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Abstract A dual logarithmic barrier method for solving large, sparse semidefinite
programs is proposed in this paper. The method avoids any explicit use of the primal
variable X and therefore is well-suited to problemswith a sparse dualmatrix S. It relies
on inexact Newton steps in dual space which are computed by the conjugate gradient
method applied to the Schur complement of the reduced KKT system. The method
may take advantage of low-rank representations of matrices Ai to perform implicit
matrix-vector productswith theSchur complementmatrix and to compute only specific
parts of this matrix. This allows the construction of the partial Cholesky factorization
of the Schur complement matrix which serves as a good preconditioner for it and
permits the method to be run in a matrix-free scheme. Convergence properties of the
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method are studied and a polynomial complexity result is extended to the case when
inexactNewton steps are employed. AMatlab-based implementation is developed and
preliminary computational results of applying the method to maximum cut and matrix
completion problems are reported.

Keywords Semidefinite programming · Dual logarithmic barrier method · Inexact
Newton method · Preconditioning

Mathematics Subject Classification 90C22 · 90C51 · 65F10 · 65F50

1 Introduction

Let SRn×n denote the set of real symmetricmatrices of order n and letU •V denote the
inner product between two matrices, defined by trace(UT V ). Consider the standard
semidefinite programming (SDP) problem in its primal form

min C • X
s.t. X � 0

Ai • X = bi i = 1, . . . ,m,

(1)

where Ai ,C ∈ SRn×n and b ∈ R
m are given and X ∈ SRn×n is unknown and assume

that matrices Ai , i = 1, 2, . . . ,m are linearly independent, that is
∑m

i=1 Aidi = 0
implies di = 0, i = 1, . . . ,m. The dual form of the SDP problem associated with (1)
is:

max bT y
s.t.

∑m
i=1 yi Ai + S = C

S � 0,
(2)

where y ∈ R
m and S ∈ SRn×n .

In this paper we are concernedwith the solution of problemswhere the dual variable
S is very sparse. Such situations arise when matrices Ai , i = 1, . . . ,m and C share
the sparsity patterns [25], and are common in relaxations of optimization problems
such as, e.g. maximum cut and matrix completion problems [3,5].

Semidefinite programming is a well established area of convex optimization [8,21,
26]. Over the last two decades many powerful techniques have been developed for
the solution of SDP problems. Although the majority of developments in this area
relied on interior point methods, there have been also successful attempts to employ
different techniques such as a specialized variant of bundle method [14], augmented
Lagrangian approach [27] or modified barrier method [15].

Interior point methods for SDP have an advantage: they have provable low worst-
case iteration complexity [8,21]. On the other hand, the solution of real-life SDPs
still remains a computational challenge because the linear systems involved in interior
point methods for SDP have dimensions n2 +m or m for augmented system or Schur
complement, respectively. Such systems may be prohibitive for any larger values of n
andm.Most of standard IPM implementationsworkwith them×m Schur complement
linear system. For larger values of m building, storing and inverting this matrix is
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still a major challenge. There have been of course several attempts to overcome these
difficulties. Theyusually rely on an application ofKrylov subspacemethods for solving
the linear equations resulting from the reduced KKT systems [22,23].

The challenge originates from the complexity of the reduced KKT systems which
are large, involve products of matrices and often produce dense matrices of very large
dimension. In the large-scale setting, direct methods of linear algebra are not an option.
Iterative methods have to be employed. They are efficient in the early stage of Interior
Point procedures, but they struggle in the late stage due to ill conditioning of matrices
involved [23].

In quest for a perfect interior point method for SDP one has to compromise between
several conflicting objectives. An ideal algorithm would:

– share the best known worst-case iteration complexity,
– have low memory requirements (avoid storing dense matrices of size n or m),
– efficiently compute the Newton direction.

The method presented in this paper is an attempt to satisfy these objectives at least for
a wide class of SDP problemswhich enjoy the property of having sparse dual matrix S.

We propose a dual logarithmic barrier method which maintains only the dual solu-
tion of the problem (y, S) and avoids any operations which could involve the primal
matrix X (which is likely to be dense). Benson et al. [4] have analysed the dual
potential reduction Interior Point method and have demonstrated certain advantages
resulting from the ability to avoid using explicit primal matrix X . In a later technical
report Choi and Ye [6] mentioned a possibility of employing an iterative linear alge-
bra approach in the context of algorithm [4]. Without providing convergence analysis,
authors observed that in this latter approach the algorithm terminates at a primal-dual
sub-optimal solution depending on the accuracy imposed on the iterative linear solver.
Moreover, they proposed to use a simple diagonal preconditioner for the linear sys-
tem which naturally had only a very limited ability to improve the spectral properties
of the system. An alternative approach has been introduced in [23] in the context of
primal-dual method. In this approach in the late steps of the method a decomposition
of the Schur complement is performed giving rise to a projected Schur complement
to which the iterative method is applied.

The algorithm we propose here makes steps in inexact Newton directions which
are computed by an approximate solution of the reduced KKT systems. The system is
reduced to the Schur complement form and solved with the preconditioned conjugate
gradient method. The Schur complement does not have to be constructed or stored
because the CG algorithm needs only to perform matrix-vector multiplications with
it and these operations can be executed as a sequence of simple matrix-vector prod-
ucts which involve only very sparse matrices. The procedure is particularly attractive
when matrices Ai are low rank. Krylov-subspace methods are known to benefit from
clustering of the spectrum of linear system. Unfortunately, there is no chance for this
to happen in the case of systems arising from interior point methods. To improve the
spectral properties of the linear system we employ a partial Cholesky preconditioner
[1,12].

Much of the effort in the analysis of the proposed approach has gone into designing
implementable conditions for the acceptable inexactness in the Newton direction and
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choosing an appropriate preconditioned iterative method which can meet such condi-
tions. The used preconditioner is compatible with the matrix-free regime of the whole
method and still delivers the necessary improvement of the spectral properties of the
linear system. We are not aware of any method prior to that one which would meet
such conditions, except for the strategies proposed in [22,23] that might provide an
inspiration to create a viable alternative.

We also design a short-step variant of the method and show that it enjoys the
O(

√
n ln n

ε
) worst-case iteration complexity.

The paper is organised as follows. After a brief summary of notation used in SDP, in
Sect. 2 a frameworkof the dual barrier algorithm is presented.Next, inSect. 3 an inexact
variant of the method is introduced and some basic facts concerning the proximity of
the dual iterates to the central path are discussed. Several technical results needed
to establish the convergence of the Inexact Newton method are presented in Sect. 4.
Then a complete analysis of the short-step inexact dual logarithmic barrier method
is delivered in Sect. 5. The methods proposed in this paper have been implemented.
The computation of inexact Newton directions employs the preconditioned conjugate
gradient algorithm to find an approximate solution of the Schur complement form of
the reduced KKT systems. The computation of a preconditioner and the matrix-free
implementation of the method are discussed in Sect. 6. The preliminary computational
results obtained with the methods applied to solve the SDP relaxations of maximum
cut andmatrix completion problems are presented in Sect. 7 and finally the conclusions
are given in Sect. 8.

Notation The norm of the matrix associated with the inner product between two
matricesU • V = trace(UT V ) is the Frobenius norm, written ‖U‖F := (U •U )1/2,
while ‖ · ‖2 denotes the operator norm of a matrix. Norms on vectors will always be
Euclidean.

Let A be the linear operator A : SRn×n → R
m defined by

A(X) = (Ai • X)mi=1 ∈ R
m,

then its transposition AT is a mapping from R
m to SRn×n given by

AT v =
m∑

i=1

vi Ai .

Moreover, let AT denote the matrix representation ofAT with respect to the standard
bases of Rn , that is

AT := [vec(A1), vec(A2), . . . , vec(Am)] ∈ R
n2×m,

and

A(X) = A vec(X) and AT v = mat (AT v),

where mat is the “inverse” operator to vec (i.e., mat (vec(Ai )) = Ai ∈ SRn×n).
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Finally, given a symmetric matrix G, let G � G denote the operator from SRn×n

to itself given by

(G � G)U = GUG.

The notation U ⊗ V indicates the standard Kronecker product of U and V .

2 The dual barrier algorithm

Let us consider the dual barrier problem parametrized by μ > 0 (see [8,21])

max bT y − μ ln(det (S)),

s.t. AT y + S = C.

