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Abstract This paper proposes tight semidefinite relaxations for polynomial optimiza-
tion. The optimality conditions are investigated. We show that generally Lagrange
multipliers can be expressed as polynomial functions in decision variables over the
set of critical points. The polynomial expressions are determined by linear equations.
Based on these expressions, newLasserre type semidefinite relaxations are constructed
for solving the polynomial optimization.We show that the hierarchy of new relaxations
has finite convergence, or equivalently, the new relaxations are tight for a finite relax-
ation order.
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1 Introduction

A general class of optimization problems is

⎧
⎨

⎩

fmin := min f (x)
s.t. ci (x) = 0 (i ∈ E),

c j (x) ≥ 0 ( j ∈ I),

(1.1)
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2 J. Nie

where f and all ci , c j are polynomials in x := (x1, . . . , xn), the real decision variable.
The E and I are two disjoint finite index sets of constraining polynomials. Lasserre’s
relaxations [17] are generally used for solving (1.1) globally, i.e., to find the global
minimum value fmin and minimizer(s) if any. The convergence of Lasserre’s relax-
ations is related to optimality conditions.

1.1 Optimality conditions

A general introduction of optimality conditions in nonlinear programming can be
found in [1, Section 3.3]. Let u be a local minimizer of (1.1). Denote the index set of
active constraints

J (u) := {i ∈ E ∪ I | ci (u) = 0}. (1.2)

If the constraint qualification condition (CQC) holds at u, i.e., the gradients ∇ci (u)

(i ∈ J (u)) are linearly independent (∇ denotes the gradient), then there exist Lagrange
multipliers λi (i ∈ E ∪ I) satisfying

∇ f (u) =
∑

i∈E∪I
λi∇ci (u), (1.3)

ci (u) = 0 (i ∈ E), λ j c j (u) = 0 ( j ∈ I), (1.4)

c j (u) ≥ 0 ( j ∈ I), λ j ≥ 0 ( j ∈ I). (1.5)

The second equation in (1.4) is called the complementarity condition. Ifλ j+c j (u) > 0
for all j ∈ I, the strict complementarity condition (SCC) is said to hold. For the λi ’s
satisfying (1.3)–(1.5), the associated Lagrange function is

L (x) := f (x) −
∑

i∈E∪I
λi ci (x).

Under the constraint qualification condition, the second order necessary condition
(SONC) holds at u, i.e., (∇2 denotes the Hessian)

vT
(
∇2L (u)

)
v ≥ 0 for all v ∈

⋂

i∈J (u)

∇ci (u)⊥. (1.6)

Here, ∇ci (u)⊥ is the orthogonal complement of ∇ci (u). If it further holds that

vT
(
∇2L (u)

)
v > 0 for all 0 �= v ∈

⋂

i∈J (u)

∇ci (u)⊥, (1.7)

then the second order sufficient condition (SOSC) is said to hold. If the constraint
qualification condition holds at u, then (1.3), (1.4) and (1.6) are necessary conditions
for u to be a local minimizer. If (1.3), (1.4), (1.7) and the strict complementarity
condition hold, then u is a strict local minimizer.
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Tight relaxations and Lagrange multiplier expressions 3

1.2 Some existing work

Under the archimedean condition (see Sect. 2), the hierarchy of Lasserre’s relaxations
converges asymptotically [17]. Moreover, in addition to the archimedeanness, if the
constraint qualification, strict complementarity, and second order sufficient conditions
hold at every global minimizer, then the Lasserre’s hierarchy converges in finitely
many steps [33]. For convex polynomial optimization, the Lasserre’s hierarchy has
finite convergence under the strict convexity or sos-convexity condition [7,20]. For
unconstrained polynomial optimization, the standard sum of squares relaxation was
proposed in [35]. When the equality constraints define a finite set, the Lasserre’s hier-
archy also has finite convergence, as shown in [18,24,31]. Recently, a bounded degree
hierarchy of relaxations was proposed for solving polynomial optimization [23]. Gen-
eral introductions to polynomial optimization and moment problems can be found in
the books and surveys [21,22,25,26,39]. Lasserre’s relaxations provide lower bounds
for the minimum value. There also exist methods that compute upper bounds [8,19]. A
convergence rate analysis for such upper bounds is given in [9,10].When a polynomial
optimization problem does not have minimizers (i.e., the infimum is not achievable),
there are relaxation methods for computing the infimum [38,42].

A new type of Lasserre’s relaxations, based on Jacobian representations, were
recently proposed in [30]. The hierarchy of such relaxations always has finite conver-
gence, when the tuple of constraining polynomials is nonsingular (i.e., at every point
in C

n , the gradients of active constraining polynomial are linearly independent; see
Definition 5.1). When there are only equality constraints c1(x) = · · · = cm(x) = 0,
the method needs the maximal minors of the matrix

[∇ f (x) ∇c1(x) · · · ∇cm(x)
]
.

When there are inequality constraints, it requires to enumerate all possibilities of active
constraints. The method in [30] is expensive when there are a lot of constraints. For
unconstrained optimization, it is reduced to the gradient sum of squares relaxations in
[27].

1.3 New contributions

When Lasserre’s relaxations are used to solve polynomial optimization, the following
issues are typically of concerns:

– The convergence depends on the archimedean condition (see Sect. 2), which is
satisfied only if the feasible set is compact. If the set is noncompact, how can we
get convergent relaxations?

– The cost of Lasserre’s relaxations depends significantly on the relaxation order.
For a fixed order, can we construct tighter relaxations than the standard ones?

– When the convergence of Lasserre’s relaxations is slow, can we construct new
relaxations whose convergence is faster?

123



4 J. Nie

– When the optimality conditions fail to hold, the Lasserre’s hierarchy might not
have finite convergence. Can we construct a new hierarchy of stronger relaxations
that also has finite convergence for such cases?

This paper addresses the above concerns. We construct tighter relaxations by using
optimality conditions. In (1.3)–(1.4), under the constraint qualification condition, the
Lagrangemultipliersλi are uniquely determined by u. Consider the polynomial system
in (x, λ):

∑

i∈E∪I
λi∇ci (x) = ∇ f (x), ci (x) = 0 (i ∈ E), λ j c j (x) = 0 ( j ∈ I). (1.8)

A point x satisfying (1.8) is called a critical point, and such (x, λ) is called a critical
pair. In (1.8), once x is known, λ can be determined by linear equations. Generally, the
value of x is not known. One can try to express λ as a rational function in x . Suppose
E ∪ I = {1, . . . ,m} and denote

G(x) := [∇c1(x) · · · ∇cm(x)
]
.

When m ≤ n and rankG(x) = m, we can get the rational expression

λ = (
G(x)T G(x)

)−1
G(x)T∇ f (x). (1.9)

Typically, thematrix inverse
(
G(x)T G(x)

)−1 is expensive for usage. The denominator
det
(
G(x)T G(x)

)
is typically a high degree polynomial. When m > n, G(x)T G(x)

is always singular and we cannot express λ as in (1.9).
Do there exist polynomials pi (i ∈ E ∪ I) such that each

λi = pi (x) (1.10)

for all (x, λ) satisfying (1.8)? If they exist, then we can do:

– The polynomial system (1.8) can be simplified to

∑

i∈E∪I
pi (x)∇ci (x) = ∇ f (x), ci (x) = 0(i ∈ E), p j (x)c j (x) = 0( j ∈ I).

(1.11)
– For each j ∈ I, the sign condition λ j ≥ 0 is equivalent to

p j (x) ≥ 0. (1.12)

The new conditions (1.11) and (1.12) are only about the variable x , not λ. They can
be used to construct tighter relaxations for solving (1.1).

When do there exist polynomials pi satisfying (1.10)? If they exist, how can we
compute them? How can we use them to construct tighter relaxations? Do the new
relaxations have advantages over the old ones? These questions are the main topics of
this paper. Our major results are:
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Tight relaxations and Lagrange multiplier expressions 5

– We show that the polynomials pi satisfying (1.10) always exist when the tuple of
constraining polynomials is nonsingular (see Definition 5.1). Moreover, they can
be determined by linear equations.

– Using the new conditions (1.11)–(1.12), we can construct tight relaxations for
solving (1.1). To be more precise, we construct a hierarchy of new relaxations,
which has finite convergence. This is true even if the feasible set is noncompact
and/or the optimality conditions fail to hold.

– For every relaxation order, the new relaxations are tighter than the standard ones
in the prior work.

The paper is organized as follows. Section 2 reviews some basics in polynomial
optimization. Section 3 constructs new relaxations and proves their tightness. Section 4
characterizes when the polynomials pi ’s satisfying (1.10) exist and shows how to
determine them, for polyhedral constraints. Section 5 discusses the case of general
nonlinear constraints. Section 6 gives examples of using the new relaxations. Section 7
discusses some related issues.

2 Preliminaries

Notation The symbol N (resp., R, C) denotes the set of nonnegative integral (resp.,
real, complex) numbers. The symbol R[x] := R[x1, . . . , xn] denotes the ring of poly-
nomials in x := (x1, . . . , xn) with real coefficients. The R[x]d stands for the set of
real polynomials with degrees ≤ d. Denote

N
n
d := {α := (α1, . . . , αn) ∈ N

n | |α| := α1 + · · · + αn ≤ d}.

For a polynomial p, deg(p) denotes its total degree. For t ∈ R, 	t
 denotes the smallest
integer ≥ t . For an integer k > 0, denote [k] := {1, 2, . . . , k}. For x = (x1, . . . , xn)
and α = (α1, . . . , αn), denote

xα := xα1
1 · · · xαn

n , [x]d := [
1 x1 · · · xn x21 x1x2 · · · xdn

]T
.

The superscript T denotes the transpose of a matrix/vector. The ei denotes the i th stan-
dard unit vector, while e denotes the vector of all ones. The Im denotes the m-by-m
identity matrix. By writing X � 0 (resp., X � 0), we mean that X is a symmet-
ric positive semidefinite (resp., positive definite) matrix. For matrices X1, . . . , Xr ,
diag(X1, . . . , Xr ) denotes the block diagonal matrix whose diagonal blocks are
X1, . . . , Xr . In particular, for a vector a, diag(a) denotes the diagonal matrix whose
diagonal vector is a. For a function f in x , fxi denotes its partial derivativewith respect
to xi .

