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Abstract We study the smooth structure of convex functions by generalizing a pow-
erful concept so-called self-concordance introduced by Nesterov and Nemirovskii in
the early 1990s to a broader class of convex functions which we call generalized
self-concordant functions. This notion allows us to develop a unified framework for
designingNewton-typemethods to solve convex optimization problems. The proposed
theory provides a mathematical tool to analyze both local and global convergence
of Newton-type methods without imposing unverifiable assumptions as long as the
underlying functionals fall into our class of generalized self-concordant functions.
First, we introduce the class of generalized self-concordant functions which covers
the class of standard self-concordant functions as a special case. Next, we estab-
lish several properties and key estimates of this function class which can be used to
design numerical methods. Then, we apply this theory to develop several Newton-type
methods for solving a class of smooth convex optimization problems involving gener-
alized self-concordant functions. We provide an explicit step-size for a damped-step
Newton-type scheme which can guarantee a global convergence without performing
any globalization strategy.We also prove a local quadratic convergence of this method
and its full-step variant without requiring the Lipschitz continuity of the objective
Hessian mapping. Then, we extend our result to develop proximal Newton-type meth-
ods for a class of composite convex minimization problems involving generalized
self-concordant functions. We also achieve both global and local convergence without
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additional assumptions. Finally, we verify our theoretical results via several numerical
examples, and compare them with existing methods.

Keywords Generalized self-concordance · Newton-type method · Proximal Newton
method ·Quadratic convergence ·Local and global convergence ·Convex optimization

Mathematics Subject Classification 90C25 · 90-08

1 Introduction

The Newton method is a classical numerical scheme for solving systems of nonlinear
equations and smooth optimization [47,50]. However, there are at least two reasons
that prevent the use of such methods from solving large-scale problems. Firstly, while
these methods often have a fast local convergence rate which can be up to a quadratic
rate, their global convergence has not been well-understood [46]. In practice, one can
use a damped-step scheme utilizing the Lipschitz constant of the objective derivatives
to compute a suitable step-size as often seen in gradient-type methods, or incorpo-
rate the algorithm with a globalization strategy such as line-search, trust-region, or
filter to guarantee a descent property [47]. Both strategies allow us to prove a global
convergence of the underlying Newton-type method in some sense. Unfortunately, in
practice, there exist several problems whose objective function does not have global
Lipschitz gradient or Hessian such as logarithmic or reciprocal functions. This class
of problems does not provide us some uniform bounds to obtain a constant step-size
in optimization algorithms. On the other hand, using a globalization strategy for deter-
mining step-sizes often requires centralized computation such as function evaluations,
which prevent us from using distributed computation and stochastic descent methods.
Secondly, Newton algorithms are second-order methods which often require a high
per-iteration complexity due to the operations on the Hessian mapping of the objec-
tive function or its approximations. In addition, these methods require the underlying
functionals to be smooth up to a given smoothness levels which does not often hold
in many practical models.

Motivation In recent years, there has been a great interest in Newton-type methods
for solving convex optimization problems and monotone equations due to the devel-
opment of new techniques and mathematical tools in optimization, machine learning,
and randomized algorithms [6,11,16,18,34,42,43,54,55,57,58,61]. Several combi-
nations of Newton-type methods and other techniques such as proximal operators [8],
cubic regularization [42], gradient regularization [55], randomized algorithms such
as sketching [54], subsampling [18], and fast eigen-decomposition [26] have opened
up a new research direction and attracted a great attention in solving nonsmooth and
large-scale problems. Hitherto, research in this direction remains focusing on specific
classes of problems where standard assumptions such as nonsingularity and Hessian
Lipschitz continuity are preserved. However, such assumptions do not hold for many
other examples as shown in [62]. Moreover, if they are satisfied, then we often get
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a lower bound of possible step-sizes for our algorithm which may lead to a poor
performance, especially in large-scale problems.

In the seminal work [45], Nesterov and Nemirovskii showed that the class of log-
barriers does not satisfy the standard assumptions of the Newtonmethod if the solution
of the underlying problem is closed to the boundary of the domain of a barrier func-
tion. They introduced a powerful concept called “self-concordance” to overcome this
drawback and developed new Newton schemes to achieve global and local conver-
gence without requiring any additional assumption, or a globalization strategy. While
the self-concordance notion was initially invented to study interior-point methods, it is
less well-known in other communities. Recent works [1,14,38,62,67,72] have popu-
larized this concept to solve other problems arising from machine learning, statistics,
image processing, scientific computing, and variational inequalities.

Our goals In this paper, motivated by [1,63,72], we aim at generalizing the self-
concordance concept in [45] to a broader class of smooth and convex functions. To
illustrate our idea, we consider a univariate smooth and convex function ϕ : R→ R.
If ϕ satisfies the inequality |ϕ′′′(t)| ≤ Mϕϕ′′(t)3/2 for all t in the domain of ϕ and
for a given constant Mϕ ≥ 0, then we say that ϕ is self-concordant (in Nesterov and
Nemirovskii’s sense [45]). We instead generalize this inequality to

|ϕ′′′(t)| ≤ Mϕϕ′′(t)
ν
2 , (1)

for all t in the domain of ϕ, and for given constants ν > 0 and Mϕ ≥ 0.
We emphasize that generalizing from univariate to multivariate functions in the

standard self-concordant case (i.e., ν = 3) [45] preserves several important properties
including the multilinear symmetry [40, Lemma 4.1.2], while, unfortunately, they do
not hold for the case ν �= 3. Therefore, we modify the definition in [45] to overcome
this drawback. Note that a similar idea has been also studied in [1,63] for a class of
logistic-type functions. Nevertheless, the definition using in these papers is limited,
and still creates certain difficulty for developing further theory in general cases.

Our second goal is to develop a unified mechanism to analyze the convergence
(including global and local convergence) of the following Newton-type scheme:

xk+1 := xk − sk F
′(xk)−1F(xk), (2)

where F can be represented as the right-hand side of a smooth monotone equation
F(x) = 0, or the optimality condition of a convex optimization or a convex–concave
saddle-point problem, F ′ is the Jacobian map of F , and sk ∈ (0, 1] is a given step-
size. Despite the Newton scheme (2) is invariant to a change of variables [16], its
convergence property relies on the growth of the Hessian mapping along the Newton
iterative process. In classical settings, the Lipschitz continuity and the non-degeneracy
of the Hessian mapping in a neighborhood of a given solution are key assumptions to
achieve local quadratic convergence rate [16]. These assumptions have been consid-
ered to be standard, but they are often very difficult to check in practice, especially
the second requirement. A natural idea is to classify the functionals of the underlying
problem into a known class of functions to choose a suitable method for minimizing
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it. While first-order methods for convex optimization essentially rely on the Lipschitz
gradient continuity, Newton schemes usually use the Lipschitz continuity of the Hes-
sian mapping and its non-degeneracy to obtain a well-defined Newton direction as
we have previously mentioned. For self-concordant functions, the second condition
automatically holds, but the first assumption fails to satisfy. However, both full-step
and damped-step Newton methods still work in this case by appropriately choosing
a suitable metric. This situation has been observed and standard assumptions have
been modified in different directions to still guarantee convergence of Newton-type
methods, see [16] for an intensive study of generic Newton-type methods, and [40,45]
for the self-concordant function class.

Our approach We attempt to develop some background theory for a broad class of
smooth and convex functions under the structure (1). By adopting the local norm
defined via the Hessian mapping of such a convex function from [45], we can prove
some lower and upper bound estimates for the local norm distance between two points
in the domain as well as for the growth of the Hessian mapping. Together with this
background theory, we also identify a class of functions using in generalized linear
models [37,39] as well as in empirical risk minimization [68] that falls into our gen-
eralized self-concordance class for many well-known loss-type functions as listed in
Table 2.

Applying our generalized self-concordant theory, we develop a class of Newton-
type methods to solve the following composite convex minimization problem:

F� := min
x∈Rp

{
F(x) := f (x)+ g(x)

}
, (3)

where f is a generalized self-concordant function in our context, and g is a proper,
closed, and convex function that can be referred to as a regularization term.Weconsider
two cases. The first case is a non-composite convex problem in which g is vanished
(i.e., g = 0). In the second case, we assume that g is equipped with a “tractably”
proximal operator [see (34) for the definition].

Our contribution To this end, our main contribution can be summarized as follows.

(a) Wegeneralize the self-concordant notion in [40] to amore broader class of smooth
convex functions which we call generalized self-concordance. We identify sev-
eral loss-type functions that can be cast into our generalized self-concordant
class. We also prove several fundamental properties and show that the sum and
linear transformation of generalized self-concordant functions are generalized
self-concordant for a given range of ν or under suitable assumptions.

(b) We develop lower and upper bounds on the Hessian mapping, the gradient map-
ping, and the function values for generalized self-concordant functions. These
estimates are key to analyze several numerical optimization methods including
Newton-type methods.

(c) We propose a class of Newton methods including full-step and damped-step
schemes to minimize a generalized self-concordant function. We explicitly show
how to choose a suitable step-size to guarantee a descent direction in the damped-
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step scheme, and prove a local quadratic convergence for both the damped-step
and the full-step schemes using a suitable metric.

(d) We also extend our Newton schemes to handle the composite setting (3). We
develop both full-step and damped-step proximal Newton methods to solve this
problem and provide a rigorous theoretical convergence guarantee in both local
and global sense.

(e) We also study a quasi-Newton variant of our Newton scheme to minimize a
generalized self-concordant function. Under a modification of the well-known
Dennis–Moré condition [15] or a BFGS update, we show that our quasi-Newton
method locally converges at a superlinear rate to the solution of the underlying
problem.

Let us emphasize the following aspects of our contribution. Firstly, we observe that
the self-concordance notion is a powerful concept and haswidely been used in interior-
point methods as well as in other optimization schemes [28,35,62,72], generalizing
it to a broader class of smooth convex functions can substantially cover a number
of new applications or can develop new methods for solving old problems including
logistic and multimonomial logistic regression, optimization involving exponential
objectives, and distance-weighted discrimination problems in support vector machine
(see Table 2 below). Secondly, verifying theoretical assumptions for convergence
guarantees of a Newton method is not trivial, our theory allows one to classify the
underlying functions into different subclasses by using different parameters ν and
Mϕ in order to choose suitable algorithms to solve the corresponding optimization
problem. Thirdly, the theory developed in this paper can potentially apply to other
optimization methods such as gradient-type, sketching and sub-sampling Newton,
and Frank–Wolfe’s algorithms as done in the literature [49,54,57,58,62]. Finally, we
also show that it is possible to impose additional structure such as self-concordant
barrier to develop path-following scheme or interior-point-type methods for solving
a subclass of composite convex minimization problems of the form (3). We believe
that our theory is not limited to convex optimization, but can be extended to solve
convex–concave saddle-point problems, andmonotone equations/inclusions involving
generalized self-concordant functions [67].

Summary of generalized self-concordant properties We provide a short summary on
the main properties of generalized self-concordant (gsc) functions in Table 1.

Although several results hold for a different range of ν, the complete theory only
holds for ν ∈ [2, 3]. However, this is sufficient to cover two important cases: ν = 2
in [1,2] and ν = 3 in [45].

Related work Since the self-concordance concept was introduced in 1990s [45], its
first extension is perhaps proposed by [1] for a class of logistic regression. In [63],
the authors extended [1] to study proximal Newton method for logistic, multinomial
logistic, and exponential loss functions. By augmenting a strongly convex regularizer,
Zhang and Lin in [72] showed that the regularized logistic loss function is indeed
standard self-concordant. In [2] Bach continued exploiting his result in [1] to show
that the averaging stochastic gradient method can achieve the same best-known con-
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Table 1 A summary of generalized self-concordant properties

Result Property Range of ν

Definitions 1 and 2 Definitions of gsc functions ν > 0

Proposition 1 Sum of gsc functions ν ≥ 2

Proposition 2 Affine transformation of gsc
functions with
A(x) = Ax + b

ν ∈ (0, 3] for general A
ν > 3 for over-completed A

Proposition 3(a) Non-degenerate property ν ≥ 2

Proposition 3(b) Unboundedness ν > 0

Proposition 4(a) gsc and strong convexity ν ∈ (0, 3]
Proposition 4(b) gsc and Lipschitz gradient

continuity
ν ≥ 2

Proposition 6 If f ∗ is the conjugate of a gsc
function
f , then ν + ν∗ = 6

ν∗ ∈ (0, 6) if p = 1
(univariate)
ν∗ ∈ [3, 6) if p > 1
(multivariate)

Propositions 7, 8, 9, and 10 Local norm, Hessian,
gradient, and function value
bounds

ν ≥ 2

vergence rate as in strongly convex case without adding a regularizer. In [62], the
authors exploited standard self-concordance theory in [45] to develop several classes
of optimization algorithms including proximal Newton, proximal quasi-Newton, and
proximal gradient methods to solve composite convex minimization problems. In
[35], Lu extended [62] to study randomized block coordinate descent methods. In
a recent paper [22], Gao and Goldfarb investigated quasi-Newton methods for self-
concordant problems. As another example, [53] proposed an alternative to the standard
self-concordance, called self-regularity. The authors applied this theory to develop a
new paradigm for interior-point methods. The theory developed in this paper, on the
one hand, is a generalization of the well-known self-concordance notion developed in
[45]; on the other hand, it also covers the work in [1,61,72] as specific examples. Sev-
eral concrete applications and extensions of self-concordance notion can also be found
in the literature including [28,32,49,53]. Recently, [14] exploited smooth structures
of exponential functions to design interior-point methods for solving two fundamental
problems in scientific computing called matrix scaling and balancing.

Paper organization The rest of this paper is organized as follows. Section 2 develops
the foundation theory for our generalized self-concordant functions including defini-
tions, examples, basic properties, Fenchel’s conjugate, smoothing technique, and key
bounds. Section 3 is devoted to studying full-step and damped-step Newton schemes
to minimize a generalized self-concordant function including their global and local
convergence guarantees. Section 4 considers the composite setting (3) and studies
proximal Newton-type methods, and investigates their convergence guarantees. Sec-
tion 5 deals with a quasi-Newton scheme for solving the noncomposite problem of
(3). Numerical examples are provided in Sect. 6 to illustrate advantages of our theory.
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Finally, for clarity of presentation, several technical results and proofs are moved to
the appendix.

2 Theory of generalized self-concordant functions

We generalize the class of self-concordant functions introduced by Nesterov and
Nemirovskii in [40] to a broader class of smooth and convex functions. We iden-
tify several examples of such functions. Then, we develop several properties of this
function class by utilizing our new definitions.

Notation Given a proper, closed, and convex function f : Rp → R ∪ {+∞}, we
denote by dom( f ) := {x ∈ R

p | f (x) < +∞} the domain of f , and by ∂ f (x) :={
w ∈ R

p | f (y) ≥ f (x) + 〈w, y − x〉, ∀y ∈ dom( f )
}
the subdifferential of f

at x ∈ dom( f ). We use C3(dom( f )) to denote the class of three times continuously
differentiable functions on its open domain dom( f ). We denote by ∇ f its gradient
map, by ∇2 f its Hessian map, and by ∇3 f its third-order derivative. For a twice con-
tinuously differentiable convex function f , ∇2 f is symmetric positive semidefinite,
and can be written as ∇2 f (·) � 0. If it is positive definite, then we write ∇2 f (·) � 0.

Let R+ and R++ denote the sets of nonnegative and positive real numbers, respec-
tively. We use S p

+ and S p
++ to denote the sets of symmetric positive semidefinite and

symmetric positive definite matrices of the size p × p, respectively. Given a p × p
matrix H � 0, we define a weighted norm with respect to H as ‖u‖H := 〈Hu, u〉1/2
for u ∈ R

p. The corresponding dual norm is ‖v‖∗H :=
〈
H−1v, v

〉1/2
. If H = I, the

identity matrix, then ‖u‖H = ‖u‖∗H = ‖u‖2, where ‖·‖2 is the standard Euclidean
norm. Note that ‖ · ‖∗2 = ‖ · ‖2.

We say that f is strongly convex with the strong convexity parameter μ f > 0 if
f (·)− μ f

2 ‖·‖2 is convex. We also say that f has Lipschitz gradient if∇ f is Lipschitz
continuous with the Lipschitz constant L f ∈ [0,+∞), i.e., ‖∇ f (x) − ∇ f (y)‖∗ ≤
L f ‖x − y‖ for all x, y ∈ dom( f ).

For f ∈ C3(dom( f )), if ∇2 f (x) � 0 at a given x ∈ dom( f ), then we define a
local norm ‖u‖x := 〈∇2 f (x)u, u〉1/2 as a weighted norm of u with respect to∇2 f (x).
The corresponding dual norm ‖v‖∗x , is defined as ‖v‖∗x := max

{〈v, u〉 | ‖u‖x ≤ 1
} =〈∇2 f (x)−1v, v

〉1/2
for v ∈ R

p.

2.1 Univariate generalized self-concordant functions

Let ϕ : R → R be a three times continuously differentiable function on the open
domain dom(ϕ). Then, we write ϕ ∈ C3 (dom(ϕ)). In this case, ϕ is convex if and
only if ϕ′′(t) ≥ 0 for all t ∈ dom(ϕ). We introduce the following definition.

Definition 1 Let ϕ : R → R be a C3 (dom(ϕ)) and univariate function with open
domain dom(ϕ), and ν > 0 and Mϕ ≥ 0 be two constants. We say that ϕ is (Mϕ, ν)-
generalized self-concordant if

|ϕ′′′(t)| ≤ Mϕϕ′′(t)
ν
2 , ∀t ∈ dom(ϕ). (4)
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The inequality (4) also indicates that ϕ′′(t) ≥ 0 for all t ∈ dom( f ). Hence, ϕ is
convex. Clearly, if ϕ(t) = a

2 t
2 + bt for any constants a ≥ 0 and b ∈ R, then we have

ϕ′′(t) = a and ϕ′′′(t) = 0. The inequality (4) is automatically satisfied for any ν > 0
and Mϕ ≥ 0. The smallest value of Mϕ is zero. Hence, any convex quadratic function
is (0, ν)-generalized self-concordant for any ν > 0. While (4) holds for any other
constant M̂ϕ ≥ Mϕ , we often require that Mϕ is the smallest constant satisfying (4).

Example 1 Let us now provide some common examples satisfying Definition 1.

(a) Standard self-concordant functions If we choose ν = 3, then (4) becomes
|ϕ′′′(t)| ≤ Mϕϕ′′(t)3/2 which is the standard self-concordant functions in R

introduced in [45].
(b) Logistic functions In [1], Bach modified the standard self-concordant inequality

in [45] to obtain
∣∣ϕ′′′(t)∣∣ ≤ Mϕϕ′′(t), and showed that the well-known logistic

lossϕ(t) := log(1+e−t ) satisfies this definition. In [63] the authors also exploited
this definition, and developed a class of first-order and second-order methods to
solve composite convex minimization problems. Hence, ϕ(t) := log(1+ e−t ) is
a generalized self-concordant function with Mϕ = 1 and ν = 2.

(c) Exponential functions The exponential function ϕ(t) := e−t also belongs to (4)
with Mϕ = 1 and ν = 2. This function is often used, e.g., in Ada-boost [33], or
in matrix scaling [14].

(d) Distance-weighted discrimination (DWD) We consider a more general function
ϕ(t) := 1

tq on dom(ϕ) = R++ and q ≥ 1 studied in [36] for DWD using in
support vector machine. As shown in Table 2, this function satisfies Definition 1
with Mϕ = q+2

(q+2)√q(q+1) and ν = 2(q+3)
q+2 ∈ (2, 3).

(e) Entropy functionWeconsider thewell-knownentropy functionϕ(t) := t ln(t) for
t > 0. We can easily show that |ϕ′′′(t)| = 1

t2
= ϕ′′(t)2. Hence, it is generalized

self-concordant with ν = 4 and Mϕ = 1 in the sense of Definition 1.
(f) Arcsine distribution We consider the function ϕ(t) := 1√

1−t2 for t ∈ (− 1, 1).
This function is convex and smooth. Moreover, we verify that it satisfies Def-

inition 1 with ν = 14
5 ∈ (2, 3) and Mϕ = 3

√
495−105√21

(7−√21)7/5 < 3.25. We can

generalize this function to ϕ(t) := [(t − a)(b − t)]−q for t ∈ (a, b), where
a < b and q > 0. Then, we can show that ν = 2(q+3)

q+2 ∈ (2, 3).
(g) Robust regression Consider a monomial function ϕ(t) := tq for q ∈ (1, 2)

studied in [71] for robust regression using in statistics. Then, Mϕ = 2−q
(2−q)
√
q(q−1)

and ν = 2(3−q)
2−q ∈ (4,+∞).

As concrete examples, the following table, Table 2, provides a non-exhaustive list of
generalized self-concordant functions used in the literature.

