.

6.2 Oracle complexity lower bound

The derivation of the lower complexity boundwill be exactly the same as in Sect. 5.2. In
that subsection, we showed that we can lower bound the optimization error f2T (wT)−
minw f2T (w) by minw fT (w) −minw f2T (w). Using the fact that fT (w∗) = μk

k!2 k+3
2

·
f̂T (ŵ∗), this equals μk

k!2 k+3
2

(minw f̂T (w)−minw f̂2T (w)). Letting f ∗
T and f̂ ∗

T to be the

minimal values of fT and f̂T respectively, and by using equation (23),

f̂ ∗
T − f̂ ∗

2T = kγ
k+1
k

(k + 1)
(
1 + 1

(2T)k

) 1
k

− kγ
k+1
k

(k + 1)
(
1 + 1

T k

) 1
k

≥ kγ
k+1
k

k + 1

(
1 − 1

k(2T)k
−
(
1 − 1

kT k
+ k + 1

2k2T 2k

))

= γ
k+1
k

(k + 1)kT k

(
1 − 1

2k
− k + 1

2kT k

)
≥ γ

k+1
k

6(k + 1)kT k

123

358 Y. Arjevani et al.

The last inequality holds for k = 1, T ≥ 3, k = 2, T ≥ 2 or k ≥ 3, T ≥ 1. It can

be verified that for the other cases, the inequality f̂ ∗
T − f̂ ∗

2T ≥ γ
k+1
k

6(k+1)kT k holds.

Since we want f ∗
T − f ∗

2T to be as large as possible, we will set γ to be as large
as possible, under the constraint that ‖w∗

2T ‖ ≤ D. By (24) we can choose γ =
3
k
2 Dk
(
1+(2T)k

)

(1+2T)
3k
2

, so

f̂ ∗
T − f̂ ∗

2T ≥ 3
k+1
2 Dk+1

(
1 + (2T)k

) k+1
k

6(k + 1)kT k(1 + 2T)
3(k+1)

2

≥ 2k+1Dk+1

6 · 3k+1(k + 1)kT
3k+1
2

.

Thus, according to the discussion in Sect. 6.2, the final bound is f ∗
T − f ∗

2T ≥
μk

√
2
k+1

Dk+1

12·3k+1(k+1)!kT 3k+1
2

, and the number of iterations required for having minw fT (w) −
minw f2T (w) < ε , Tε must satisfy

Tε ≥
(

μk
√
2
k+1

Dk+1

12 · 3k+1(k + 1)!kε

) 2
3k+1

≥ c

(
μk Dk+1

(k + 1)!kε
) 2

3k+1

for an appropriate numerical constant c.

Acknowledgements We thank Yurii Nesterov for several helpful comments on a preliminary version of
this paper, as well as NamanAgarwal, Elad Hazan and ZeyuanAllen-Zhu for informing us about the A-NPE
algorithm of [10].

Appendix A: An improved second-order oracle complexity bound for
strongly convex functions

In this section, we show how the A-NPE algorithm of [10], which is a second-order
method analyzed for smooth convex functions, can be used to yield near-optimal
performance if the function is also strongly convex. Rather than directly adapting
their analysis, which is non-trivial, we use a simple restarting scheme, which allows
one to convert an algorithm for the convex setting, to an algorithm in the strongly
convex setting7.

Our algorithm is described as follows: In thefirst phase,we apply a generic restarting
scheme (based on [3, Subsction 4.2]), where we repeatedly run A-NPE for a bounded
number of steps, followed by restarting the algorithm, running it from the last iterate
obtained. By strong convexity,we show that each such epoch reduces the suboptimality
by a constant factor. Once we reach a point sufficiently close to the global optimum,
we switch to the second phase, where we use the cubic-regularized Newton method
to get a quadratic convergence rate.

7 We note that the reverse direction, of adapting strongly convex optimization algorithms to the convex
case, is more common in the literature, and can be achieved using regularization or more sophisticated
approaches [2].

123

Oracle complexity of second-order methods… 359

To formalize this, let us first analyze the convergence rate of the first phase. We
assume that we use the algorithm described in [10, Subsection 7.4]8. By [10, Theorem
6.4 and Theorem 3.10], we have that the t’th iterate satisfies

‖wt − w∗‖ ≤ D and f (wt) − f (w∗) ≤ cμ2‖w1 − w∗‖3
t7/2

,

where μ2 is the Lipschitz constant of ∇2 f , w1 is the initialization point, w∗ is the
unique minimizer (due to strong convexity) of f , D bounds ‖w1 − w∗‖ from above,
and c > 0 is some universal constant. Since f is also assumed to be λ-strongly convex,
we have λ

2‖w1 − w∗‖2 ≤ f (w1) − f (w∗), hence f (wt) − f (w∗) is at most

cμ2‖w1 − w∗‖3
t7/2

≤ 2cμ2‖w1 − w∗‖(f (w1) − f (w∗))
λt7/2

≤ 2cμ2D(f (w1) − f (w∗))
λt7/2

.

Thus, running the algorithm for τ =
(
4cμ2D

λ

)2/7
iterations, we see that f (wt) −

f (w∗) ≤ (f (w1) − f (w∗))/2. Now, since the distance from wt to w∗ is also smaller
than D, we may initialize the algorithm at the last iterate returned by the previous run
and run it for τ iterations to reduce f (wt)− f (w∗) in, yet again, a factor of 2. Applying
the algorithm for T iterations (and restarting the algorithmic parameters after every τ

iterations) yields f (wT)− f (w∗) ≤ f (w1)− f (w∗)
2T/τ . Equivalently, to obtain an ε-optimal

solution, we need at most
(
4cμ2D

λ

)2/7
log2
(

f (w1)− f (w∗)
ε

)
oracle calls (note that this

restarting scheme can be applied also on uniform convex functions of any order, as
defined in, e.g., [19]).