We review some basics in computational algebra and polynomial optimization.
They could be found in [4,21,22,25,26]. An ideal I of R[x] is a subset such that
I · R[x] ⊆ I and I + I ⊆ I . For a tuple h := (h1, . . . , hm) of polynomials, Ideal(h)

denotes the smallest ideal containing all hi , which is the set

h1 · R[x] + · · · + hm · R[x].
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6 J. Nie

The 2kth truncation of Ideal(h) is the set

Ideal(h)2k := h1 · R[x]2k−deg(h1) + · · · + hm · R[x]2k−deg(hm ).

The truncation Ideal(h)2k depends on the generators h1, . . . , hm . For an ideal I , its
complex and real varieties are respectively defined as

VC(I ) := {v ∈ C
n | p(v) = 0 ∀ p ∈ I }, VR(I ) := VC(I ) ∩ R

n .

A polynomial σ is said to be a sum of squares (SOS) if σ = s21 + · · · + s2k for
some polynomials s1, . . . , sk ∈ R[x]. The set of all SOS polynomials in x is denoted
as Σ[x]. For a degree d, denote the truncation

Σ[x]d := Σ[x] ∩ R[x]d .

For a tuple g = (g1, . . . , gt ), its quadratic module is the set

Qmod(g) := Σ[x] + g1 · Σ[x] + · · · + gt · Σ[x].

The 2kth truncation of Qmod(g) is the set

Qmod(g)2k := Σ[x]2k + g1 · Σ[x]2k−deg(g1) + · · · + gt · Σ[x]2k−deg(gt ).

The truncation Qmod(g)2k depends on the generators g1, . . . , gt . Denote

{
IQ(h, g) := Ideal(h) + Qmod(g),
IQ(h, g)2k := Ideal(h)2k + Qmod(g)2k .

(2.1)

The set IQ(h, g) is said to be archimedean if there exists p ∈ IQ(h, g) such that
p(x) ≥ 0 defines a compact set in R

n . If IQ(h, g) is archimedean, then

K := {x ∈ R
n | h(x) = 0, g(x) ≥ 0}

must be a compact set. Conversely, if K is compact, say, K ⊆ B(0, R) (the ball
centered at 0 with radius R), then IQ(h, (g, R2 − xT x)) is always archimedean and
h = 0, (g, R2 − xT x) ≥ 0 define the same set K .

Theorem 2.1 (Putinar [36]) Let h, g be tuples of polynomials in R[x]. Let K be as
above. Assume IQ(h, g) is archimedean. If a polynomial f ∈ R[x] is positive on K ,
then f ∈ IQ(h, g).

Interestingly, if f is only nonnegative on K but standard optimality conditions hold
(see Sect. 1.1), then we still have f ∈ IQ(h, g) [33].

Let R
N
n
d be the space of real multi-sequences indexed by α ∈ N

n
d . A vector in R

N
n
d

is called a truncated multi-sequence (tms) of degree d. A tms y := (yα)α∈Nn
d
gives the
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Tight relaxations and Lagrange multiplier expressions 7

Riesz functional Ry acting on R[x]d as

Ry

( ∑

α∈Nn
d

fαx
α
)

:=
∑

α∈Nn
d

fα yα. (2.2)

For f ∈ R[x]d and y ∈ R
N
n
d , we denote

〈 f, y〉 := Ry( f ). (2.3)

Let q ∈ R[x]2k . The kth localizing matrix of q, generated by y ∈ R
N
n
2k , is the

symmetric matrix L(k)
q (y) such that

vec(a1)
T
(
L(k)
q (y)

)
vec(a2) = Ry(qa1a2) (2.4)

for all a1, a2 ∈ R[x]k−	deg(q)/2
. (The vec(ai ) denotes the coefficient vector of ai .)

When q = 1, L(k)
q (y) is called a moment matrix and we denote

Mk(y) := L(k)
1 (y). (2.5)

The columns and rows of L(k)
q (y), as well as Mk(y), are indexed by α ∈ N

n with
2|α| + deg(q) ≤ 2k. When q = (q1, . . . , qr ) is a tuple of polynomials, we define

L(k)
q (y) := diag

(
L(k)
q1 (y), . . . , L(k)

qr (y)
)
, (2.6)

a block diagonal matrix. For the polynomial tuples h, g as above, the set

S (h, g)2k :=
{
y ∈ R

N
2k
n

∣
∣
∣ L

(k)
h (y) = 0, L(k)

g (y) � 0
}

(2.7)

is a spectrahedral cone inR
N
2k
n . The set IQ(h, g)2k is also a convex cone inR[x]2k . The

dual cone of IQ(h, g)2k is preciselyS (h, g)2k [22,25,34]. This is because 〈p, y〉 ≥ 0
for all p ∈ IQ(h, g)2k and for all y ∈ S (h, g)2k .

3 The construction of tight relaxations

Consider the polynomial optimization problem (1.1). Let

λ := (λi )i∈E∪I

be the vector of Lagrange multipliers. Denote the critical set

K :=
{

(x, λ) ∈ R
n × R

E∪I
∣
∣
∣
∣
∣

ci (x) = 0(i ∈ E), λ j c j (x) = 0 ( j ∈ I)

∇ f (x) = ∑

i∈E∪I
λi∇ci (x)

}

. (3.1)
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8 J. Nie

Each point in K is called a critical pair. The projection

Kc := {u | (u, λ) ∈ K} (3.2)

is the set of all real critical points. To construct tight relaxations for solving (1.1), we
need the following assumption for Lagrange multipliers.

Assumption 3.1 For each i ∈ E ∪ I, there exists a polynomial pi ∈ R[x] such that
for all (x, λ) ∈ K it holds that

λi = pi (x).

Assumption 3.1 is generically satisfied, as shown in Proposition 5.7. For the fol-
lowing special cases, we can get polynomials pi explicitly.

– (Simplex) For the simplex {eT x − 1 = 0, x1 ≥ 0, . . . , xn ≥ 0}, it corresponds to
that E = {0}, I = [n], c0(x) = eT x − 1, c j (x) = x j ( j ∈ [n]). The Lagrange
multipliers can be expressed as

λ0 = xT∇ f (x), λ j = fx j − xT∇ f (x) ( j ∈ [n]). (3.3)

– (Hypercube) For the hypercube [−1, 1]n , it corresponds to that E = ∅, I = [n]
and each c j (x) = 1 − x2j . We can show that

λ j = −1

2
x j fx j ( j ∈ [n]). (3.4)

– (Ball or sphere) The constraint is 1− xT x = 0 or 1− xT x ≥ 0. It corresponds to
that E ∪ I = {1} and c1 = 1 − xT x . We have

λ1 = −1

2
xT∇ f (x). (3.5)

– (Triangular constraints) Suppose E ∪ I = {1, . . . ,m} and each

ci (x) = τi xi + qi (xi+1, . . . , xn)

for some polynomials qi ∈ R[xi+1, . . . , xn] and scalars τi �= 0. The matrix T (x),
consisting of the first m rows of [∇c1(x), . . . ,∇cm(x)], is an invertible lower
triangular matrix with constant diagonal entries. Then,

λ = T (x)−1 · [ fx1 · · · fxm
]T

.

Note that the inverse T (x)−1 is a matrix polynomial.
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Tight relaxations and Lagrange multiplier expressions 9

For more general constraints, we can also express λ as a polynomial function in x on
the set Kc. This will be discussed in Sect. 4 and Sect. 5.

For the polynomials pi as in Assumption 3.1, denote

φ :=
(
∇ f −

∑

i∈E∪I
pi∇ci ,

(
p j c j

)

j∈I
)
, ψ := (

p j
)

j∈I . (3.6)

When theminimumvalue fmin of (1.1) is achieved at a critical point, (1.1) is equivalent
to the problem ⎧

⎨

⎩

fc := min f (x)
s.t. ceq(x) = 0, cin(x) ≥ 0,

φ(x) = 0, ψ(x) ≥ 0.
(3.7)

We apply Lasserre’s relaxations to solve it. For an integer k > 0 (called the relaxation
order), the kth order Lasserre’s relaxation for (3.7) is

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f ′
k := min 〈 f, y〉

s.t. 〈1, y〉 = 1, Mk(y) � 0
L(k)
ceq (y) = 0, L(k)

cin (y) � 0,

L(k)
φ (y) = 0, L(k)

ψ (y) � 0, y ∈ R
N
n
2k .

(3.8)

Since x0 = 1 (the constant one polynomial), the condition 〈1, y〉 = 1 means that
(y)0 = 1. The dual optimization problem of (3.8) is

{
fk := max γ

s.t. f − γ ∈ IQ(ceq , cin)2k + IQ(φ,ψ)2k .
(3.9)

We refer to Sect. 2 for the notation used in (3.8)–(3.9). They are equivalent to semidef-
inite programs (SDPs), so they can be solved by SDP solvers (e.g., SeDuMi [40]).
For k = 1, 2, . . ., we get a hierarchy of Lasserre’s relaxations. In (3.8)–(3.9), if we
remove the usage of φ and ψ , they are reduced to standard Lasserre’s relaxations in
[17]. So, (3.8)–(3.9) are stronger relaxations.

By the construction of φ as in (3.6), Assumption 3.1 implies that

Kc = {u ∈ R
n : ceq(u) = 0, φ(u) = 0}.

By Lemma 3.3 of [6], f achieves only finitely many values on Kc, say,

v1 < · · · < vN . (3.10)

A point u ∈ Kc might not be feasible for (3.7), i.e., it is possible that cin(u) � 0 or
ψ(u) � 0. In applications, we are often interested in the optimal value fc of (3.7).
When (3.7) is infeasible, by convention, we set

fc = +∞.
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10 J. Nie

When the optimal value fmin of (1.1) is achieved at a critical point, fc = fmin.
This is the case if the feasible set is compact, or if f is coercive (i.e., for each 
, the
sublevel set { f (x) ≤ 
} is compact), and the constraint qualification condition holds.
As in [17], one can show that

fk ≤ f ′
k ≤ fc (3.11)

for all k. Moreover, { fk} and { f ′
k} are both monotonically increasing. If for some order

k it occurs that

fk = f ′
k = fc,

then the kth order Lasserre’s relaxation is said to be tight (or exact).