Let X = μS−1 	 0, then the first-order optimality conditions for this problem are
given by:

Fμ(X, y, S) =
⎛

⎝
AT y + S − C
A(X) − b
X − μS−1

⎞

⎠ = 0. (3)

We adopt the dual-path following method described in [8,21] that we will briefly
describe below. Chosen a strictly dual feasible pair (y, S) and a scalar μ > 0, damped
Newton steps for the problem Fμ(X, y, S) = 0 are made, maintaining S positive
definite. Let (X�, y�, S�) be the current primal-dual iterate, then the Newton step
(ΔX,Δy,ΔS) is the solution of the following linear system

⎡

⎣
0 AT I
A 0 0
I 0 μ(S−1

� � S−1
� )

⎤

⎦

⎡

⎣
ΔX
Δy
ΔS

⎤

⎦ = −
⎡

⎣
0
0

X� − μS−1
�

⎤

⎦ . (4)

ComputingΔX from the third equation in (4) (and applying earlier introduced notation
(S−1

� � S−1
� )ΔS = S−1

� ΔS S−1
� ) gives

ΔX = −μ
(
S−1
� ΔS S−1

�

)
−
(
X� − μS−1

�

)
(5)

and letting ΔS̃ = (S−1
� � S−1

� )ΔS, we get the linear system in the augmented form

[
S� � S� AT

A 0

] [
ΔS̃
Δy

]

= −
[

0
1
μ
A(X� − μS−1

� )

]

. (6)

The Schur complement form of the system can be obtained computing ΔS from
the first equation in (4)

ΔS = −ATΔy, (7)
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substituting it in (5) and getting

ΔX = μ
(
S−1
� (ATΔy)S−1

�

)
−
(
X� − μS−1

�

)
. (8)

Finally from the second equation in (4) we obtain:

M�Δy = 1

μ
A
(
X� − μS−1

�

)
, (9)

where M� is the Schur complement matrix given by

M� := A
(
S−1
� ⊗ S−1

�

)
AT ∈ SRm×m . (10)

We note that the matrix M� is symmetric and positive definite, its entries are given by

(M�)i, j =
(
Ai S

−1
�

)
•
(
S−1
� A j

)

and it is generally dense.
Assuming that the initial guess is primal-dual feasible, primal-dual feasibility is

maintained at each Newton iteration. Therefore one can substitute A(X�) with b in
the right hand side of (9) and solve the linear system

M�Δy = 1

μ
b − A(S−1

� ). (11)

This substitution allows to avoid using the primal variable X� explicitly.
The subsequent damped iterates are given by y�+1 = y� + αΔy and S�+1 =

S� + αΔS with α such that S�+1 	 0. Given S� 	 0, we define

X�+1 = argmin
X

{∥
∥
∥
∥
∥

S1/2� X S1/2�

μ
− I

∥
∥
∥
∥
∥
F

: A(X) = b

}

(12)

and notice that X�+1 has the following form:

X�+1 = μ
(
S−1
� + S−1

�

(
ATΔy

)
S−1
�

)
, (13)

see [8, Section 5.8]. From (8) we have X�+1 = X� + ΔX . The adopted centrality
measure is

δ(S�, μ) :=
∥
∥
∥
∥
∥

S1/2� X�+1 S
1/2
�

μ
− I

∥
∥
∥
∥
∥
F

=
∥
∥
∥S

−1/2
� Δ SS−1/2

�

∥
∥
∥
F

, (14)
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where in the last equality we have used (7) and (13). This measure is used in the
proximity stopping criterion since the damped Newton process is carried out until

δ(S�, μ) ≤ τ

with τ ∈ (0, 1). Then the scalar μ is reduced and a new nonlinear system is solved.

3 The inexact dual-logarithmic barrier algorithm

We focus on sparse large dimension problems of the form (1)–(2) and propose an
inexact version of the dual-logarithmic barrier algorithm for its solution. We therefore
assume that the dual variable S is sparse, while the variable X may be dense and that
the memory storage of the Schur complement matrix M� is prohibitive.

We fix the value of μ and use an Inexact Newton method. The step is made in a
direction which is an approximate solution of the Schur complement formulation (11)
computed in a matrix-free regime by using a Krylov method. The method is iterated
until the centrality measure δ(S�, μ) drops below a prescribed tolerance. The barrier
term μ is then reduced to force convergence.

Note that one might consider solving the augmented system (6) since both the
application of the coefficient matrix and the computation of ΔS manage to avoid the
inverse of S� hence are expected to be inexpensive. However, this formulation has two
drawbacks. Firstly,ΔS̃ = (S−1

� � S−1
� )ΔS is very likely to be dense despiteΔS being

sparse. Secondly, solving linear system (11) inexactly causes ΔS to lose symmetry.
The overall Long-Step Inexact Interior-Point procedure is described inAlgorithm 1.

Clearly, the main step is the inexact solution of (3) at Line 4 whose steps are described
in detail in Algorithm 2.

Algorithm 1 The Long-Step Inexact Dual-Logarithmic barrier algorithm
input: Dual feasible pair (y, S) (S positive definite), μ > 0, ε > 0, σ ∈ (0, 1).
output: Approximation of the Primal-Dual solution (X, y, S).
1: y0 ← y, S0 ← S and μ0 ← μ.
2: for k = 0, 1, . . . do
3: Choose τk ∈ (0, 1).
4: (yk+1, Sk+1, ΔS) ← Inexact_Newton(yk , Sk , μk , τk )
5: if μk ≤ ε then
6: Xk+1 = μk (S

−1
k − S−1

k ΔS S−1
k )

7: return X ← Xk+1, y ← yk+1 and S ← Sk+1.
8: end if
9: μk+1 ← σμk .
10: end for

Some comments on the algorithms are in order. First, note that in Algorithm 1 an
initial primal variable X is not required. Also, if the dual vector solution is not needed,
one can avoid to update the vector y� in Algorithm 2 explicitly and deal with Δy only.
Second, the main task in Algorithm 2 is the computation of the step Δy at Lines 5–6.
The computed step Δy satisfies
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Algorithm 2 The long-step Inexact-Newton algorithm
input: Dual feasible pair (y, S) (S positive definite), μ > 0, τ ∈ (0, 1).
output: New dual feasible pair (y, S) and the last computed dual Newton step ΔS.
1: procedure Inexact_Newton(y, S, μ, τ )
2: S0 ← S, y0 ← y, � ← 0 and is_centered ← 0.
3: while is_centered = 0 do
4: Choose η� ∈ (0, 1).
5: Compute an (inexact) step Δy such that

r� = M�Δy −
(
1

μ
b − A(S−1

�
)

)

(15)

6: satisfies

‖r�‖ ≤ η�

∥
∥
∥
∥
1

μ
b − A(S−1

�
)

∥
∥
∥
∥ (16)

7: ΔS ← −AT (Δy) and α ← 1.
8: while S� + αΔS is not positive definite do
9: α = α/2.
10: end while
11: y�+1 ← y� + αΔy and S�+1 ← S� + αΔS.

12: δ(S�, μ) ←
∥
∥
∥S

−1/2
�

ΔSS−1/2
�

∥
∥
∥
F

.

13: if δ(S�, μ) ≤ τ then
14: is_centered ← 1
15: else
16: � ← � + 1.
17: end if
18: end while
19: return y ← y�, S ← S� and ΔS.
20: end procedure

M�Δy = 1

μ
b − A(S−1

� ) + r�, (17)

where the residual vector r� satisfies inequality (16). Hence it is an approximate solu-
tion of (11) and the relative residual norm is bounded by the forcing term η� > 0.
Third, the backtracking in the while loop at Lines 8–10 of Algorithm 2 preserves
positive definiteness of S�, for each �. Then, at each iteration k of Algorithm 1, matrix
Sk+1 computed at Line 4 is positive definite.

Moreover, in the inexact framework, we approximate the centrality measure in (14)
with the following “inexact” measure

δ(S�, μ) :=
∥
∥
∥S

−1/2
� ΔSS−1/2

�

∥
∥
∥
F

=
∥
∥
∥
∥
∥

S1/2� X�+1 S
1/2
�

μ
− I

∥
∥
∥
∥
∥
F

, (18)

where ΔS is computed at Line 7 of Algorithm 2 and X�+1 is defined by

X�+1 = argmin
X

{∥
∥
∥
∥
∥

S1/2� X S1/2�

μ
− I

∥
∥
∥
∥
∥
F

: A(X) = b + μr�

}

. (19)
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Although the algebraic formulae in (14) and (18) are identical, their meaning is differ-
ent because X�+1 in the latter is allowed to violate the primal feasibility. The following
result demonstrates that equality in (18) holds and the inexact computation of Δy in
(15) yields a loss of primal feasibility.

Proposition 1 Let X�+1 be defined in (19). Then for each � > 0

X�+1 = μ
(
S−1
� − S−1

� ΔS S−1
�

)
(20)

and
∥
∥
∥S

−1/2
� ΔSS−1/2

�

∥
∥
∥
F

=
∥
∥
∥
∥
∥

S1/2� X�+1 S
1/2
�

μ
− I

∥
∥
∥
∥
∥
F

. (21)

Moreover, X�+1 satisfies

A(X�+1) = b + μ r�.

Proof Equation (20) can be derived following [8, Section 5.8] and writing the first-
order optimality conditions for the minimization problem in (19). Equality (21) easily
follows from (20). Finally, we have

A(X�+1) = A
(
μ
(
S−1
� − S−1

� ΔS S−1
�

))

= μA
(
S−1
�

)
+ μA

(
S−1
� � S−1

�

)
ATΔy

= μA
(
S−1
�

)
+ μM�Δy

= μA
(
S−1
�

)
+ μ

(
1

μ
b − A

(
S−1
�

)
+ r�.

)

= b + μ r�.

�
Then, letting ΔX as in (5) we obtain

X�+1 = X� + ΔX. (22)

Interestingly, dual feasibility is preserved even if inexact steps are used. Assuming
the pair (y�, S�) satisfies AT y� + S� = C , then dual feasibility of (S� + αΔS, y� +
αΔy) follows from the feasibility of (S�, y�) and the definition of ΔS in Line 7 of
Algorithm 2:

AT (y� + αΔy) + S� + αΔS =
(
AT y� + S�

)
+ α

(
ATΔy + ΔS

)
= C + 0.

