
Math. Program., Ser. A (2019) 177:343–370
https://doi.org/10.1007/s10107-018-1273-5

FULL LENGTH PAPER

An algorithm for nonsmooth optimization by successive
piecewise linearization

Sabrina Fiege1 · Andrea Walther1 ·
Andreas Griewank2

Received: 8 December 2016 / Accepted: 30 March 2018 / Published online: 6 April 2018
© Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2018

Abstract We present an optimization method for Lipschitz continuous, piecewise
smooth (PS) objective functions based on successive piecewise linearization. Since,
in many realistic cases, nondifferentiabilities are caused by the occurrence of abs(),
max(), and min(), we concentrate on these nonsmooth elemental functions. The
method’s idea is to locate an optimum of a PS objective function by explicitly handling
the kink structure at the level of piecewise linear models. This piecewise linearization
can be generated in its abs-normal-form by minor extension of standard algorith-
mic, or automatic, differentiation tools. In this paper it is shown that the new method
when started from within a compact level set generates a sequence of iterates whose
cluster points are all Clarke stationary. Numerical results including comparisons with
other nonsmooth optimization methods then illustrate the capabilities of the proposed
approach.

Keywords Piecewise smoothness · Nonsmooth optimization · Algorithmic
differentiation · Abs-normal form · Clarke stationary

Mathematics Subject Classification 49J52 · 90C56

1 Introduction

Even today, only few practical methods for the minimization of Lipschitzian piece-
wise smooth functions f : Rn �→ R are available. On convex objectives, the use of
subgradients in combination with merely square summable step lengths yields only

B Sabrina Fiege
sfiege@math.uni-paderborn.de

1 Department of Mathematics, Paderborn University, Paderborn, Germany

2 School of Mathematical Science and Information Technology, Yachaytech, Urcuqui, Ecuador

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-018-1273-5&domain=pdf
http://orcid.org/0000-0003-4839-1074

344 S. Fiege et al.

a sublinear rate of convergence, see, e.g., [20, Chapter 2]. A more reasonable rate of
convergence can be expected from bundle methods and gradient sampling, see, e.g.,
[1,3,12,13,16], but their performance is somewhat erratic. Another option is to adapt
quasi-Newton methods for the nonsmooth case, as proposed in [14].

In [8], we proposed a new algorithm for computing a stationary point of a piece-
wise linear (PL) function. Key concepts of this algorithm, in particular the piecewise
linearization, were initially proposed in [4]. The local piecewise linear models can
be efficiently and stably represented in the so-called abs-normal form. Just like local
linearizations in the smooth case piecewise linear models can be used for various
numerical purposes in the nonsmooth case. The solution of square nonsmooth equa-
tion systems in a generalizedNewton type fashion can be based on successively solving
the local models. The local subproblem, namely solving a piecewise linear equation
system in abs-normal form, was considered in [5], which surveys a wide range of finite
and iterative methods.

In this paper we will consider only scalar valued functions in several variables that
serve as objectives in unconstrained optimization. That was also the setting in the pre-
decessor paper [8]. Following the seminalwork ofHiriart-Urruty andLemaréchal [11],
we could demonstrate finite convergence in the convex case and verify it numerically
on a few selected test problems. Moreover, the basic method was formulated for gen-
eral nonconvex piecewise linear problemswith an additional proximal term, and it was
found to always reach a stationary point in preliminary numerical experiments. The
performance of this new algorithm compared favorably to an adapted BFGS method
with gradient sampling [1,14] and a bundle method implementation [16].

As our efforts to theoretically exclude the possibility of Zenon-like zigzagging on
nonconvex functions failed, we have modified the original method [8] for piecewise
linear functions by replacing a line-searchwith a positive definite QP solve as sketched
in Sect. 3. That modification reduces the number of iterations and immediately implies
finite convergence to a stationary point for general piecewise linear functions with a
proximal term. The resulting numerical performance of our code module PLMin on
piecewise linear functions is reported in Sect. 4 of [8]. Both the method introduced
in [8] and the modified method proposed in this paper determine a descent trajectory
along apath of essential polyhedra towards a stationary point. In this process, the choice
of the succeeding essential polyhedral is crucial. Currently, this choice is realized by
a bundle approach which turns out to be very robust. Another possible approach is a
stationary test based on new optimality conditions defined in [7], which have as of
now no algorithmic realization.