3.1 Tightness of the relaxations

Let cin, ψ,Kc, fc be as above. We refer to Sect. 2 for the notation Qmod (cin, ψ). We
begin with a general assumption.

Assumption 3.2 There exists ρ ∈ Qmod(cin, ψ) such that if u ∈ Kc and f (u) < fc,
then ρ(u) < 0.

In Assumption 3.2, the hypersurface ρ(x) = 0 separates feasible and infeasible
critical points. Clearly, if u ∈ Kc is a feasible point for (3.7), then cin(u) ≥ 0 and
ψ(u) ≥ 0, and hence ρ(u) ≥ 0. Assumption 3.2 generally holds. For instance, it is
satisfied for the following general cases.

(a) When there are no inequality constraints, cin and ψ are empty tuples. Then,
Qmod(cin, ψ) = Σ[x] and Assumption 3.2 is satisfied for ρ = 0.

(b) Suppose the set Kc is finite, say, Kc = {u1, . . . , uD}, and

f (u1), . . . , f (ut−1) < fc ≤ f (ut ), . . . , f (uD).

Let 
1, . . . , 
D be real interpolating polynomials such that 
i (u j ) = 1 for i = j
and 
i (u j ) = 0 for i �= j . For each i = 1, . . . , t−1, there must exist ji ∈ I such
that c ji (ui ) < 0. Then, the polynomial

ρ :=
∑

i<t

−1

c ji (ui )
c ji (x)
i (x)

2 +
∑

i≥t


i (x)
2 (3.12)

satisfies Assumption 3.2.
(c) For each x with f (x) = vi < fc, at least one of the constraints c j (x) ≥ 0, p j (x) ≥

0( j ∈ I) is violated. Suppose for each critical value vi < fc, there exists gi ∈
{c j , p j } j∈I such that

gi < 0 on Kc ∩ { f (x) = vi }.
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Tight relaxations and Lagrange multiplier expressions 11

Let ϕ1, . . . , ϕN be real univariate polynomials such that ϕi (v j ) = 0 for i �= j and
ϕi (v j ) = 1 for i = j . Suppose vt = fc. Then, the polynomial

ρ :=
∑

i<t

gi (x)
(
ϕi ( f (x))

)2 +
∑

i≥t

(
ϕi ( f (x))

)2 (3.13)

satisfies Assumption 3.2.

We refer to Sect. 2 for the archimedean condition and the notation IQ(h, g) as in
(2.1). The following is about the convergence of relaxations (3.8)–(3.9).

Theorem 3.3 Suppose Kc �= ∅ and Assumption 3.1 holds. If

(i) IQ(ceq , cin) + IQ(φ,ψ) is archimedean, or
(ii) IQ(ceq , cin) is archimedean, or
(iii) Assumption 3.2 holds,

then fk = f ′
k = fc for all k sufficiently large. Therefore, if the minimum value fmin of

(1.1) is achieved at a critical point, then fk = f ′
k = fmin for all k big enough if one

of the conditions (i)–(iii) is satisfied.

Remark In Theorem 3.3, the conclusion holds if any of conditions (i)–(iii) is satisfied.
The condition (ii) is only about constraining polynomials of (1.1). It can be checked
without φ,ψ . Clearly, the condition (ii) implies the condition (i).

The proof for Theorem 3.3 is given in the following. The main idea is to consider
the set of critical points. It can be expressed as a union of subvarieties. The objective
f is a constant in each one of them. We can get an SOS type representation for f on
each subvariety, and then construct a single one for f over the entire set of critical
points.

Proof of Theorem 3.3 Clearly, every point in the complex variety

K1 := {x ∈ C
n | ceq(x) = 0, φ(x) = 0}

is a critical point. By Lemma 3.3 of [6], the objective f achieves finitely many real
values onKc = K1 ∩R

n , say, they are v1 < · · · < vN . Up to the shifting of a constant
in f , we can further assume that fc = 0. Clearly, fc equals one of v1, . . . , vN , say
vt = fc = 0.

Case I Assume IQ(ceq , cin) + IQ(φ,ψ) is archimedean. Let

I := Ideal(ceq , φ),

the critical ideal. Note that K1 = VC(I ). The variety VC(I ) is a union of irreducible
subvarieties, say, V1, . . . , V
. If Vi ∩ R

n �= ∅, then f is a real constant on Vi , which
equals one of v1, . . . , vN . This can be implied by Lemma 3.3 of [6] and Lemma 3.2
of [30]. Denote the subvarieties of VC(I ):

Ti := K1 ∩ { f (x) = vi } (i = t, . . . , N ).
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12 J. Nie

Let Tt−1 be the union of irreducible subvarieties Vi , such that either Vi ∩ R
n = ∅ or

f ≡ v j on Vi with v j < vt = fc. Then, it holds that

VC(I ) = Tt−1 ∪ Tt ∪ · · · ∪ TN .

By the primary decomposition of I [11,41], there exist ideals It−1, It , . . . , IN ⊆ R[x]
such that

I = It−1 ∩ It ∩ · · · ∩ IN

and Ti = VC(Ii ) for all i = t − 1, t, . . . , N . Denote the semialgebraic set

S := {x ∈ R
n | cin(x) ≥ 0, ψ(x) ≥ 0}. (3.14)

For i = t − 1, we have VR(It−1) ∩ S = ∅, because v1, . . . , vt−1 < fc. By the
Positivstellensatz [2, Corollary 4.4.3], there exists p0 ∈ Preord(cin, ψ)1 satisfying
2 + p0 ∈ It−1. Note that 1 + p0 > 0 on VR(It−1) ∩ S. The set It−1 + Qmod(cin, ψ)

is archimedean, because I ⊆ It−1 and

IQ(ceq , cin) + IQ(φ,ψ) ⊆ It−1 + Qmod(cin, ψ).

By Theorem 2.1, we have

p1 := 1 + p0 ∈ It−1 + Qmod(cin, ψ).

Then, 1 + p1 ∈ It−1. There exists p2 ∈ Qmod(cin, ψ) such that

−1 ≡ p1 ≡ p2 mod It−1.

Since f = ( f/4 + 1)2 − 1 · ( f/4 − 1)2, we have

f ≡ σt−1 :=
{
( f/4 + 1)2 + p2( f/4 − 1)2

}
mod It−1.

So, when k is big enough, we have σt−1 ∈ Qmod(cin, ψ)2k .
For i = t , vt = 0 and f (x) vanishes on VC(It ). By Hilbert’s Strong Nullstellensatz

[4], there exists an integer mt > 0 such that f mt ∈ It . Define the polynomial

st (ε) := √
ε

mt−1∑

j=0

(
1/2

j

)

ε− j f j .

Then, we have that

D1 := ε(1 + ε−1 f ) − (
st (ε)

)2 ≡ 0 mod It .

1 It is the preordering of the polynomial tuple (cin , ψ); see Sect. 7.1.

123



Tight relaxations and Lagrange multiplier expressions 13

This is because in the subtraction of D1, after expanding
(
st (ε)

)2, all the terms f j

with j < mt are cancelled and f j ∈ It for j ≥ mt . So, D1 ∈ It . Let σt (ε) := st (ε)2,
then f + ε − σt (ε) = D1 and

f + ε − σt (ε) =
mt−2∑

j=0

b j (ε) f
mt+ j (3.15)

for some real scalars b j (ε), depending on ε.
For each i = t+1, . . . , N , vi > 0 and f (x)/vi −1 vanishes onVC(Ii ). ByHilbert’s

Strong Nullstellensatz [4], there exists 0 < mi ∈ N such that ( f/vi − 1)mi ∈ Ii . Let

si := √
vi

mi−1∑

j=0

(
1/2

j

)

( f/vi − 1) j .

Like for the case i = t , we can similarly show that f − s2i ∈ Ii . Let σi = s2i , then
f − σi ∈ Ii .
Note that VC(Ii ) ∩ VC(I j ) = ∅ for all i �= j . By Lemma 3.3 of [30], there exist

polynomials at−1, . . . , aN ∈ R[x] such that

a2t−1 + · · · + a2N − 1 ∈ I, ai ∈
⋂

i �= j∈{t−1,...,N }
I j .

For ε > 0, denote the polynomial

σε := σt (ε)a
2
t +

∑

t �= j∈{t−1,...,N }
(σ j + ε)a2j ,

then

f + ε − σε = ( f + ε)(1 − a2t−1 − · · · − a2N )

+ ∑

t �=i∈{t−1,...,N }
( f − σi )a2i + ( f + ε − σt (ε))a2t .

For each i �= t , f − σi ∈ Ii , so

( f − σi )a
2
i ∈

N⋂

j=t−1

I j = I.

Hence, there exists k1 > 0 such that

( f − σi )a
2
i ∈ I2k1 (t �= i ∈ {t − 1, . . . , N }).
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14 J. Nie

Since f + ε − σt (ε) ∈ It , we also have

( f + ε − σt (ε))a
2
t ∈

N⋂

j=t−1

I j = I.

Moreover, by the Eq. (3.15),

( f + ε − σt (ε))a
2
t =

mt−2∑

j=0

b j (ε) f
mt+ j a2t .

Each f mt+ j a2t ∈ I , since f mt+ j ∈ It . So, there exists k2 > 0 such that for all ε > 0

( f + ε − σt (ε))a
2
t ∈ I2k2 .

Since 1 − a2t−1 − · · · − a2N ∈ I , there also exists k3 > 0 such that for all ε > 0

( f + ε)(1 − a2t−1 − · · · − a2N ) ∈ I2k3 .

Hence, if k∗ ≥ max{k1, k2, k3}, then we have

f (x) + ε − σε ∈ I2k∗

for all ε > 0. By the construction, the degrees of all σi and ai are independent of ε.
So, σε ∈ Qmod(cin, ψ)2k∗ for all ε > 0 if k∗ is big enough. Note that

I2k∗ + Qmod(cin, ψ)2k∗ = IQ(ceq , cin)2k∗ + IQ(φ,ψ)2k∗ .