In order to distinguish the “inexact” measure (18) from the “exact” one in (14), we
use the subscript ex for (14). Analogously, we denote with (ΔXex ,Δyex ,ΔSex ) the
“exact” solution of (4) which corresponds to having r� = 0 in (15). Then,
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δex (S�, μ) =
∥
∥
∥
∥
∥

S1/2� X�+1,ex S
1/2
�

μ
− I

∥
∥
∥
∥
∥
F

and

X�+1,ex = μ
(
S−1
� − S−1

� ΔSex S
−1
�

)
= X� + ΔXex . (23)

The relationship between the two centrality measures follows.

Lemma 1 Let S� 	 0. Then

|δex (S�, μ) − δ(S�, μ)| ≤ ‖A†‖2‖S�‖2‖r�‖
Proof Combining (22) and (23) we get X�+1,ex = X�+1 + ΔXex − ΔX and then

δex (S�, μ) =
∥
∥
∥
∥
∥

S1/2� X�+1,ex S
1/2
�

μ
− I

∥
∥
∥
∥
∥
F

=
∥
∥
∥
∥
∥

S1/2� (X�+1 − ΔX + ΔXex ) S
1/2
�

μ
− I

∥
∥
∥
∥
∥
F

≤ δ(S�, μ) +
∥
∥
∥
∥
∥

S1/2� (ΔX − ΔXex ) S
1/2
�

μ

∥
∥
∥
∥
∥
F

. (24)

Moreover, (20) and (23) yield

ΔX − ΔXex = X�+1 − X�+1,ex

= μ
(
S−1
� (ΔSex − ΔS)S−1

�

)

= μ
(
S−1
� (AT (Δy − Δyex ))S

−1
�

)
.

Since M�Δy = M�Δyex + r� we get

∥
∥
∥
∥
∥

S1/2� (ΔX − ΔXex ) S
1/2
�

μ

∥
∥
∥
∥
∥
F

=
∥
∥
∥S

−1/2
� (AT (M−1

� r�)) S
−1/2
�

∥
∥
∥
F

=
∥
∥
∥
∥

(
S−1/2
� ⊗ S−1/2

�

)
AT

(
A
(
S−1
� ⊗ S−1

�

)
AT
)−1

r�

)∥
∥
∥
∥
2
.

Let G := A(S−1/2
� ⊗ S−1/2

� ), then

∥
∥
∥
∥
∥

S1/2� (ΔX − ΔXex ) S
1/2
�

μ

∥
∥
∥
∥
∥
F

=
∥
∥
∥GT (GGT )−1r�

∥
∥
∥ =

∥
∥
∥G†r�

∥
∥
∥ .
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We observe that the vector q̂ := G†r� ∈ R
n is the (unique) minimum length solution

of the least-squares problem minq∈Rn ‖Gq − r�‖. Let A = UΣV T be the SVD of A.

Then letting z = (S−1/2
� ⊗ S−1/2

� )q̂ ,

‖Gq̂ − r�‖ = ‖Az − r�‖ = ‖UΣV T z − r�‖ = ‖Σg −UTr�‖,

where g = V T z. Therefore g = Σ†UTr�, z = VΣ†UTr� and finally

‖q̂‖ = ‖
(
S1/2� ⊗ S1/2�

)
z‖ ≤ ‖S�‖2‖A†‖2‖r�‖.

We therefore obtain by (24)

δex (S�, μ) ≤ δ(S�, μ) + ‖A†‖2‖S�‖2‖r�‖.

On the other hand, writing X�+1 = X�+1,ex + ΔX − ΔXex and following the steps
above, we obtain

δ(S�, μ) ≤ δex (S�, μ) + ‖A†‖2‖S�‖2‖r�‖,

which completes the proof. �
Now, we bound the duality gap in terms of the centrality measure and the residual

vector.

Lemma 2 At each �th iteration of Algorithm 2 the following inequality holds

μ
(
1 − δ(S�, μ)/

√
n + (rT� y�)/n

)

≤ C • X�+1 − bT y�
n

≤ μ
(
1 + δ(S�, μ)/

√
n + (rT� y�)/n

)

Proof Note that using Proposition 1 we have b = A(X�+1) − μr�, hence, following
the proof of Lemma 5.8 in [8] we get

C • X�+1 − bT y� = C • X�+1 − (A(X�+1) − μr�)
T y�

= (C − AT y�) • X�+1 + μrT� y�.

Using the dual feasibility of (y�, S�) we get

C • X�+1 − bT y� = S� • X�+1 + μrT� y�. (25)

Using the Cauchy-Schwartz inequality we have

δ(S�, μ)
√
n =

∥
∥
∥
∥
∥

S1/2� X�+1S
1/2
�

μ
− I

∥
∥
∥
∥
∥
F

‖I‖F ≥
∣
∣
∣
∣
S� • X�+1

μ
− n

∣
∣
∣
∣
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that implies

n − δ(S�, μ)
√
n ≤ S� • X�+1

μ
≤ n + δ(S�, μ)

√
n. (26)

We get the thesis combing the above equation with (25). �

4 Convergence analysis of the Inexact Newton inner procedure

In this section we will look into convergence properties of Algorithm 2. We start from
observing that once the stopping criterion at Line 13 of Algorithm 2 has been satisfied,
say at iteration �̄, the corresponding matrix X �̄+1 defined in (20) is positive definite.

Lemma 3 Let S� 	 0 and δ(S�, μ) < 1. Then X�+1 	 0.

Proof The proof follows by a straightforward modification of the proof of Lemma 5.3
in [8]. �

Moreover, the backtracking process in the while loop at Lines 8–10 is well-defined
and if S� is sufficiently well-centered, then α = 1 is taken. This is proved in the next
two Lemmas.

Lemma 4 Assume S� 	 0. Then, there exists ᾱ > 0 such that S� + αΔS 	 0 for any
α in (0, ᾱ).

Proof Assume ΔS is not positive definite, otherwise S� + αΔS 	 0 for any α ≥ 0.
We have

S� + αΔS = S1/2�

(
I + αS−1/2

� ΔSS−1/2
�

)
S1/2� .

Then, as S1/2� 	 0 by hypothesis, it follows that S� + αΔS 	 0 whenever α is

sufficiently small. In particular, the thesis holds with ᾱ = 1/‖S−1/2
� ΔSS−1/2

� ‖F . �
Lemma 5 Let S� 	 0 and δ(S�, μk) < 1. Then S� + ΔS 	 0.

Proof The proof follows by a straightforward modification of the proof of Lemma 5.4
in [8]. �

We observe that the sequence {(y�, S�)}, computed by Algorithm 2 corresponds to
the sequence generated by an Inexact Newtonmethod applied to the reduced nonlinear
system:

F̃μ(y, S) =
(AT y + S − C

μA(S−1) − b

)

= 0. (27)

In fact, the Newton system is given by:

[AT I
0 μA(S−1

� � S−1
� )

] [
Δy
ΔS

]

= −
[

0
b − μA(S−1

� )

]

.
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Then, the vector (Δy,ΔS) computed at Lines 5 and 7 is an Inexact Newton step for
(27) as it satisfies

[AT I
0 μA(S−1

� � S−1
� )

] [
Δy
ΔS

]

= −
[

0
b − μA(S−1

� )

]

−
[

0
μr�

]

. (28)

Moreover, by (16) the residual vector satisfies the following inequality

∥
∥
∥
∥

[
0

μr�

]∥
∥
∥
∥ ≤ μη�

∥
∥
∥
∥
1

μ
b − A(S−1

� )

∥
∥
∥
∥ ≤ η�

∥
∥
∥F̃μ(y�, S�)

∥
∥
∥ . (29)

Then, if we equip Algorithm 2 with a line-search along the direction (Δy,ΔS) we
obtain an InexactNewtonmethod in the frameworkofAlgorithm INB in [9]. Therefore,
given t ∈ (0, 1), let us substitute the loop at Lines 8–10 of Algorithm 2 with the steps
described in Algorithm 3.

Algorithm 3 Backtracking strategy to enforce a decrease of ‖F̃μ‖ and positive defi-
niteness of S
1: while S� + αΔS is not positive definite or
2: ‖F̃μ(y� + αΔy, S� + αΔS)‖ > (1 − t (1 − η�))‖F̃μ(y�, S�)‖ do
3: α = α/2 and η� = (1 − (1 − η�)/2).
4: end while

It is worth pointing out that when the inexact Newton method is applied to find
an approximate solution of (27) the value of barrier term μ remains constant. This is
independent of which mechanism is used to choose the stepsize (either Lines 8–10 of
Algorithm 2 or the backtracking strategy suggested in Algorithm 3). Moreover, letting
ΔS̃ = (S−1

� � S−1
� )ΔS the linear system (28) may be rewritten as

[
(S� � S�) AT

A 0

] [
ΔS̃
Δy

]

= −
[

0
r� + b/μ − A(S−1

� )

]

.

Its coefficient matrix is nonsingular provided that S� 	 0 and this is indeed the case
sinceμ is a fixed positive constant in this context. Therefore F̃ ′

μ(y�, S�) is nonsingular
for any � ≥ 0.