Remark 1 All examples given in Table 2 fall into the case ν ≥ 2. However, we
note that Definition 1 also covers [72, Lemma 1] as a special case when ν ∈ (0, 2).
Unfortunately, as we will see in what follows, it is unclear how to generalize several
properties of generalized self-concordance from univariate to multivariable functions
for ν ∈ (0, 2), except for strongly convex functions.
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Table 2 Examples of univariate generalized self-concordant functions (F1,1
L means that ∇ϕ is Lipschitz

continuous)

Function name Form of ϕ(t) ν M f dom(ϕ) Application F1,1
L References

Log-barrier − ln(t) 3 2 R++ Poisson No [10,40,45]

Entropy-barrier t ln(t)− ln(t) 3 2 R++ Interior-point No [40]

Logistic ln(1+ e−t ) 2 1 R Classification yes [29]

Exponential e−t 2 1 R AdaBoost, etc No [14,33]

Negative power t−q , (q > 0) 2(q+3)
q+2

q+2
(q+2)√q(q+1) R++ DWD No [36]

Arcsine distribution 1√
1−t2

14
5 < 3.25 (− 1, 1) Random walks No [24]

Positive power tq , (q ∈ (1, 2)) 2(3−q)
2−q

2−q
(2−q)√q(q−1) R+ Regression No [71]

Entropy t ln(t) 4 1 R+ KL divergence No [10]

Table 2 only provides commongeneralized self-concordant functions using in practice.
However, it is possible to combine these functions to obtain mixture functions that
preserve the generalized self-concordant inequality given in Definition 1. For instance,
the barrier entropy t ln(t)− ln(t) is a standard self-concordant function, and it is the
sum of the entropy t ln(t) and the negative logarithmic function − log(t) which are
generalized self-concordant with ν = 4 and ν = 3, respectively.

2.2 Multivariate generalized self-concordant functions

Let f : Rp → R be a C3(dom( f )) smooth and convex function with open domain
dom( f ). Given ∇2 f the Hessian of f , x ∈ dom( f ), and u, v ∈ R

p, we consider the
function ψ(t) := 〈∇2 f (x + tv)u, u〉. Then, it is obvious to show that

ψ ′(t) := 〈∇3 f (x + tv)[v]u, u〉.

for t ∈ R such that x + tv ∈ dom( f ), where ∇3 f is the third-order derivative of f .
It is clear that ψ(0) = 〈∇2 f (x)u, u〉 = ‖u‖2x . By using the local norm, we generalize
Definition 1 to multivariate functions f : Rp → R as follows.

Definition 2 A C3-convex function f : Rp → R is said to be an (M f , ν)-generalized
self-concordant function of the order ν > 0 and the constant M f ≥ 0 if, for any
x ∈ dom( f ) and u, v ∈ R

p, it holds

∣∣∣〈∇3 f (x)[v]u, u〉
∣∣∣ ≤ M f ‖u‖2x ‖v‖ν−2x ‖v‖3−ν

2 . (5)

Here, we use a convention that 00 = 0 for the case ν < 2 or ν > 3.We denote this class
of functions by F̃M f ,ν(dom( f )) (shortly, F̃M f ,ν when dom( f ) is explicitly defined).

Let us consider the following two extreme cases:
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1. If ν = 2, (5) leads to
∣∣〈∇3 f (x)[v]u, u〉∣∣ ≤ M f ‖u‖2x ‖v‖2 which collapses to the

definition introduced in [1] by letting u = v.
2. If ν = 3 and u = v, (5) reduces to

∣∣〈∇3 f (x)[u]u, u〉∣∣ ≤ M f ‖u‖3x , Definition 2
becomes the standard self-concordant definition introduced in [40,45].

We emphasize that Definition 2 is not symmetric, but can avoid the use of multilinear
mappings as required in [1,45]. However, by [45, Proposition 9.1.1] or [40, Lemma
4.1.2], Definition 2 with ν = 3 is equivalent to [40, Definition 4.1.1] for standard
self-concordant functions.

2.3 Basic properties of generalized self-concordant functions

We first show that if f1 and f2 are two generalized self-concordant functions, then
β1 f1 + β2 f2 is also a generalized self-concordant for any β1, β2 > 0 according to
Definition 2.

Proposition 1 (Sum of generalized self-concordant functions) Let fi be (M fi , ν)-
generalized self-concordant functions satisfying (5), where M fi ≥ 0 and ν ≥ 2 for
i = 1, . . . ,m. Then, for βi > 0, i = 1, 2, . . . ,m, the function f (x) :=∑m

i=1 βi fi (x)
is well-defined on dom( f ) = ⋂m

i=1 dom( fi ), and is (M f , ν)-generalized self-
concordant with the same order ν ≥ 2 and the constant

M f := max
{
β
1− ν

2
i M fi | 1 ≤ i ≤ m

}
≥ 0.

Proof It is sufficient to prove for m = 2. For m > 2, it follows from m = 2 by
induction. By [40, Theorem 3.1.5], f is a closed and convex function. In addition,
dom( f ) = dom( f1) ∩ dom( f2). Let us fix some x ∈ dom( f ) and u, v ∈ R

p. Then,
by Definition 2, we have

∣∣∣〈∇3 fi (x)[v]u, u〉
∣∣∣ ≤ M fi 〈∇2 fi (x)u, u〉〈∇2 fi (x)v, v〉 ν−22 ‖v‖3−ν

2 , i = 1, 2.

Denote wi := 〈∇2 fi (x)u, u〉 ≥ 0 and si := 〈∇2 fi (x)v, v〉 ≥ 0 for i = 1, 2. We can
derive

∣∣〈∇3 f (x)[v]u, u〉∣∣
〈∇2 f (x)u, u〉〈∇2 f (x)v, v〉 ν−22

≤ β1
∣∣〈∇3 f1(x)[v]u, u〉∣∣+ β2

∣∣〈∇3 f2(x)[v]u, u〉∣∣
〈∇2 f (x)u, u〉〈∇2 f (x)v, v〉 ν−22

≤
⎡
⎣ M f1β1w1s

ν−2
2

1 + M f2β2w2s
ν−2
2

2

(β1w1 + β2w2)(β1s1 + β2s2)
ν−2
2

⎤
⎦
[T ]
‖v‖3−ν

2 .

(6)

Let ξ := β1w1
β1w1+β2w2

∈ [0, 1] and η := β1s1
β1s1+β2s2

∈ [0, 1]. Then, β2w2
β1w1+β2w2

= 1−ξ ≥
0 and β2s2

β1s1+β2s2
= 1 − η ≥ 0. Hence, the term [T ] in the square brackets of (6)

becomes

123



Generalized self-concordant functions: a recipe for Newton… 155

h(ξ, η) := β
1− ν

2
1 M f1ξη

ν−2
2 + β

1− ν
2

2 M f2(1− ξ)(1− η)
ν−2
2 , ξ, η ∈ [0, 1].

Since ν ≥ 2 and ξ, η ∈ [0, 1], we can upper bound h(ξ, η) as

h(ξ, η) ≤ β
1− ν

2
1 M f1ξ + β

1− ν
2

2 M f2(1− ξ), ∀ξ ∈ [0, 1].

The right-hand side function is linear in ξ on [0, 1]. It achieves the maximum at its
boundary. Hence, we have

max
ξ∈[0,1],η∈[0,1] h(ξ, η) ≤ max

{
β
1− ν

2
1 M f1, β

1− ν
2

2 M f2

}
.

Using this estimate into (6), we can show that f (·) := β1 f1(·)+ β2 f2(·) is (M f , ν)-

generalized self-concordant with M f := max
{
β
1− ν

2
1 M f1 , β

1− ν
2

2 M f2

}
. ��

Using Proposition 1, we can also see that if f is (M f , ν)-generalized self-
concordant, and β > 0, then g(x) := β f (x) is also (Mg, ν)-generalized self-
concordant with the constant Mg := β1− ν

2 M f . The convex quadratic function
q(x) := 1

2 〈Qx, x〉 + c�x with Q ∈ S p
+ is (0, ν)-generalized self-concordant for

any ν > 0. Hence, by Proposition 1, if f is (M f , ν)-generalized self-concordant, then
f (x)+ 1

2 〈Qx, x〉 + c�x is also (M f , ν)-generalized self-concordant.
Next, we consider an affine transformation of a generalized self-concordant func-

tion.

Proposition 2 (Affine transformation) Let A(x) := Ax + b be an affine transforma-
tion from R

p to R
q , and f be an (M f , ν)-generalized self-concordant function with

ν > 0. Then, the following statements hold:

(a) If ν ∈ (0, 3], then g(x) := f (A(x)) is (Mg, ν)-generalized self-concordant with
Mg := M f ‖A‖3−ν .

(b) If ν > 3 and λmin(A�A) > 0, then g(x) := f (A(x)) is (Mg, ν)-generalized self-

concordant with Mg := M f λmin(A�A)
3−ν
2 , where λmin(A�A) is the smallest

eigenvalue of A�A.
Proof Since g(x) = f (A(x)) = f (Ax + b), it is easy to show that ∇2g(x) =
A�∇2 f (A(x))A and ∇3g(x)[v] = A�(∇3 f (A(x)[Av])A. Let us denote by x̃ :=
Ax + b, ũ := Au, and ṽ := Av. Then, using Definition 2, we have

|〈∇3g(x)[v]u, u〉| = |〈A�(∇3 f (x̃)[ṽ])Au, u〉| = |〈∇3 f (x̃)[ṽ]ũ, ũ〉|
(5)≤ M f 〈∇2 f (x̃)ũ, ũ〉〈∇2 f (x̃)ṽ, ṽ〉 ν2−1 ‖ṽ‖3−ν

2

= M f 〈A�∇2 f (A(x))Au, u〉〈A�∇2 f (A(x))Av, v〉 ν2−1‖Av‖3−ν
2

= M f 〈∇2g(x)u, u〉〈∇2g(x)v, v〉 ν2−1‖Av‖3−ν
2 . (7)

(a) If ν ∈ (0, 3], then we have ‖Av‖3−ν
2 ≤ ‖A‖3−ν‖v‖3−ν

2 . Hence, the last inequality
(7) implies

123



156 T. Sun, Q. Tran-Dinh

|〈∇3g(x)[v]u, u〉| ≤ M f ‖A‖3−ν〈∇2g(x)u, u〉〈∇2g(x)v, v〉 ν2−1‖v‖3−ν
2 ,

which shows that g is (Mg, ν)-generalized self-concordant with Mg := M f ‖A‖3−ν .
(b) Note that ‖Av‖22 = v�A�Av ≥ λmin(A�A) ‖v‖22 ≥ 0, where λmin(A�A) is
the smallest eigenvalue of A�A. If λmin(A�A) > 0 and ν > 3, then we have

‖Av‖3−ν
2 ≤ λmin(A�A)

3−ν
2 ‖v‖3−ν

2 . Combining this estimate and (7), we can show

that g is (Mg, ν)-generalized self-concordant with Mg := M f λmin(A�A)
3−ν
2 . ��

Remark 2 Proposition 2 shows that generalized self-concordance is preserved via an
affine transformations if ν ∈ (0, 3]. If ν > 3, then it requires A to be over-completed,
i.e., λmin(A�A) > 0. Hence, the theory developed in the sequel remains applicable
for ν > 3 if A is over-completed.

The following result is an extension of standard self-concordant functions (ν = 3),
whose proof is very similar to [40, Theorems 4.1.3, 4.1.4] by replacing the parameters
M f = 2 and ν = 3 with the general parameters M f ≥ 0 and ν > 0 (or ν ≥ 2),
respectively. We omit the detailed proof.

Proposition 3 Let f be an (M f , ν)-generalized self-concordant function with ν > 0.
Then:

(a) If ν ≥ 2 and dom( f ) contains no straight line, then ∇2 f (x) � 0 for any x ∈
dom( f ).

(b) If there exists x̄ ∈ bd(dom( f )), the boundary of dom( f ), then, for any x̄ ∈
bd(dom( f )), and any sequence {xk} ⊂ dom( f ) such that limk→∞ xk = x̄ , we
have limk→∞ f (xk) = +∞.

Note that Proposition 3(a) only holds for ν ≥ 2. If we consider g(x) := f (A(x))
for a given affine operator A(x) = Ax + b, then the non-degenerateness of ∇2g is
only guaranteed if A is full-rank. Otherwise, it is non-degenerated in a given subspace
of A.

2.4 Generalized self-concordant functions with special structures

We first show that if a generalized self-concordant function is strongly convex or has
a Lipschitz gradient, then it can be cast into the special case ν = 2 or ν = 3.

Proposition 4 Let f ∈ F̃M f ,ν be an (M f , ν)-generalized self-concordant with ν > 0.
Then:

(a) If ν ∈ (0, 3] and f is also strongly convex on dom( f ) with the strong con-
vexity parameter μ f > 0 in �2-norm, then f is also (M̂ f , ν̂)-generalized

self-concordant with ν̂ = 3 and M̂ f := M f

(
√

μ f )
3−ν .

(b) If ν ≥ 2 and ∇ f is Lipschitz continuous with the Lipschitz constant L f ∈
[0,+∞) in �2-norm, then f is also (M̂ f , ν̂)-generalized self-concordant with

ν̂ = 2 and M̂ f := M f L
ν
2−1
f .
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Proof (a) If f is strongly convex with the strong convexity parameter μ f > 0 in �2-

norm, then we have 〈∇2 f (x)v, v〉 ≥ μ f ‖v‖22 for any v ∈ R
p. Hence, ‖v‖2‖v‖x ≤ 1√

μ f
.

In this case, (5) leads to

∣∣∣〈∇3 f (x)[v]u, u〉
∣∣∣ ≤ M f ‖u‖2x

(‖v‖2
‖v‖x

)3−ν

‖v‖x ≤
M f

(
√

μ f )3−ν
‖u‖2x‖v‖x .

Hence, f is (M̂ f , ν̂)-generalized self-concordant with ν̂ = 3 and M̂ f := M f

(
√

μ f )
3−ν .

(b) Since ∇ f is Lipschitz continuous with the Lipschitz constant L f ∈ [0,+∞)

in �2-norm, we have ‖v‖2x = 〈∇2 f (x)v, v〉 ≤ L f ‖v‖22 for all v ∈ R
p which leads to

‖v‖x
‖v‖2 ≤

√
L f for all v ∈ R

p. On the other hand, f ∈ F̃M f ,ν with ν ≥ 2, we can show
that

∣∣∣〈∇3 f (x)[v]u, u〉
∣∣∣ ≤ M f ‖u‖2x

(‖v‖x
‖v‖2

)ν−2
‖v‖2 ≤ M f L

ν−2
2
f ‖u‖2x‖v‖2.

Hence, f is also (M̂ f , ν̂)-generalized self-concordant with ν̂ = 2 and M̂ f :=
M f L

ν−2
2
f . ��

Proposition 4 provides two important properties. If the gradient map ∇ f of a
generalized self-concordant function f is Lipschitz continuous, we can always classify
it into the special case ν = 2. Therefore, we can exploit both structures: generalized
self-concordance and Lipschitz gradient to develop better algorithms. This idea is also
applied to generalized self-concordant and strongly convex functions.

Given n smooth convex univariate functions ϕi : R → R satisfying (4) for i =
1, . . . , n with the same order ν > 0, we consider the function f : Rp → R defined
by the following form:

f (x) := 1

n

n∑
i=1

ϕi (a
�
i x + bi ), (8)

where ai ∈ R
p and bi ∈ R are given vectors and numbers, respectively for i =

1, . . . , n. This convex function is called a finite sum and widely used in machine
learning and statistics. The decomposable structure in (8) often appears in generalized
linear models [7,11], and empirical risk minimization [72], where ϕi is referred to as
a loss function as can be found, e.g., in Table 2.

Next, we show that if ϕi is generalized self-concordant with ν ∈ [2, 3], then f is
also generalized self-concordant. This result is a direct consequence of Propositions 1
and 2.

Corollary 1 If ϕi in (8) satisfies (4) for i = 1, . . . , n with the same order ν ∈ [2, 3]
and Mϕi ≥ 0, then f defined by (8) is also (M f , ν)-generalized self-concordant
in the sense of Definition 2 with the same order ν and the constant M f :=
n

ν
2−1 max

{
Mϕi ‖ai‖3−ν

2 | 1 ≤ i ≤ n
}
.
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Finally, we show that if we regularize f in (8) by a strongly convex quadratic term,
then the resulting function becomes self-concordant. The proof can follow the same
path as [72, Lemma 2].

Proposition 5 Let f (x) := 1
n

∑n
i=1 ϕi (a�i x+bi )+ψ(x), whereψ(x) := 1

2 〈Qx, x〉+
c�x is strongly convex quadratic function with Q ∈ S p

++. If ϕi satisfies (4) for
i = 1, . . . , n with the same order ν ∈ (0, 3] and a constant Mϕi > 0, then f
is (M̂ f , 3)-generalized self-concordant in the sense of Definition 2 with M̂ f :=
λmin(Q)

ν−3
2 max

{
Mϕi ‖ai‖3−ν

2 | 1 ≤ i ≤ n
}
.

2.5 Fenchel’s conjugate of generalized self-concordant functions

The primal-dual theory is fundamental in convex optimization. Hence, it is important
to study the Fenchel conjugate of generalized self-concordant functions.

Let f : Rp → R be an (M f , ν)-generalized self-concordant function.We consider
Fenchel’s conjugate f ∗ of f as

f ∗(x) = sup
u
{〈x, u〉 − f (u) | u ∈ dom( f )} . (9)

Since f is proper, closed, and convex, f ∗ is well-defined and also proper, closed,
and convex. Moreover, since f is smooth and convex, by Fermat’s rule, if u∗(x)
satisfies ∇ f (u∗(x)) = x , then f ∗ is well-defined at x . This shows that dom( f ∗) =
{x ∈ R

p | ∇ f (u∗(x)) = x is solvable}.
Example 2 Let us look at some univariate functions. By using (9), we can directly
show that:

1. If ϕ(s) = log(1+ es), then ϕ∗(t) = t log(t)+ (1− t) log(1− t).
2. If ϕ(s) = s log(s), then ϕ∗(t) = et−1.
3. If ϕ(s) = es , then ϕ∗(t) = t log(t)− t .

Intuitively, these examples show that if ϕ is generalized self-concordant, then its
conjugate ϕ∗ is also generalized self-concordant. For more examples, we refer to [3,
Chapter 13]. Let us generalize this result in the following proposition whose proof is
given in Appendix A.1.

Proposition 6 If f is (M f , ν)-generalized self-concordant in dom( f ) ⊆ R
p such

that ∇2 f (x) � 0 for x ∈ dom( f ), then the conjugate function f ∗ of f given by (9)
is well-defined, and (M f ∗ , ν∗)-generalized self-concordant on

dom( f ∗) := {
x ∈ R

p | f (u)− 〈x, u〉 is bounded from below on dom( f )
}
,

where M f ∗ = M f and ν∗ = 6− ν provided that ν ∈ [3, 6) if p > 1 and ν ∈ (0, 6) if
p = 1.

Moreover, we have∇ f ∗(x) = u∗(x) and∇2 f ∗(x) = ∇2 f (u∗(x))−1, where u∗(x)
is a unique solution of the maximization problemmaxu {〈x, u〉 − f (u) | u ∈ dom( f )}
in (9) for any x ∈ dom( f ∗).
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Proposition 6 allows us to apply our generalized self-concordance theory in this
paper to the dual problem of a convex problem involving generalized self-concordant
functions, especially, when the objective function of the primal problem is generalized
self-concordant with ν ∈ (3, 4]. The Fenchel conjugates are certainly useful when we
develop optimization algorithms to solve constrained convex optimization involving
generalized self-concordant functions, see, e.g., [65,66].

2.6 Generalized self-concordant approximation of nonsmooth convex functions

Several well-known convex functions are nonsmooth. However, they can be approx-
imated (up to an arbitrary accuracy) by a generalized self-concordant function via
smoothing. Smoothing techniques clearly allow us to enrich the applicability of our
theory to nonsmooth convex problems.

Given a proper, closed, possibly nonsmooth, and convex function f : Rp →
R ∪ {+∞}. One can smooth f using the following Nesterov’s smoothing technique
[41]

fγ (x) := sup
u∈dom( f ∗)

{〈x, u〉 − f ∗(u)− γω(u)
}
, (10)

where f ∗ is the Fenchel conjugate of f , ω : dom(ω) ⊆ R
p → R is a smooth convex

function such that dom( f ∗) ⊆ dom(ω), and γ > 0 is called a smoothness parameter.
In particular, if f is Lipschitz continuous, then dom( f ∗) is bounded [3]. Hence, the
sup operator in (10) reduces to the max operator.

Our goal is to choose an appropriate smoothing function ω such that the smoothed
function fγ is well-defined and generalized self-concordant for any fixed smoothness
parameter γ > 0.

Example 3 Let us provide a few examples of well-known nonsmooth convex func-
tions:

(a) Consider the �1-norm function f (x) := ‖x‖1 in Rp. Then, it can be rewritten as

‖x‖1 = max
u
{〈x, u〉 | ‖u‖∞ ≤ 1}

= max
u,v

{〈x, u − v〉 |
p∑

i=1
(ui + vi ) = 1, u, v ∈ R

p
+
}
.

We can smooth this function by fγ by choosing ω(u, v) := ln(2p) +∑p
i=1(ui ln(ui ) + vi ln(vi )). In this case, we obtain fγ (x) = γ ln(∑p
i=1

(
exi /γ + e−xi /γ

)) − γ ln(2p). This function is clearly generalized self-
concordant with ν = 2, see [63, Lemma 4].