This implies that fk∗ ≥ fc − ε for all ε > 0. On the other hand, we always have
fk∗ ≤ fc. So, fk∗ = fc. Moreover, since { fk} is monotonically increasing, we must
have fk = fc for all k ≥ k∗.

Case II Assume IQ(ceq , cin) is archimedean. Because

IQ(ceq , cin) ⊆ IQ(ceq , cin) + IQ(φ,ψ),

the set IQ(ceq , cin) + IQ(φ,ψ) is also archimedean. Therefore, the conclusion is also
true by applying the result for Case I.

Case III Suppose the Assumption 3.2 holds. Let ϕ1, . . . , ϕN be real univariate poly-
nomials such that ϕi (v j ) = 0 for i �= j and ϕi (v j ) = 1 for i = j . Let

s := st + · · · + sN whereeach si := (vi − fc)
(
ϕi ( f )

)2
.

Then, s ∈ Σ[x]2k4 for some integer k4 > 0. Let

f̂ := f − fc − s.
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Tight relaxations and Lagrange multiplier expressions 15

We show that there exist an integer 
 > 0 and q ∈ Qmod(cin, ψ) such that

f̂ 2
 + q ∈ Ideal(ceq , φ).

This is because, by Assumption 3.2, f̂ (x) ≡ 0 on the set

K2 := {x ∈ R
n : ceq(x) = 0, φ(x) = 0, ρ(x) ≥ 0}.

It has only a single inequality. By the Positivstellensatz [2, Corollary 4.4.3], there exist
0 < 
 ∈ N and q = b0 + ρb1 (b0, b1 ∈ Σ[x]) such that f̂ 2
 + q ∈ Ideal(ceq , φ). By
Assumption 3.2, ρ ∈ Qmod(cin, ψ), so we have q ∈ Qmod(cin, ψ).

For all ε > 0 and τ > 0, we have f̂ + ε = φε + θε where

φε = −τε1−2
( f̂ 2
 + q
)
,

θε = ε
(
1 + f̂ /ε + τ( f̂ /ε)2


)
+ τε1−2
q.

By Lemma 2.1 of [31], when τ ≥ 1
2
 , there exists k5 such that, for all ε > 0,

φε ∈ Ideal(ceq , φ)2k5 , θε ∈ Qmod(cin, ψ)2k5 .

Hence, we can get

f − ( fc − ε) = φε + σε,

where σε = θε + s ∈ Qmod(cin, ψ)2k5 for all ε > 0. Note that

IQ(ceq , cin)2k5 + IQ(φ,ψ)2k5 = Ideal(ceq , φ)2k5 + Qmod(cin, ψ)2k5 .

For all ε > 0, γ = fc − ε is feasible in (3.9) for the order k5, so fk5 ≥ fc. Because
of (3.11) and the monotonicity of { fk}, we have fk = f ′

k = fc for all k ≥ k5. ��

3.2 Detecting tightness and extracting minimizers

The optimal value of (3.7) is fc, and the optimal value of (1.1) is fmin. If fmin is
achievable at a critical point, then fc = fmin. In Theorem 3.3, we have shown that
fk = fc for all k big enough, where fk is the optimal value of (3.9). The value fc or
fmin is often not known. How do we detect the tightness fk = fc in computation? The
flat extension or flat truncation condition [5,14,32] can be used for checking tightness.
Suppose y∗ is a minimizer of (3.8) for the order k. Let

d := 	deg(ceq , cin, φ, ψ)/2
. (3.16)

123



16 J. Nie

If there exists an integer t ∈ [d, k] such that

rankMt (y
∗) = rankMt−d(y

∗) (3.17)

then fk = fc and we can get r := rankMt (y∗) minimizers for (3.7) [5,14,32]. The
method in [14] can be used to extract minimizers. It was implemented in the software
GloptiPoly 3 [13]. Generally, (3.17) can serve as a sufficient and necessary con-
dition for detecting tightness. The case that (3.7) is infeasible (i.e., no critical points
satisfy the constraints cin ≥ 0, ψ ≥ 0) can also be detected by solving the relaxations
(3.8)–(3.9).

Theorem 3.4 Under Assumption 3.1, the relaxations (3.8)–(3.9) have the following
properties:

(i) If (3.8) is infeasible for some order k, then no critical points satisfy the constraints
cin ≥ 0, ψ ≥ 0, i.e., (3.7) is infeasible.

(ii) Suppose Assumption 3.2 holds. If (3.7) is infeasible, then the relaxation (3.8) must
be infeasible when the order k is big enough.

In the following, assume (3.7) is feasible (i.e., fc < +∞). Then, for all k big enough,
(3.8) has a minimizer y∗. Moreover,

(iii) If (3.17) is satisfied for some t ∈ [d, k], then fk = fc.
(iv) If Assumption 3.2 holds and (3.7) has finitely many minimizers, then every min-

imizer y∗ of (3.8) must satisfy (3.17) for some t ∈ [d, k], when k is big enough.

Proof By Assumption 3.1, u is a critical point if and only if ceq(u) = 0, φ(u) = 0.

(i) For every feasible point u of (3.7), the tms [u]2k (see Sect. 2 for the notation) is
feasible for (3.8), for all k. Therefore, if (3.8) is infeasible for some k, then (3.7)
must be infeasible.

(ii) By Assumption 3.2, when (3.7) is infeasible, the set

{x ∈ R
n : ceq(x) = 0, φ(x) = 0, ρ(x) ≥ 0}

is empty. It has a single inequality. By the Positivstellensatz [2, Corollary 4.4.3],
it holds that −1 ∈ Ideal(ceq , φ) + Qmod(ρ). By Assumption 3.2,

Ideal(ceq , φ) + Qmod(ρ) ⊆ IQ(ceq , cin) + IQ(φ,ψ).

Thus, for all k big enough, (3.9) is unbounded from above. Hence, (3.8) must be
infeasible, by weak duality.
When (3.7) is feasible, f achieves finitely many values on Kc, so (3.7) must
achieve its optimal value fc. By Theorem 3.3, we know that fk = f ′

k = fc for
all k big enough. For each minimizer u∗ of (3.7), the tms [u∗]2k is a minimizer
of (3.8).

(iii) If (3.17) holds, we can get r := rankMt (y∗) minimizers for (3.7) [5,14], say,
u1, . . . , ur , such that fk = f (ui ) for each i . Clearly, fk = f (ui ) ≥ fc. On the
other hand, we always have fk ≤ fc. So, fk = fc.
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Tight relaxations and Lagrange multiplier expressions 17

(iv) By Assumption 3.2, (3.7) is equivalent to the problem

{
min f (x)
s.t. ceq(x) = 0, φ(x) = 0, ρ(x) ≥ 0.

(3.18)

The optimal value of (3.18) is also fc. Its kth order Lasserre’s relaxation is

⎧
⎨

⎩

γ ′
k := min 〈 f, y〉

s.t. 〈1, y〉 = 1, Mk(y) � 0,
L(k)
ceq (y) = 0, L(k)

φ (y) = 0, L(k)
ρ (y) � 0.

(3.19)

Its dual optimization problem is

{
γk := max γ

s.t. f − γ ∈ Ideal(ceq , φ)2k + Qmod(ρ)2k .
(3.20)

By repeating the same proof as for Theorem 3.3(iii), we can show that

γk = γ ′
k = fc

for all k big enough. Because ρ ∈ Qmod(cin, ψ), each y feasible for (3.8) is
also feasible for (3.19). So, when k is big, each y∗ is also a minimizer of (3.19).
The problem (3.18) also has finitely many minimizers. By Theorem 2.6 of [32],
the condition (3.17) must be satisfied for some t ∈ [d, k], when k is big enough.

��
If (3.7) has infinitely many minimizers, then the condition (3.17) is typically not

satisfied. We refer to [25, §6.6].

4 Polyhedral constraints

In this section, we assume the feasible set of (1.1) is the polyhedron

P := {x ∈ R
n | Ax − b ≥ 0},

where A = [
a1 · · · am

]T ∈ R
m×n , b = [

b1 · · · bm
]T ∈ R

m . This corresponds to that
E = ∅, I = [m], and each ci (x) = aTi x − bi . Denote

D(x) := diag(c1(x), . . . , cm(x)), C(x) :=
[

AT

D(x)

]

. (4.1)

The Lagrange multiplier vector λ := [
λ1 · · · λm

]T satisfies

[
AT

D(x)

]

λ =
[∇ f (x)

0

]

. (4.2)
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18 J. Nie

If rank A = m, we can express λ as

λ = (AAT )−1A∇ f (x). (4.3)

If rank A < m, how can we express λ in terms of x? In computation, we often prefer
a polynomial expression. If there exists L(x) ∈ R[x]m×(n+m) such that

L(x)C(x) = Im, (4.4)

then we can get

λ = L(x)

[∇ f (x)
0

]

= L1(x)∇ f (x),

where L1(x) consists of the first n columns of L(x). In this section, we characterize
when such L(x) exists and give a degree bound for it.

The linear function Ax−b is said to be nonsingular if rankC(u) = m for all u ∈ C
n

(also see Definition 5.1). This is equivalent to that for every u, if J (u) = {i1, . . . , ik}
(see (1.2) for the notation), then ai1 , . . . , aik are linearly independent.

Proposition 4.1 The linear function Ax − b is nonsingular if and only if there exists
a matrix polynomial L(x) satisfying (4.4). Moreover, when Ax − b is nonsingular, we
can choose L(x) in (4.4) with deg(L) ≤ m − rank A.

Proof Clearly, if (4.4) is satisfied by some L(x), then rankC(u) ≥ m for all u. This
implies that Ax − b is nonsingular.

Next, assume that Ax − b is nonsingular. We show that (4.4) is satisfied by some
L(x) ∈ R[x]m×(n+m) with degree ≤ m − rank A. Let r = rank A. Up to a linear
coordinate transformation, we can reduce x to a r -dimensional variable. Without loss
of generality, we can assume that rank A = n and m ≥ n.