Assume that the sequences {‖S�‖}∞�=1, {‖y�‖}∞�=1 are bounded. Then, the sequence{(y�, S�)} has at least one accumulation point and from Theorem 6.1 in [9] it follows
that if there exists a limit point (y∗, S∗) of {y�, S�} such that F̃ ′

μ(y∗, S∗) is nonsingular,
then F̃μ(y∗, S∗) = 0 and {y�, S�} → (y∗, S∗), whenever � goes to infinity. As a
consequence we have

lim
�→∞ ‖F̃μ(y�, S�)‖ = 0 (30)

as the sequence {‖F̃μ(y�, S�)‖} is monotonically decreasing and bounded from below.
This together with (29) implies that
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lim
�→∞ ‖r�‖ = 0. (31)

We now show that the stopping criterion at Line 13 of Algorithm 2 is satisfied after
a finite number of inner iterations. First, from (20), and (15) it follows

‖X�+1 − μS−1
� ‖F =

∥
∥
∥μ

(
S−1
� ⊗ S−1

�

)
ATΔy

∥
∥
∥

=
∥
∥
∥
∥

(
S−1
� ⊗ S−1

�

)
AT M−1

�

(

r� + b

μ
− A

(
S−1
�

))∥∥
∥
∥

=
∥
∥
∥
∥

(
S−1/2
� ⊗ S−1/2

�

)
GT

�

(
G�G

T
�

)−1
(

r� + b

μ
− A

(
S−1
�

))∥∥
∥
∥

=
∥
∥
∥
∥

(
S−1/2
� ⊗ S−1/2

�

)
G†

�

(

r� + b

μ
− A

(
S−1
�

))∥∥
∥
∥

withG� = A(S−1/2
� ⊗S−1/2

� ). Then, proceeding as in the proof of Lemma 1, i.e. letting

A = UΣV T be the SVD of A, q̂ = G†
�(r� + b

μ
−A(S−1

� )) and z = (S−1/2
� ⊗ S−1/2

� )q̂,
we get

z = VΣ†UT
(

r� + b

μ
− A(S−1

� )

)

and

‖X�+1 − μS−1
� ‖F = ‖z‖ ≤ ‖A†‖2

(
‖r�‖ + ‖b/μ − A(S−1

� )‖
)

≤ ‖A†‖2
(
‖r�‖ + μ‖F̃μ(y�, S�)‖

)
.

This yields ‖X�+1 − μS−1
� ‖F → 0 using (30) and (31). Then, as

δ(S�, μ) ≤ 1

μ
‖S�‖F ‖X�+1 − μS−1

� ‖F

and ‖S�‖F is bounded by assumption we can conclude that δ(S�, μ) → 0.
Finally, we have that primal feasibility is recovered since

‖A(X�+1) − b‖ ≤ ‖A(X�+1 − μS−1
� )‖ + ‖b − μA(S−1

� )‖
≤ ‖A‖2‖X�+1 − μS−1

� ‖F + ‖F̃μ(y�, S�)‖

and therefore ‖A(X�+1) − b‖ → 0 whenever � goes to ∞.
Then, in order to compute accurate primal solution, in the last iteration of Algo-

rithm 1 a small tolerance τk is set to force the Inexact Newton method to iterate till
convergence.
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5 A short-step version of the inexact dual-logarithmic barrier method

In this section we introduce a short-step version of Algorithms 1 and 2. This corre-
sponds to use a more conservative update μk+1 = σμk with σ = (1 − θ) for some
small θ , to perform only two Inexact Newton iterations for each μ-value and to con-
sider an initial pair (y, S) sufficiently well centered with respect to the initial μ. In
particular, a sequence is generated such that if the initial S is sufficiently close to the
central path, i.e. such that δ(S, μ) ≤ 1/2, then after two inexact Newton steps the
new approximation serves as well-centered starting iterate for the sub-sequent outer
iteration. In this section we will use two indices to specify the outer kth iteration and
the three inner iterations � = 0, 1, 2.

In order to establish such convergence properties we need to modify the accu-
racy requirement in the solution of the linear systems. Indeed, the norm of the
residual is controlled by the value of the centrality measure δ(Sk,�, μk) instead of
‖b − μkA(S−1

k,�)‖ as in the long-step version. We state the short-step version of the
inexact dual-logarithmic barrier method in Algorithm 4.

Note that since r0,0 = 0, then X0,1 is primal feasible. Moreover, Lemmas 3–5
hold also for the short-step version and for its “exact” counterpart, as the accuracy
requirement in the solution of linear systems is never involved in their proofs. The
following observations about the exact counterpart of our short-step algorithm are in
order. First, the following result on the decrease of centrality measure holds.

Lemma 6 [8,Lemma5.5]Fixed k ≥ 0, if Sk,� 	 0 is dual feasible and δex (Sk,�, μk) <

1, then
δex (Sk,�+1, μk) ≤ δ2ex (Sk,�, μk),

with � = 0, 1.

Second, it is shown in [8] that starting from Sk,0 such that δex (Sk,0, μk) < 1
2 , after

one Newton step the obtained approximation Sk,1 can be used as the subsequent well-
centered starting point Sk+1,0, i.e. such that δex (Sk+1,0, μk+1) ≤ 1

2 and the process is
quadratically convergent. In the inexact case, we are going to prove that we need two
inexact Newton iterations to get an analogous result. In other words we are going to
show that the Inexact Newton process is two-step quadratically convergent in terms of
the centrality measure. Obviously, as in the long step case, in the last outer iteration,
we need to iterate the Inexact Newton method till convergence in order to recover
primal feasibility. Therefore after termination of Algorithm 4, an extra outer iteration
is performed: several steps of Inexact Newton method are made until the nonlinear
residual is small.

Remark 1 In the following proofswewillmake use of the centralitymeasure evaluated
at Sk,2, i.e.

δ(Sk,2, μk) =
∥
∥
∥S

−1/2
k,2 Δ SS−1/2

k,2

∥
∥
∥
F

, (35)

where ΔS = −ATΔy and Δy is an approximate solution of the linear system:

Mk,2Δy = 1

μk
b − A

(
S−1
k,2

)
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Algorithm 4 The Short-Step Inexact Dual-Logarithmic barrier algorithm

input: Dual feasible S and μ > 0 such that δex (S, μ) ≤ 1
2 , γ, β > 0, ε > 0, θ ∈ (0, 1).

output: Primal-Dual solution (X, S).
1: S0,0 ← S and μ0 ← μ.
2: while nμk > ε do
3: First Newton Step
4: if k = 0 then
5: Compute the solution Δy of

Mk,0Δy = 1

μk
b − A(S−1

k,0)

6: else
7: Compute an inexact step Δy such that

rk,0 = Mk,0Δy −
(

1

μk
b − A(S−1

k,0)

)

8: satisfies

‖rk,0‖ ≤ γ
1

‖A†‖2‖Sk,0‖2
δ2(Sk−1,1, μk−1) (32)

9: end if
10: ΔS ← −(AT Δy).
11: Sk,1 ← Sk,0 + ΔS.

12: δ(Sk,0, μk ) ← ‖S−1/2
k,0 ΔSS−1/2

k,0 ‖F .

13: Second Newton Step
14: Compute an inexact step Δy such that

rk,1 = Mk,1Δy −
(

1

μk
b − A(S−1

k,1)

)

(33)

15: satisfies

‖rk,1‖ ≤ β
1

‖A†‖2‖Sk,1‖2
δ2(Sk,0, μk ). (34)

16: ΔS ← −(AT Δy).
17: Sk,2 ← Sk,1 + ΔS.

18: δ(Sk,1, μk ) ← ‖S−1/2
k,1 ΔSS−1/2

k,1 ‖F .

19: Update the iterates
20: Sk+1,0 ← Sk,2.
21: μk+1 ← (1 − θ)μk .
22: end while
23: return X ← μk (S

−1
k,1 − S−1

k,1 ΔS S−1
k,1) and S ← Sk+1,0.

with residual

‖rk,2‖ ≤ γ
1

‖A†‖2‖Sk,2‖2 δ2(Sk,1, μk). (36)

This quantity will be used to provide a bound for δ(Sk+1,0, μk+1) that is computed
at Line 12 of the subsequent (k + 1)th iteration in Algorithm 4. The computation
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of δ(Sk,2, μk) would require a third Newton step but in fact it is not needed in the
algorithm.

Lemma 7 Let k ≥ 0, Sk,0 	 0 be dual feasible and

max{δ(Sk,1, μk), δ(Sk,0, μk)} ≤ 1/2. (37)

Moreover, let γ > 0, β ∈ (0, 2) and δ(Sk,2, μk) be given in (35).
Then, starting from Sk,0, the following inequality holds

δ(Sk,2, μk) ≤ C(γ, β) max{δ2(Sk,1, μk), δ
2(Sk,0, μk)} (38)

with
C(γ, β) = (1 + β)2 + γ. (39)

Proof First, note that by Lemma 1 and (34) it follows

δex (Sk,1, μk) ≤ δ(Sk,1, μk) + ‖A†‖2‖Sk,1‖2‖rk,1‖
≤ δ(Sk,1, μk) + βδ2(Sk,0, μk)

≤ 1/2 + β/4 < 1. (40)

Then, using again Lemmas 1, 6 and (36) we get

δ(Sk,2, μk) ≤ δex (Sk,2, μk) + ‖A†‖2‖Sk,2‖2‖rk,2‖
≤ δ2ex (Sk,1, μk) + ‖A†‖2‖Sk,2‖2‖rk,2‖
≤ δ2ex (Sk,1, μk) + γ δ2(Sk,1, μk)

and (40) and (37) yield

δ2ex (Sk,1, μk) ≤ (1 + β)2 max
{
δ2(Sk,1, μk), δ

2(Sk,0, μk)
}

.