As already foreshadowed in [4], the main thrust of our algorithmic development
is the minimization of piecewise smooth (PS) and other semi-smooth functions by
successive piecewise linearization using PLMin as an inner solver. For a conservative
updating strategy of the proximal term it had already been shown that successive
piecewise linearization generates a subsequence that converges to a stationary point
from within a compact level set. After some numerical experiments we developed
the more aggressive updating strategy described in Sect. 3, which maintains global
convergence in the above sense.

The final Sect. 4 contains numerical results for a wide range of test problems.
A direct comparison with other nonsmooth solvers is difficult because they utilize

123

An algorithm for nonsmooth optimization by successive… 345

much less information about the objective than our approach. However, this additional
structural information given by the abs-normal formof PL functions [4] is easy to come
by, not only on all the usual test problems but also on large scale applications from
scientific computing. It can be obtained by an extension of algorithmic differentiation
(AD) to evaluation codes involving smooth elemental functions and the absolute value
function as well as the min and max operator as shown in [4].

2 Notation and background

Throughout the paper, we will consider only objective functions f : Rn �→ R that
can be described as a composition of elementary functions ϕ ∈ Φ such that f can be
given by an evaluation procedure. If all elemental functions ϕ are d times continuously
differentiable with 1 ≤ d ≤ ∞ on an open domain, this evaluation procedure can be
illustrated as in Table 1. The evaluation procedure consists of three parts. First, the
independent variables vi−n , i = 1, . . . , n, are declared. Then each intermediate vari-
able corresponds to one elemental function, i.e., vi = ϕi (v j) j≺i where the precedence
relation j ≺ i denotes that vi depends directly on v j for j < i . Finally, the dependent
variable is assigned. This notation is based on standard algorithmic differentiation
theory. For further information see [6].

In the following, we assume that these elemental functions ϕ ∈ Φ are either the
absolute value function or Lipschitz continuously differentiable in the domain D ⊂ R

n

of interest. Using the reformulations

min(v, u) = (v + u − abs(v − u))/2 and (1)

max(v, u) = (v + u + abs(v − u))/2, (2)

a quite large range of piecewise differentiable and locally Lipschitz continuous func-
tions are covered. It follows from this assumption that the resulting objective function
f (x) is piecewise smooth in the sense of Scholtes [19, Chapter 4]. Subsequently, these
functions will be denoted as composite piecewise differentiable functions.

Conceptually combining consecutive smooth elemental functions ϕi into larger
smooth elemental functions ψi , one obtains the reduced evaluation procedure shown
in Table 2, where all evaluations of the absolute value function can be clearly identified
and exploited.

Table 1 Evaluation procedure,
if all ϕ ∈ Φ are d times
continuously differentiable

vi−n = xi i = 1 . . . n
vi = ϕi (v j) j≺i i = 1 . . . l
y = vl

Table 2 Reduced evaluation
procedure for composite
piecewise differentiable
functions

vi−n = xi i = 1 . . . n
zi = ψi (v j) j≺i
σi = sign(zi)
vi = σi zi = abs(zi)

⎫
⎬

⎭
i = 1 . . . s

y ≡ vs+1 = ψs+1(v j) j≺s+1

123

346 S. Fiege et al.

Notice that in Table 2 the intermediate variables vi and the precedence relation j ≺ i
have been redefined. This will not cause any confusion since in the remainder of the
paper we will never refer to the original, fine-grained decomposition given in Table 1,
which is the basis of AD tools and their PS extensions. They then yield all derivatives
of theψi by partial pre-accumulation of the smooth elemental functions. By inspection
of Table 2 we note that s ∈ N denotes the actual number of evaluations of the absolute
value function. Since the intermediate value zi is used as the argument of the absolute
value and hence causes also the switches in the corresponding derivative values, the
vector z = (zi) ∈ R

s is called the switching vector defining also the signature vector
σ = (σi (x))i=1,...,s ≡ (sign(zi (x)))i=1,...,s ∈ R

s .
Throughout the rest of the paper, we will use the following example to illustrate

our approach.