However, if we choose ω(u) := p − ∑p
i=1

√
1− u2i , then we get fγ (x) =

∑p
i=1

√
x2i + γ 2 − γ p. In this case, fγ is also generalized self-concordant with

ν = 8
3 and M fγ = 3γ− 2

3 .
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(b) The hinge loss functionϕ(t) := max {0, 1− t} can bewritten asϕ(t) = 1
2 |1− t |+

1
2 (1− t). Hence, we can smooth this function by ϕγ (t) := γ ln

(
e

(1−t)
γ +e−

(1−t)
γ

2

)
+

1
2 (1 − t) with a smoothness parameter γ > 0. Clearly, ϕγ is generalized self-
concordant with ν = 2.

In many practical problems, the conjugate f ∗ of f can be written as the sum
f ∗ = ϕ + δU , where ϕ is a generalized self-concordant function, and δU is the
indicator function of a given nonempty, closed, and convex set U . In this case, fγ in
(10) becomes

fγ (x) := sup
u
{〈x, u〉 − ϕ(u)− γω(u) | u ∈ U} . (11)

If ω is a generalized self-concordant function such that νϕ = νω, and U =
dom(ω) ∩ dom(ϕ), then fγ is generalized self-concordant with ν fγ = 6 − νϕ as
shown in Proposition 6.

2.7 Key bounds on Hessian map, gradient map, and function values

Now, we develop some key bounds on the local norms, Hessian map, gradient map,
and function values of generalized self-concordant functions. In this subsection, we
assume that the Hessian map ∇2 f of f is nondegenerate at any point in its domain.

For this purpose, given ν ≥ 2, we define the following quantity for any x, y ∈
dom( f ):

dν(x, y) :=
{
M f ‖y − x‖2 if ν = 2(
ν
2 − 1

)
M f ‖y − x‖3−ν

2 ‖y − x‖ν−2x if ν > 2.
(12)

Here, if ν > 3, then we require x �= y. Otherwise, we set dν(x, y) := 0 if x = y. In
addition, we also define the function ¯̄ων : R→ R+ as

¯̄ων(τ) :=
⎧⎨
⎩

1

(1−τ)
2

ν−2
if ν > 2

eτ if ν = 2,
(13)

with dom( ¯̄ων) = (−∞, 1) if ν > 2, and dom( ¯̄ων) = R if ν = 2. We also adopt the
Dikin ellipsoidal notion from [40] as W 0(x; r) := {y ∈ R

p | dν(x, y) < r}.
The next proposition provides a bound on the local norm defined by a generalized

self-concordant function f . This bound is given for the local distances ‖y − x‖x and
‖y − x‖y between two points x and y in dom( f ).

Proposition 7 (Bound of local norms) If ν > 2, then, for any x ∈ dom( f ), we have
W 0(x; 1) ⊆ dom( f ). For any x, y ∈ dom( f ), let dν(x, y) be defined by (12), and
¯̄ων(·) be defined by (13). Then, we have

¯̄ων (−dν(x, y))
1
2 ‖y − x‖x ≤ ‖y − x‖y ≤ ¯̄ων (dν(x, y))

1
2 ‖y − x‖x . (14)
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If ν > 2, then the right-hand side inequality of (14) holds if dν(x, y) < 1.

Proof Wefirst consider the case ν > 2. Let u ∈ R
p and u �= 0. Consider the following

univariate function

φ(t) :=
〈
∇2 f (x + tu)u, u

〉1− ν
2 = ‖u‖2−ν

x+tu .

It is easy to compute the derivative of this function, and obtain

φ′(t) =
(
2− ν

2

) 〈∇3 f (x + tu)[u]u, u〉
〈∇2 f (x + tu)u, u

〉 ν
2
=
(
2− ν

2

) 〈∇3 f (x + tu)[u]u, u〉
‖u‖νx+tu

.

Using Definition 2 with u = v and x + tu instead of x , we have
∣∣φ′(t)∣∣ ≤

ν−2
2 M f ‖u‖3−ν

2 . This implies that φ(t) ≥ φ(0) − ν−2
2 M f ‖u‖3−ν

2 |t |. On the other
hand, we can see that dom(φ) = {t ∈ R | φ(t) > 0}. Hence, we have dom(φ) con-

tains

(
− 2φ(0)

(ν−2)M f ‖u‖3−ν
2

,
2φ(0)

(ν−2)M f ‖u‖3−ν
2

)
. Using this fact and the definition of φ,

we can show that dom( f ) contains

{
y := x + tu | |t | < 2‖u‖2−ν

x

(ν−2)M f ‖u‖3−ν
2

}
. However,

since |t | = ‖y−x‖ν−2x
‖u‖ν−2x

‖y−x‖3−ν
2

‖u‖3−ν
2

, the condition |t | <
2‖u‖2−ν

x

(ν−2)M f ‖u‖3−ν
2

is equivalent to

dν(x, y) < 1. This shows that W 0(x; 1) ⊆ dom( f ).
Since

∣∣ ∫ 1
0 φ′(t)dt

∣∣ ≤ ∫ 1
0

∣∣φ′(t)∣∣ dt , integrating φ′(t) over the interval [0, 1] we get
∣∣∣ ‖u‖2−ν

x+u − ‖u‖2−ν
x

∣∣∣ ≤ ν − 2

2
M f ‖u‖3−ν

2 .

Using u = y − x in the last inequality, we get | ‖y − x‖2−ν
y − ‖y − x‖2−ν

x | ≤
ν−2
2 M f ‖y − x‖3−ν

2 which is equivalent to

‖y − x‖ν−2y ≤ ‖y − x‖ν−2x

(
1− ν − 2

2
M f ‖y − x‖ν−2x ‖x − y‖3−ν

2

)−1

= ‖y − x‖ν−2x (1− dν(x, y))
−1

‖y − x‖ν−2y ≥ ‖y − x‖ν−2x

(
1+ ν − 2

2
M f ‖y − x‖ν−2x ‖x − y‖3−ν

2

)−1

= ‖y − x‖ν−2x (1+ dν(x, y))
−1 ,

given that dν(x, y) < 1. Taking the power of 1
ν−2 > 0 in both sides, we get (14) for

the case ν > 2.
Now, we consider the case ν = 2. Let 0 �= u ∈ R

p. We consider the following
function

φ(t) := ln
(〈
∇2 f (x + tu)u, u

〉)
= ln

(‖u‖2x+tu
)
.
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Clearly, it is easy to show that φ′(t) = 〈∇3 f (x+tu)[u]u,u〉
〈∇2 f (x+tu)u,u〉 =

〈∇3 f (x+tu)[u]u,u〉
‖u‖2x+tu

. Using

again Definition 2 with u = v and x + tu instead of x , we obtain
∣∣φ′(t)∣∣ ≤ M f ‖u‖2.

Since
∣∣ ∫ 1

0 φ′(t)dt
∣∣ ≤ ∫ 1

0

∣∣φ′(t)∣∣ dt , integrating φ′(t) over the interval [0, 1] we get
∣∣∣ln

(
‖u‖2x+u

)
− ln

(
‖u‖2x

)∣∣∣ ≤ M f ‖u‖2 .

Substituting u = y − x into this inequality, we get
∣∣ ln ‖y − x‖y − ln ‖y − x‖x

∣∣ ≤
M f
2 ‖y − x‖2. Hence, ln ‖y − x‖x − M f

2 ‖y − x‖2 ≤ ln ‖y − x‖y ≤ ln ‖y − x‖x +
M f
2 ‖y − x‖2. This inequality leads to (14) for the case ν = 2. ��
Next, we develop newbounds for theHessianmap of f in the following proposition.

Proposition 8 (Bounds of Hessian map) For any x, y ∈ dom( f ), let dν(x, y) be
defined by (12), and ¯̄ων(·) be defined by (13). Then, we have

[1− dν(x, y)]
2

ν−2 ∇2 f (x) � ∇2 f (y) � [1− dν(x, y)]
−2
ν−2 ∇2 f (x) if ν > 2, (15)

e−dν (x,y)∇2 f (x) � ∇2 f (y) � edν (x,y)∇2 f (x) if ν = 2, (16)

where (15) holds if dν(x, y) < 1 for the case ν > 2.

Proof Let ν > 2 and 0 �= u ∈ R
n . Consider the following univariate function on

[0, 1]:
ψ(t) :=

〈
∇2 f (x + t (y − x))u, u

〉
, t ∈ [0, 1].

If we denote by yt := x + t (y − x), then yt − x = t (y − x), ψ(t) = ‖u‖2yt , and
ψ ′(t) = 〈∇3 f (yt )[y − x]u, u〉. By Definition 2, we have

∣∣ψ ′(t)∣∣ ≤ M f ‖u‖2yt ‖y − x‖ν−2yt ‖y − x‖3−ν
2 = M f ψ(t)

[ ‖yt−x‖yt
t

]ν−2 ‖y − x‖3−ν
2

which implies ∣∣∣∣
d lnψ(t)

dt

∣∣∣∣ ≤ M f

[ ‖yt−x‖yt
t

]ν−2 ‖y − x‖3−ν
2 . (17)

Assume that dν(x, y) < 1. Then, by the definition of yt and dν(·), we have dν(x, yt ) =
tdν(x, y) and ‖yt − x‖x = t ‖y − x‖x . Using Proposition 7, we can derive

1
t ‖yt − x‖yt ≤ 1

t

[
1− (

ν
2 − 1

) ‖yt − x‖3−ν
2 ‖yt − x‖ν−2x

]− 1
ν−2 ‖yt − x‖x

= 1
t [1− dν(x, yt )]

− 1
ν−2 ‖yt − x‖x

= [1− dν(x, y)t]
− 1

ν−2 ‖y − x‖x .

Hence, we can further derive

[
1

t
‖yt − x‖yt

]ν−2
≤ ‖y − x‖ν−2x

1− dν(x, y)t
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Integrating d lnψ(t)
dt with respect to t on [0, 1] and using the last inequality and (17),

we get

∣∣∣∣
∫ 1

0

d lnψ(t)

dt
dt

∣∣∣∣ ≤
∫ 1

0

∣∣∣∣
d lnψ(t)

dt

∣∣∣∣ dt

≤ ‖y − x‖ν−2x ‖y − x‖3−ν
2

∫ 1

0

dt

1− dν(x, y)t
.

Clearly, we can compute this integral explicitly as

∣∣∣∣∣ln
[‖u‖2y
‖u‖2x

]∣∣∣∣∣ =
∣∣∣∣ln

[
ψ(1)

ψ(0)

]∣∣∣∣ ≤
−2dν(x, y)

(ν − 2)dν(x, y)
ln [1− dν(x, y)]

= ln
[
(1− dν(x, y))

−2
ν−2

]
.

Rearranging this inequality, we obtain

[1− dν(x, y)]
2

ν−2 ≤ ‖u‖
2
y

‖u‖2x
≡ 〈∇

2 f (y)u, u〉
〈∇2 f (x)u, u〉 ≤ [1− dν(x, y)]

−2
ν−2 .

Since this inequality holds for any 0 �= u ∈ R
p, it implies (15). If u = 0, then (15)

obviously holds.
Now, we consider the case ν = 2. It follows from (17) that

∣∣∣∣∣ln
[‖u‖2y
‖u‖2x

]∣∣∣∣∣ =
∣∣∣∣
∫ 1

0

d lnψ(t)

dt
dt

∣∣∣∣ ≤
∫ 1

0

∣∣∣∣
d lnψ(t)

dt

∣∣∣∣ dt

≤ M f

∫ 1

0
‖y − x‖2 dt = M f ‖y − x‖2 .

Since this inequality holds for any u ∈ R
p, it implies (16). ��

The following corollary provides a bound on the mean of the Hessian map
G(x, y) := ∫ 1

0 ∇2 f (x + τ(y − x))dτ whose proof is moved to Appendix A.2.

Corollary 2 For any x, y ∈ dom( f ), let dν(x, y) be defined by (12). Then, we have

κν(dν(x, y))∇2 f (x) �
∫ 1

0
∇2 f (x + τ(y − x))dτ � κν(dν(x, y))∇2 f (x), (18)
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where

κν(t) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1−e−t
t if ν = 2

1−(1−t)2
2t if ν = 4

(ν−2)
ν

[
1−(1−t) ν

ν−2
t

]
if ν > 2 and ν �= 4,

and

κν(t) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

et−1
t if ν = 2
− ln(1−t)

t if ν = 4(
ν−2
ν−4

) [
1−(1−t) ν−4

ν−2
t

]
if ν > 2 and ν �= 4.

Here, if ν > 2, then it requires dv(x, y) < 1 for x, y ∈ dom( f ) in (18).

We prove a bound on the gradient inner product of a generalized self-concordant
function f .

Proposition 9 (Bounds of gradient map) For any x, y ∈ dom( f ), we have

ω̄ν (−dν(x, y)) ‖y − x‖2x ≤ 〈∇ f (y)−∇ f (x), y − x〉 ≤ ω̄ν (dν(x, y)) ‖y − x‖2x , (19)

where, if ν > 2, then the right-hand side inequality of (19) holds if dν(x, y) < 1, and

ω̄ν(τ ) :=

⎧⎪⎪⎨
⎪⎪⎩

eτ−1
τ

if ν = 2
ln(1−τ)
−τ

if ν = 4(
ν−2
ν−4

)
1−(1−τ)

ν−4
ν−2

τ
otherwise.

(20)

Here, ω̄ν(τ ) ≥ 0 for all τ ∈ dom(ω̄ν).

Proof Let yt := x + t (y − x). By the mean-value theorem, we have

〈∇ f (y)− ∇ f (x), y − x〉 =
∫ 1

0

〈
∇2 f (yt )(y − x), y − x

〉
dt =

∫ 1

0

1

t2
‖yt − x‖2yt dt. (21)

We consider the function ¯̄ων defined by (13). It follows from Proposition 7 that

¯̄ων (−dν(x, yt )) ‖yt − x‖2x ≤ ‖yt − x‖2yt ≤ ¯̄ων (dν(x, yt )) ‖yt − x‖2x .

Now,wenote that dν(x, yt ) = tdν(x, y) and ‖yt − x‖x = t ‖y − x‖x , the last estimate
leads to

¯̄ων (−tdν(x, y)) ‖y − x‖2x ≤
1

t2
‖yt − x‖2yt ≤ ¯̄ων (tdν(x, y)) ‖y − x‖2x .
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Substituting this estimate into (21), we obtain

‖y − x‖2x
∫ 1

0

¯̄ων (−tdν(x, y)) dt ≤ 〈∇ f (y)− ∇ f (x), y − x〉

≤ ‖y − x‖2x
∫ 1

0

¯̄ων (tdν(x, y)) dt.

Using the function ¯̄ων(τ) from (13) to compute the left-hand side and the right-hand
side integrals, we obtain (19). ��

Finally, we prove a bound on the function values of an (M f , ν)-generalized self-
concordant function f in the following proposition.

Proposition 10 (Bounds of function values) For any x, y ∈ dom( f ), we have

ων (−dν(x, y)) ‖y − x‖2x ≤ f (y)− f (x)− 〈∇ f (x), y − x〉 ≤ ων (dν(x, y)) ‖y − x‖2x , (22)

where, if ν > 2, then the right-hand side inequality of (22) holds if dν(x, y) < 1.
Here, dν(x, y) is defined by (12) and ων is defined by

ων(τ) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

eτ−τ−1
τ 2

if ν = 2
−τ−ln(1−τ)

τ 2
if ν = 3

(1−τ) ln(1−τ)+τ

τ 2
if ν = 4(

ν−2
4−ν

)
1
τ

[
ν−2

2(3−ν)τ

(
(1− τ)

2(3−ν)
2−ν − 1

)
− 1

]
otherwise.

(23)

Note that ων(τ) ≥ 0 for all τ ∈ dom(ων).

Proof For any x, y ∈ dom( f ), let yt := x + t (y − x). Then, yt − x = t (y − x). By
the mean-value theorem, we have

f (y)− f (x)− 〈∇ f (x), y − x〉 =
∫ 1

0

1
t 〈∇ f (yt )− ∇ f (x), yt − x〉dt.

Now, by Proposition 9, we have

ω̄ν (−dν(x, yt )) ‖yt − x‖2x ≤ 〈∇ f (yt )−∇ f (x), yt−x〉 ≤ ω̄ν (dν(x, yt )) ‖yt − x‖2x .

Clearly, by the definition (12), we have dν(x, yt ) = tdν(x, y) and ‖yt − x‖x =
t ‖y − x‖x . Combining these relations, and the above two inequalities, we can show
that

‖y − x‖2x
∫ 1

0
tω̄ν (−tdν(x, y)) dt ≤ f (y)− f (x)− 〈∇ f (x), y − x〉

≤ ‖y − x‖2x
∫ 1

0
tω̄ν (tdν(x, y)) dt.
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By integrating the left-hand side and the right-hand side of this estimate using the
definition (20) of ω̄ν(τ ), we obtain (22). ��

3 Generalized self-concordant minimization

We apply the theory developed in the previous sections to design new Newton-type
methods to minimize a generalized self-concordant function. More precisely, we con-
sider the following non-composite convex problem:

f � := min
x∈Rp

f (x), (24)

where f : Rp → R is an (M f , ν)-generalized self-concordant function in the sense
of Definition 2 with ν ∈ [2, 3] and M f ≥ 0. Since f is smooth and convex, the
optimality condition ∇ f (x�

f ) = 0 is necessary and sufficient for x�
f to be an optimal

solution of (24).
The following theorem shows the existence and uniqueness of the solution x�

f of
(24). It can be considered as a special case of Theorem 4 below with g ≡ 0.

Theorem 1 Suppose that f ∈ F̃M f ,ν(dom( f )) for given parameters M f > 0 and
ν ∈ [2, 3]. Denote by σmin(x) := λmin(∇2 f (x)) and λ(x) := ‖∇ f (x)‖∗x for x ∈
dom( f ). Suppose further that there exists x ∈ dom( f ) such that σmin(x) > 0 and

λ(x) <
2 [σmin(x)]

3−ν
2

(4− ν)M f
.

Then, problem (24) has a unique solution x�
f in dom( f ).

We say that the unique solution x�
f of (24) is strongly regular if ∇2 f (x�

f ) � 0.
The strong regularity of x�

f for (24) is equivalent to the strong second order optimal-
ity condition. Theorem 1 covers [40, Theorem 4.1.11] for standard self-concordant
functions as a special case.

We consider the following Newton-type scheme to solve (24). Starting from an
arbitrary initial point x0 ∈ dom( f ), we generate a sequence

{
xk
}
k≥0 as follows:

xk+1 := xk + τkn
k
nt, where nknt := −∇2 f (xk)−1∇ f (xk), (25)

and τk ∈ (0, 1] is a given step-size. We call nknt a Newton direction.

– If τk = 1 for all k ≥ 0, then we call (25) a full-step Newton scheme.
– Otherwise, i.e., τk ∈ (0, 1), we call (25) a damped-step Newton scheme.

Clearly, computing the Newton direction nknt requires to solve the following linear
system:

∇2 f (xk)nknt = −∇ f (xk). (26)
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Next, we define a Newton decrement λk and a quantity βk , respectively as

λk :=‖nknt‖xk =‖∇ f (xk)‖∗xk and βk :=M f ‖nknt‖2=M f ‖∇2 f (xk)−1∇ f (xk)‖2. (27)

With λk and βk given by (27), we also define

dk :=
{

βk if ν = 2(
ν
2 − 1

)
Mν−2

f λν−2
k β3−ν

k if ν ∈ (2, 3]. (28)

Let us first show how to choose a suitable step-size τk in the damped-step Newton
scheme and prove its convergence properties in the following theorem whose proof
can be found in Appendix A.5.

Theorem 2 Let
{
xk
}
be the sequence generated by the damped-step Newton scheme

(25) with the following step-size:

τk :=

⎧⎪⎨
⎪⎩

1
βk

ln(1+ βk) if ν = 2

1
dk

[
1−

(
1+ 4−ν

ν−2dk
)− ν−2

4−ν

]
if ν ∈ (2, 3], (29)

where λk , βk are defined by (27), and dk is defined by (28). Then, τk ∈ (0, 1], {xk} in
dom( f ), and this step-size guarantees the following descent property

f (xk+1) ≤ f (xk)−Δk, (30)

where Δk := λ2kτk − ων (τkdk) τ 2k λ2k > 0 with ων defined by (23).
Assume that the unique solution x�

f of (24) exists. Then, there exists a neighborhood

N (x�
f ) such that if we initialize the Newton scheme (25) at x0 ∈ N (x�

f ) ∩ dom( f ),

then the whole sequence
{
xk
}
converges to x�

f at a quadratic rate.

Example 4 (Better step-size for regularized logistic and exponentialmodels) Consider
the minimization problem (24) with the objective function f (·) := φ(·) + γ

2 ‖ · ‖22,
where φ is defined as in (8) with ϕi (t) = log(1+ e−t ) being the logistic loss. That is

f (x) := 1

n

n∑
i=1

log(1+ e−a�i x )+ γ

2
‖x‖22.