Therefore we have

δ(Sk,2, μk) ≤ (1 + β)2 max
{
δ2(Sk,1, μk), δ

2(Sk,0, μk)
}

+ γ δ2(Sk,1, μk)

≤ C(γ, β) max
{
δ2(Sk,1, μk), δ

2(Sk,0, μk)
}

.

with C(γ, β) given in (39). �

The next step consists in bounding the centrality measure at the beginning of the
outer iteration k + 1 in terms of the centrality measure at the end of the previous
iteration k.
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Lemma 8 Same assumptions as in Lemma 7. Then if μk+1 = (1 − θ)μk for some
θ ∈ (0, 1), then

δ(Sk+1,0, μk+1) ≤ 1

1 − θ

(
δ(Sk,2, μk) + θ

√
n + γ (2 − θ)

)
.

Proof Proceeding as in Lemma 1 and recalling that Sk+1,0 = Sk,2 (Line 20 of Algo-
rithm 4) we have

δ(Sk+1,0, μk+1) ≤ δex (Sk+1,0, μk+1) + ‖Sk+1,0‖2‖A†‖2‖rk+1,0‖

=
∥
∥
∥
∥
∥

S1/2k,2 X̄ ex
k+1,1 S

1/2
k,2

μk+1
− I

∥
∥
∥
∥
∥
F

+ ‖Sk+1,0‖2‖A†‖2‖rk+1,0‖, (41)

where

X̄ ex
k+1,1 = argmin

X

{∥
∥
∥
∥
∥

S1/2k+1,0 X S1/2k+1,0

μk+1
− I

∥
∥
∥
∥
∥
F

: A(X) = b

}

.

Using the minimization property of X̄ ex
k+1,1 and the form of μk+1 we obtain

∥
∥
∥
∥
∥

S1/2k,2 X̄ ex
k+1,1 S

1/2
k,2

μk+1
− I

∥
∥
∥
∥
∥
F

≤ 1

1 − θ

∥
∥
∥
∥
∥

S1/2k,2 Xex
k+1,1 S

1/2
k,2

μk
− (1 − θ)I

∥
∥
∥
∥
∥
F

≤ 1

1 − θ
(δex (Sk,2, μk) + θ‖I‖F ) (42)

where

Xex
k+1,1 = argmin

X

{∥
∥
∥
∥
∥

S1/2k+1,0 X S1/2k+1,0

μk
− I

∥
∥
∥
∥
∥
F

: A(X) = b

}

.

Combining (41), (42) and (32) we obtain

δ(Sk+1,0, μk+1) ≤ 1

1 − θ

(
δex (Sk,2, μk) + θ

√
n
)+ γ,

where we used that by assumption (37) δ(Sk,1, μk) < 1. Using Lemma 1 and (36) we
have

δex (Sk,2, μk) ≤ δ(Sk,2, μk) + ‖Sk,2‖2‖A†‖2‖rk,2‖
≤ δ(Sk,2, μk) + γ,

and we finally get the thesis. �
The next result establishes a bound on the proximity of Sk+1,0 to the central path.
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Lemma 9 Same assumptions as in Lemma 7. If

θ = 2 − C(γ, β) − 8γ

4
√
n − 4γ + 2

(43)

with C(γ, β) defined as in (39) and γ, β sufficiently small so that θ ∈ (0, 1), then

δ(Sk+1,0, μk+1) ≤ 1

2
.

Proof Using Lemmas 8 and 7 have

δ(Sk+1,0, μk+1)

≤ 1

1 − θ

(
δ(Sk,2, μk) + θ

√
n + γ (2 − θ)

)

≤ 1

1 − θ

(
C(γ, β)max{δ2(Sk,1, μk), δ

2(Sk,0, μk)} + θ
√
n + γ (2 − θ)

)

and (43) yields

δ(Sk+1,0, μk+1) ≤ 1

1 − θ

(

C(γ, β)
1

4
+ θ

√
n + γ (2 − θ)

)

= 1

2
.

�
Now we show that at each iteration k, Sk,0 can be used as a well-centered starting

point provided that the initial guess S0,0 is well centered.

Lemma 10 Let θ be given in (43) and μ0 > 0. Assume

δex (S0,0, μ0) ≤ 1

2
,

and γ, β ∈ (0, 1) in (39) are sufficiently small such that θ ∈ (0, 1) and 4γ +γ 2+4β ≤
4. Then

δ(Sk+1,0, μk+1) ≤ 1

2
, for any k ≥ 0.

Proof Let us consider the first outer iteration (k = 0). Then, as r0,0 = 0, it follows
that δ(S0,0, μ0) = δex (S0,0, μ0), and by Lemma 1, we get

δ(S0,1, μ0) ≤ δex (S0,1, μ0) + ‖A†‖2‖S0,1‖2‖r0,1‖.

Then, using Lemma 6, (34), and δ(S0,0, μ0) ≤ 1/2 we get

δ(S0,1, μ0) ≤ 1/2(1 + β)δ(S0,0, μ0).
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This implies δ(S0,1, μ0) ≤ δ(S0,0, μ0) ≤ 1/2 as β < 1 by hypothesis. Therefore,
Lemma 9 ensures

δ(S1,0, μ1) ≤ 1/2.

Let us consider δ(S1,1, μ1). We are going to show that δ(S1,1, μ1) ≤ 1/2. We have,
using Lemmas 6 and 1,

δ(S1,1, μ1) ≤ δex (S1,0, μ1)
2 + ‖A†‖2‖S1,1‖2‖r1,1‖

≤
(
δ(S1,0, μ1) + ‖A†‖2‖S1,0‖2‖r1,0‖

)2 + ‖A†‖2‖S1,1‖2‖r1,1‖.

Then the stopping rules (32) and (34) and max{δ(S1,0, μ1), δ(S0,1, μ0)} ≤ 1/2 yield

δ(S1,1, μ1) ≤
(
1

2
+ γ

4

)2

+ β

4
.

Therefore, δ(S1,1, μ1) ≤ 1/2 provided that 4γ +γ 2+4β ≤ 4. Then, Lemma 9 yields
δ(S2,0, μ2) ≤ 1/2. Proceeding in this way we can prove that δ(Sk,1, μk) ≤ 1/2 for
k ≥ 0. �

Summing up, we have proved that, starting from a dual feasible point S0,0 such that
δex (S0,0, μ0) ≤ 1/2, at a generic iteration k performing two inexact Newton steps
and reducing μk by a factor (1 − θ), we get δ(Sk+1,0, μk+1) ≤ 1

2 at the subsequent
iteration.

Theorem 1 Let ε be an accuracy parameter, θ given in (43) and μ > 0. Assume S is
strictly dual feasible such that δex (S, μ) ≤ 1/2 and γ and β in (39) are sufficiently
small such that θ ∈ (0, 1) and 2β + β2 + 9γ < 1/3 and 4γ + γ 2 + 4β ≤ 4.

Then,

(i) Algorithm 4 terminates after at most
⌈
18

√
n log nμ

ε

⌉
inexact Newton steps.

(ii) Let k̄ be the last iteration of Algorithm 4, then the following inequality holds:

Sk̄,1 • Xk̄,2 ≤ 3/2ε

and

C • Xk̄,2 − bT yk̄,1 ≤ 3/2ε + rT
k̄,1

yk̄,1.

Proof We follow the lines of proof of Theorem 5.1 in [8]. At the end of each kth
iteration of Algorithm 4 Sk,2 is strictly feasible, μk = (1− θ)kμ0 (μ0 = μ at Line 1)
and the algorithm stops at iteration k̄ where

nμk̄ ≤ ε. (44)
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Using −log(1 − θ) > θ for θ ∈ (0, 1) we can derive that (44) is guaranteed to hold
whenever

k̄θ > log
nμ0

ε
.

By (43) it follows

1

θ
= 4

√
n − 4γ + 2

2 − (1 + β)2 − 9γ

and it can be easily shown that 9
√
n > 1

θ
whenever 2β + β2 + 9γ < 1/3. Then,

nμk ≤ ε for any

k ≥ 9
√
n log

nμ0

ε
.

Then, the stopping criterion is met after at most 18
√
n log nμ0

ε
inexact Newton steps

and (i) follows.
Moreover, by (26) we have:

Sk̄,1 • Xk̄,2 ≤ μk̄n

(

1 + δ(Sk̄,1, μk̄)√
n

)

≤ 3/2ε,

as δ(Sk̄,1, μk̄) ≤ 1/2.
Then, Lemma 2 yields (ii). �

We underline that, as already noted, at termination of Algorithm 4, a further outer
iteration has to be carried out in order to recover primal feasibility. In this case, a
sequence {Sk̄+1,�}�≥0 is generated and by Lemma 7 it follows that δ(Sk̄+1,�, μk̄+1)

goes to zero whenever � → ∞. Therefore, ‖rk̄+1,�‖ goes to zero and C • Xk̄+1,�+1 −
bT yk̄+1,� is bounded by 3/2ε.

6 Matrix-free implementation

In this section we describe our matrix-free implementation of Algorithms 1 and 2.
Since we use a Krylov solver to compute an approximate solution of (9), the matrix

M� given in (10) is required only to perform matrix-vector products. Due to the struc-
ture of M�, its action on a vector involves the inverse of the sparse matrix S�. Then, at
each iteration of Algorithm 2, the Cholesky factorization RT

� R� of the sparse matrix S�

has to be computed. Taking into account that the dual matrix is assumed to be sparse,
a sparse Cholesky factor is expected. Note that the structure of dual matrix does not
change during the iterations of Algorithm 1, hence reordering of S0 can be carried out
once at the very start of Algorithm 1 and then may be reused to compute the Cholesky
factorization of S� at each iteration of Algorithm 2.