For a subset I := {i1, . . . , im−n} of [m], denote

cI (x) :=
∏

i∈I
ci (x), EI (x) := cI (x) · diag(ci1(x)−1, . . . , cim−n (x)

−1),

DI (x) := diag(ci1(x), . . . , cim−n (x)), AI = [
ai1 · · · ain−m

]T
.

For the case that I = ∅ (the empty set), we set c∅(x) = 1. Let

V = {I ⊆ [m] : |I | = m − n, rank A[m]\I = n}.

Step I For each I ∈ V , we construct a matrix polynomial L I (x) such that

L I (x)C(x) = cI (x)Im . (4.5)
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Tight relaxations and Lagrange multiplier expressions 19

The matrix L I := L I (x) satisfying (4.5) can be given by the following 2 × 3 block
matrix (L I (J ,K) denotes the submatrix whose row indices are from J and whose
column indices are from K):

J \K [n] n + I n + [m]\I
I

[m]\I
[

0

cI (x) · (A[m]\I
)−T

EI (x)

−(A[m]\I
)−T (

AI
)T

EI (x)
0
0

]
(4.6)

Equivalently, the blocks of L I are:

L I
(
I, [n]) = 0, L I

(
I, n + [m]\I ) = 0, L I

([m]\I, n + [m]\I ) = 0,

L I
(
I, n + I

) = EI (x), L I
([m]\I, [n]) = cI (x)

(
A[m]\I

)−T
,

L I
([m]\I, n + I

) = −(A[m]\I
)−T (

AI
)T

.

For each I ∈ V , A[m]\I is invertible. The superscript −T denotes the inverse of the
transpose. Let G := L I (x)C(x), then one can verify that

G(I, I ) = EI (x)DI (x) = cI (x)Im−n, G(I, [m]\I ) = 0,

G([m]\I, [m]\I ) =
[

cI (x)
(
A[m]\I

)−T −A−T
[m]\I AT

I EI (x)
] [(

A[m]\I
)T

0

]

= cI (x)In .

G([m]\I, I ) =
[

cI (x)
(
A[m]\I

)−T −(A[m]\I
)−T (

AI
)T

EI (x)
] [ AT

I
DI (x)

]

= 0.

This shows that the above L I (x) satisfies (4.5).

Step II We show that there exist real scalars νI satisfying

∑

I∈V
νI cI (x) = 1. (4.7)

This can be shown by induction on m.

– When m = n, V = ∅ and c∅(x) = 1, so (4.7) is clearly true.
– When m > n, let

N := {i ∈ [m] | rank A[m]\{i} = n}. (4.8)

For each i ∈ N , let Vi be the set of all I ′ ⊆ [m]\{i} such that |I ′| = m − n − 1
and rank A[m]\(I ′∪{i}) = n. For each i ∈ N , by the assumption, the linear function

Am\{i}x − bm\{i} is nonsingular. By induction, there exist real scalars ν
(i)
I ′ satisfying

∑

I ′∈Vi
ν

(i)
I ′ cI ′(x) = 1. (4.9)
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20 J. Nie

Since rank A = n, we can generally assume that {a1, . . . , an} is linearly independent.
So, there exist scalars α1, . . . , αn such that

am = α1a1 + · · · + αnan .

If all αi = 0, then am = 0, and hence A can be replaced by its first m − 1 rows. So,
(4.7) is true by the induction. In the following, suppose at least one αi �= 0 and write

{i : αi �= 0} = {i1, . . . , ik}.

Then, ai1 , . . . , aik , am are linearly dependent. For convenience, set ik+1 := m. Since
Ax − b is nonsingular, the linear system

ci1(x) = · · · = cik (x) = cik+1(x) = 0

has no solutions. Hence, there exist real scalars μ1, . . . , μk+1 such that

μ1ci1(x) + · · · + μkcik (x) + μk+1cik+1(x) = 1.

This above can be implied by echelon’s form for inconsistent linear systems. Note that
i1, . . . , ik+1 ∈ N . For each j = 1, . . . , k + 1, by (4.9),

∑

I ′∈Vi j
ν

(i j )
I ′ cI ′(x) = 1.

Then, we can get

1 =
k+1∑

j=1

μ j ci j (x) =
k+1∑

j=1

μ j

∑

I ′∈Vi j
ν

(i j )
I ′ ci j (x)cI ′(x)

=
∑

I=I ′∪{i j },I ′∈Vi j ,1≤ j≤k+1

ν
(i j )
I ′ μ j cI (x).

Since each I ′ ∪ {i j } ∈ V , (4.7) must be satisfied by some scalars νI .

Step III For L I (x) as in (4.5), we construct L(x) as

L(x) :=
∑

I∈V
νI cI (x)L I (x). (4.10)

Clearly, L(x) satisfies (4.4) because

L(x)C(x) =
∑

I∈V
νI L I (x)C(x) =

∑

I∈V
νI cI (x)Im = Im .

Each L I (x) has degree ≤ m − n, so L(x) has degree ≤ m − n. ��
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Proposition 4.1 characterizes when there exists L(x) satisfying (4.4). When it does,
a degree bound for L(x) ism− rank A. Sometimes, its degree can be smaller than that,
as shown in Example 4.3. For given A, b, the matrix polynomial L(x) satisfying (4.4)
can be determined by linear equations, which are obtained bymatching coefficients on
both sides. In the following, we give some examples of L(x)C(x) = Im for polyhedral
sets.

Example 4.2 Consider the simplicial set

x1 ≥ 0, . . . , xn ≥ 0, 1 − eT x ≥ 0.

The equation L(x)C(x) = In+1 is satisfied by

L(x) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 − x1 − x2 · · · − xn 1 · · · 1
− x1 1 − x2 · · · − xn 1 · · · 1

...
...

. . .
...

...
...

...

− x1 − x2 · · · 1 − xn 1 · · · 1
− x1 − x2 · · · − xn 1 · · · 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

Example 4.3 Consider the box constraint

x1 ≥ 0, . . . , xn ≥ 0, 1 − x1 ≥ 0, . . . , 1 − xn ≥ 0.

The equation L(x)C(x) = I2n is satisfied by

L(x) =
[
In − diag(x) In In
− diag(x) In In

]

.

Example 4.4 Consider the polyhedral set

1 − x4 ≥ 0, x4 − x3 ≥ 0, x3 − x2 ≥ 0, x2 − x1 ≥ 0, x1 + 1 ≥ 0.

The equation L(x)C(x) = I5 is satisfied by

L(x) = 1

2

⎡

⎢
⎢
⎢
⎢
⎣

− x1 − 1 − x2 − 1 − x3 − 1 − x4 − 1 1 1 1 1 1
− x1 − 1 − x2 − 1 − x3 − 1 1 − x4 1 1 1 1 1
− x1 − 1 − x2 − 1 1 − x3 1 − x4 1 1 1 1 1
− x1 − 1 1 − x2 1 − x3 1 − x4 1 1 1 1 1
1 − x1 1 − x2 1 − x3 1 − x4 1 1 1 1 1

⎤

⎥
⎥
⎥
⎥
⎦

.

Example 4.5 Consider the polyhedral set

1 + x1 ≥ 0, 1 − x1 ≥ 0, 2 − x1 − x2 ≥ 0, 2 − x1 + x2 ≥ 0.
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The matrix L(x) satisfying L(x)C(x) = I4 is

1

6

⎡

⎢
⎢
⎣

x1
2 − 3 x1 + 2 x1 x2 − x2 4 − x1 2 − x1 1 − x1 1 − x1

3 x12 − 3 x1 − 6 3 x2 + 3 x1 x2 6 − 3 x1 −3 x1 −3 x1 − 3 −3 x1 − 3
1 − x1

2 − 2 x2 − x1 x2 − 3 x1 − 1 x1 + 1 x1 + 2 x1 + 2
1 − x1

2 3 − x1 x2 − 2 x2 x1 − 1 x1 + 1 x1 + 2 x1 + 2

⎤

⎥
⎥
⎦ .

5 General constraints

We consider general nonlinear constraints as in (1.1). The critical point conditions are
in (1.8). We discuss how to express Lagrange multipliers λi as polynomial functions
in x on the set of critical points.

Suppose there are totally m equality and inequality constraints, i.e.,

E ∪ I = {1, . . . ,m}.

If (x, λ) is a critical pair, then λi ci (x) = 0 for all i ∈ E∪I. So, the Lagrangemultiplier
vector λ := [

λ1 · · · λm
]T satisfies the equation

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∇c1(x) ∇c2(x) · · · ∇cm(x)
c1(x) 0 · · · 0
0 c2(x) 0 0
...

...
. . .

...

0 0 · · · cm(x)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸
C(x)

λ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∇ f (x)
0
0
...

0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (5.1)

Let C(x) be as in above. If there exists L(x) ∈ R[x]m×(m+n) such that

L(x)C(x) = Im, (5.2)

then we can get

λ = L(x)

[∇ f (x)
0

]

= L1(x)∇ f (x), (5.3)

where L1(x) consists of the first n columns of L(x). Clearly, (5.2) implies thatAssump-
tion 3.1 holds. This section characterizes when such L(x) exists.

Definition 5.1 The tuple c := (c1, . . . , cm) of constraining polynomials is said to be
nonsingular if rankC(u) = m for every u ∈ C

n .

Clearly, c being nonsingular is equivalent to that for each u ∈ C
n , if J (u) =

{i1, . . . , ik} (see (1.2) for the notation), then the gradients ∇ci1(u), . . . ,∇cik (u) are
linearly independent. Our main conclusion is that (5.2) holds if and only if the tuple
c is nonsingular.

123



Tight relaxations and Lagrange multiplier expressions 23

Proposition 5.2 (i) For each W (x) ∈ C[x]s×t with s ≥ t , rank W (u) = t for all
u ∈ C

n if and only if there exists P(x) ∈ C[x]t×s such that

P(x)W (x) = It .

Moreover, for W (x) ∈ R[x]s×t , we can choose P(x) ∈ R[x]t×s for the above.
(ii) The constraining polynomial tuple c is nonsingular if and only if there exists

L(x) ∈ R[x]m×(m+n) satisfying (5.2).

Proof (i)“⇐”: If L(x)W (x) = It , then for all u ∈ C
n

t = rank It ≤ rankW (u) ≤ t.