As we shown in Sect. 2 that f is either generalized self-concordant with ν = 2 or
generalized self-concordant with ν = 3 but with different constant M f .

Let us define RA := max {‖ai‖2 | 1 ≤ i ≤ n}. Then, if we consider ν = 2, then we
have M (2)

f = RA due to Corollary 1, while if we choose ν = 3, then M (3)
f = 1√

γ
RA

due to Proposition 4. By the definition of f , we have ∇2 f (x) � γ I. Hence, using this
inequality and the definition of λk and βk from (27), we can show that

βk = M (2)
f ‖∇2 f (xk)−1∇ f (xk)‖2 ≤ RA√

γ
λk = M (3)

f λk . (31)
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For any τ > 0, we have ln(1+τ)
τ

> 1
1+0.5τ . Using this elementary result and (31), we

obtain
τ

(2)
k = ln(1+βk )

βk
> 1

1+0.5βk ≥ 1
1+0.5M(3)

f λk
= τ

(3)
k .

This inequality shows that the step-size τk given by Theorem 2 satisfies τ
(2)
k > τ

(3)
k ,

where τ
(ν)
k is a given step-size computed by (29) for ν = 2 and 3, respectively. Such

a statement confirms that the damped-step Newton method using τ
(2)
k is theoretically

better than using τ
(3)
k . This result will be empirically confirmed by our experiments in

Sect. 6. ��
Next, we study the full-step Newton scheme derived from (25) by setting the step-

size τk = 1 for all k ≥ 0 as a full-step. Let

σ k := λmin

(
∇2 f (xk)

)

be the smallest eigenvalue of ∇2 f (xk). Since ∇2 f (xk) � 0, we have σ k > 0. The
following theoremshows a local quadratic convergence of the full-stepNewton scheme
(25) for solving (24) whose proof can be found in Appendix A.6.

Theorem 3 Let
{
xk
}
be the sequence generated by the full-step Newton scheme (25)

by setting the step-size τk = 1 for k ≥ 0. Let dkν := dν(xk, xk+1) be defined by (12)
and λk be defined by (27). Then, the following statements hold:

(a) If ν = 2 and the starting point x0 satisfies σ
−1/2
0 λ0 <

d�
2

M f
, then both sequences{

σ
−1/2
k λk

}
and

{
dk2
}
decrease and quadratically converge to zero, where d�

2 ≈
0.12964.

(b) If 2 < ν < 3, and the starting point x0 satisfies σ
− 3−ν

2
0 λ0 < 1

M f
min

{
2d�

ν

ν−2 ,
1
2

}
,

then both sequences

{
σ
− 3−ν

2
k λk

}
and

{
dkν
}
decrease and quadratically converge to

zero,where d�
ν is the unique solution of the equation (ν − 2) Rν(dν) = 4(1−dν)

4−ν
ν−2

in dν with Rν(·) given by (56).
(c) If ν = 3 and the starting point x0 satisfies λ0 < 1

2M f
, then the sequence {λk}

decreases and quadratically converges to zero.

As a consequence, if
{
dkν
}
locally converges to zero at a quadratic rate, then

{‖xk −
x�
f ‖Hk

}
also locally converges to zero at a quadratic rate, where Hk = I, the identity

matrix, if ν = 2; Hk = ∇2 f (xk) if ν = 3; and Hk = ∇2 f (xk)
ν
2−1 if 2 < ν < 3.

Hence,
{
xk
}
locally converges to x�

f , the unique solution of (24), at a quadratic rate.

If we combine the results of Theorem 2 and Theorem 3, then we can design a
two-phase Newton algorithm for solving (24) as follows:

– Phase 1 Starting from an arbitrary initial point x0 ∈ dom( f ), we perform the
damped-step Newton scheme (25) until the condition in Theorem 3 is satisfied.
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– Phase 2Using the output x j of Phase 1 as an initial point for the full-step Newton
scheme (25) with τk = 1, and perform this scheme until it achieves an ε-solution
xk to (24).

We also note that the damped-step Newton scheme (25) can also achieve a local
quadratic convergence as shown in Theorem 2. Hence, we combine this fact and the
above two-phase scheme to derive the Newton algorithm as shown in Algorithm 1
below.

Algorithm 1 (Newton algorithm for generalized self-concordant minimization)

1: Inputs: Choose an arbitrary initial point x0 ∈ dom( f ) and a desired accuracy
ε > 0.

2: Output: An ε-solution xk of (24).

3: Initialization: Compute d�
ν according to Theorem 3 if needed.

4: For k = 0, · · · , kmax, perform:

5: Compute the Newton direction nknt by solving ∇2 f (xk)nknt = −∇ f (xk).

6: Compute λk := ‖nknt‖xk , and compute βk := M f ‖nknt‖2 if ν �= 3.

7: If λk ≤ ε, then TERMINATE and return xk .

8: If Phase 2 is used, then compute σ k = λmin(∇2 f (xk)) if 2 ≤ ν < 3.

9: If Phase 2 is used and (λk, σ k) satisfies Theorem 3, then set τk :=1 (full-step).

Otherwise, compute the step-size τk by (29) (damped-step)

10: Update xk+1 := xk + τknknt.

11: End for

Per-iteration complexity Themain step ofAlgorithm1 is the solution of the symmetric
positive definite linear system (26). This system can be solved by using either Cholesky
factorization or conjugate gradient methods which, in the worst-case, requires O(p3)
operations. Computing λk requires the inner product 〈nknt,∇ f (xk)〉which needsO(p)
operations.

Conceptually, the two-phase option of Algorithm 1 requires the smallest eigenvalue
of ∇2 f (xk) to terminate Phase 1. However, switching from Phase 1 to Phase 2 can
be done automatically allowing some tolerance in the step-size τk . Indeed, the step-
size τk given by (29) converges to 1 as k → ∞. Hence, when τk is closed to 1, e.g.,
τk ≥ 0.9, we can automatically set it to 1 and remove the computation of λk to reduce
the computational time.

In the one-phase option, we can always perform only Phase 1 until achieving an
ε-optimal solution as shown in Theorem 2. Therefore, the per-iteration complexity of
Algorithm 1 is O(p3) + O(p) in the worst-case. A careful implementation of con-
jugate gradient methods with a warm-start can significantly reduce this per-iteration
computation complexity.
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Remark 3 (Inexact Newton methods)We can allow Algorithm 1 to compute the New-
ton direction nknt approximately. In this case, we approximately solve the symmetric
positive definite system (26). By an appropriate choice of stopping criterion, we can
still prove convergence of Algorithm 1 under inexact computation of nknt. For instance,
the following criterion is often used in inexact Newton methods [16], but defined via
the local dual norm of f :

‖∇2 f (xk)nknt + ∇ f (xk)‖∗xk ≤ κ‖∇ f (xk)‖∗xk ,
for a given relaxation parameter κ ∈ [0, 1). This extension can be found in our
forthcoming work.

4 Composite generalized self-concordant minimization

Let f ∈ F̃M f ,ν(dom( f )), and g be a proper, closed, and convex function. We con-
sider the composite convex minimization problem (3) which we recall here for our
convenience of references:

F� := min
x∈Rp

{
F(x) := f (x)+ g(x)

}
. (32)

Note that dom(F) := dom( f ) ∩ dom(g) may be empty. To make this problem non-
trivial, we assume that dom(F) is nonempty. The optimality condition for (32) can be
written as follows:

0 ∈ ∇ f (x�)+ ∂g(x�). (33)

Under the qualification condition 0 ∈ ri (dom(g)− dom( f )), (33) is necessary and
sufficient for x� to be an optimal solution of (32), where ri (X ) is the relative interior
of X .

4.1 Existence, uniqueness, and regularity of optimal solutions

Assume that∇2 f (x) is positive definite (i.e., nonsingular) at some point x ∈ dom(F).
We prove in the following theorem that problem (32) has a unique solution x�. The
proof can be found in Appendix A.4. This theorem can also be considered as a gen-
eralization of [40, Theorem 4.1.11] and [62, Lemma 4] in standard self-concordant
settings in [40,62].

Theorem 4 Suppose that the function f of (32) is (M f , ν)-generalized self-
concordant with M f > 0 and ν ∈ [2, 3]. Denote by σmin(x) := λmin(∇2 f (x))
and λ(x) := ‖∇ f (x) + v‖∗x for x ∈ dom(F) and v ∈ ∂g(x). Suppose further that
there exists x ∈ dom(F) such that σmin(x) > 0 and

λ(x) <
2 [σmin(x)]

3−ν
2

(4− ν)M f
.

Then, problem (32) has a unique solution x� in dom(F).
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Now, we recall a condition such that the solution x� of (32) is strongly regular in
the following Robinson’s sense [56]. We say that the optimal solution x� of (32) is
strongly regular if there exists a neighborhoodU(0) of zero such that for any δ ∈ U(0),
the following perturbed problem

min
x∈Rp

{
〈∇ f (x�)− δ, x − x�〉 + 1

2 〈∇2 f (x�)(x − x�), x − x�〉 + g(x)
}

has a unique solution x∗(δ), and this solution is Lipschitz continuous on U(0).
If ∇2 f (x�) � 0, then x� is strongly regular. While the strong regularity of the

solution x� requires a weaker condition than ∇2 f (x�) � 0. For further details of the
regularity theory, we refer the reader to [56].

4.2 Scaled proximal operators

Given a matrix H ∈ S p
++, we define a scaled proximal operator of g in (32) as

proxH−1g(x) := argmin
z

{
g(z)+ 1

2 ‖z − x‖2H
}

. (34)

Using the optimality condition of the minimization problem under (34), we can show
that

y = proxH−1g(x) ⇐⇒ 0 ∈ H(y − x)+ ∂g(y) ⇐⇒ x ∈ y + H−1∂g(y)
≡ (I+ H−1∂g)(y).

Since g is proper, closed, and convex, proxH−1g is well-defined and single-valued. In
particular, if we take H = I, the identity matrix, then proxH−1g(·) = proxg(·), the
standard proximal operator of g. If we can efficiently compute proxH−1g(·) by a closed
form or by polynomial time algorithms, then we say that g is proximally tractable.
There exist several convex functions whose proximal operator is tractable. Examples
such as �1-norm, coordinate-wise separable convex functions, and the indicator of
simple convex sets can be found in the literature including [3,21,51].

4.3 Proximal Newton methods

The proximal Newton method can be considered as a special case of the variable
metric proximal method in the literature [8]. This method has previously been studied
by many authors, see, e.g., [8,34]. However, the convergence guarantee often requires
certain assumptions as used in standard Newton-type methods. In this section, we
develop a proximal Newton algorithm to solve the composite convex minimization
problem (32) where f is a generalized self-concordant function. This problem covers
[62,64] as special cases.
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Given xk ∈ dom(F), wefirst approximate f at xk by the following convex quadratic
surrogate:

Q f (x; xk) := f (xk)+
〈
∇ f (xk), x − xk

〉
+ 1

2

〈
∇2 f (xk)(x − xk), x − xk

〉
.

Next, the main step of the proximal Newton method requires to solve the following
subproblem:

zk := argmin
x∈dom(g)

{
Q f (x; xk)+ g(x)

}
= prox∇2 f (xk )−1g

(
xk −∇2 f (xk)−1∇ f (xk)

)
. (35)

The optimality condition for this subproblem is the following linear monotone inclu-
sion:

0 ∈ ∇ f (xk)+∇2 f (xk)(zk − xk)+ ∂g(zk). (36)

Here, we note that dom(Q f (·; xk)) = R
p. Hence, dom(Q f (·; xk)+ g(·)) = dom(g).

In the setting (32), zk may not be in dom(F). Our next step is to update the next
iteration xk+1 as

xk+1 := xk + τkn
k
pnt = (1− τk)x

k + τk z
k, (37)

where nkpnt := zk − xk is the proximal Newton direction, and τk ∈ (0, 1] is a given
step-size.

Associated with the proximal Newton direction nkpnt, we define the following prox-

imal Newton decrement and the �2-norm quantity of nkpnt as

λk := ‖nkpnt‖xk and βk := M f ‖nkpnt‖2. (38)

Our first goal is to show that we can explicitly compute the step-size τk in (37) using
λk and βk such that we obtain a descent property for F . This statement is presented
in the following theorem whose proof is deferred to Appendix A.7.

Theorem 5 Let
{
xk
}
be the sequence generated by the proximal Newton scheme (37)

starting from x0 ∈ dom(F). If we choose the step-size τk as in (29) of Theorem 2, then
τk ∈ (0, 1], {xk} in dom(F), and

F(xk+1) ≤ F(xk)−Δk, (39)

where Δk := λ2kτk − ων (τkdk) τ 2k λ2k > 0 for τk > 0 and dk as defined in Theorem 2.
There exists a neighborhood N (x�) of the unique solution x� of (32) such that

if we initialize the scheme (37) at x0 ∈ N (x�) ∩ dom(F), then
{
xk
}
quadratically

converges to x�.

Next, we prove a local quadratic convergence of the full-step proximal Newton
method (37) with the unit step-size τk = 1 for all k ≥ 0. The proof is given in
Appendix A.8.
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Theorem 6 Suppose that the sequence
{
xk
}
is generated by (37) with full-step, i.e.,

τk = 1 for k ≥ 0. Let dkν := dν(xk, xk+1) be defined by (12) and λk be defined by
(38). Then, the following statements hold:

(a) If ν = 2 and the starting point x0 satisfies σ
−1/2
0 λ0 < d�

2/M f , then both

sequences
{
σ
−1/2
k λk

}
and

{
dk2
}
decrease and quadratically converge to zero,

where d�
2 ≈ 0.35482.

(b) If 2 < ν < 3, and the starting point x0 satisfies σ
− 3−ν

2
0 λ0 < 1

M f
min

{
2d�

ν

ν−2 ,
1
2

}
,

then both sequences

{
σ
− 3−ν

2
k λk

}
and

{
dkν
}
decrease and quadratically converge

to zero, where d�
ν is the unique solution to the equation (ν − 2) Rν(dν) = 4(1−

dν)
4−ν
ν−2 in dν with Rν(·) given in (56).

(c) If ν = 3 and the starting point x0 satisfies λ0 <
2d�

3
M f

, then the sequence {λk}
decreases and quadratically converges to zero, where d�

3 ≈ 0.20943.

As a consequence, if
{
dkν
}
locally converges to zero at a quadratic rate, then

{‖xk −
x�‖Hk

}
also locally converges to zero at a quadratic rate, where Hk = I, the identity

matrix, if ν = 2; Hk = ∇2 f (xk) if ν = 3; and Hk = ∇2 f (xk)
ν
2−1 if 2 < ν < 3.

Hence,
{
xk
}
locally converges to x�, the unique solution of (32), at a quadratic rate.

Similar to Algorithm 1, we can also combine the results of Theorems 5 and 6 to
design a proximal Newton algorithm for solving (32). This algorithm is described in
Algorithm 2 below.

Algorithm 2 (Proximal Newton algorithm for composite generalized self-concordant
minimization)

1: Inputs: Choose an arbitrary initial point x0 ∈ dom(F) and a desired accuracy
ε > 0.

2: Output: An ε-solution xk of (32).

3: Initialization: Compute d�
ν according to Theorem 6 if needed.

4: For k = 0, · · · , kmax, perform:

5: Compute the proximal Newton direction nkpnt by solving (35).

6: Compute λk := ‖nkpnt‖xk , and compute βk := M f ‖nkpnt‖2 if ν �= 3.

7: If λk ≤ ε, then TERMINATE.

8: If Phase 2 is used, then compute σ k = λmin(∇2 f (xk)) if 2 ≤ ν < 3.

9: If Phase 2 is used and (λk, σ k) satisfies Theorem 6, then set τk :=1 (full-step).

Otherwise, compute the step-size τk by (29) (damped-step).

10: Update xk+1 := xk + τknkpnt.

11: End for
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Implementation remarks The main step of Algorithm 2 is the computation of the
proximal Newton step nkpnt, or the trial point z

k in (35). This step requires to solve a
composite quadratic-convex minimization problem (35) with strongly convex objec-
tive function. If g is proximally tractable, thenwecan apply proximal-gradientmethods
or splitting techniques [3,4,44] to solve this problem. We can also combine acceler-
ated proximal-gradient methods with a restarting strategy [19,23,48] to accelerate
the performance of these algorithms. These methods will be used in our numerical
experiments in Sect. 6.

As noticed inRemark 3,we can also develop an inexact proximalNewton variant for
Algorithm 2 by approximately solving the subproblem (35). We leave this extension
to our forthcoming work.

5 Quasi-Newton methods for generalized self-concordant minimization

This section studies quasi-Newton variants of Algorithm 1 for solving (24). Extensions
to the composite form (32) can be done by combining the result in this section and the
approach in [62].

A quasi-Newton method for solving (24) updates the sequence
{
xk
}
using

xk+1 := xk − τk Bk∇ f (xk), where Bk := H−1k and Hk ≈ ∇2 f (xk), (40)

where the step-size τk ∈ (0, 1] is appropriately chosen, and x0 ∈ dom( f ) is a given
starting point.

MatrixHk is symmetric andpositive definite, and it approximates theHessianmatrix
∇2 f (xk) of f at the iteration xk in some sense. The most common approximation
sense is that Hk satisfies the well-known Dennis–Moré condition [15]. In the context
of generalized self-concordant functions, we can modify this condition by imposing:

lim
k→∞

‖(Hk −∇2 f (x�
f ))(x

k − x�
f )‖∗x̂

‖xk − x�
f ‖x̂

= 0, where x̂ = x�
f or x̂ = xk . (41)

Clearly, if we have limk→∞ ‖Hk − ∇2 f (xk)‖x̂ = 0, then, with a simple argument,
we can show that (41) automatically holds. In practice, we can update Hk to maintain
the following secant equation:

Hk+1sk = yk, where sk := xk+1 − xk, and yk := ∇ f (xk+1)−∇ f (xk). (42)

There are several candidates to update Hk to maintain this secant equation, see, e.g.,
[47]. Here, we propose to use a BFGS update as

Hk+1 := Hk + yk(yk)�

〈yk, sk〉 −
(Hksk)(Hksk)�

(〈Hksk, sk〉 . (43)

In practice, to avoid the inverse Bk = H−1k , we can update this inverse directly [47] in
lieu of updating Hk as in (43). Note that the BFGS update (43) or its inverse version
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may not maintain the sparsity or block pattern structures of the sequence {Hk} or {Bk}
even if ∇2 f is sparse.

The following result shows that the quasi-Newton method (40) achieves a super-
linear convergence whose proof can be found in Appendix A.9.

Theorem 7 Assume that x�
f ∈ dom( f ) is the unique solution of (24) and is strongly

regular. Let
{
xk
}
be the sequence generated by (40). Then, the following statements

hold:

(a) Assume, in addition, that the sequence of matrices {Hk} satisfies the Dennis–Moré
condtion (41) with x̂ = x�

f . Then, there exist r̄ > 0, and k̄ ≥ 0 such that, for

all k ≥ k̄, we have ‖xk − x�
f ‖x�

f
≤ r̄ and

{
xk
}
locally converges to x�

f at a
superlinear rate.

(b) Suppose that H0 is chosen such that H0 ∈ S p
++. Then, 〈yk, zk〉 > 0 for all k ≥ 0,

and hence, the sequence {Hk} generated by (43) is symmetric positive definite,
and satisfies the secant equation (42). Moreover, if the sequence

{
xk
}
generated

by (40) satisfies
∑∞

k=0 ‖xk − x�
f ‖x�

f
< +∞, then

{
xk
}
locally converges to the

unique solution x�
f of (24) at a superlinear rate.

Note that the condition
∑∞

k=0 ‖xk − x�
f ‖x�

f
< +∞ in Theorem 7(b) can be guar-

anteed if ‖xk+1− x�
f ‖x�

f
≤ ρ‖xk − x�

f ‖x�
f
for some ρ ∈ (0, 1) and k ≥ k̄ ≥ 0. Hence,

if
{
xk
}
locally converges to x�

f at a linear rate, then it also locally converges to x�
f at

a superlinear rate.

6 Numerical experiments

We provide five examples to verify our theoretical results and compare our methods
with existing methods in the leterature. Our algorithms are implemented in Matlab
2014b running on a MacBook Pro. Retina, 2.7 GHz Intel Core i5 with 16Gb 1867
MHz DDR3 memory.

6.1 Comparison with [72] on regularized logistic regression

In this example, we empirically show that our theory provides a better step-size for
logistic regression compared to [72] as theoretically shown in Example 4. In addition,
our step-size can be used to guarantee a global convergence of Newtonmethodwithout
linesearch. It can also be used as a lower bound for backtracking or forward linesearch
to enhance the performance of Algorithm 1.

To illustrate these aspects, we consider the following regularized logistic regression
problem:

f � := min
x∈Rp

{
f (x) := 1

n

n∑
i=1

�(yi (a
�
i x + μ))+ γ

2
‖x‖22

}
, (44)
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Fig. 1 The convergence of Algorithm 1 for news20.binary (left: relative objective residuals, middle:
relative norms of gradient, and right: step-sizes)

where �(s) = log(1+ e−s) is the logistic loss, μ is a given intercept, yi ∈ {−1, 1} and
ai ∈ R

p are given as input data for i = 1, . . . , n, and γ > 0 is a given regularization
parameter.