123



130 S. Bellavia et al.

As pointed out in [2], the cost of evaluation of each column of M� depends strongly
on the structure of constraint matrices Ai . More precisely, it is shown that the compu-
tation of the i th column of M� involves pi back-solves with S�, where pi is the rank of
the constraint matrix Ai . Then, if we assume that the constraint matrices have the same
rank p, the cost of forming M� amounts to 2mp backsolves with R�. If M� is too large
to be stored, we need to work in a matrix-free regime and therefore, in order to com-
pute matrix vector products with M� we compute each column of M� once at a time
and then discard it. In this latter case, letting dens(R�) be the density of the Cholesky
factor R�, the cost of one matrix-vector product is given by 2mp × O(n2 dens(R�))

operations. Clearly, this procedure allows to savememory as thewholematrixM� does
not need to be stored, but it is more expensive than computing matrix vector-product
with explicitly available matrix M�. Finally, we note that backsolves with R� can be
performed in parallel.

More specifically, let us consider the constraint matrices represented as a sum of
vector outer products, that is

Ai =
pi∑

r=1

αi,rvi,rv
T
i,r , (45)

such that αi,r ∈ R and vi,r ∈ R
n , for r = 1, . . . , pi , e.g. represented by an eigen-

decomposition. Then a matrix-vector product can be performed using Algorithm 5
based on [2, Technique M2]. The algorithm is efficient when the ranks of the con-
straint matrices are low.

Algorithm 5Matrix-vector product with the Schur complementmatrix with constraint
matrices in the form (45)
input: Cholesky factor R� ∈ R

n×n of S� and a vector y ∈ R
m .

output: Matrix-vector product q = M�y.
1: for i = 1, . . . ,m do
2: for r = 1, . . . , pi do
3: Solve the linear system RT

�
u = vi,r .

4: Solve the linear system R�w = u.
5: qi ← qi + αi,r (w

T Aiw) ∗ yi .
6: end for
7: end for
8: return q.

It is well known (see [23]) that a CG-like method applied to (9) may be slow, in
particular in the late stage of an Interior Point method. On the other hand in our context
traditional preconditioners cannot be incorporated as the matrix M� is dense and we
assume that it is not available. For this latter reason matrix-free preconditioners are
needed. Incomplete Cholesky (IC) factorizations are matrix-free in the sense that the
columns ofM� can be computed one at a time, and then discarded, but they rely on drop
tolerances to reduce fill-in and have unpredictable memory requirements. Alternative
approaches with predictable memory requirements depend on the entries of M�, [13,
17,19,20] and have high storage requirements if M� is dense. On the other hand, the
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limitedmemory preconditioner given in [1,12] has a predictablememory requirements
and for this reason we employed it in our runs. It consists in a partial Cholesky
factorization limited to q columns of M� combined with a diagonal approximation
of the Schur complement. In this approach, first an integer q < m is chosen and the
following formal partition of M� is considered

M� =
[
M11 MT

21
M21 M22

]

,

where M11 ∈ Rq×q , M21 ∈ R(m−q)×q , M22 ∈ R(m−q)×(m−q). Then, the first q
columns of M� have to be computed and the Cholesky factorization of M� limited to

[
M11
M21

]

is formed giving

M� =
[
L11
L21 Im−q

] [
Q11

Z

] [
LT
11 LT

21
Im−q

]

,

where L11 ∈ R
q×q is lower triangular with ones on the diagonal, L21 ∈ R

(m−q)×q ,
Q11 ∈ R

q×q is diagonal and

Z = M22 − M21M
−1
11 MT

21,

is the Schur complement of M11 in M�. Then, letting diag(·) the operator that extracts
the diagonal of a matrix and returns the diagonal matrix based on it, Z is approximated
by

Q22 = diag(Z) = diag(M22) − diag(L21Q11L
T
21)

and the following preconditioner is formed:

P� =
[
L11
L21 Im−q

]

︸ ︷︷ ︸
L

[
Q11

Q22

]

︸ ︷︷ ︸
Q

[
LT
11 LT

21
Im−q

]

︸ ︷︷ ︸

LT

.

Storage of the preconditioner requires remembering the partial Cholesky factor

L =
[
L11
L21 Im−q

]

and the diagonal Q, which overall needs at most (q + 1)m nonzero entries. The a
priori known bound on the storage requirements is an advantage. To compute L one
needs to compute the first q columns and the diagonal of M� first. The cost of doing
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it is negligible compared to the cost of each matrix-vector product in the iterative
linear solver. Therefore, the choice of q in this context depends only on the memory
available.

Regarding spectral properties of the above outlined preconditioner, it has been
proved in [1] that q eigenvalues of P−1

� M� are equal to 1 and the remaining ones are
the eigenvalues of Q−1

22 Z . Then,

λmax (P
−1
� M�) ≤ trace

(
Q−1

22 Z
)

= m − q.

Therefore, the maximum eigenvalue of the preconditioned matrix stays bounded and
does not grow to ∞ as μk goes to zero and the solution is approached. Moreover, in
[12] a “greedy” heuristic technique acting on the largest eigenvalues of M� has been
proposed. It consists in permuting rows and columns of M� so that M11 contains the
q largest elements of the diagonal of M�. This choice is motivated by the well known
result about the eigenvalues of the Schur complement (which was also used in [1])

λmax (Q
−1
22 Z) ≤ λmax (Z)

λmin(Q22)
≤ λmax (M22)

λmin(Q22)
≤ trace(M22)

λmin(Q22)
.

Hence, by reducing the trace of M22, a reduction in the value of λmax (P
−1
� M�) is

expected. Therefore we adopted this heuristic in our implementation.
As a final comment, the computation of δ(S�, μ) at Line 12 of Algorithm 2 is not

needed. Indeed, as observed in [4],

∥
∥
∥S

−1/2
� ΔS S−1/2

�

∥
∥
∥
2

F
= ΔyT M�Δy.

Moreover, if Conjugate Gradient method is initialized with the zero vector and Δy is
computed at a certain iteration of it then the quadratic form ΔyT M�Δy satisfies

ΔyT M�Δy = ΔyT
(
b − μA

(
S−1
�

))
.

A similar property holds also when the preconditioned CG is used [10].

7 Numerical experiments

In this section we report on our numerical experience with the proposed inexact dual-
logarithmic barrier algorithms described in Algorithms 1–2 and 4. We did not use the
backtracking strategy described in Algorithm 3 because we verified that in practice it
was not needed to obtain convergence of Algorithm 2. We first describe the problem
sets, then discuss the numerical results.

All the results have been obtained using a Matlab (R2015a) code on an Intel Core
i5-6600K CPU 3.50GHz × 4 16GB RAM.
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7.1 Test problem sets

We evaluated the performance of the proposed methods on two classes of problems
where the sparsity of the dual variable S is inherited from the sparsity of C and the
structure of the Ai ’s. The first class of test examples arises in the SDP relaxation of
maximum cut problems; the constraint matrices in this reformulation have rank 1 and
n = m. The second class of test examples is obtained by a reformulation of matrix
completion problems. The obtained SDP problems are characterized by constraint
matrices of rank 2. In this case n � m and therefore these problems could potentially
be solved also by a primal-dual method. However, we considered this class for the
sake of gainingmore computational experiencewith problemswhich involve low-rank
Ai ’s.

The maximum cut problem consists in partitioning the vertices of a graph into two
sets that maximize the sum of the weighted edges connecting vertices in one set with
vertices in the other. Its SDP relaxation [21] is

max C • X
s.t. diag(X) = e

X � 0,

where e is the vector of all ones and C depends on the weighted adjacency matrix of
the graph. Therefore, sparsity of C depends on the sparsity of the adjacency matrix of
the graph. The dual problem is given by:

max eT y
s.t. Diag(y) + S = C

S � 0.

The constraint matrices Ai are given by Ai = ei eTi , i = 1, . . . ,m, where ei ∈ R
m

is the i th vector of the canonical basis. Therefore, the Ai s are trivially in the form
(45), and each matrix has rank one. The form of matrix M� and vector A(S−1

� ) in the
right-hand side of (9) simplifies and is given by

M� = (S−1
� ). ∗ (S−1

� ) and A(S−1
� ) = diag(M�).

1/2,

where we have borrowed the Matlab notation; i.e. M� is the componentwise product
of (S−1

� ) times itself. We specialized Algorithm 5 for the maximum cut problem in
Algorithm 6, taking into account the special structure of each Ai .

As a second set of problems, we considered large and sparse SDPs which origi-
nate from a reformulation of the matrix completion problem, that is the problem of
recovering a low rank data matrix B ∈ R

n̂×n̂ from a sampling of its entries [5].
Let Bs,t , (s, t) ∈ Ω be the given entries of matrix B. The SDP relaxation of this

problem is given by
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Algorithm 6 Matrix-vector product with the Schur complement matrix in the maxi-
mum cut problem
input: Cholesky factor R� ∈ R

n×n of S� and a vector y ∈ R
n .

output: Matrix-vector product q = M�y.
1: for j = 1, . . . , n do
2: Solve the linear system RT

�
u = e j .

3: Solve the linear system R�w = u.
4: q j ← ∑n

i=1 w2
i yi .

5: end for
6: return q.

min Tr(W1) + Tr(W2)

s.t.