So, W (x) must have full column rank everywhere.
“⇒”: Suppose rankW (u) = t for all u ∈ C

n . Write W (x) in columns

W (x) = [
w1(x) w2(x) · · · wt (x)

]
.

Then, the equation w1(x) = 0 does not have a complex solution. By Hilbert’s Weak
Nullstellensatz [4], there exists ξ1(x) ∈ C[x]s such that ξ1(x)Tw1(x) = 1. For each
i = 2, . . . , t , denote

r1,i (x) := ξ1(x)
Twi (x),

then (use ∼ to denote row equivalence between matrices)

W (x) ∼
[

1 r1,2(x) · · · r1,t (x)
w1(x) w2(x) · · · wm(x)

]

∼ W1(x) :=
[
1 r1,2(x) · · · r1,m(x)

0 w
(1)
2 (x) · · · w

(1)
m (x)

]

,

where each (i = 2, . . . ,m)

w
(1)
i (x) = wi (x) − r1,i (x)w1(x).

So, there exists P1(x) ∈ R[x](s+1)×s such that

P1(x)W (x) = W1(x).

Since W (x) and W1(x) are row equivalent, W1(x) must also have full column rank
everywhere. Similarly, the polynomial equation

w
(1)
2 (x) = 0

does not have a complex solution. Again, by Hilbert’s Weak Nullstellensatz [4], there
exists ξ2(x) ∈ C[x]s such that

ξ2(x)
Tw

(1)
2 (x) = 1.
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For each i = 3, . . . , t , let r2,i (x) := ξ2(x)Tw
(1)
2 (x), then

W1(x) ∼
⎡

⎣
1 r1,2(x) r1,3(x) · · · r1,m(x)
0 1 r2,3(x) · · · r2,m(x)

0 w
(1)
2 (x) w

(1)
3 (x) · · · w

(1)
m (x)

⎤

⎦

∼ W2(x) :=
⎡

⎣
1 r1,2(x) r1,3(x) · · · r1,m(x)
0 1 r2,3(x) · · · r2,m(x)

0 0 w
(2)
3 (x) · · · w

(2)
m (x)

⎤

⎦ ,

where each (i = 3, . . . ,m)

w
(2)
i (x) = w

(1)
i (x) − r2,i (x)w

(1)
2 (x).

Similarly,W1(x) andW2(x) are row equivalent, soW2(x) has full column rank every-
where. There exists P2(x) ∈ C[x](s+2)×(s+1) such that

P2(x)W1(x) = W2(x).

Continuing this process, we can finally get

W2(x) ∼ · · · ∼ Wt (x) :=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 r1,2(x) r1,3(x) · · · r1,t (x)
0 1 r2,3(x) · · · r2,t (x)
0 0 1 · · · r3,t (x)
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Consequently, there exists Pi (x) ∈ R[x](s+i)×(s+i−1) for i = 1, 2, . . . , t , such that

Pt (x)Pt−1(x) · · · P1(x)W (x) = Wt (x).

Since Wt (x) is a unit upper triangular matrix polynomial, there exists Pt+1(x) ∈
R[x]t×(s+t) such that Pt+1(x)Wt (x) = It . Let

P(x) := Pt+1(x)Pt (x)Pt−1(x) · · · P1(x),

then P(x)W (x) = Im . Note that P(x) ∈ C[x]t×s . For W (x) ∈ R[x]s×t , we can
replace P(x) by(

P(x) + P(x)
)
/2 (the P(x) denotes the complex conjugate of P(x)), which is a

real matrix polynomial. (ii) The conclusion is implied directly by the item (i). ��
In Proposition 5.2, there is no explicit degree bound for L(x) satisfying (5.2). This

question is mostly open, to the best of the author’s knowledge. However, once a degree
is chosen for L(x), it can be determined by comparing coefficients of both sides of
(5.2). This can be done by solving a linear system. In the following, we give some
examples of L(x) satisfying (5.2).
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Example 5.3 Consider the hypercube with quadratic constraints

1 − x21 ≥ 0, 1 − x22 ≥ 0, . . . , 1 − x2n ≥ 0.

The equation L(x)C(x) = In is satisfied by

L(x) = [− 1
2diag(x) In

]
.

Example 5.4 Consider the nonnegative portion of the unit sphere

x1 ≥ 0, x2 ≥ 0, . . . , xn ≥ 0, x21 + · · · + x2n − 1 = 0.

The equation L(x)C(x) = In+1 is satisfied by

L(x) =
[
In − xxT x1Tn 2x

1
2 x

T − 1
21

T
n − 1

]

.

Example 5.5 Consider the set

1 − x31 − x42 ≥ 0, 1 − x43 − x34 ≥ 0.

The equation L(x)C(x) = I2 is satisfied by

L(x) =
[− x1

3 − x2
4 0 0 1 0

0 0 − x3
4 − x4

3 0 1

]

.

Example 5.6 Consider the quadratic set

1 − x1x2 − x2x3 − x1x3 ≥ 0, 1 − x21 − x22 − x23 ≥ 0.

The matrix L(x)T satisfying L(x)C(x) = I2 is
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

25 x13 + 10 x12 x2 + 40 x1 x22 − 25 x1 − 2 x3 −25 x13 − 10 x12 x2 − 40 x1 x22 + 49 x1
2 + 2 x3

−15 x12 x2 + 10 x1 x22 + 20 x3 x1 x2 − 10 x1 15 x12 x2 − 10 x1 x22 − 20 x3 x1 x2 + 10 x1 − x2
2

25 x3 x12 − 20 x1 x22 + 10 x3 x1 x2 + 2 x1 −25 x3 x12 + 20 x1 x22 − 10 x3 x1 x2 − 2 x1 − x3
2

1 − 20 x1 x3 − 10 x12 − 20 x1 x2 20 x1 x2 + 20 x1 x3 + 10 x12

−50 x12 − 20 x2 x1 50 x12 + 20 x2 x1 + 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

We would like to remark that a polynomial tuple c = (c1, . . . , cm) is generically
nonsingular and Assumption 3.1 holds generically.

Proposition 5.7 For all positive degrees d1, . . . , dm, there exists an open dense subset
U of D := R[x]d1 × · · · × R[x]dm such that every tuple c = (c1, . . . , cm) ∈ U is
nonsingular. Indeed, such U can be chosen as a Zariski open subset of D, i.e., it is
the complement of a proper real variety of D. Moreover, Assumption 3.1 holds for all
c ∈ U , i.e., it holds generically.
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Proof The proof needs to use resultants and discriminants, which we refer to [29].
First, let J1 be the set of all (i1, . . . , in+1) with 1 ≤ i1 < · · · < in+1 ≤ m. The

resultant Res(ci1 , . . . , cin+1) [29, Section 2] is a polynomial in the coefficients of
ci1 , . . . , cin+1 such that if Res(ci1 , . . . , cin+1) �= 0 then the equations

ci1(x) = · · · = cin+1(x) = 0

have no complex solutions. Define

F1(c) :=
∏

(i1,...,in+1)∈J1

Res(ci1 , . . . , cin+1).

For the case that m ≤ n, J1 = ∅ and we just simply let F1(c) = 1. Clearly, if
F1(c) �= 0, then no more than n polynomials of c1, . . . , cm have a common complex
zero.

Second, let J2 be the set of all ( j1, . . . , jk)with k ≤ n and 1 ≤ j1 < · · · < jk ≤ m.
When one of c j1 , . . . , c jk has degree bigger than one, the discriminantΔ(c j1 , . . . , c jk )
is a polynomial in the coefficients of c j1 , . . . , c jk such that ifΔ(c j1 , . . . , c jk ) �= 0 then
the equations

c j1(x) = · · · = c jk (x) = 0

have no singular complex solution [29, Section 3], i.e., at every complex common solu-
tion u, the gradients of c j1 , . . . , c jk at u are linearly independent.When all c j1 , . . . , c jk
have degree one, the discriminant of the tuple (c j1 , . . . , c jk ) is not a single polyno-
mial, but we can define Δ(c j1 , . . . , c jk ) to be the product of all maximum minors of
its Jacobian (a constant matrix). Define

F2(c) :=
∏

( j1,..., jk )∈J2

Δ(c j1, . . . , c jk ).

Clearly, if F2(c) �= 0, then then no n or less polynomials of c1, . . . , cm have a singular
complex comon zero.

Last, let F(c) := F1(c)F2(c) and

U := {c = (c1, . . . , cm) ∈ D : F(c) �= 0}.

Note that U is a Zariski open subset of D and it is open dense in D. For all c ∈ D, no
more than n of c1, . . . , cm can have a complex common zero. For any k polynomials
(k ≤ n) of c1, . . . , cm , if they have a complex common zero, say, u, then their gradients
at u must be linearly independent. This means that c is a nonsingular tuple.

Since every c ∈ U is nonsingular, Proposition 5.2 implies (5.2), whence Assump-
tion 3.1 is satisifed. Therefore, Assumption 3.1 holds for all c ∈ U . So, it holds
generically. ��
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Table 1 Computational results
for Example 6.1

Order k W./o. L.M.E. With L.M.E.

Lower bound Time Lower bound Time

2 −0.0521 0.6841 −0.0521 0.1922

3 −0.0026 0.2657 − 3 × 10−8 0.2285

4 −0.0007 0.6785 − 6 × 10−9 0.4431

5 −0.0004 1.6105 − 2 × 10−9 0.9567

6 Numerical examples

This section gives examples of using the new relaxations (3.8)–(3.9) for solving the
optimizationproblem (1.1),with usageofLagrangemultiplier expressions. Somepoly-
nomials in the examples are from [37]. The computation is implemented in MATLAB
R2012a, on a Lenovo Laptop with CPU@2.90GHz and RAM 16.0G. The relaxations
(3.8)–(3.9) are solved by the software GloptiPoly 3 [13], which calls the SDP
package SeDuMi [40]. For neatness, only four decimal digits are displayed for com-
putational results.

The polynomials pi in Assumption 3.1 are constructed as follows. Order the con-
straining polynomials as c1, . . . , cm . First, find a matrix polynomial L(x) satisfying
(4.4) or (5.2). Let L1(x) be the submatrix of L(x), consisting of the first n columns.
Then, choose (p1, . . . , pm) to be the product L1(x)∇ f (x), i.e.,

pi =
(
L1(x)∇ f (x)

)

i
.