Next, after performing a number of iterations sufficiently large to obtain high
accuracy solutions, we proceed to the second phase of the algorithm where cubic-
regularized Newton steps are applied (see [16]). According to that analysis, after
reducing the optimization error to below λ3/4μ2

2, the number of cubic-regularized

Newton steps required to achieve an ε-suboptimal solution is O
(
log log2

(
λ3

μ2
2ε

))
.

Thus, using the μ1-Lipschitzness of the gradient to bound f (w1) − f (w∗) from
above by μ1D2/2, we get that the overall number of iterations is at most

O
((

μ2D
λ

)2/7
log2

(
μ1μ

2
2D

2

λ3

)
+ log log2

(
λ3

μ2
2ε

))
.

References

1. Agarwal, N., Hazan, E.: Lower bounds for higher-order optimization. Working draft (2017)
2. Allen-Zhu, Z., Hazan, E.: Optimal black-box reductions between optimization objectives. In: Advances

in Neural Information Processing Systems, pp. 1614–1622 (2016)
3. Arjevani, Y., Shamir, O.: On the iteration complexity of oblivious first-order optimization algorithms.

In: International Conference on Machine Learning, pp. 908–916 (2016)

8 Specifically, since in our framework we do not limit computational resources, we assume that the mini-
mization problem in Eq. (6.1) of [10] can be solved exactly.

123

360 Y. Arjevani et al.

4. Arjevani, Y., Shamir, O.: Oracle complexity of second-order methods for finite-sum problems. arXiv
preprint arXiv:1611.04982 (2016)

5. Baes, M.: Estimate Sequence Methods: Extensions and Approximations. Institute for Operations
Research, ETH, Zürich (2009)

6. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)
7. Cartis, C., Gould, N.I., Toint, P.L.: On the complexity of steepest descent, newton’s and regularized

newton’s methods for nonconvex unconstrained optimization problems. SIAM J. Optim. 20(6), 2833–
2852 (2010)

8. Cartis, C., Gould, N.I., Toint, P.L.: Evaluation complexity of adaptive cubic regularization methods
for convex unconstrained optimization. Optim Methods Softw. 27(2), 197–219 (2012)

9. Kantorovich, L.V.: Functional analysis and applied mathematics. Uspekhi Matematicheskikh Nauk
3(6), 89–185 (1948)

10. Monteiro, R.D., Svaiter, B.F.: An accelerated hybrid proximal extragradient method for convex opti-
mization and its implications to second-order methods. SIAM J. Optim. 23(2), 1092–1125 (2013)

11. Mu, C., Hsu, D., Goldfarb, D.: Successive rank-one approximations for nearly orthogonally decom-
posable symmetric tensors. SIAM J. Matrix Anal. Appl. 36(4), 1638–1659 (2015)

12. Nemirovski, A.: Efficient methods in convex programming—lecture notes (2005)
13. Nemirovsky, A., Yudin, D.: Problem Complexity and Method Efficiency in Optimization. Wiley, New

York (1983)
14. Nesterov, Y.: A method of solving a convex programming problem with convergence rate O(1/k2).

Sov. Math. Dokl. 27(2), 372–376 (1983)
15. Nesterov, Y.: Introductory Lectures on Convex Optimization: A Basic Course, vol. 87. Springer, Berlin

(2004)
16. Nesterov, Y.: Accelerating the cubic regularization of newton method on convex problems. Math.

Program. 112(1), 159–181 (2008)
17. Nesterov, Y., Nemirovskii, A.: Interior-Point Polynomial Algorithms in Convex Programming. SIAM,

Philadelphia (1994)
18. Nesterov, Y., Polyak, B.T.: Cubic regularization of newton method and its global performance. Math.

Program. 108(1), 177–205 (2006)
19. Vladimirov, A., Nesterov, Y.E., Chekanov, Y.N.: On uniformly convex functionals. Vestnik Moskov.

Univ. Ser. XV Vychisl. Mat. Kibernet 3, 12–23 (1978)
20. Woodworth,B., Srebro,N.: Lower bound for randomizedfirst order convex optimization. arXiv preprint

arXiv:1709.03594 (2017)

123

http://arxiv.org/abs/1611.04982
http://arxiv.org/abs/1709.03594

	Oracle complexity of second-order methods for smooth convex optimization
	Abstract
	1 Introduction
	1.1 Related work

	2 Main results
	2.1 Second-order oracle
	2.2 Higher order oracles

	3 Proof ideas
	4 Proof of Theorem 1
	4.1 Minimizer of f
	4.2 Oracle complexity lower bound
	4.3 Setting the γ,Δ Parameters

	5 Proof of Theorem 2
	5.1 Minimizer of fbarT
	5.2 Oracle complexity lower bound
	5.3 Setting the γ Parameter
	5.3.1 Case 1: D248Δ2 T3leq1T2
	5.3.2 Case 2: 1T2 < D248Δ2 T3 leq1
	5.3.3 Case 3: D248Δ2 T3 > 1

	5.4 Wrapping up

	6 Proof of Theorem 3
	6.1 Minimizer of fT
	6.2 Oracle complexity lower bound

	Acknowledgements
	Appendix A: An improved second-order oracle complexity bound for strongly convex functions
	References