[
W1 X̄
X̄ T W2

]

� 0

X̄s,t = Bs,t (s, t) ∈ Ω,

(46)

where X̄ ,W1,W2 ∈ R
n̂×n̂ are the unknowns, and Bs,t , (s, t) ∈ Ω are given, see [18].

We can reformulate (46) as (1) setting n = 2n̂ and m equal to the cardinality
of Ω , i.e. the number of known entries of B. The primal variable X takes the form

X =
[
W1 X̄
X̄ T W2

]

∈ R
n×n , while the matrix C in the objective is C = 1

2 In . In order to

define the operators Ai ’s, we enumerate them couples (s, t) ∈ Ω so that bi = Bs,t for
i ∈ {1, . . .m} and (s, t) ∈ Ω . Moreover, for each (s, t) ∈ Ω let us define the matrix
Θst ∈ R

n̂×n̂ such that

(Θst )kl =
{
1 if (k, l) = (s, t)
0 otherwise.

Then, the constraint matrices Ai ∈ R
n×n with i ∈ {1, . . .m} (and corresponding

(s, t) ∈ Ω) are given by

Ai = 1

2

[
0 Θst

(Θst )T 0

]

. (47)

Having defined all the ingredients C, b, Ai , X as above, we obtain the SDP relaxation
of matrix completion problem in the form (1).

We note that since C is diagonal and Ai ’s have at most 2 nonzero elements, the
slack variable S has at most 2m+n nonzero elements.We also underline thatm � n̂2.

Constraint matrices are rank 2 and they can easily be expressed in the form (45)

using the eigendecomposition of the 2 × 2 matrix

[
0 0.5
0.5 0

]

. This is described in

Algorithm 7, where we borrowed again the Matlab notation.

7.2 Implementation issues for the long-step algorithm

We set the initial parameters μ = 1 in Algorithm 1. In all the iterations except for the
last one, the Newton procedure was stopped whenever a full Newton step is taken (i.e.
α = 1 in Line 11 of Algorithm 2) and δ(S�, μ) ≤ 0.5. Then, only a rough accuracy
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Algorithm 7 Matrix-vector product with the Schur complement matrix in the matrix
completion problem

input: Cholesky factor R� ∈ R
n×n of S�, eigenvalues λ̄1, λ̄2 and eigenvectors v̄1, v̄2 of

[
0 0.5
0.5 0

]

and a

vector y ∈ R
m .

output: Matrix-vector product q = M�y.
1: for i = 1, . . . ,m do
2: for r = 1, 2 do
3: Let (k, l) be the row and column indexes of the nonzero element of Ai (1 : n/2, :).
4: Set z ← zeros(n, 1), z(k) ← v̄r (1), z(l) ← v̄r (2) ;
5: Solve the linear system RT

�
u = z.

6: Solve the linear system R�w = u.
7: qi ← qi + λr (w

T Aiw) ∗ yi .
8: end for
9: end for
10: return q.

is required in the solution of the nonlinear systems (3) except in the last iteration
where, in order to recover primal feasibility, the Newton process is carried out until
δ(S�, μ) ≤ 10−5.

In Algorithm 2 we employed the Matlab function pcg to compute the approximate
solution of (9), i.e. we used the CG method [11]. We work in a nearly matrix-free
regime, so we do not store the whole matrix M� but we only store the q columns
needed for building the preconditioner. At Line 4 of Algorithm 2, we set η� = 10−3

for each �, that is CG is stopped when the relative residual is less than 10−3. However,
if (16) is not satisfied within 100 iterations, CG is halted and the algorithm progresses
with the best iterate computed by CG, that is the approximation returned by pcg at
which the smallest residual has been obtained. Denoting with CGit the CG iteration
at which this occurred, we set CGit as a limit on the number of CG iterations at the
subsequent Newton’s iteration.

Finally, at Line 8 of Algorithm 2 we perform the Cholesky decomposition of S� +
αΔS in order to detect whether the matrix is positive definite.

7.3 Numerical results for the long-step algorithm: maximum cut test problems

We considered random graphs available in the GSet group of University of Florida
SparseMatrix Collection [7]. More precisely, we selected five matrices (G48, G57,
G62, G65, G66, G67) corresponding to toroidal graphs of dimension that ranges
from m = 3000 to m = 20,000 and two matrices (G60, G63) of dimension m =
7000 corresponding to less structured graphs. We also considered the smaller problem
G11 to show in detail the preconditioner behaviour.

In Table 1 we report statistics of our runs. These results have been obtained setting
ε = 10−8 in Algorithm 1 and computing q = 0.3m columns in the partial Cholesky
preconditioner, thus saving 70% of memory in comparison with a direct approach
which applies the completeCholesky factorization of the Schur complement. Problems
corresponding to toroidal graphs have been solved using σ = 0.1, while results for
the graphs G60 and G63 were obtained using σ = 0.5.
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Table 1 Statistics of the runs on the GSET family

Test
name

m dens(S) dens(R) IT_NEW CG_AV TIME_AV ‖A(X) − b‖ X • S

G48 3000 1.7e−3 1.7e−2 48 7 1.2e1 1.3e−8 3.0e−5

G57 5000 1.0e−3 9.0e−3 67 32 1.2e2 1.9e−6 1.9e−5

G60 7000 8.4e−4 4.2e−2 108 12 2.1e2 1.9e−6 4.1e−4

G62 7000 7.1e−4 7.1e−3 73 37 3.1e2 3.5e−6 2.1e−4

G63 7000 1.8e−3 5.6e−2 188 8 2.7e2 2.5e−6 5.2e−4

G65 8000 6.2e−4 7.1e−3 72 36 3.5e2 1.8e−6 1.7e−4

G66 9000 5.5e−4 3.4e−3 71 41 6.5e2 1.5e−6 1.3e−4

G67 10,000 5.0e−4 6.3e−3 71 42 9.3e2 1.2e−6 1.0e−4

A feasible starting couple (S, y) is easily obtained as in [24].
The heading of the columns has the followingmeaning: dens(S): density of the dual

matrix S0; dens(R) density of the Cholesky factor of S0; IT_NEW: overall number of
inner Newton iterations; CG_AV: average number of CG iterations for each Newton
iteration; TIME_AV: average time in seconds to perform one inner Newton iteration;
‖A(X) − b‖: primal feasibility; X • S: complementarity gap. We can observe that
both S0 and its Cholesky factor are quite sparse in all the tests. The number of overall
Newton iterations and the average number of CG iterations aremore or less the same in
problems G57, G62, G65, G66 and G67. So they do not seem to increase withm. The
higher number ofNewton iterations inG60 andG63 is due to the less aggressive choice
of σ . Problem G48 is easier than the other ones as it requires noticeably fewer Newton
and CG iterations. As expected the execution time increases with the dimension of
the problem. It should be underlined that the high execution time is the price we pay
for avoiding to store matrix M�. For example, in the solution of problem G67 the
average time to perform one inner Newton iteration drops to 111 seconds if matrix
M� is computed once and then stored. Moreover, we observe that a major part of the
execution time originates from the last iteration of Algorithm 1 as the linear systems
become more difficult and their solution requires a higher number of CG iterations
and therefore a higher number of matrix-vector products with M�.

To give some insight into the behaviour of the preconditioner, we considered the
smaller problem G11 (m=800) and we focused on the most challenging last interior
point iteration where the arising linear systems are ill-conditioned and several inexact
Newton steps are required because the primal feasible solution X is sought. For this
example, 8 Newton iterations were needed; we built the sequence of linear systems
generated by Algorithm 2 (with the partial Cholesky preconditioner using the 30%
of the columns of M) and we solved it also with unpreconditioned CG and with CG
using the Diagonal preconditioner.

Firstly,we compare inTable 2 the smallest and largest eigenvalues ofmatrixM� with
those ofM� preconditioned by partial Cholesky (P−1M) andM� preconditioned by the
Diagonal preconditioner (D−1M). We note that the eigenvalues of unpreconditioned
M� vary between 104 and 1010 at iteration 1 and their spread increases to 104 − 1012
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Table 2 Problem G11: minimum and maximum eigenvalues of M , M preconditioned by the diagonal (D)
and the partial Cholesky (P) preconditioner, at the last outer iteration of Algorithm 1

� λmin(M) λmax (M) λmin(D−1M) λmax (D−1M) λmin(P−1M) λmax (P−1M)

1 1.2e4 1.7e10 1.2e−4 1.7e2 8.2e−3 4.7e1

2 2.9e4 1.0e11 4.7e−5 1.7e2 1.0e−2 2.8e1

3 1.7e4 3.7e12 8.2e−6 1.8e2 4.1e−3 3.8e1

4 1.3e4 2.2e12 1.1e−5 1.8e2 4.0e−3 3.9e1

5 1.2e4 1.8e12 1.2e−5 1.8e2 3.5e−3 3.8e1

6 1.2e4 1.8e12 1.2e−5 1.8e2 6.8e−4 6.0e1

7 1.2e4 1.8e12 1.2e−5 1.8e2 1.1e−3 3.6e1

8 1.2e4 1.8e12 1.2e−5 1.8e2 1.4e−3 5.7e1

Fig. 1 Eigenvalue distribution of M and P−1M at the first Newton’s iteration (last outer iteration)

at iteration 8. The spread of eigenvalues of the preconditioned Schur complement
P−1

� M� is significantly smaller. Indeed, the eigenvalues vary between 10−3 and 101,
that is the partial Cholesky preconditioner drastically reduces the largest eigenvalues
of the unpreconditioned matrix M�; the smallest eigenvalue is pushed closer to zero
but overall the condition number of the preconditioned matrix is smaller than that
of M�. On the other hand, the Diagonal preconditioner is not as effective. It simply
shifted the whole spectrum towards zero. We also plot in Figs. 1 and 2 the histograms
of eigenvalues of M� and P−1

� M� of the first (� = 1) and the last (� = 8) Newton
system. The histograms use the logarithmic scale to demonstrate the magnitude of
eigenvalues. They reveal that in both linear systems more than 50% of the eigenvalues
of P−1

� M� are clustered around one. Although a good clustering of the spectrum of
P−1

� M� does not necessarily imply fast convergence of the conjugate gradient method
(see Section 5.6.5 in [16]) it usually benefits its behaviour.