In all our examples, the global minimum value fmin of (1.1) is achieved at a critical
point. This is the case if the feasible set is compact, or if f is coercive (i.e.,the sublevel
set { f (x) ≤ 
} is compact for all 
), and the constraint qualification condition holds.

By Theorem 3.3, we have fk = fmin for all k big enough, if fc = fmin and
any of its conditions i)-iii) holds. Typically, it might be inconvenient to check these
conditions. However, in computation, we do not need to check them at all. Indeed, the
condition (3.17) is more convenient for usage. When there are finitely many global
minimizers, Theorem 3.4 proved that (3.17) is an appropriate criteria for detecting
convergence. It is satisfied for all our examples, except Examples 6.1, 6.7 and 6.9
(they have infinitely many minimizers).

We compare the new relaxations (3.8)–(3.9) with standard Lasserre’s relaxations in
[17]. The lower bounds given by relaxations in [17] (without using Lagrangemultiplier
expressions) and the lower bounds given by (3.8)–(3.9) (using Lagrange multiplier
expressions) are shown in the tables. The computational time (in seconds) is also
compared. The results for standard Lasserre’s relaxations are titled “w./o. L.M.E”,
and those for the new relaxations (3.8)–(3.9) are titled “with L.M.E.”.

Example 6.1 Consider the optimization problem

{
min x1x2(10 − x3)
s.t. x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, 1 − x1 − x2 − x3 ≥ 0.
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Thematrix polynomial L(x) is given in Example 4.2. Since the feasible set is compact,
the minimum fmin = 0 is achieved at a critical point. The condition ii) of Theorem 3.3
is satisfied.2 Each feasible point (x1, x2, x3) with x1x2 = 0 is a global minimizer. The
computational results for standard Lasserre’s relaxations and the new ones (3.8)–(3.9)
are in Table 1. It confirms that fk = fmin for all k ≥ 3, up to numerical round-off
errors.

Example 6.2 Consider the optimization problem

{
min x41 x

2
2 + x21 x

4
2 + x63 − 3x21 x

2
2 x

2
3 + (x41 + x42 + x43)

s.t. x21 + x22 + x23 ≥ 1.

The matrix polynomial L(x) = [ 1
2 x1

1
2 x2

1
2 x3 −1

]
. The objective f is the sum of the

positive definite form x41 + x42 + x43 and the Motzkin polynomial

M(x) := x41 x
2
2 + x21 x

4
2 + x63 − 3x21 x

2
2 x

2
3 .

Note that M(x) is nonnegative everywhere but not SOS [37]. Clearly, f is coercive
and fmin is achieved at a critical point. The set IQ(φ,ψ) is archimedean, because

c1(x)p1(x) = (x21 + x22 + x23 − 1)
(
3M(x) + 2(x41 + x42 + x43 )

) = 0

defines a compact set. So, the condition i) of Theorem 3.3 is satisfied.3 The minimum
value fmin = 1

3 , and there are 8 minimizers (± 1√
3
, ± 1√

3
, ± 1√

3
). The computational

results for standard Lasserre’s relaxations and the new ones (3.8)–(3.9) are in Table 2.
It confirms that fk = fmin for all k ≥ 4, up to numerical round-off errors.

Example 6.3 Consider the optimization problem:

{
min x1x2 + x2x3 + x3x4 − 3x1x2x3x4 + (x31 + · · · + x34)
s.t. x1, x2, x3, x4 ≥ 0, 1 − x1 − x2 ≥ 0, 1 − x3 − x4 ≥ 0.

The matrix polynomial L(x) is

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 − x1 − x2 0 0 1 1 0 0 1 0
− x1 1 − x2 0 0 1 1 0 0 1 0
0 0 1 − x3 − x4 0 0 1 1 0 1
0 0 − x3 1 − x4 0 0 1 1 0 1

− x1 − x2 0 0 1 1 0 0 1 0
0 0 − x3 − x4 0 0 1 1 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The feasible set is compact, so fmin is achieved at a critical point. One can show
that fmin = 0 and the minimizer is the origin. The condition ii) of Theorem 3.3 is

2 Note that 1 − xT x = (1 − eT x)(1 + xT x) +∑n
i=1 xi (1 − xi )

2 +∑
i �= j x

2
i x j ∈ IQ(ceq , cin).

3 This is because −c21 p
2
1 ∈ Ideal(φ) ⊆ IQ(φ, ψ) and the set {−c1(x)

2 p1(x)
2 ≥ 0} is compact.
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Table 2 Computational results for Example 6.2

Order k W./o. L.M.E. With L.M.E.

Lower bound Time Lower bound time

3 −∞ 0.4466 0.1111 0.1169

4 −∞ 0.4948 0.3333 0.3499

5 − 2.1821 × 105 1.1836 0.3333 0.6530

Table 3 Computational results for Example 6.3

Order k W./o. L.M.E. With L.M.E.

Lower bound Time Lower bound Time

3 − 2.9 × 10−5 0.7335 − 6 × 10−7 0.6091

4 − 1.4 × 10−5 2.5055 − 8 × 10−8 2.7423

5 − 1.4 × 10−5 12.7092 − 5 × 10−8 13.7449

satisfied, because IQ(ceq , cin) is archimedean.4 The computational results for standard
Lasserre’s relaxations and the new ones (3.8)–(3.9) are in Table 3.

Example 6.4 Consider the polynomial optimization problem

{
min
x∈R2

x21 + 50x22

s.t. x21 − 1
2 ≥ 0, x22 − 2x1x2 − 1

8 ≥ 0, x22 + 2x1x2 − 1
8 ≥ 0.

It is motivated from an example in [12, §3]. The first column of L(x) is

⎡

⎢
⎢
⎢
⎢
⎣

8 x13

5 + x1
5

288 x2 x14

5 − 16 x13

5 − x2 x12 124
5 + 8 x1

5 − 2 x2

− 288 x2 x14

5 − 16 x13

5 + x2 x12 124
5 + 8 x1

5 + 2 x2

⎤

⎥
⎥
⎥
⎥
⎦

,

and the second column of L(x) is

⎡

⎢
⎢
⎢
⎢
⎣

− 8 x12 x2
5 + 4 x23

5 − x2
10

288 x13 x22

5 + 16 x12 x2
5 − 142 x1 x22

5 − 9 x1
20 − 8 x23

5 + 11 x2
5

− 288 x13 x22

5 + 16 x12 x2
5 + 142 x1 x22

5 + 9 x1
20 − 8 x23

5 + 11 x2
5

⎤

⎥
⎥
⎥
⎥
⎦

.

4 This is because 1− x21 − x22 belongs to the quadratic module of (x1, x2, 1− x1 − x2) and 1− x23 − x24
belongs to the quadratic module of (x3, x4, 1 − x3 − x4). See the footnote in Example 6.1.
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Table 4 Computational results
for Example 6.4

Order k W./o. L.M.E. With L.M.E.

Lower bound Time Lower bound Time

3 6.7535 0.4611 56.7500 0.1309

4 6.9294 0.2428 112.6517 0.2405

5 8.8519 0.3376 112.6517 0.2167

6 16.5971 0.4703 112.6517 0.3788

7 35.4756 0.6536 112.6517 0.4537

Table 5 Computational results for Example 6.5

Order k W./o. L.M.E. With L.M.E.

Lower bound Time Lower bound Time

2 −∞ 0.4129 −∞ 0.1900

3 − 7.8184 × 106 0.4641 0.9492 0.3139

4 − 2.0575 × 104 0.6499 0.9492 0.5057

The objective is coercive, so fmin is achieved at a critical point. The minimum value
fmin = 56 + 3/4 + 25

√
5 ≈ 112.6517 and the minimizers are (±√

1/2,± (
√
5/8 +√

1/2)). The computational results for standard Lasserre’s relaxations and the new
ones (3.8)-(3.9) are in Table 4. It confirms that fk = fmin for all k ≥ 4, up to
numerical round-off errors.

Example 6.5 Consider the optimization problem

{
min
x∈R3

x31 + x32 + x33 + 4x1x2x3 − (
x1(x22 + x23 ) + x2(x23 + x21 ) + x3(x21 + x22 )

)

s.t. x1 ≥ 0, x1x2 − 1 ≥ 0, x2x3 − 1 ≥ 0.

The matrix polynomial L(x) is

⎡

⎣
1 − x1 x2 0 0 x2 x2 0

x1 0 0 − 1 − 1 0
−x1 x2 0 1 0 − 1

⎤

⎦ .

The objective is a variation of Robinson’s form [37]. It is a positive definite form over
the nonnegative orthant R

3+, so the minimum value is achieved at a critical point. In
computation, we got fmin ≈ 0.9492 and a global minimizer (0.9071, 1.1024, 0.9071).
The computational results for standard Lasserre’s relaxations and the new ones (3.8)-
(3.9) are in Table 5. It confirms that fk = fmin for all k ≥ 3, up to numerical round-off
errors.
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Table 6 Computational results for Example 6.6

Order k W./o. L.M.E. With L.M.E.

Lower bound Time Lower bound Time

3 − ∞ 1.1377 3.5480 1.1765

4 − 6.6913 × 104 4.7677 4.0000 3.0761

5 − 21.3778 22.9970 4.0000 10.3354

Example 6.6 Consider the optimization problem (x0 := 1)

⎧
⎨

⎩

min
x∈R4

xT x +∑4
i=0

∏

j �=i
(xi − x j )

s.t. x21 − 1 ≥ 0, x22 − 1 ≥ 0, x23 − 1 ≥ 0, x24 − 1 ≥ 0.

The matrix polynomial L(x) = [ 1
2diag(x) −I4

]
.The first part of the objective is xT x ,

while the second part is a nonnegative polynomial [37]. The objective is coercive, so
fmin is achieved at a critical point. In computation, we got fmin = 4.0000 and 11
global minimizers:

(1, 1, 1, 1), (1,−1,−1, 1), (1,−1, 1,−1), (1, 1,−1,−1),

(1,−1,−1,−1), (−1,−1, 1, 1), (−1, 1,−1, 1), (−1, 1, 1,−1),

(−1,−1,−1, 1), (−1,−1, 1,−1), (−1, 1,−1,−1).