As shown previously in Proposition 5, f can be cast into an (M (3)
f , 3)-generalized

self-concordant function with M (3)
f = 1√

γ
max {‖ai‖2 | 1 ≤ i ≤ n}. On the other

hand, f can also be considered as an (M (2)
f , 2)-generalized self-concordant with

M (2)
f := max {‖ai‖2 | 1 ≤ i ≤ n}.
We implement Algorithm 1 using two different step-sizes τ

(2)
k = ln(1+βk )

βk
and

τ
(3)
k := 1

1+0.5M(3)
f λk

as suggested by Theorem 2 for ν = 2 and ν = 3, respectively. We

terminate Algorithm 1 if ‖∇ f (xk)‖2 ≤ 10−8 max
{
1, ‖∇ f (x0)‖2

}
, where x0 = 0 is

an initial point. To solve the linear system (26), we apply a conjugate gradient method
to avoid computing the inverse ∇2 f (xk)−1 of the Hessian matrix ∇2 f (xk) in large-
scale problems. We also compare our algorithms with the fast gradient method in [40]
using an optimal step-size for strongly convex functions which has an optimal linear
convergence rate.

We test all algorithms on a binary classification dataset downloaded from [12] at
https://www.csie.ntu.edu.tw/~cjlin/libsvm/. As suggested in [72], we normalize the
data such that each row ai has ‖ai‖2 = 1 for i = 1, . . . , n. The parameter is set to
γ := 10−5 as in [72].

The convergence behavior of Algorithm 1 for ν = 2 and ν = 3 is plotted in Figure 1
for the news20 problem.

As we can see from this figure that Algorithm 1 with ν = 2 outperforms the

case ν = 3. The right-most plot reveals the relative objective residual f (xk )− f �

max{1,| f �|} , the
middle one shows the relative gradient norm ‖∇ f (xk )‖2

max{1,‖∇ f (x0)‖2} , and the left-most figure

displays the step-size τ
(2)
k and τ

(3)
k . Note that the step-size τ

(3)
k of Algorithm 1 depends

on the regularization parameter γ . If γ is small, then τ
(3)
k is also small. In contrast,

the step-size τ
(2)
k of Algorithm 1 is independent of γ .

Our second test is performed on six problems with different sizes. Table 3 shows
the performance and results of the 3 algorithms: Algorithm 1 with ν = 2, Algorithm 1
with ν = 3, and the fast-gradient method in [40]. Here, n is the number of data points,
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p is the number of variables, iter is the number of iterations, error is the training
error measured by 1

2n

∑n
i=1(1− sign(yi (a�i x +μ))), and f (xk) is the objective value

achieved by these three algorithms.
We observe that our step-size τ

(2)
k using ν = 2 works much better than τ

(3)
k using

ν = 3 as in [72]. This confirms the theoretical analysis in Example 4. This step-
size can be useful for parallel and distributed implementation, where evaluating the
objective values often requires high computational effort due to communication and
data transferring. Note that the computation of the step-size τ

(2)
k in Algorithm 1 only

needs O(p) operations, and do not require to pass over all data points. Algorithm 1
with ν = 2 also works better than the fast gradient method [40] in this experiment,
especially for the case n  1. Note that the fast gradient method uses the optimal
step-size and has a linear convergence rate in this case.

Finally, we show that our step-size τ
(2)
k can be used as a lower bound to enhance a

backtracking linesearch procedure in Newton methods. The Armijo linesearch condi-
tion is given as

f (xk + τkn
k
nt) ≤ f (xk)− c1τk∇ f (xk)�nknt, (45)

where c1 ∈ (0, 1) is a given constant. Here, we use c1 = 10−6 which is sufficiently
small.

– In our backtracking linesearchvariant,we search for the best step-size τ ∈ [τ (2)
k , 1].

This variant requires to compute τ
(2)
k which needs O(p) operations.

– In the standard backtracking linesearch routine, we search for the best step-size
τ ∈ (0, 1].

Both strategies use a bisection section rule as τ ← τ/2 starting from τ ← 1. The
results on 3 problems are reported in Table 4.

As shown in Table 4, using the step-size τ
(2)
k as a lower bound for backtracking

linesearch also reduces the number of function evaluations in these three problems.
Note that the number of function evaluations depends on the starting point x0 as well
as the factor c1 in (45). If we set c1 too small, then the decrease on f can be small.
Otherwise, if we set c1 too high, then our decrement c1τk∇ f (xk)�nknt may never be
achieved, and the linesearch condition fails to hold. If we change the starting point x0,
the number of function evaluations can significantly be increased.

6.2 The case ν = 2: matrix balancing

We consider the following convex optimization problem originated from matrix bal-
ancing [14]:

f � := min
x∈Rp

{
f (x) :=

∑
1≤i, j≤p

ai j e
xi−x j

}
, (46)

where A = (ai j )p×p is a nonnegative square matrix in R
p×p. Although (46) is a

unconstrained smooth convex problem, its objective function f is not strongly convex
and does not have Lipschitz gradient. Existing gradient-type methods do not have a
theoretical convergence guarantee as well as a rule to compute step-sizes. However,
(46) is an important problem in scientific computing.
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By Proposition 1 and Corollary 1, f is generalized self-concordant with M = √2
and ν = 2. We implement Algorithm 1 and the most recent method proposed in [14]
(called Boxed-constrained Newton method (BCNM)) to solve (46). Note that [14] is
not directly applicable to (46), but it solves a regularization of this problem. Since
∇2 f (x) is not positive definite, we use a preconditioned conjugate gradient gradient
(PCG) method to solve the linear system in Algorithm 1. We use an accelerated
projected gradient method (FISTA) [4] to solve the subproblem for the method in
[14]. We terminate PCG and FISTA using either a tolerance 10−9 or a maximum
of 200 iterations. For the outer loop, we terminate Algorithm 1 and BCNM using
the same stopping criterion: δ f ′k := ‖∇ f (xk)‖2/max

{
1, ‖∇ f (x0)‖2

} ≤ 10−8. We
choose x0 := 0p as an initial point.

We test both algorithms on several synthetic and real datasets. The synthetic data
is generated as in [52] with different structures. The basic matrix H = (Hi j )p×p is
a p × p upper Hessenberg matrix defined as Hi j = 0 if j < i − 1, and Hi j = 1
otherwise. H1 differs from H only in that H11 is replaced by p2; H2 differs from H
only in that H12 is replaced by p2; and H3 = H + (p2 − 1)Ip. We use these matrices
for A in (46). We take p = 1000, 5000, 10000, and 15000. We name each problem
instance by “Hdy”, where H stands for Hessenberg, and y = 10−3 p.

The real data is downloaded from https://math.nist.gov/MatrixMarket/searchtool.
html with different structures from different application fields, suggested by [13].
Since we require the matrix A to be nonnegative, we take A0 := max {0, A} (entry-
wise). For the real data, if A is highly ill-conditioned, then we add a uniform noise
U[0, σ ] to A, where σ = 10−5 max{ai j |1 ≤ i, j ≤ p}.

The final results of both algorithms are reported in Table 5, where p is the size
of matrix A; iter/siter is the maximum number of Newton-type iterations /
PCG or FISTA iterations; time[s] is the computational time in second; δ f ′k is
the relative gradient norm defined above; trat is the ratio of the computational time
between Algorithm 1 and BCNM; and δxk is the relative difference between xk given
by Algorithm 1 and BCNM.

As we can see from our experiment, both methods give almost the same result in
terms of the objective values f (xk) and approximate solutions xk . Given the same
stopping criteria and solution quality, Algorithm 1 outperforms BCNM in all datasets
in terms of average computational time which is specified by trat = timeBCNM

timeAlg. 1
. In

particular, for many asymmetric and/or ill-conditioned datasets (e.g., H2d5, or bwm),
Algorithm 1 is approximately from 8 to 17 times faster than BCNM.

6.3 The case ν ∈ (2, 3): distance-weighted discrimination regression.

In this example, we test the performance of Algorithm 1 on the distance-weighted
discrimination (DWD)problem introduced in [36]. In order to directly useAlgorithm1,
we slightly modify the setting in [36] to obtain the following form:
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f � := min
x=[w,ξ,μ]�∈Rp

{
f (x) := 1

n

n∑
i=1

1

(a�i w + μyi + ξi )q
+ c�ξ

+1

2

(
γ1‖w‖22 + γ2μ

2 + γ3‖ξ‖22
)}

, (47)

where q > 0, ai , yi (i = 1, . . . , n) and c are given, and γs > 0 (s = 1, 2, 3) are three
regularization parameters forw, μ and ξ , respectively. Here, the variable x consists of
the support vectorw, the interceptμ, and the slack variable ξ as used in [36]. Here, we
penalize these variables by using least-squares terms instead of the �1-penalty term as
in [36]. Note that the setting (47) is not just limited to the DWD application above,
but can also be used to formulate other practical models such as time optimal path
planning problems in robotics [69] if we choose an appropriate parameter q.

Since ϕ(t) := 1
tq is (Mϕ, ν)-generalized self-concordant with

Mϕ := q+2
(q+2)√q(q+1)n

1
q+2 and ν := 2(q+3)

q+2 ∈ (2, 3), using Proposition 1,

we can show that f is (M f ,
2(q+3)
q+2 )-generalized self-concordant with M f :=

q+2
(q+2)√q(q+1)n

1
q+2 max

{∥∥(a�i , yi , e�i )�
∥∥q/(q+2)
2 | 1 ≤ i ≤ n

}
(here, ei is the i-th unit

vector). Problem (47) can be transformed into a second-order cone program [25], and
can be solved by interior-point methods. For instance, if we choose q = 1, then, by
introducing intermediate variables si and ri , we can transform (47) into a second-order
cone program using the fact that 1

ri
≤ si is equivalent to

√
(ri − si )2 + 22 ≤ (ri + si ).

We implement Algorithm 1 to solve (47) and compare it with the interior-point
method implemented in commercial software: Mosek. We experienced that Mosek is
much faster than other interior-point solvers such as SDPT3 [60] or SDPA [70] in this
test. For instance, Mosek is from 52 to 125 times faster than SDPT3 in this example.
Hence, we only present the results of Mosek.

We also incorporate Algorithm 1 with a backtracking linesearch using our step-
size τk (LS with τk) as a lower bound. Note that since f does not have a Lipschitz
gradient map, we cannot apply gradient-type methods to solve (47) due to the lack of
a theoretical guarantee.

Since we cannot run Mosek on big data sets, we rather test our algorithms and
this interior-point solvers on 6 small and medium size problems using data from [12]
(https://www.csie.ntu.edu.tw/~cjlin/libsvm/). We choose the regularization parame-
ters as γ1 = γ2 = 10−5 and γ3 = 10−7. Note that if the data set has the size of
(n, p), then number of variables in (47) becomes p+ n + 1. Hence, we use a built-in
Matlab conjugate gradient solver to compute the Newton direction nknt. The initial
point x0 is chosen as w0 := 0, μ0 := 0 and ξ0 := 1. In our algorithms, we use
‖∇ f (xk)‖2 ≤ 10−8 max

{
1, ‖∇ f (x0)‖2

}
as a stopping criterion.

Note that, by the choice of γi for i = 1, 2, 3 as γmin := min {γ1, γ2, γ3} = 10−7 >

0, the objective function of (47) is strongly convex. By Proposition 4(a), we can cast
this function into an (M̂ f , ν̂)-generalized self-concordant with ν̂ = 3 and M̂ f :=
γ

−q
2(q+2)
min M f , where M f is given above. We also implement Algorithm 1 using ν̂ = 3

to solve (47).
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The results and performance of the four algorithms are reported in Table 6 for two
cases: q = 1 and q = 2. We can see that Algorithm 1 with ν = 2 outperforms the case
ν̂ = 3 in terms of iterations. The case ν = 2 is approximately from 3 to 13 times faster
than the case ν̂ = 3. This is not surprising since M̂ f depends on γmin, and it is large

since γmin is small. Hence, the step-size τ
(3)
k computed by using M̂ f is smaller than

τ
(2)
k computed from M f as we have seen in the first example. Mosek works really well
in this example and it is slightly better than Algorithm 1 with ν = 2. If we combine
Algorithm 1 with a backtracking linesearch, then this variant outperforms Mosek.
All the algorithms achieve a very high accuracy in terms of the relative norm of the

gradient ‖∇ f (xk )‖2
‖∇ f (x0)‖2 which is up to 10−8. We emphasize that our methods are highly

parallelizable and their performance can be improved by exploiting this structure as
studied in [72] for the logistic case.

6.4 The case ν = 3: portfolio optimization with logarithmic utility functions.

In this example, we aim at verifyingAlgorithm 2 for solving the composite generalized
self-concordant minimization problem (32) with ν = 3.We illustrate this algorithm on
the following portfolio optimization problem with logarithmic utility functions [59]
(scaled by a factor of 1

n ):

f � = min
x∈Rp

{
f (x) := −

n∑
i=1

log(w�i x) | x ≥ 0, 1�x = 1

}
, (48)

where wi ∈ R
p
+ for i = 1, . . . , n are given vectors presenting the returns at the i-th

period of the assets considered in the portfolio data.More precisely, as indicated in [9],
wi measures the return as the ratio wi j = vi, j/vi−1, j between the closing prices vi, j
and vi−1, j of the stocks on the current day i and on the previous day i−1, respectively;
1 ∈ R

p is a vector of all ones. The aim is to find an optimal strategy to assign the
proportion of the assets in order to maximize the expected return among all portfolios.

Note that problem (48) can be cast into an online optimization model [27]. The
authors in [27] proposed an online Newton method to solve this problem. In this case,
the regret of such an online algorithm showing the difference between the objective
function of the online counterpart and the objective function of (48) converges to zero
at a rate of 1√

n
as n → ∞. If n is relatively small (e.g., n = 1000), then the online

Newton method does not provide a good approximation to (48).
LetΔ := {

x ∈ R
p | x ≥ 0, 1�x = 1

}
be the standard simplex, and g(x) := δΔ(x)

be the indicator function of Δ. Then, we can formulate (48) into (32). The function f
defined in (48) is (M f , ν)-generalized self-concordant with ν = 3 and M f = 2.

We implement Algorithm 2 using an accelerated projected gradient method [4,
40] to compute the proximal Newton direction. We also implement the Frank–Wolfe
algorithm and its linesearch variant in [20,30], and a projected gradient method using
Barzilai and Borwein’s step-size to solve (48). We name these algorithms by FW,
FW-LS, and PG-BB, respectively.
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We emphasize that both PG-BB and FW-LS do not have a theoretical guarantee
when solving (48). FW has a theoretical guarantee as recently proved in [49], but
the complexity bound is rather pessimistic. We terminate all the algorithms using
‖xk+1 − xk‖2 ≤ εmax

{
1, ‖xk‖2

}
, where ε = 10−8 in Algorithm 2, ε = 10−6

in PG-BB, and ε = 10−4 in FW and FW-LS. We choose different accuracies for
these methods due to the limitation of first-order methods for attaining high accuracy
solutions in the last three algorithms.

We test these algorithms on two categories of dataset: synthetic and real stock data.
For the synthetic data, we generatematrixW with given price ratios as described above
inMatlab.More precisely, we generateW := ones(n, p)+N (0, 0.1)which allows the
closing prices to vary about 10% between two consecutive periods. We test with three
instances, where (n, p) = (1000, 800), (1000, 1000), and (1000, 1200), respectively.
We name these three datasets by PortfSyn1, PortfSyn2, and PortfSyn3, respectively.
For the real data, we download a US stock dataset using an excel tool http://www.
excelclout.com/historical-stock-prices-in-excel/. This tool gives us the closing prices
of the US stock market in a given period of time. We generate three datasets with
different sizes using different numbers of stocks from 2005 to 2016 as described in [9].
We pre-processed the data by removing stocks that are empty or lacking information
in the time period we specified. We name these three datasets by Stock1, Stocks2, and
Stocks3, respectively.

The results and the performance of the four algorithms are given in Table 7. Here,
iter gives the number of iterations, time is the computational time in second,
error measures the relative difference between the approximate solution xk given
by the algorithms and the interior-point solution provided by CVX [25] with the high
precision configuration (up to 1.8× 10−12):

∥∥xk − x∗cvx
∥∥ /max

{
1,
∥∥x∗cvx

∥∥}.
FromTable 7we can see thatAlgorithm2has a comparable performance to the first-

order methods: FW-LS and PG-BB. While our method has a rigorous convergence
guarantee, these first-order methods remains lacking a theoretical guarantee. Note
that Algorithm 2 and PG-BB are faster than the FW method and its linesearch variant
although the optimal solution x� of this problem is very sparse. We also note that
PG-BB gives a smaller error to the CVX solution. This CVX solution is not the
ground-truth x� but gives a high approximation to x�. In fact, the CVX solution is
dense. Hence, it is not clear if PG-BB produces a better solution than other methods.

6.5 Proximal Quasi-Newton method for sparse multinomial logistic regression.

We apply our proximal Newton and proximal quasi-Newton methods to solve the
following sparse multinomial logistic problem studied in various papers including
[31]:

F� := min
x

{
F(x) :=

[1
n

n∑
j=1

(
log

( m∑
i=1

e〈w( j),x (i)〉)−
m∑
i=1

y( j)
i 〈w( j), x (i)〉

)]
f (x)

+
[
γ ‖vec(x)‖1

]
g(x)

}
, (49)
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Fig. 2 Left: convergence behavior of three methods, right: performance profile in time [second] of 5
methods

where x can be considered as a matrix variable of size m × p formed from
x (1), · · · , x (m), vec(·) is the vectorization operator, and γ > 0 is a regularization
parameter. Both y( j)

i ∈ {0, 1} and w( j) are given as input data for i = 1, . . . ,m and
j = 1, . . . , n.
The function f defined in (49) has a closed formHessianmatrix. However, forming

the full Hessian matrix∇2 f (x) requires an intensive computation in large-scale prob-
lems when n  1. Hence, we apply our proximal-quasi-Newton methods in this case.
As shown in [63, Lemma 4], the function f is (M f , ν)-generalized self-concordant

with ν = 2 and M f :=
√
6
n max

{‖w( j)‖2 | 1 ≤ j ≤ n
}
.

We implement our proximal quasi-Newton methods to solve (49) and compare
them with the accelerated first-order methods implemented in a well-established soft-
ware package called TFOCS [5]. We use three different variants of TFOCS: TFOCS
with N07 (using Nesterov’s 2007 method with two proximal operations per iteration),
TFOCS with N83 (using Nesterov’s 1983 method with one proximal operation per
iteration), and TFOCS with AT (using Auslender and Teboulle’s accelerated method).

We test on a collection of 26 multi-class datasets downloaded from https://
www.csie.ntu.edu.tw/~cjlin/libsvm/. We set the parameter γ in (49) at γ := 0.5√

N

after performing a fine tuning. We terminate all the algorithms if ‖xk+1 − xk‖ ≤
10−6 max

{
1, ‖xk‖}.

We first plot the convergence behavior in terms of iterations of three proximal
Newton-type algorithms we proposed in this paper in Figure 2 (left) for the dna
problem with 3 classes, 2000 data points, and 180 features.

As we can see from this figure, the proximal Newton method takes fewer iterations
than the other two methods. However, each iteration of this method is more expensive
than the proximal-quasi-Newton methods due to the evaluation of the Hessian matrix.
In our experiment, the quasi-Newton method with L-BFGS outperforms the one with
BFGS.

Next, we build a performance profile in time [second] to compare five different
algorithms: two proximal quasi-Newton methods proposed in this paper (BFGS and
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L-BFGS), and three variants of the accelerated first-order methods implemented in
TFOCS.

The performance profile was studied in [17] which can be considered as a standard
way to compare different optimization algorithms. A performance profile is built based
on a set S of ns algorithms (solvers) and a collection P of n p problems. We build a
profile based on computational time.We denote by Ti j := computational time required
to solve problem i by solver j . We compare the performance of solver j on problem
i with the best performance of any algorithm on this problem; that is we compute
the performance ratio ri j := Ti j

min{Tik |k∈S} . Now, let ρ̃ j (τ̃ ) := 1
n p
size

{
i ∈ P | ri j ≤ τ̃

}
for τ̃ ∈ R+. The function ρ̃ j : R → [0, 1] is the probability for solver j that a
performance ratio is within a factor τ̃ of the best possible ratio. We use the term
“performance profile” for the distribution function ρ̃ j of a performance metric. In the
following numerical examples, we plotted the performance profiles in log2-scale, i.e.
ρ j (τ ) := 1

n p
size

{
i ∈ P | log2(ri, j ) ≤ τ := log2 τ̃

}
.

Figure 2 (right) shows the performance profile of five algorithms on a collection
of 26 problems indicated above. The proximal quasi-Newton method with L-BFGS
achieves 13/26 (50%) with the best performance, while the BFGS obtains 10/26
(38%) with the best performance. In terms of computational time, both proximal
quasi-Newton methods outperform the optimal proximal gradient methods in this
experiment. It is also clear that our proximal quasi-Newton-type methods achieve
a more accuracy solution in this experiment compared to the accelerated proximal
gradient-type methods implemented in TFOCS.