Secondly, from the statistics reported in Table 3, we can observe that CG pre-
conditioned by the partial Cholesky (CG+P) outperforms the unpreconditioned CG.
Failures are denoted by the symbol ‘*’ and, in this case, the minimum value of the rel-
ative residual obtained during the iterations performed by CG is also reported. CG+P
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Fig. 2 Eigenvalue distribution of M� and P−1M� at the last Newton’s iteration (last outer iteration)

Table 3 Problem G11: number of CG iterations (unpreconditioned and preconditioned with D and P) and
norm of the corresponding residual, at the last outer iteration of Algorithm 1

� CG CG + D CG + P ‖rCG
�

‖ ‖rCG+D
�

‖ ‖rCG+P
�

‖
1 * * 6 1.1e−3 1.1e−3

2 * * 12 1.1e−3 1.0e−3

3 54 30 17

4 * * 23 1.4e−3 1.4e−3

5 * * 66 4.0e−3 4.0e−3

6 * * 31 1.1e−2 1.1e−2

7 * * * 2.3e−2 2.3e−2 2.6e−3

8 * * * 3.5e−1 3.5e−1 3.1e−3

fails in the last two inner iterations but the obtained residuals are quite close to the
desired values, while unpreconditioned CG stops with large residuals. Unsurprisingly,
CG with Diagonal preconditioner (CG+D) behaves as poorly as the unpreconditioned
CG.We also stress that the cost of application of the partial Cholesky preconditioner is
negligible in the tested matrix-free implementation compared to the cost of perform-
ing matrix-vector product with M� and therefore the preconditioner choice has to be
guided only by its behavior in terms of reducing CG iterations.

Finally, in Fig. 3 we plot the convergence history of the whole procedure applied to
problem G48. In particular the value of the duality gap and of primal feasibility versus
the Newton iterations are displayed. We can observe that the duality gap reduces with
μ and primal feasibility is recovered at the last outer iteration.

7.4 Numerical results for the long-step algorithm: matrix completion test
problems

In the solution of the SDP reformulation of matrix completion problems, the extra-
diagonal submatrix X̄ of the primal variable X returned byAlgorithm1 is the computed
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Fig. 3 Problem G48: duality gap and primal feasibility

Table 4 Statistics of the runs on the matrix completion set

Test r n m IT_NEW CG_AV TIME_AV εB ‖A(X) − b‖ X • S

MC1 4 800 12, 736 76 52 2.3e2 5e−4 4.3e−3 6.1e−3

MC2 5 1000 19, 900 81 37 5.1e2 4e−6 6.4e−6 7.6e−3

MC3 6 1200 28, 656 82 36 9.8e2 2e−6 4.8e−6 9.2e−3

MC4 7 1400 39, 004 80 33 1.0e3 1e−6 2.1e−6 1.0e−2

MC5 8 1600 50, 944 79 33 3.2e3 8e−7 1.0e−6 1.2e−2

approximation of matrix B that we would like to recover. Following [5] we considered
a matrix recovered when εB = ‖X̄ − B‖F/‖B‖F ≤ 10−3 and we observed that high
accuracy in the solution of the SDP problem is not needed to get such accuracy in the
recovered matrix. Then, we set the stopping tolerance ε equal to 10−6 and σ = 0.5 in
Algorithm 1.

Following [5], we generated matrices B ∈ R
n̂×n̂ of rank r , by sampling two n̂ × r

factors BL and BR , each having independently and identically distributed Gaussian
entries, and setting B = BL BT

R . The set of observed entries Ω is generated sampling
m entries of B uniformly at random. We set m = 4r(2n̂ − r), that is m is four times
the degrees of freedom of rank r matrices and we choose r = n̂/100. This way, we
obtained dual matrices S with density dens(S) ≈ 4 · 10−2 and Cholesky factor’s
density of the order of 1.4 · 10−1. The dimensions of the generated SDP problems are
shown in Table 4.

Since in these problems m is large and reaches tens of thousand, we set q = 0.1m
in the partial Cholesky preconditioner with a saving of the 90% of memory. A feasible
starting couple (S, y) is trivially computed by setting y = 0 and S = C .

Results are reported setting the Matlab random generator rng(‘default’) and
rng(1), similar results have been found with different random seeds. In Table 4
we report statistics of our runs. The headings are the same as in Table 1 with extra
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information on the rank r of matrix B to be recovered and the relative error of the
recovered matrix εB .

We observe that the average number of nonlinear Newton iterations is larger than in
maximum cut problems indicating that the arising nonlinear systems are quite difficult.
On the other hand the average number of CG iterations remains small. Overall, the
average CPU time is comparable to that obtained formaximum cut problems of similar
size. The matrices B are recovered with a satisfactory accuracy.

7.5 Numerical validation of the short-step algorithm

Following the suggestion of the Anonymous Referee we carried experiments in order
to validate the theoretical analysis conducted in Sect. 5 for the Short-Step InexactDual-
Logarithmic barrier algorithm. We implemented Algorithm 4 and chose parameters
β, γ, θ according to (43) and satisfying the assumptions in Theorem 1. We set the
tolerance ε = 10−5. After iteration k̄, at which the algorithm stops, a further outer
iteration is performed until δ(Sk̄+1,�, μk̄+1) ≤ 10−5. Finally, we set a maximum
number of 50 CG iterations. Algorithm 4 requires a starting couple (S, μ) such that
S is feasible, μ > 0 and δex (S, μ) ≤ 1/2. Setting μ = 1, we built S by applying
one iteration of Algorithm 1. Linear systems at Lines 5–6 of Algorithm 2 have been
solved until δex (S�, μ) ≤ 1/2 (τ = 1/2).

Here we report the results obtained in the solution of the maximum cut problem
using graph G11. Using the above strategy, we obtained for G11 a well-centered dual
feasible S with δex (S, 1) = 0.1. For this problem n = 800 and consequently we used
θ = 0.008 with β = γ = 0.01. At the last interior point iteration, three Newton steps
have been performed. Note that for this problem ‖A†‖ = 1.

In Figs. 4 and 5 we report statistics concerning the first and last 5 outer iterations,
each involving 2 Newton inner iterations, except for the last one where 3 Newton
iterations have been performed. In Fig. 4, we plot the values of log10 δ(Sk,�, μk); the
horizontal line corresponds to the value log10(1/2). We can observe that, as Lemma 10
states, starting from (Sk,0, μk) such that δex (Sk,0, μk) ≤ 1/2 after merely 2 Newton
steps we obtain again a starting value Sk+1,0 for the next iteration that is well-centered
with respect to μk+1.

Let ρk,� for � = 0, 1 be the upper bound on the relative residual norms in Algo-
rithm 4 [see (32) and (34)]. Figure 5 shows the relative accuracy requirement ρk,�
dictated by the theory and the actual value of the relative residual ‖rk,�‖/‖b/μk −
A(S−1

k,�)‖ returned by CG, still in the first and in the last 5 outer iterations. We observe
that in the first iterations, the two quantities have the same order of magnitude that is
around 10−1 and 10−7 in the first and the second Newton iteration, respectively. On
the other hand, in the last iterations the prescribed accuracy is too tight and it is not
needed to preserve the two-step quadratic convergence of the method. In fact, we can
observe from the figures that in 50 iterations CG provides a higher value of the relative
residual than that prescribed by the theory, but after 2 Newton steps, we still obtain a
starting value Sk+1,0 for the next iteration that is well-centered with respect to μk+1,
as already noted.
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Fig. 4 Problem G11: Values of δ(Sk,�, μk ) for � = 1, 2(, 3) in first 5 (left figure) and last 5 (right figure)
outer iterations (logarithmic scale)
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Fig. 5 Problem G11: Values of ρk,� and ‖rk,�‖/‖b/μk − A(S−1
k,�)‖ for � = 1, 2(, 3) in first 5 (left) and

last 5 (right) outer iterations (logarithmic scale)

8 Conclusions

A variant of dual interior point method for semidefinite programming has been pro-
posed in this paper. The method uses inexact Newton steps and it is well suited to
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problems with sparse dual matrix S. The computations avoid any explicit use of primal
variable X (which might be noticeably more dense than S) and therefore the method
offers advantages in memory required to solve very large SDPs. Krylov subspace
method preconditioned with partial Cholesky factorization of the Schur complement
matrix is employed to solve the reduced KKT systems. Convergence properties and
the O(

√
n ln n

ε
) complexity result have been established. A prototype Matlab-based

implementation of the method has been developed and it has been demonstrated to
perform well on medium scale SDP problems arising in maximum cut and matrix
completion problems.
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