Example 1 We consider the nonconvex, composite piecewise differentiable function

f : R2 → R, f (x1, x2) = (x22 − (x1)+)+ with y+ ≡ max(0, y), (3)

which can be rewritten in terms of the switching vector z as

f (x1, x2) = 1
2 (z2 + |z2|) with z1 = x1 and z2 = x22 − 1

2 (z1 + |z1|) .

Since the absolute value function is evaluated twice we have s = 2. The plot of the
function is shown in Fig. 1. All points of nondifferentiablility are marked both in the
domain of the function and in its value set. Additionally, the decomposition of the
argument space is marked by the corresponding vectors σ . The reduced evaluation
procedure of the function is illustrated in Table 3

Given the class of piecewise smooth functions considered in this paper, it follows
that they can be represented as

f (x) ∈ {
fσ (x) : σ ∈ E ⊂ {−1, 0, 1}s} at x ∈ R

n,

where the selection functions fσ are continuously differentiable on neighborhoods of
points where they are active, i.e., coincide with f , as described in [19].Wewill assume

Fig. 1 PS function (3) with all points of nondifferentiability and corresponding signatures

123

An algorithm for nonsmooth optimization by successive… 347

Table 3 Reduced adapted
evaluation procedure of
Example 1

v−1 = x1
v0 = x2
z1 = Ψ1(v j) j≺1 = v−1
σ1 = sign(z1)
v1 = σ1z1
z2 = Ψ2(v j) j≺2 = v20 − 1

2
(
v−1 + v1

)

σ2 = sign(z2)
v2 = σ2z2

y = Ψ3(v j) j≺3 = 1
2

(
v20 − 1

2
(
v−1 + v1

) + v2

)

that all fσ with σ ∈ E are essential in that their coincidence sets { f (x) = fσ (x)} are
the closures of their interiors, i.e., σ ∈ E if and only if

E ≡ {σ(x) ∈ {−1, 0, 1}s | x ∈ cl(int{x ∈ R
n | f (x) = fσ (x)})}.

The particular form of the index set E ⊂ {−1, 0, 1}s stems from our function
evaluation model described in Table 2. According to [2], one obtains the Clarke sub-
differential of f as

∂ f (x) ≡ conv(∂L f (x))

with the limiting subdifferential

∂L f (x) ≡ {g ∈ R
n : ∃{xi }i∈N with xi /∈ Ω f s.t. xi → x and ∇ f (xi) → g},

where Ω f is the set where f is not differentiable. The elements of ∂L f (x) are called
the limiting subgradients of f at x . Moreover, it was proven in [19] that for piecewise
smooth functions the limiting subdifferential can be given as

∂L f (x) ≡ {∇ fσ (x) : fσ (x) = f (x) : σ ∈ E}.

A directionally active gradient g is given by

g ≡ g(x; d) ∈ ∂L f (x) such that f ′(x; d) = gd . (4)

Here f ′(x; d) is the directional derivative of f at x in direction d and g(x; d) equals
the gradient ∇ fσ (x) of a locally differentiable selection function fσ that coincides
with f on a set, whose tangent cone at x contains d and has a nonempty interior.

To obtain a piecewise linearization of the objective function f , one has to construct
for each elemental function a tangent approximation. For a given argument x and a
direction Δx , we will use the elemental linearizations

123

348 S. Fiege et al.

Δvi = Δv j ± Δvk for vi = v j ± vk, (5)

Δvi = v j ∗ Δvk + vk ∗ Δv j for vi = v j ∗ vk, (6)

Δvi = ϕ′(v j) j≺i ∗ Δ(v j) j≺i for vi = ϕi (v j) j≺i �= abs(v j), (7)

Δvi = abs(v j + Δv j) − vi for vi = abs(v j). (8)

The linearizations (5)–(7) are well-known from standard AD theory, see [6], whereas
the linearization (8) was proposed in [4]. These linearizations can be used to compute
the increment Δ f (x;Δx) and therefore also the piecewise linearization

f PLx (Δx) ≡ f (x) + Δ f (x;Δx) (9)

of the original PS function f at a given point x with the argument Δx .
As shown in [5], any piecewise linear function yPL = f PL(Δx) with

f PL : Rn → R
m

can be expressed using the argument Δx and the resulting switching vector z ∈ R
s in

the abs-normal form given by

[
z

yPL

]