The computational results for standard Lasserre’s relaxations and the new ones (3.8)-
(3.9) are in Table 6. It confirms that fk = fmin for all k ≥ 4, up to numerical round-off
errors.

Example 6.7 Consider the optimization problem

⎧
⎨

⎩

min
x∈R3

x41 x
2
2 + x42 x

2
3 + x43 x

2
1 − 3x21 x

2
2 x

2
3 + x22

s.t. x1 − x2x3 ≥ 0,−x2 + x23 ≥ 0.

Thematrix polynomial L(x) =
[

1 0 0 0 0
−x3 −1 0 0 0

]

.By the arithmetic-geometric mean

inequality, one can show that fmin = 0. The global minimizers are (x1, 0, x3) with
x1 ≥ 0 and x1x3 = 0. The computational results for standard Lasserre’s relaxations
and the new ones (3.8)-(3.9) are in Table 7. It confirms that fk = fmin for all k ≥ 5,
up to numerical round-off errors.
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Table 7 Computational results for Example 6.7

Order k W./o. L.M.E. With L.M.E.

Lower bound Time Lower bound Time

3 −∞ 0.6144 −∞ 0.3418

4 − 1.0909 × 107 1.0542 −3.9476 0.7180

5 − 942.6772 1.6771 − 3 × 10−9 1.4607

6 − 0.0110 3.3532 − 8 × 10−10 3.1618

Table 8 Computational results for Example 6.8

lOrder k W./o. L.M.E. With L.M.E.

Lower bound Time Lower bound Time

2 − ∞ 0.3984 − 0.3360 0.9321

3 − ∞ 0.7634 0.9413 0.5240

4 − 6.4896 × 105 4.5496 0.9413 1.7192

5 − 3.1645 × 103 24.3665 0.9413 8.1228

Example 6.8 Consider the optimization problem

⎧
⎪⎨

⎪⎩

min
x∈R4

x21 (x1 − x4)2 + x22 (x2 − x4)2 + x23 (x3 − x4)2+
2x1x2x3(x1 + x2 + x3 − 2x4) + (x1 − 1)2 + (x2 − 1)2 + (x3 − 1)2

s.t. x1 − x2 ≥ 0, x2 − x3 ≥ 0.

The matrix polynomial L(x) =
[
1 0 0 0 0 0
1 1 0 0 0 0

]

. In the objective, the sum of the first 4

terms is a nonnegative form [37], while the sum of the last 3 terms is a coercive polyno-
mial. The objective is coercive, so fmin is achieved at a critical point. In computation,
we got fmin ≈ 0.9413 and a minimizer

(0.5632, 0.5632, 0.5632, 0.7510).

The computational results for standard Lasserre’s relaxations and the new ones (3.8)–
(3.9) are in Table 8. It confirms that fk = fmin for all k ≥ 3, up to numerical round-off
errors.

Example 6.9 Consider the optimization problem

{
min
x∈R4

(x1 + x2 + x3 + x4 + 1)2 − 4(x1x2 + x2x3 + x3x4 + x4 + x1)

s.t. 0 ≤ x1, . . . , x4 ≤ 1.

The matrix L(x) is given in Example 4.3. The objective is the dehomogenization of
Horn’s form [37]. The feasible set is compact, so fmin is achieved at a critical point.
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Table 9 Computational results for Example 6.9

Order w./o. L.M.E. With L.M.E.

Lower bound Time Lower bound Time

2 − 0.0279 0.2262 − 5 × 10−6 1.1835

3 − 0.0005 0.4691 − 6 × 10−7 1.6566

4 − 0.0001 3.1098 − 2 × 10−7 5.5234

5 − 4 × 10−5 16.5092 − 6 × 10−7 19.7320

Table 10 Consumed time (in seconds) for Example 6.10

n 9 10 11 12 13 14

W./o. L.M.E. 1.2569 2.5619 6.3085 15.8722 35.1675 78.4111

With L.M.E. 1.9714 3.8288 8.2519 20.0310 37.6373 82.4778

The condition ii) of Theorem 3.3 is satisfied.5 The minimum value fmin = 0. For each
t ∈ [0, 1], the point (t, 0, 0, 1 − t) is a global minimizer. The computational results
for standard Lasserre’s relaxations and the new ones (3.8)–(3.9) are in Table 9.

For some polynomial optimization problems, the standard Lasserre’s relaxations
might converge fast, e.g., the lowest order relaxation may often be tight. For such
cases, the new relaxations (3.8)–(3.9) have the same convergence property, but might
take more computational time. The following is such a comparison.

Example 6.10 Consider the optimization problem (x0 := 1)

{
min
x∈Rn

∑
0≤i≤ j≤ j≤n ci jk xi x j xk

s.t. 0 ≤ x ≤ 1,

where each coefficient ci jk is randomly generated (by randn in MATLAB). The
matrix L(x) is the same as in Example 4.3. Since the feasible set is compact, we
always have fc = fmin. The condition ii) of Theorem 3.3 is satisfied, because of
box constraints. For this kind of randomly generated problems, standard Lasserre’s
relaxations are often tight for the order k = 2, which is also the case for the new
relaxations (3.8)–(3.9). Here, we compare the computational time that is consumed
by standard Lasserre’s relaxations and (3.8)–(3.9). The time is shown (in seconds) in
Table 10. For each n in the table, we generate 10 random instances and we show the
average of the consumed time. For all instances, standard Lasserre’s relaxations and
the new ones (3.8)–(3.9) are tight for the order k = 2, while their time is a bit different.
We can observe that (3.8)–(3.9) consume slightly more time.

5 Note that 4 −∑4
i=1x

2
i = ∑4

i=1

(
xi (1 − xi )

2 + (1 − xi )(1 + x2i )
)

∈ IQ(ceq , cin).
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7 Discussions

7.1 Tight relaxations using preorderings

When the global minimum value fmin is achieved at a critical point, the problem (1.1)
is equivalent to (3.7). We proposed relaxations (3.8)–(3.9) for solving (3.7). Note that

IQ(ceq , cin)2k + IQ(φ,ψ)2k = Ideal(ceq , φ)2k + Qmod(cin, ψ)2k .

If we replace the quadratic module Qmod(cin, ψ) by the preordering of (cin, ψ) [21,
25], we can get further tighter relaxations. For convenience, write (cin, ψ) as a single
tuple (g1, . . . , g
). Its preordering is the set

Preord(cin, ψ) :=
∑

r1,...,r
∈{0,1}
gr11 · · · gr

 Σ[x].

The truncation Preord(cin, ψ)2k is similarly defined like Qmod(cin, ψ)2k in Sect. 2.
A tighter relaxation than (3.8), of the same order k, is

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f ′,pre
k := min 〈 f, y〉

s.t. 〈1, y〉 = 1, L(k)
ceq (y) = 0, L(k)

φ (y) = 0,

L(k)

g
r1
1 ···gr



(y) � 0 ∀ r1, . . . , r
 ∈ {0, 1},
y ∈ R

N
n
2k .

(7.1)

Similar to (3.9), the dual optimization problem of the above is

{
f prek := max γ

s.t. f − γ ∈ Ideal(ceq , φ)2k + Preord(cin, ψ)2k .
(7.2)

An attractive property of the relaxations (7.1)–(7.2) is that: the conclusion of Theo-
rem 3.3 still holds, even if none of the conditions (i)–(iii) there is satisfied. This gives
the following theorem.

Theorem 7.1 Suppose Kc �= ∅ and Assumption 3.1 holds. Then,

f prek = f ′,pre
k = fc

for all k sufficiently large. Therefore, if the minimum value fmin of (1.1) is achieved at
a critical point, then f prek = f ′,pre

k = fmin for all k big enough.

Proof The proof is very similar to the Case III of Theorem 3.3. Follow the same
argument there. Without Assumption 3.2, we still have f̂ (x) ≡ 0 on the set

K3 := {x ∈ R
n | ceq(x) = 0, φ(x) = 0, cin(x) ≥ 0, ψ(x) ≥ 0}.

By the Positivstellensatz, there exists an integer 
 > 0 and q ∈ Preord(cin, ψ) such
that f̂ 2
 + q ∈ Ideal(ceq , φ). The resting proof is the same. ��
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7.2 Singular constraining polynomials

As shown in Proposition 5.2, if the tuple c of constraining polynomials is nonsingular,
then there exists a matrix polynomial L(x) such that L(x)C(x) = Im . Hence, the
Lagrange multiplier λ can be expressed as in (5.3). However, if c is not nonsingular,
then such L(x) does not exist. For such cases, how can we express λ in terms of
x for critical pairs (x, λ)? This question is mostly open, to the best of the author’s
knowledge.

7.3 Degree bound for L(x)

For a nonsingular tuple c of constraining polynomials, what is a good degree bound
for L(x) in Proposition 5.2? When c is linear, a degree bound is given in Proposi-
tion4.1.However, for nonlinear c, an explicit degree bound is not known.Theoretically,
we can get a degree bound for L(x). In the proof of Proposition 5.2, the Hilbert’s
Nullstellensatz is used for t times. There exists sharp degree bounds for Hilbert’s
Nullstellensatz [16]. For each time of its usage, if the degree bound in [16] is used,
then a degree bound for L(x) can be eventually obtained. However, such obtained
bound is enormous, because the one in [16] is already exponential in the number of
variables. An interesting future work is to get a useful degree bound for L(x).

7.4 Rational representation of Lagrange multipliers

In (5.1), the Lagrangemultiplier vector λ is determined by a linear equation. Naturally,
one can get

λ =
(
C(x)TC(x)

)−1
C(x)T

[∇ f (x)
0

]

,

when C(x) has full column rank. This rational representation is expensive for usage,
because its denominator is typically a high degree polynomial. However, λmight have
rational representations other than the above. Can we find a rational representation
whose denominator and numerator have low degrees? If this is possible, the meth-
ods for optimizing rational functions [3,15,28] can be applied. This is an interesting
question for future research.
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