7 Conclusion

We have generalized the self-concordance notion in [45] to a more general class
of smooth and convex functions. Such a function class covers several well-known
examples, including logistic, exponential, reciprocal, and standard self-concordant
functions, just to name a few. We have developed a unified theory with several basic
properties to reveal the smoothness structure of this functional class.We have provided
several key bounds on local norms, Hessian mapping, gradient mapping, and function
value of this functional class. Then, we have illustrated our theory by applying it to
solve a class of smooth convex minimization problems and its composite setting. We
believe that our theory provides an appropriate approach to exploit the curvature of
these problems and allows us to compute an explicit step-size in Newton-typemethods
that have a global convergence guarantee even for non-Lipschitz gradient/Hessian
functions. While our theory is still valid for the case ν > 3, we have not found
yet a representative application in a high-dimensional space. Therefore, we limit our
consideration to Newton and proximal Newton methods for ν ∈ [2, 3], but our key
bounds in Sect. 2.7 remain valid for different ranges of ν with ν > 0.

Our future research is to focus on several aspects. Firstly, we can exploit this the-
ory to develop more practical inexact and quasi-Newton-type methods that can easily
capture practical applications in large-scale settings. Secondly, we will combine our
approach and stochastic, randomized, and coordinate descent methods to develop new
variants of algorithms that can scale better in high-dimensional space. Thirdly, by
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exploiting both generalized self-concordant, Lipschitz gradient, and strong convex-
ity, one can also develop first-order methods to solve convex optimization problems.
Finally, we plan to generalize our theory to primal-dual settings and monotone oper-
ators to apply to other classes of convex problems such as convex–concave saddle
points, constrained convex optimization, and monotone equations and inclusions.

Acknowledgements This work is partially supported by the NSF-grant No. DMS-1619884, USA.

A Appendix: The proof of technical results

This appendix provides the full proofs of technical results presented in this paper. We
prove some technical results used in the paper, and missing proofs in the main text.
We also provide a full convergence analysis of the Newton-type methods presented in
the main text.

A.1 The proof of Proposition 6: Fenchel’s conjugate

Let us consider the set X := {x ∈ R
p | f (u) − 〈x, u〉 is bounded from below on

dom( f )}. We first show that dom( f ∗) = X .
By the definition of dom( f ∗), we have dom( f ∗) = {x ∈ R

p | f ∗(x) < +∞}.
Take any x ∈ dom( f ∗), one has f ∗(x) = maxu∈dom( f ) {〈x, u〉 − f (u)} < +∞.
Hence, f (u)− 〈x, u〉 ≥ − f ∗(x) > −∞ for all u ∈ dom( f ) which implies x ∈ X .

Conversely, assume that x ∈ X . By the definition of X , f (u)− 〈x, u〉 is bounded
from below for all u ∈ dom( f ). That is, there exists M ∈ [0,+∞), such that f (u)−
〈x, u〉 ≥ −M for all u ∈ dom( f ). By the definition of the conjugate, f ∗(x) =
maxu∈dom( f ) {〈x, u〉 − f (u)} ≤ M < +∞. Hence, x ∈ dom( f ∗).

For any x ∈ dom( f ∗), the optimality condition of maxu {〈x, u〉 − f (u)} is x =
∇ f (u). Let us denote by x(u) = ∇ f (u). Then, we have f ∗(x(u)) = 〈x(u), u〉− f (u).
Taking derivative of f ∗ with respect to x on both sides, and using x(u) = ∇ f (u), we
have

∇x f
∗(x(u)) = u + u′x x(u)− u′x∇ f (u) = u.

We further take the second-order derivative of the above equation with respect to u to
get

∇2 f ∗(x(u))x ′u(u) = I.

Using the two relations above and the fact that x ′u(u) = ∇2 f (u), we can derive

〈∇ f ∗(x(u)), x ′u(u)v〉 = 〈u, x ′u(u)v〉 = 〈∇2 f (u)v, u〉 (50)

〈∇2 f ∗(x(u))x ′u(u)v, x ′u(u)w〉 = 〈v, x ′u(u)w〉 = 〈∇2 f (u)v,w〉, (51)

where u ∈ dom( f ), and v,w ∈ R
p. Using (50) and (51), we can compute the third-

order derivative of f ∗ with respect to x(u) as
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〈∇3 f ∗(x(u))[x ′u(u)w]x ′u(u)v,x ′u(u)v〉 = 〈
(
〈∇2 f ∗(x(u))x ′u(u)v, x ′u(u)v〉

)′
u
, w〉

− 2〈∇2 f ∗(x(u))x ′u(u)v, (x ′u(u)v)′uw〉
(50)= 〈(〈x ′u(u)v, v〉)′u, w〉
− 2〈∇2 f ∗(x(u))x ′u(u)v, (x ′u(u)v)′uw〉
(51)= 〈∇3 f (u)[w]v, v〉 − 2〈(x ′u(u)v)′uw, v〉
= −〈∇3 f (u)[w]v, v〉. (52)

Denote ξ := x ′u(u)w and η := x ′u(u)v. Since x ′u(u) = ∇2 f (u), we have
ξ = ∇2 f (u)w, η = ∇2 f (u)v, and w = ∇2 f (u)−1ξ . Using these relations and
∇2 f ∗(x(u))x ′u(u) = I, we can derive

|〈∇3 f ∗(x(u))[ξ ]η, η〉| (52)= |〈∇3 f (u)[w]v, v〉 (5)≤ M f ‖v‖2u ‖w‖ν−2u ‖w‖3−ν
2

= M f 〈∇2 f (u)v, v〉〈∇2 f (u)w,w〉 ν−22 ‖w‖3−ν
2= M f 〈η,∇2 f ∗(x(u))x ′(u)v〉

〈ξ,∇2 f ∗(x(u))x ′(u)w〉 ν−22 ‖∇2 f (u)−1ξ‖3−ν

= M f 〈∇2 f ∗(x(u))η, η〉〈∇2 f ∗(x(u))ξ, ξ 〉 ν−22
〈∇2 f ∗(x(u))ξ,∇2 f ∗(x(u))ξ 〉3−ν .

For any H ∈ S p
++, we have 〈Hξ, ξ 〉 ≤ ‖Hξ‖2 ‖ξ‖2. For any ν ≥ 3, this inequality

leads to
〈Hξ, ξ 〉 ν−22 ‖Hξ‖3−ν ≤ 〈Hξ, ξ 〉 4−ν

2 ‖ξ‖ν−32 .

Using this inequality with H = ∇2 f ∗(x(u)) into the last expression, we obtain

|〈∇3 f ∗(x(u))[ξ ]η, η〉| ≤ M f 〈∇2 f ∗(x(u))η, η〉〈∇2 f ∗(x(u))ξ, ξ 〉 4−ν
2 ‖ξ‖ν−32

= M f ‖η‖2x(u)
‖ξ‖4−ν

x(u) ‖ξ‖ν−32 .

By Definition 2, we need ν−3 = 3−ν∗ and 4−ν = ν∗ −2 which hold if ν∗ = 6−ν.
Under the choice of ν∗, the above inequality shows that f ∗ is (M f ∗ , ν∗)-generalized
self-concordant with M f ∗ = M f and ν∗ = 6 − ν. However, to guarantee ν − 3 ≥ 0
and 6− ν > 0, we require 3 ≤ ν < 6.

Finally, we prove the case of univariate functions, i.e., p = 1. Indeed, we have

x(u) = f ′(u), ( f ∗)′(x(u)) = u, and ( f ∗)′′(x(u))x ′(u) = 1. (53)

Here, f ′ is the derivative of f with respect to u. Taking the derivative of the last
equation on both sides with respect to u, we obtain

( f ∗)′′′(x(u))(x ′(u))2 + ( f ∗)′′(x(u))x ′′(u) = 0.
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Solving this equation for ( f ∗)′′′(x(u)) and then using (53) and x ′′(u) = f ′′′(u), we
get

∣∣( f ∗)′′′(x(u))
∣∣ =

∣∣∣ ( f ∗)′′(x(u))x ′′(u)

(x ′(u))2

∣∣∣ = ∣∣(( f ∗)′′(x(u)))3 f ′′′(u)
∣∣

≤ M f

∣∣∣(( f ∗)′′(x(u)))3( f ′′(u))
ν
2

∣∣∣ = M f (( f ∗)′′(x(u)))
6−ν
2 .

This inequality shows that f ∗ is generalized self-concordant with ν∗ = 6− ν for any
ν ∈ (0, 6). ��

A.2 The proof of Corollary 2: bound on the mean of Hessian operator

Let yτ := x + τ(y − x). Then dν(x, yτ ) = τdν(x, y). By (15), we have

∇2 f (x + τ(y − x)) � (1− τdν(x, y))
−2
ν−2 ∇2 f (x) and ∇2 f (x + τ(y − x)) �

(1− τdν(x, y))
2

ν−2 ∇2 f (x). Hence, we have

I ν(x, y)∇2 f (x) �
∫ 1

0
∇2 f (x + τ(y − x))dτ � I ν(x, y)∇2 f (x),

where I ν(x, y) := ∫ 1
0 (1− τdν(x, y))

2
ν−2 dτ and I ν(x, y) := ∫ 1

0

(1− τdν(x, y))
−2
ν−2 dτ are the two integrals in the above inequality. Computing these

integrals explicitly, we can show that

– If ν = 4, then I ν(x, y) = 1−(1−d4(x,y))2
2d4(x,y)

and I ν(x, y) = − ln(1−d4(x,y))
d4(x,y)

.

– Ifν �= 4, thenwecan easily compute I ν(x, y) = (ν−2)
νdν (x,y)

(
1− (1− dν(x, y))

ν
ν−2

)
,

and I ν(x, y) = (ν−2)
(ν−4)dν (x,y)

(
1− (1− dν(x, y))

ν−4
ν−2

)
.

Hence, we obtain (18).
Finally, we prove for the case ν = 2. Indeed, by (16), we have e−d2(x,yτ )∇2 f (x) �

∇2 f (yτ ) � ed2(x,yτ )∇2 f (x). Since d2(x, yτ ) = τd2(x, y), the last estimate leads to

(∫ 1

0
e−d2(x,y)τdτ

)
∇2 f (x) �

∫ 1

0
∇2 f (yτ )dτ �

(∫ 1

0
ed2(x,y)τdτ

)
∇2 f (x),

which is exactly (18). ��

A.3 Techical lemmas

The following lemmas will be used in our analysis. Lemma 1 is elementary, but we
provide its proof for completeness.
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Lemma 1 (a) For a fixed r ≥ 1 and t̄ ∈ (0, 1), consider a function ψr (t) :=
1−(1−t)r−r t (1−t)r

r t2(1−t)r on t ∈ (0, 1). Then, ψ is positive and increasing on (0, t̄] and

lim
t→0+

ψr (t) = r+1
2 , lim

t→1−
ψr (t) = +∞, and sup

0≤t≤t̄
|ψr (t)| ≤ C̄r (t̄) < +∞,

where C̄r (t̄) := 1−(1−t̄)r−r t̄(1−t̄)r
r t̄2(1−t̄)r ∈ (0,+∞).

(b) For t > 0, we also have et−1−t
t ≤ ( 3

2 + t
3

)
tet .

Proof The statement (b) is rather elementary, we only prove (a). Since r ≥ 1,
limt→0+(1− (1− t)r − r t (1− t)r ) = limt→0+ r t

2(1− t)r = 0 and r t2(1− t)r > 0
for t ∈ (0, 1), applying L’Hôspital’s rule, we have

lim
t→0+

ψr (t) = limt→0+ r(r + 1)t (1− t)r−1

limt→0+ r t (2− (2+ r)t)(1− t)r−1

= limt→0+(r + 1)

limt→0+(2− (2+ r)t)
= r + 1

2
.

The limit limt→1− ψr (t) = +∞ is obvious.

Next, it is easily to compute ψ ′r (t) = (1−t)r+1(r t+2)+(r+2)t−2
r t3(1−t)r+1 . Let mr (t) := (1 −

t)r+1(r t + 2)+ (r + 2)t − 2 be the numerator of ψ ′r (t).
We have m′r (t) = r + 2− (1− t)r (r2t + 2r t + r + 2), and m′′r (t) = r(r + 1)(r +

2)t (1− t)r−1. Clearly, since r ≥ 1, m′′r (t) ≥ 0 for t ∈ [0, 1]. This implies that m′r is
nondecreasing on [0, 1]. Hence, m′r (t) ≥ m′r (0) = 0 for all t ∈ [0, 1]. Consequently,
mr is nondecreasing on [0, 1]. Therefore, mr (t) ≥ mr (0) = 0 for all t ∈ [0, 1]. Using
the formula of ψ ′r , we can see that ψ ′r (t) ≥ 0 for all t ∈ (0, 1). This implies that ψr

is nondecreasing on (0, 1). Moreover, limt→0+ ψr (t) = r+1
2 > 0. Hence, ψr (t) > 0

for all t ∈ (0, 1). This implies that ψr is bounded on (0, t̄] ⊂ (0, 1) by ψr (t̄). ��
Similar to Corollary 2, we can prove the following lemma on the bound of the

Hessian difference.

Lemma 2 Given x, y ∈ dom( f ), the matrix H(x, y) defined by

H(x, y) := ∇2 f (x)−1/2
[∫ 1

0

(∇2 f (x + τ(y − x))− ∇2 f (x)
)
dτ

]
∇2 f (x)−1/2, (54)

satisfies
‖H(x, y)‖ ≤ Rν (dν(x, y)) dν(x, y), (55)

where Rν(t) is defined as follows for t ∈ [0, 1):

Rν(t) :=

⎧⎪⎪⎨
⎪⎪⎩

( 3
2 + t

3

)
et if ν = 2

1−(1−t) 4−ν
ν−2−

(
4−ν
ν−2

)
t (1−t) 4−ν

ν−2
(
4−ν
ν−2

)
t2(1−t) 4−ν

ν−2
if 2 < ν ≤ 3.

(56)
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Moreover, for a fixed t̄ ∈ (0, 1), we have sup0≤t≤t̄ |Rν(t)| ≤ M̄ν(t̄), where

M̄ν(t̄) := max

⎧⎨
⎩
1− (1− t̄) 4−ν

ν−2 −
(
4−ν
ν−2

)
t̄(1− t̄) 4−ν

ν−2
(
4−ν
ν−2

)
t̄2(1− t̄) 4−ν

ν−2
,

(
3

2
+ t̄

2

)
et̄

⎫⎬
⎭ ∈ (0,+∞).

Proof By Corollary 2, if we define G(x, y) := ∫ 1
0

[∇2 f (x + τ(y − x))−∇2 f (x)
]

dτ , then

[
κν(dν(x, y))− 1

]∇2 f (x) � G(x, y) � [κν(dν(x, y))− 1]∇2 f (x). (57)

Since H(x, y) = ∇2 f (x)−1/2G(x, y)∇2 f (x)−1/2, the last inequality implies

‖H(x, y)‖ ≤ max
{
1− κν(dν(x, y)), κν(dν(x, y))− 1

}
.

Let Cmax(t) := max
{
1− κν(t), κν(t)− 1

}
be for t ∈ [0, 1). We consider three cases.

(a) For ν = 2, since e−t + et ≥ 2, we have 1−e−t
t + et−1

t ≥ 2 which implies

Cmax(t) = κν(t)− 1 = et−1−t
t . Hence, by Lemma 1, we have Cmax(t) ≤

( 3
2 + t

3

)
tet

which leads to Rν(t) :=
( 3
2 + t

3

)
et .

(b) For ν ∈ (2, 3], we have

Cmax(t) = max

{
1− (ν−2)

νt

[
1−(1−t) ν

ν−2
]
,

(ν−2)
(4−ν)t

[
1

(1−t) 4−ν
ν−2
−1

]
− 1

}

= (ν−2)
(4−ν)t

[
1

(1−t) 4−ν
ν−2
− 1

]
− 1.

Indeed, we show that (ν−2)
(4−ν)t

[
1

(1−t) 4−ν
ν−2
− 1

]
+ (ν−2)

νt

[
1− (1− t)

ν
ν−2

]
≥ 2. Let u :=

4−ν
ν−2 > 0 and v := ν

ν−2 > 0. The last inequality is equivalent to 1
u

[
1

(1−t)u − 1
]
+

1
v
[1− (1− t)v] ≥ 2t which can be reformulated as 1

v
− 1

u + 1
u(1−t)u − (1−t)v

v
−2t ≥ 0.

Consider s(t) := 1
v
− 1

u + 1
u(1−t)u − (1−t)v

v
− 2t . It is clear that s′(t) = 1

(1−t)u+1 +
(1 − t)v−1 − 2 = (1 − t)−

2
ν−2 + (1 − t)

2
ν−2 − 2 ≥ 0 for all t ∈ [0, 1). We obtain

s(t) ≥ s(0) = 0. Hence, Cmax(t) = (ν−2)
(4−ν)t

[
1

(1−t) 4−ν
ν−2
− 1

]
− 1.

Let us define r := 4−ν
ν−2 = 2

ν−2 − 1. Then, it is clear that ν = 2 + 2
1+r , and

ν ∈ (2, 3] is equivalent to r ≥ 1. Now, using Lemma 1 with r = 2
ν−2 − 1 ≥ 1, we

obtain Rν(t) :=
1−(1−t) 4−ν

ν−2−
(
4−ν
ν−2

)
t (1−t) 4−ν

ν−2
(
4−ν
ν−2

)
t2(1−t) 4−ν

ν−2
. Put (a) and (b) together, we obtain (55)

with Rν defined by (56). The boundedness of Rν follows from Lemma 1. ��
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A.4 The proof of Theorem 4: solution existence and uniqueness

Consider a sublevel setLF (x) := {y ∈ dom(F) | F(y) ≤ F(x)} of F in (32). For any
y ∈ LF (x) and v ∈ ∂g(x), by (22) and the convexity of g, we have

F(x) ≥ F(y) ≥ F(x)+ 〈∇ f (x)+ v, y − x〉 + ων (−dν(x, y)) ‖y − x‖2x .

By the Cauchy-Schwarz inequality, we have

ων (−dν(x, y)) ‖y − x‖x ≤ ‖∇ f (x)+ v‖∗x . (58)

Now, using the assumption ∇2 f (x) � 0 for some x ∈ dom(F), we have σmin(x) :=
λmin(∇2 f (x)) > 0, the smallest eigenvalue of ∇2 f (x).

(a) If ν = 2, then d2(x, y) = M f ‖y − x‖2 ≤ M f√
σmin(x)

‖y − x‖x . This estimate

together with (58) imply

ω2 (−d2(x, y)) d2(x, y) ≤ M f√
σmin(x)

‖∇ f (x)+ v‖∗x =
M f√

σmin(x)
λ(x). (59)

We consider the function s2(t) := ω2(−t)t = 1 − 1−e−t
t . Clearly, s′2(t) =

et−t−1
t2et

> 0 for all t ∈ R+. Hence, s2(t) is increasing on R+. However,
s2(t) < 1 and lim

t→+∞ s2(t) = 1. Therefore, if
M f√

σmin(x)
λ(x) < 1, then the equation

s2(t) − M f√
σmin(x)

λ(x) = 0 has a unique solution t∗ ∈ (0,+∞). In this case, for

0 ≤ d2(x, y) ≤ t∗, (59) holds. This condition leads to M f ‖y − x‖2 ≤ t∗ < +∞
which implies that the sublevel set LF (x) is bounded. Consequently, solution x�

of (32) exists.
(b) If 2 < ν < 3, then

dν(x, y) ≤
(ν

2
− 1

) M f

σmin(x)
3−ν
2

‖y − x‖x .

This inequality together with (58) imply

ων (−dν(x, y)) dν(x, y) ≤
(ν

2
− 1

) M f

σmin(x)
3−ν
2

‖∇ f (x)+ v‖∗x

=
(ν

2
− 1

) M f

σmin(x)
3−ν
2

λ(x).

We consider sν(t) := ων(−t)t . After a few elementary calculations, we can
easily check that sν is increasing on R+ and sν(t) < ν−2

4−ν
for all t > 0, and

lim
t→+∞ sν(t) = ν−2

4−ν
. Hence, if

(
ν
2 − 1

) M f

σmin(x)
3−ν
2

λ(x) < ν−2
4−ν

, then, similar to
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Case (a), we can show that solution x� of (32) exists. This condition implies that

λ(x) <
2σmin(x)

3−ν
2

(4−ν)M f
.

(c) If ν = 3, then d3(x, y) = M f
2 ‖y − x‖x . Combining this estimate and (58) we get

ω3 (−d3(x, y)) d3(x, y) ≤ M f

2
‖∇ f (x)+ v‖∗x .

With the same proof as in [40, Theorem 4.1.11], if
M f
2 ‖∇ f (x)+ v‖∗x < 1 which

is equivalent to λ(x) < 2
M f

, then solution x� of (32) exists.

Note that the condition on λ(x) in three cases (a), (b), and (c) can be unified. The
uniqueness of the solution x� in these three cases follows from the strict convexity of
F . ��

A.5 The proof of Theorem 2: convergence of the damped-step Newton method

The proof of this theorem is divided into two parts: computing the step-size, and
proving the local quadratic convergence.

Computing the step-size τk : From Proposition 10, for any xk, xk+1 ∈ dom( f ), if
dν(xk, xk+1) < 1, then we have

f (xk+1) ≤ f (xk)+ 〈∇ f (xk), xk+1 − xk〉 + ων

(
dν(x

k, xk+1)
) ∥∥∥xk+1 − xk

∥∥∥
2

xk
.

Now, using (25), we have 〈∇ f (xk), xk+1 − xk〉 = −τk

(
‖∇ f (xk)‖∗

xk

)2 = −τkλ
2
k .

On the other hand, we have

‖xk+1 − xk‖2
xk

(25)= τ 2k 〈∇2 f (xk)−1∇ f (xk),∇ f (xk)〉 (27)= τ 2k λ2k,

‖xk+1 − xk‖22
(25)= τ 2k 〈∇2 f (xk)−1∇ f (xk),∇2 f (xk)−1∇ f (xk)〉 (27)= τ 2k β2

k
M2

f
.

Using the definition of dν(·) in (12), the two last equalities, and (28), we can easily
show that dν(xk, xk+1) = τkdk . Substituting these relations into the first estimate, we
obtain

f (xk+1) ≤ f (xk)−
(
τkλ

2
k − ων (τkdk) τ 2k λ2k

)
.

We consider the following cases:

(a) If ν = 2, then, by (23), we have ηk(τ ) := λ2kτ −
(

λk
dk

)2 (
eτdk − τdk − 1

)
with

dk = βk . This function attains the maximum at τk := ln(1+dk)
dk

= ln(1+βk )
βk

∈ (0, 1)
with

ηk(τk) =
(

λk

dk

)2 [
(1+dk) ln(1+dk)−dk

]
=
(

λk

βk

)2 [
(1+βk) ln(1+βk)−βk

]
.
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It is easy to check from the right-most termof the last expression thatΔk := ηk(τk) > 0
for τk > 0.

(b) If ν = 3, then, by (23), we have ηk(τ ) := λ2kτ +
(

λk
dk

)2
[τdk + ln(1− τdk)]

with dk = 0.5M f λk . We can show that ηk(τ ) achieves the maximum at τk = 1
1+dk =

1
1+0.5M f λk

∈ (0, 1) with

ηk(τk) = λ2k

1+ 0.5M f λk
+
(

2

M f

)2 [ 0.5M f λk

1+ 0.5M f λk
+ ln

(
1− 0.5M f λk

1+ 0.5M f λk

)]
.

We can also easily check that the last term Δk := ηk(τk) of this expression is positive
for λk > 0.

(c) If 2 < ν < 3, then we have dk = Mν−2
f

(
ν
2 − 1

)
λν−2
k β3−ν

k . By (23), we have

ηk(τ ) =
(

λ2k +
λ2k

dk

ν − 2

4− ν

)
τ −

(
λk

dk

)2
(ν − 2)2

2(4− ν)(3− ν)

(
(1− τdk)

2(3−ν)
2−ν − 1

)
.

Our aim is to find τ ∗ ∈ (0, 1] by solving maxτ∈[0,1] ηk(τ ). This problem always has a
global solution. First, we compute the first- and the second-order derivatives of ηk as
follows:

η′k(τ ) = λ2k

[
1− 1

dk

ν − 2

ν − 4

(
1− (1− τdk)

ν−4
ν−2

)]
and η′′k (τ ) = −λ2k(1− τdk)

−2
ν−2 .

Let us set η′k(τk) = 0. Then, we get

τk = 1

dk

[
1−

(
1+ 4− ν

ν − 2
dk

)− ν−2
4−ν

]
∈ (0, 1) (by the Bernoulli inequality),

with

ηk(τk) = λ2k

dk

[
1− 4− ν

2(3− ν)

(
1+ 4− ν

ν − 2
dk

)2−ν
]

+
(

λk

dk

)2
ν − 2

2(3− ν)

[
1−

(
1+ 4− ν

ν − 2
dk

)2−ν
]

.

In addition, we can check that η′′k (τk) < 0. Hence, the value of τk above achieves the
maximum of ηk(·). Then, we have Δk := ηk(τk) > ηk(0) = 0.

The proof of local quadratic convergence Let x�
f be the optimal solution of (24). We

have

‖xk+1 − x�
f ‖xk = ‖xk − τk∇2 f (xk)−1∇ f (xk)− x�

f ‖xk
= (1− τk)‖xk − x�

f ‖xk + τk‖xk − x�
f − ∇2 f (xk)−1∇ f (xk)‖xk .
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Hence, we can write

‖xk+1− x�
f ‖xk = (1−τk)‖xk − x�

f ‖xk+τk‖∇2 f (xk)−1

×
[
∇ f (x�

f )− ∇ f (xk)−∇2 f (xk)(x�
f −xk)

]
‖xk . (60)

Let us define Tk :=
∥∥∥∇2 f (xk)−1

[
∇ f (x�

f )−∇ f (xk)−∇2 f (xk)(x�
f −xk)

] ∥∥∥
xk

and

consider three cases as follows:
(a) For ν = 2, using Corollary 2, we have

(
1−e−β̄k

β̄k

)
∇2 f (xk) � ∫ 1

0 ∇2 f (xk +
t (x�

f − xk))dt �
(
eβ̄k−1

β̄k

)
∇2 f (xk), where β̄k := M f ‖xk − x�

f ‖2. Using the above

inequality, we can show that

Tk ≤ max

{
1− 1− e−β̄k

β̄k
,
eβ̄k − 1

β̄k
− 1

}
‖xk − x�

f ‖xk

=
(
eβ̄k − 1− β̄k

β̄2
k

)
β̄k‖xk − x�

f ‖xk .

Let σ k := λmin(∇2 f (xk)). We first derive

‖∇2 f (xk)−1∇ f (xk)‖2 = ‖∇2 f (xk)−1(∇ f (xk)−∇ f (x�
f ))‖2

= ‖ ∫ 1
0 ∇2 f (xk)−1∇2 f (xk + t (x�

f − xk))(xk − x�
f )dt‖2

= ‖∇2 f (xk)−1/2K (xk, x�
f )∇2 f (xk)1/2(xk − x�

f )‖2
≤ 1√

σ k
‖K (xk, x�

f )‖‖xk − x�
f ‖xk .

where K (xk, x�
f ) :=

∫ 1
0 ∇2 f (xk)−1/2∇2 f (xk + t (x�

f − xk)∇2 f (xk)−1/2dt . Using
Corollary 2 and noting that β̄k := M f ‖xk − x�

f ‖2, we can estimate ‖K (xk, x�
f )‖ ≤

eβ̄k−1
β̄k

. Using the two last estimates, and the definition of βk , we can derive

βk = M f ‖∇2 f (xk)−1∇ f (xk)‖2 ≤ M f eβ̄k−1
β̄k
√

σ k
‖xk − x�

f ‖xk ≤ M f e
‖xk−x�

f ‖xk√
σ k

,

provided that β̄k ≤ 1. Since, the step-size τk = 1
βk

ln(1+βk), we have 1− τk ≤ βk
2 ≤

M f e‖xk−x�
f ‖xk

2
√

σ k
. On the other hand, eβ̄k−1−β̄k

β̄2
k

≤ e
2 for all 0 ≤ β̄k ≤ 1. Substituting Tk

into (60) and using these relations, we have

‖xk+1 − x�
f ‖xk ≤ e

2 β̄k‖xk − x�
f ‖xk + M f e

2

‖xk−x�
f ‖2xk√

σ k
,

provided that β̄k ≤ 1. On the other hand, by Proposition 8, we have ‖xk+1−x�
f ‖xk+1 ≤

e
β̄k+1+β̄k

2 ‖xk+1− x�
f ‖xk and σ−1k+1 ≤ eβ̄k+β̄k+1σ−1k . In addition, β̄k ≤ M f√

σ k
‖xk − x�

f ‖xk
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Combining the above inequalities, we finally get

‖xk+1 − x�
f ‖xk+1√

σ k+1
≤ M f e

1+β̄k+1+β̄k

(‖xk − x�
f ‖xk√

σ k

)2

.

Under the fact that βk ≤ 1, and βk+1 ≤ 1, this estimate shows that

{ ‖xk−x�
f ‖xk√

σ k

}

quadratically converges to zero. Since ‖xk− x�
f ‖2 ≤

‖xk−x�
f ‖xk√

σ k
, we can also conclude

that
{
‖xk − x�

f ‖2
}
quadratically converges to zero.

(b) For ν = 3, we can follow [40]. However, for completeness, we give a short

proof here. Using Corollary 2, we have

(
1− rk + r2k

3

)
∇2 f (xk) � ∫ 1

0 ∇2 f (xk +
t (x�

f − xk))dt � 1
1−rk∇2 f (xk), where rk := 0.5M f ‖xk − x�

f ‖xk < 1. Using the
above inequality, we can show that

Tk ≤ max

{
rk − r2k

3
,

rk
1− rk

}
‖xk − x�

f ‖xk =
0.5M f ‖xk − x�

f ‖2xk
1− 0.5M f ‖xk − x�

f ‖xk
.

Substituting Tk into (60) and using τk = 1
1+0.5M f λk

, we have

‖xk+1 − x�
f ‖xk ≤

0.5M f λk

1+ 0.5M f λk
‖xk − x�

f ‖xk

+ 1

1+ 0.5M f λk

(
0.5M f ‖xk − x�

f ‖2xk
1− 0.5M f ‖xk − x�

f ‖xk

)
.

Next, we need to upper bound λk . Since ∇ f (x�
f ) = 0. Using Corollary 2, we can

bound λk as

λk = ‖∇ f (xk)‖∗
xk
= ‖∇2 f (xk)−1/2(∇ f (xk)− ∇ f (x�

f ))‖2
= ‖ ∫ 1

0 ∇2 f (xk)−1/2∇2 f (xk + t (x�
f − xk))(x�

f − xk)dt‖2
≤ ‖xk − x�

f ‖xk‖
∫ 1
0 ∇2 f (xk)−1/2∇2 f (xk + t (x�

f − xk))∇2 f (xk)−1/2dt‖2
Corollary 2≤ ‖xk−x�

f ‖xk
1−0.5M f ‖xk−x�

f ‖xk
≤ 2‖xk − x�

f ‖xk ,

provided that M f ‖xk − x�
f ‖xk < 1. Overestimating the above inequality using this

bound, we get

‖xk+1 − x�
f ‖xk ≤ 0.5M f λk‖xk − x�

f ‖xk +
0.5M f ‖xk−x�

f ‖2xk
1−0.5M f ‖xk−x�

f ‖xk
≤ M f ‖xk − x�

f ‖2xk + M f ‖xk − x�
f ‖2xk = 2M f ‖xk − x�

f ‖2xk ,
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provided that M f ‖xk − x�
f ‖xk < 1. On the other hand, we can also estimate ‖xk+1 −

x�
f ‖xk+1 ≤

‖xk+1−x�
f ‖xk

1−0.5M f

(
‖xk+1−x�

f ‖xk+‖xk−x�
f ‖xk

) . Combining the last two inequalities, we

get

‖xk+1 − x�
f ‖xk+1 ≤

2M f ‖xk − x�
f ‖2xk

1− 2M f ‖xk − x�
f ‖2xk − 0.5M f ‖xk − x�

f ‖xk
The right-hand side function ψ(t) = 2M f

1−2M f t2−0.5M f t
≤ 4M f on t ∈

[
0, 1

2M f

]
.

Hence, if ‖xk− x�
f ‖xk ≤ 1

2M f
, then ‖xk+1− x�

f ‖xk+1 ≤ 4M f ‖xk− x�
f ‖2xk . This shows

that if x0 ∈ dom( f ) is chosen such that ‖x0 − x�
f ‖x0 ≤ 1

4M f
, then

{
‖xk − x�

f ‖xk
}

quadratically converges to zero.
(c) For ν ∈ (2, 3), with the same argument as in the proof of Theorem 3, we can

show that
‖xk+1 − x�

f ‖xk ≤ Rν(d
k
ν )dkν ‖xk − x�

f ‖xk ,
where Rν is defined by (56) and dkν := Mν−2

f

(
ν
2 − 1

) ‖xk − x�
f ‖3−ν

2 ‖xk − x�
f ‖ν−2xk

.
Using again the argument as in the proof of Theorem 3, we have

‖xk+1 − x�
f ‖xk+1

σ
3−ν
2

k+1
≤ Cν(d

k
ν , ‖xk − x�

f ‖xk )
⎛
⎝‖x

k − x�
f ‖xk

σ
3−ν
2

k

⎞
⎠

2

.

Here, Cν(·, ·) is a given function deriving from Rν . Under the condition that dkν and
‖xk−x�

f ‖xk are sufficiently small,we can show thatCν(dkν , ‖xk−x�
f ‖xk ) ≤ C̄ν .Hence,

the last inequality shows that
{ ‖xk−x�

f ‖xk
σ

3−ν
2

k

}
quadratically converges to zero. Since

σ
3−ν
2

k ‖xk−x�
f ‖Hk ≤ ‖xk−x�

f ‖xk , where Hk := ∇2 f (xk)
ν−2
2 , we have ‖xk−x�

f ‖Hk ≤
‖xk−x�

f ‖xk
σ

3−ν
2

k

. Hence, we can conclude that
{
‖xk − x�

f ‖Hk

}
also locally converges to zero

at a quadratic rate. ��

A.6 The proof of Theorem 3: the convergence of the full-step Newton method

We divide this proof into two parts: the quadratic convergence of
{

λk

σ
3−ν
2

k

}
, and the

quadratic convergence of
{‖xk − x�

f ‖Hk

}
.

The quadratic convergence of
{

λk

σ
3−ν
2

k

}
: Since the full-step Newton scheme

updates xk+1 := xk − ∇2 f (xk)−1∇ f (xk), if we denote by nknt = xk+1 − xk =
−∇2 f (xk)−1∇ f (xk), then the last expression leads to ∇ f (xk) + ∇2 f (xk)nknt = 0.
In addition, ‖nknt‖xk = ‖∇ f (xk)‖∗

xk
= λk . Using the definition of dν(·, ·) in (12), we

denote dkν := dν(xk, xk+1).
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First, by ∇ f (xk) + ∇2 f (xk)nknt = 0 and the mean-value theorem, we can show
that

∇ f (xk+1) = ∇ f (xk+1)− ∇ f (xk)−∇2 f (xk)nknt

=
∫ 1

0

[
∇2 f (xk + tnknt)−∇2 f (xk)

]
nkntdt.

Let us define Gk :=
∫ 1
0

[∇2 f (xk + tnknt)−∇2 f (xk)
]
dt and Hk := ∇2 f (xk)−1/2

Gk∇2 f (xk)−1/2. Then, the above estimate implies ∇ f (xk+1) = Gknknt. Hence, we
can show that

[
‖∇ f (xk+1)‖∗xk

]2 = 〈∇2 f (xk)−1Gkn
k
nt,Gkn

k
nt〉

= 〈Hk∇2 f (xk)1/2nknt, Hk∇2 f (xk)1/2nknt〉
≤ ‖Hk‖2‖nknt‖2xk = ‖Hk‖2λ2k .

By Lemma 2, we can estimate

‖Hk‖ ≤ Rν(d
k
ν )dkν ,

where Rν is defined by (56). Combining the two last inequalities and using Proposition
8, we consider the following cases:

(a) If ν = 2, then we have λ2k+1 ≤ ed
k
2

[∥∥∇ f (xk+1)
∥∥∗
xk

]2
which implies λk+1 ≤

e
dk2
2 R2(dk2 )d

k
2λk . Note thatλk ≥

√
σ kd

k
2

M f
and 1

σ k+1
≤ ed

k
2

σ k
. Based on the above inequality,

we have
λk+1√
σ k+1

≤ M f R2(d
k
2 )e

dk2

(
λk√
σ k

)2

.

By a numerical calculation, we can easily check that if dk2 < d�
2 ≈ 0.12964, then

λk+1√
σ k+1

≤ 2M f

(
λk√
σ k

)2

.

Consequently, if λ0√
σ 0

< 1
M f

min
{
d�
2 , 0.5

} = d�
2

M f
, then we can prove

dk+12 ≤ dk2 and
λk+1√
σ k+1

≤ λk√
σ k

,

by induction. Under the condition λ0√
σ 0

<
d�
2

M f
, the above inequality shows that the

ratio
{

λk√
σ k

}
converges to zero at a quadratic rate.
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Now, if ν > 2, then we consider different cases. Note that

λ2k+1 ≤ (1− dkν )
−2
ν−2

[∥∥∥∇ f (xk+1)
∥∥∥
∗
xk

]2
,

which follows that
λk+1 ≤ (1− dkν )

−1
ν−2 Rν(d

k
ν )dkν λk . (61)

Note that dkν =
(

ν
2 − 1

)
M f

∥∥dk∥∥3−ν

2 λν−2
k and σ−1k+1 ≤ (1 − dkν )

−2
ν−2 σ−1k . Based on

these relations and (61) we can argue as follows:
(b) If 2 < ν < 3, then λk ≥

∥∥dk∥∥2
√

σ k which follows that dkν ≤
(

ν
2 − 1

)
M f σ

− 3−ν
2

k λk . Hence,

λk+1

σ
3−ν
2

k+1
≤ (1− dkν )−

4−ν
ν−2 Rν(d

k
ν )
(ν

2
− 1

)
M f

⎛
⎝ λk

σ
3−ν
2

k

⎞
⎠

2

.

If dkν < d�
ν , where d

�
ν is the unique solution to the equation

(ν

2
− 1

) Rν(dkν )

(1− dkν )
4−ν
ν−2
= 2,

then σ
− 3−ν

2
k+1 λk+1 ≤ 2M f

(
σ
− 3−ν

2
k λk

)2

. Note that it is straightforward to check that

this equation always admits a positive solution.Hence, ifwe choose x0 ∈ dom( f ) such

that σ
− 3−ν

2
0 λ0 < 1

M f
min

{
2d�

ν

ν−2 ,
1
2

}
, then we can prove the following two inequalities

together by induction:

dkν ≤ dk+1ν and σ
− 3−ν

2
k+1 λk+1 ≤ σ

− 3−ν
2

k λk .

In addition, the above inequality also shows that

{
σ
− 3−ν

2
k λk

}
quadratically converges

to zero.
(c) If ν = 3, then dk3 = M f

2 λk , and

λk+1 ≤ (1− dk3 )
−1R3(d

k
3 )d

k
3λk = M f

R3(dk3 )

2(1− dk3 )
λ2k .

Directly checking the right-hand side of the above estimate, one can show that if
dk3 < d�

3 = 0.5, then λk+1 ≤ 2M f λ
2
k . Hence, if λ0 < 1

M f
min

{
2d�

3 , 0.5
} = 1

2M f
,

then we can prove the following two inequalities together by induction:

dk+13 ≤ dk3 and λk+1 ≤ λk .

123



Generalized self-concordant functions: a recipe for Newton… 203

Moreover, the first inequality above also shows that {λk} converges to zero at a
quadratic rate.

The quadratic convergence of
{‖xk − x�

f ‖Hk

}
: First, using Proposition 9 with

x := xk and y = x�
f , and noting that ∇ f (x�

f ) = 0, we have

ω̄ν(−dν(x
k, x�

f ))‖xk − x�
f ‖2xk ≤ 〈∇ f (xk), xk − x�

f 〉 ≤ ‖∇ f (xk)‖∗xk‖xk − x�
f ‖xk ,

where the last inequality follows from the Cauchy-Schwarz inequality. Hence, we
obtain

ω̄ν(−dν(x
k, x�

f ))‖xk − x�
f ‖xk ≤ ‖∇ f (xk)‖∗xk = λk . (62)

We consider three cases:
(1) When ν = 2, we have ω̄ν(τ ) = eτ−1

τ
. Hence, ω̄ν(−dν(xk, x�

f )) =
1−e−dν (xk ,x�f )

dν (xk ,x�
f )
≥ 1− dν (xk ,x�

f )

2 ≥ 1
2 whenever dν(xk, x�

f ) ≤ 1. Using this inequality in

(62), we have ‖xk − x�
f ‖xk ≤ 2‖∇ f (xk)‖∗

xk
= 2λk provided that dν(xk, x�

f ) ≤ 1.

One the other hand, by the definition of σ k , we have
√

σ k‖xk − x�
f ‖2 ≤ ‖xk − x�

f ‖xk .
Combining the two last inequalities, we obtain ‖xk − x�

f ‖2 ≤ 2λk√
σ k

provided that

dν(xk, x�
f ) ≤ 1. Since

{
λk√
σ k

}
locally converges to zero at a quadratic rate, the last

relation also shows that
{‖xk − x�

f ‖2
}
also locally converges to zero at a quadratic

rate.
(2) For ν = 3,we have ω̄ν(−dν(xk, x�

f )) = 1
1+dν (xk ,x�

f )
and dν(xk, x�

f ) = M f
2 ‖xk−

x�
f ‖xk . Hence, from (62), we obtain

‖xk−x�
f ‖xk

1+0.5M f ‖xk−x�
f ‖xk

≤ λk . This implies ‖xk −
x�
f ‖xk ≤ λk

1−0.5M f λk
as long as 0.5M f λk < 1. Clearly, since λk locally converges to

zero at a quadratic rate, ‖xk − x�
f ‖xk also locally converges to zero at a quadratic rate.

(3) For 2 < ν < 3, we have ω̄ν(−dν(xk, x�
f )) =

(
ν−2
ν−4

) (
1+dν (xk ,x�

f )
) ν−4

ν−2−1
dν (xk ,x�

f )
≥

1− 1
ν−2dν(xk, x�

f ) ≥ 1
2 provided that dν(xk, x�

f ) < ν
2 − 1. Similar to the case ν = 2,

we have σ
3−ν
2

k ‖xk− x�
f ‖Hk ≤ ‖xk− x�

f ‖xk ≤ 2λk , where Hk := ∇2 f (xk)
ν−2
2 . Hence,

‖xk − x�
f ‖Hk ≤ 2λk

σ
3−ν
2

k

. Since
{

λk

σ
3−ν
2

k

}
locally converges to zero at a quadratic rate,

{‖xk − x�
f ‖Hk

}
also locally converges to zero at a quadratic rate. ��

A.7 The proof of Theorem 5: convergence of the damped-step PN method

Given H ∈ S p
++ and a proper, closed, and convex function g : Rp → R∪ {+∞}, we

define

Pg
H (u) := (H + ∂g)−1(u) = argmin

x

{
g(x)+ 1

2 〈Hx, x〉 − 〈u, x〉} .
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If H = ∇2 f (x) is the Hessian mapping of a strictly convex function f , then we can
also write P∇2 f (x)(u) shortly as Px (u) for our notational convenience. The following
lemma will be used in the sequel whose proof can be found in [62].

Lemma 3 Let g : Rp → R ∪ {+∞} be a proper, closed, and convex function, and
H ∈ S p

++. Then, the mapping Pg
H defined above is non-expansive with respect to the

weighted norm defined by H, i.e., for any u, v ∈ R
p, we have

∥∥Pg
H (u)− Pg

H (v)
∥∥
H ≤ ‖u − v‖∗H . (63)

Let us define

Sx (u) := ∇2 f (x)u −∇ f (u) and ex (u, v) := [∇2 f (x)− ∇2 f (u)](v − u), (64)

for any vectors x, u ∈ dom( f ) and v ∈ R
p. We now prove Theorem 5 in the main

text.

The proof of Theorem 5 Computing the step-size τk : Since zk satisfies the optimality
condition (36), we have

−∇ f (xk)−∇2 f (xk)nkpnt ∈ ∂g(zk).

Using Proposition 10 we obtain

f (xk+1) ≤ f (xk)+ τk

〈
∇ f (xk), nkpnt

〉
+ ων(τkdk)τ

2
k λ2k .

Since xk+1 = (1− τk)xk + τk zk , using this relation and the convexity of g, we have

g(xk+1) ≤ g(xk)− τk

〈
∇ f (xk)+∇2 f (xk)nkpnt, n

k
pnt

〉
.

Summing up the last two inequalities, we obtain the following estimate

F(xk+1) ≤ F(xk)− ηk(τk).

With the same argument as in the proof of Theorem 2, we obtain the conclusion of
Theorem 5.

The proof of local quadratic convergence We consider the distance between xk+1 and
x� measured by ‖xk+1 − x�‖x� . By the definition of xk+1, we have

‖xk+1 − x�‖x� ≤ (1− τk)‖xk − x�‖x� + τk‖zk − x�‖x� . (65)

Using the new notations in (64), it follows from the optimality condition (33) and (36)
that zk = Pg

x� (Sx� (xk) + ex� (xk, zk)) and x� = Pg
x� (Sx� (x�)). By Lemma 3 and the

triangle inequality, we can show that

‖zk − x�‖x� ≤ ‖Sx� (xk)− Sx� (x�)‖∗x� + ‖ex� (xk, zk)‖∗x� . (66)

123



Generalized self-concordant functions: a recipe for Newton… 205

By following the same argument as in [62], if we apply Lemma 2, then we can derive

‖Sx� (xk)− Sx� (x�)‖∗x� ≤ Rν(dν(x
�, xk))dν(x

�, xk)‖xk − x�‖x� , (67)

where Rν(·) is defined by (56).
Next, using the same argument as the proof of (72) in Theorem 6 below, we can

bound the second term ‖ex� (xk, zk)‖∗x� of (66) as

‖ex� (xk, zk)‖∗x� ≤
{[

(1− dν(x�, xk))
−2
ν−2 − 1

]‖zk − xk‖x� , if ν > 2(
edν (x�,xk ) − 1

)‖zk − xk‖x� if ν = 2.

Combining this inequality, (66), (67), and the triangle inequality, we obtain

{ ‖zk − xk‖x� ≤ R̂ν(dν(x�, xk))‖xk − x�‖x� ,

‖zk − x�‖x� ≤ R̃ν(dν(x�, xk))dν(x�, xk)‖xk − x�‖x� ,
(68)

where R̂ν and R̃ν are defined as

R̂ν(t) :=
⎧
⎨
⎩

t Rν (t)+1
2−(1−t) −2ν−2

, if ν > 2

t Rν (t)+1
2−et if ν = 2

and R̃ν(t) :=

⎧
⎪⎪⎨
⎪⎪⎩

t Rν (t)+(1−t) −2ν−2 −1
t

(
2−(1−t) −2ν−2

) , if ν > 2

t Rν (t)+et−1
t (2−et ) if ν = 2,

respectively. After a few simple calculations, one can show that there exists a constant
cν ∈ (0,+∞) such that if t ∈ [0, d̄ν], then both R̂ν(t) and R̃ν(t) ∈ [0, cν] (when
t → 0+, consider the limit), where d̄2 := 3

5 and d̄ν := 1 − ( 2
3

) ν−2
2 for ν > 2,

respectively. Using this bound, (65), (68), and the fact that τk ≤ 1, we can bound

‖xk+1 − x�‖x� ≤
[
(1− τk)+ cνdν(x

�, xk)
]
‖xk − x�‖x� . (69)

Let σ� := σmin(∇2 f (x�)) be the smallest eigenvalue of ∇2 f (x�). We consider the
following cases:

(a) If ν = 2, then, for 0 ≤ dν(x�, xk) ≤ d̄ν , we can bound 1− τk as

1− τk = 1− ln(1+βk )
βk

≤ βk
2 = M f

2 ‖zk − xk‖2
≤ M f

2
‖zk−xk‖x�√

σ�

(68)≤ cνM f

2
√

σ� ‖xk − x�‖x� .

On the other hand, we have dν(x�, xk) = M f ‖xk − x�‖2 ≤ M f√
σ� ‖xk − x�‖x� . Using

these estimates into (69), we get
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‖xk+1 − x�‖x� ≤
(
cνM f

2
√

σ�
‖xk − x�‖x� + cνM f√

σ�
‖xk − x�‖x�

)
‖xk − x�‖x�

= 3cνM f

2
√

σ�
‖xk − x�‖2x� .

Let c�
ν := 3cνM f

2
√

σ� . The last estimate shows that if ‖x0 − x�‖x� ≤ min
{
d̄ν
√

σ�

M f
, 1
c�
ν

}
,

then
{‖xk − x�‖x�

}
quadratically converges to zero.

(b) If 2 < ν ≤ 3, then we first show that

dν(x
�, xk) = (

ν
2 − 1

)
M f ‖xk−x�‖3−ν

2 ‖xk−x�‖ν−2x� ≤ (
ν
2 − 1

) M f
(
σ�
) 3−ν

2

‖xk−x�‖x� .

Hence, if ‖xk − x�‖x� ≤ mν d̄ν , where mν := 2
ν−2

(σ�)
3−ν
2

M f
, then dν(x�, xk) ≤ d̄ν .

Next, using the definition of dk in (28), we can bound it as

dk = M f
(

ν
2 − 1

) ‖zk − xk‖ν−2
xk
‖zk − xk‖3−ν

2
(15)≤ M f

(
ν
2 − 1

) [ ‖zk−xk‖x�
(1−dν (x�,xk ))

1
ν−2

]ν−2 ‖zk−xk‖3−ν
x�

(σ �)
3−ν
2

≤ M f

(1−d̄ν )(σ �)
3−ν
2

(
ν
2 − 1

) ‖zk − xk‖x�

(68)≤ M f (ν−2)
2(1−d̄ν )(σ �)

3−ν
2
cν‖xk − x�‖x� .

Using this estimate, we can bound 1− τk as follows:

1− τk = 1− 1
dk
+ 1

dk

(
1−

4−ν
ν−2 dk

1+ 4−ν
ν−2 dk

) ν−2
4−ν

Bernoulli’s inequality≤ 1− 1
dk
+ 1

dk

(
1− ν−2

4−ν

4−ν
ν−2 dk

1+ 4−ν
ν−2 dk

)

=
4−ν
ν−2 dk

1+ 4−ν
ν−2 dk

≤ 4−ν
ν−2dk ≤ M f (4−ν)

2(1−d̄ν)(σ �)
3−ν
2
cν‖xk − x�‖x� = nν‖xk − x�‖x� ,

where nν := (4−ν)M f

2(1−d̄ν)(σ �)
3−ν
2
cν > 0. Substituting this estimate into (69) and noting that

dν(x�, xk) ≤ 1
mν
‖xk − x�‖x� , we get

‖xk+1 − x�‖x� ≤
(
nν + cν

mν

)
‖xk − x�‖2x� := c∗ν‖xk − x�‖2x� .

Hence, if ‖x0 − x�‖x� ≤ min
{
mν d̄ν,

1
c�
ν

}
, then the last estimate shows that the

sequence
{‖xk − x�‖x�

}
quadratically converges to zero.

In summary, there exists a neighborhood N (x�) of x�, such that if x0 ∈ N (x�) ∩
dom(F), then the whole sequence

{‖xk − x�‖x�

}
quadratically converges to zero. ��
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A.8 The proof of Theorem 6: locally quadratic convergence of the PN method

Since zk is the optimal solution to (35) which satisfies (36), we have ∇2 f (xk)xk −
∇ f (xk) ∈ (∇2 f (xk)+ ∂g)(zk). Using this optimality condition, we get

xk+1 = zk = Pg
xk

(Sxk (x
k)+ exk (x

k, zk)) and
xk+2 = zk+1 = Pg

xk
(Sxk (x

k+1)+ exk (x
k+1, zk+1)).

Let us define λ̃k+1 := ‖nk+1pnt ‖xk . Then, by Lemma (3) and the triangular inequality,
we have

λ̃k+1 ≤
∥∥Sxk (xk+1)− Sxk (x

k)
∥∥∗
xk +

∥∥exk (xk+1, zk+1)− exk (x
k, zk)

∥∥∗
xk

= ∥∥Sxk (xk+1)− Sxk (x
k)
∥∥∗
xk +

∥∥exk (xk+1, zk+1)
∥∥∗
xk .

(70)

Let us first bound the term
∥∥Sxk (xk+1)− Sxk (x

k)
∥∥∗
xk as follows:

∥∥∥Sxk (xk+1)− Sxk (x
k)

∥∥∥
∗
xk
≤ Rν(d

k
ν )dkν λk, (71)

where Rν(t) is defined as (56). Indeed, from the mean-value theorem, we have

∥∥∥Sxk (xk+1)− Sxk (x
k)

∥∥∥
∗
xk
=
∥∥∥∥
∫ 1

0
[∇2 f (xk + tnkpnt)−∇2 f (xk)]nkpntdt

∥∥∥∥
xk

≤
∥∥∥H(xk, xk+1)

∥∥∥ λk,

where H is defined as (54). Combining the above inequality and (56) in Lemma 2, we
get (71).

Next we bound the term
∥∥exk (xk+1, zk+1)

∥∥∗
xk as follows:

∥∥∥exk (xk+1, zk+1)
∥∥∥
xk
≤
{[

(1− dkν )
−2
ν−2 − 1

]
λ̃k+1, if ν > 2

(ed
k
ν − 1)λ̃k+1 if ν = 2.

(72)

Note that

∥∥∥exk (xk+1, zk+1)
∥∥∥
∗
xk
=
∥∥∥[∇2 f (xk)− ∇2 f (xk+1)](zk+1 − xk+1)

∥∥∥
∗
xk

≤ ‖H̃(xk, xk+1)‖λ̃k+1,

where

H̃(x, y) := ∇2 f (x)−1/2
(
∇2 f (x)− ∇2 f (y)

)
∇2 f (x)−1/2

= I−∇2 f (x)−1/2∇2 f (y)∇2 f (x)−1/2.
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By Proposition 8, we have

‖H̃(x, y)‖ ≤
{
max

{
1− (1− dν(x, y))

2
ν−2 , (1− dν(x, y))

−2
ν−2 − 1

}
, if ν > 2

max
{
1− e−dν (x,y), edν (x,y) − 1

}
if ν = 2.

This inequality can be simplified as

‖H̃(x, y)‖ ≤
{

(1− dν(x, y))
−2
ν−2 − 1, if ν > 2

edν (x,y) − 1 if ν = 2.
(73)

Hence, the inequality (72) holds.
Now, we combine (70), (71), and (72), if ν = 2, and assuming that dk2 < ln 2, then

we get

λ̃k+1 ≤ R2(dk2 )d
k
2

2− ed
k
2

λk .

By Proposition 8, we have λ2k+1 ≤ ed
k
ν λ̃2k+1. Combining this estimate and the last

inequality, we get

λk+1 ≤ R2(dk2 )d
k
2e

dk2
2

2− ed
k
2

λk . (74)

Note that λk ≥
√

σ kd
k
2

M f
and σ−1k+1 ≤ ed

k
2 σ−1k . It follows from (74) that

λk+1√
σ k+1

≤ M f
R2(dk2 )e

dk2

2− ed
k
2

(
λk√
σ k

)2

.

By a numerical calculation, we can check that if dk2 ≤ d�
2 ≈ 0.35482, then

λk+1√
σ k+1

≤ 2M f

(
λk√
σ k

)2

.

Hence, if we choose x0 ∈ dom(F) such that λ0√
σ 0
≤ 1

M f
min

{
d�
2 , 0.5

} = d�
2

M f
, then

we can prove the following two inequalities together by induction:

dk+12 ≤ dk2 and
λk+1√
σ k+1

≤ λk√
σ k

.

These inequalities show the nonincreasing monotonicity of
{
dk2
}
and {λk}. The above

inequality also shows the local quadratic convergence of the sequence
{

λk√
σ k

}
.
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Now, if ν > 2 and assume that dkν < 1− ( 1
2

) ν−2
2 , then

λ̃k+1 ≤ Rν(dkν )dkν

2− (1− dkν )
−2
ν−2

λk .

By Proposition 8, we have λ2k+1 ≤ (1−dkν )
−2
ν−2 λ̃2k+1. Hence, combining these inequal-

ities, we get

λk+1 ≤ Rν(dkν )dkν (1− dkν )
−1
ν−2

2− (1− dkν )
−2
ν−2

λk . (75)

Note that dkν =
(

ν
2 − 1

)
M f

∥∥pk∥∥3−ν

2 λν−2
k , σ−1k+1 ≤ (1 − dkν )

−2
ν−2 σ−1k and σ−1k+1 ≤

(1− dkν )
−2
ν−2 σ−1k . Using these relations and (75), we consider two cases:

(a) If ν = 3, then dk3 = M f
2 λk , and

λk+1 ≤ R3(dk3 )(1− dk3 )
−1

2− (1− dk3 )
−2 dk3λk = M f

R3(dk3 )(1− dk3 )
−1

2
(
2− (1− dk3 )

−2)λ
2
k .

By a simple numerical calculation, we can show that if dk3 ≤ d�
3 ≈ 0.20943, then

λk+1 ≤ 2M f λ
2
k . Hence, if λ0 < 1

M f
min

{
2d�

3 , 0.5
} = 2

M f
d�
3 , then we can prove the

following two inequalities together by induction

dk+13 ≤ dk3 and λk+1 ≤ λk .

These inequalities show the non-increasing monotonicity of
{
dk2
}
and {λk}. The above

inequality also shows the quadratic convergence of the sequence {λk}.
(b) If 2 < ν < 3, then λk ≥ ‖pk‖2√σ k which implies that dkν ≤

(
ν
2 − 1

)
M f σ

− 3−ν
2

k λk . Hence, we have

λk+1

σ
3−ν
2

k+1
≤ Rν(dkν )(1− dkν )−

4−ν
ν−2

2− (1− dkν )
−2
ν−2

(ν

2
− 1

)
M f

⎛
⎝ λk

σ
3−ν
2

k

⎞
⎠

2

.

If dkν < d�
ν , then σ

− 3−ν
2

k+1 λk+1 ≤ 2M f

(
σ
− 3−ν

2
k λk

)2

, where d�
ν is the unique solution

to the equation

Rν(dkν )(1− dkν )−
4−ν
ν−2

2− (1− dkν )
−2
ν−2

(ν

2
− 1

)
= 2.

Note that it is straightforward to check that this equation always admits a positive

solution. Therefore, if σ
− 3−ν

2
0 λ0 ≤ 1

M f
min

{
2d�

ν

ν−2 ,
1
2

}
, then we can prove the following

two inequalities together by induction:
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dkν ≤ dk+1ν and σ
− 3−ν

2
k+1 λk+1 ≤ σ

− 3−ν
2

k λk .

These inequalities show the non-increasing monotonicity of
{
dk2
}
and {λk}. The above

inequality also shows the quadratic convergence of the sequence
{

λk

σ
3−ν
2

k

}
.

Finally, to prove the local quadratic convergence of
{
xk
}
to x�, we use the same

argument as in the proof of Theorem 3 and Theorem 5, where we omit the details here.
��

A.9 The proof of Theorem 7: convergence of the quasi-Newton method

The full-step quasi-Newton method for solving (24) can be written as xk+1 = xk −
Bk∇ f (xk). This is equivalent to Hk(xk+1 − xk) + ∇ f (xk) = 0. Using this relation
and ∇ f (x�

f ) = 0, we can write

xk+1−x�
f = ∇2 f (x�

f )
−1 [∇2 f (x�

f )(x
k−x�

f )+
(
∇2 f (x�

f )−Hk

)
(xk+1−xk)

−∇ f (xk)+∇ f (x�
f )
]
. (76)

Wefirst considerTk := ‖∇2 f (x�
f )
−1

[
∇ f (xk)− ∇ f (x�

f )− ∇2 f (x�
f )(x

k − x�
f )
]
‖x�

f
.

Similar to the proof of Theorem 3, we can show that

Tk =
∥∥∥
∫ 1

0
∇2 f (x�

f )
−1[∇2 f (x�

f +t (xk−x�
f ))−∇2 f (x�

f )
]
(xk−x�

f )

∥∥∥
x�
f

≤ Rν(d
k
ν )dkν‖xk−x�

f ‖x�
f

(77)

where Rν is defined by (56) and dkν := Mν−2
f

(
ν
2 − 1

) ‖xk − x�
f ‖3−ν

2 ‖xk − x�
f ‖ν−2x�

f
.

Moreover, we note that

Sk := ‖∇2 f (x�
f )
−1 (Hk −∇2 f (x�

f )
)

(xk+1−xk)‖x�
f

= ‖
(
Hk −∇2 f (x�)

)
(xk+1−xk)‖∗x�

f

Combining this estimate, (76), and (77), we can derive

‖xk+1− x�
f ‖x�

f
≤ Rν(d

k
ν )dkν ‖xk − x�

f ‖x�
f
+‖

(
Hk −∇2 f (x�

f )
)

(xk+1−xk)‖∗x�
f
. (78)

First, we prove statement (a). Indeed, from the Dennis–Moré condition (41), we have

‖
(
Hk − ∇2 f (x�

f )
)

(xk+1−xk)‖∗x�
f
≤ γk‖xk+1 − xk‖x�

f

≤ γk

(
‖xk+1 − x�

f ‖x�
f
+ ‖xk − x�

f ‖x�
f

)
,
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where limk→∞ γk = 0. Substituting this estimate into (78), and noting that ‖xk −
x�
f ‖2 ≤ 1

σ� ‖xk − x�
f ‖x�

f
, where σ� := λmin(∇2 f (x�

f )) > 0, we can show that

‖xk+1 − x�
f ‖x�

f
≤ 1

1− γk

(
R�

ν‖xk − x�
f ‖2x�

f
+ γk‖xk − x�

f ‖x�
f

)
, (79)

provided that ‖xk−x�
f ‖x�

f
≤ r̄ and R�

ν := max
{
Rν(dkν ) | ‖xk − x�

f ‖x�
f
≤ r̄

}
< +∞.

Here, r̄ > 0 is a given value such that R�
ν is finite. The estimate (79) shows that if

r̄ is sufficiently small,
{
‖xk − x�

f ‖x�
f

}
superlinearly converges to zero. Finally, the

statement (b) is proved similarly by combining statement (a) and [62, Theorem 11]. ��
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