=
[
cz
cy

]

+
[
Z L
Y J

] [
Δx
|z|

]

, (10)

where cz ∈ R
s , cy ∈ R

m , Z ∈ R
s×n , L ∈ R

s×s , Y ∈ R
m×n and J ∈ R

m×s . The
matrix L is strictly lower triangular, i.e., each zi is an affine function of absolute values
|z j | with j < i and the input values Δxk for 1 ≤ k ≤ n. The matrices Y and J are
row vectors in this optimization context, since we consider functions with m = 1.
Correspondingly, cy is a real number instead of a vector in the more general setting.
Note that the signature vector σ(Δx) of the piecewise linearization defined in Eq. (10)
does not coincide with the signature vector σ(x) of the piecewise smooth function
defined in Table 2, since the underlying functions and therewith, the switching vectors
differ. The switching vector of the linearization is given by σ(Δx) = sign(z(Δx)).
Freezing x and σ ∈ {−1, 0, 1}s we obtain the polytope of corresponding Δx as

Pσ ≡ {Δx ∈ R
n | σ = sign(z(Δx))}. (11)

Using the diagonal signature matrix

Σ ≡ Σ(Δx) ≡ diag(σ (Δx)) ∈ {−1, 0, 1}s×s

one derives from the first equation of Eq. (10) with |z| ≡ Σ z for Δx ∈ Pσ the linear
relations

(I − LΣ)z = cz + ZΔx and z = (I − LΣ)−1(cz + ZΔx). (12)

123

An algorithm for nonsmooth optimization by successive… 349

Notice that due to the strict triangularity of L Σ the inverse (I −LΣ)−1 is well defined
and polynomial in the entries of LΣ . Substituting this expression into the last equation
of Eq. (10), it follows for the function value that

f PLx (Δx) ≡ γσ + g
σ Δx for Δx ∈ Pσ (13)

with

γσ = cy + JΣ(I − LΣ)−1cz and g
σ = Y + JΣ(I − LΣ)−1Z . (14)

That is, the gradient evaluation for one of the linear pieces reduces to the solution of
a linear system with a triangular matrix. This will be exploited for a cheap gradient
calculation in the inner loop of the optimization algorithmpresented in the next section.

Example 2 Thepiecewise linearization f PLx of the function f introduced inExample 1
evaluated at the base point x̄ with the argument Δx = x − x̊ is given by

f PLx̊ (Δx) = 1
2 (z2 + |z2|) (15)

where the switching vector z of f PLx is given by

z1 = x̊1 + Δx1 and z2 = x̊22 + 2x̊2Δx2 − 1
2 (z1 + |z1|) .

The piecewise linearization can be written in its abs-normal form given by

⎡

⎢
⎣

z1
z2
y

⎤

⎥
⎦ =

⎡

⎢
⎣

x̊1

x̊22 − 1
2 x̊1

1
2

(
x̊22 − 1

2 x̊1
)

⎤

⎥
⎦ +

⎡

⎢
⎣

1 0 0 0

− 1
2 2x̊2 − 1

2 0

− 1
4 x̊2 − 1

4
1
2

⎤

⎥
⎦

⎡

⎢
⎢
⎣

Δx1
Δx2
|z1|
|z2|

⎤

⎥
⎥
⎦ .

Applying Eqs. (13) and (14), the function f PLx̊ with x̊ = (−1, 0.5) and the gradient gσ

can be computed explicitly for each signature vector σ . For σ = (−1, 1), one obtains

gσ (Δx) = (0, 1) and f PLx̊ (Δx) = 0.25 + Δx2 ∀Δx ∈ Pσ

and for σ = (1, 1), one obtains

gσ (Δx) = (−1, 1) and f PLx̊ (Δx) = 2.375 − Δx1 + Δx2 ∀Δx ∈ Pσ .

The domain of the piecewise linearization is decomposed by two absolute value func-
tions into polyhedra with corresponding signatures σ ∈ {−1, 0, 1}2 as can be seen
in Fig. 2. Note that the decomposition of the underlying piecewise smooth function
presented in Example 1 differs clearly from the decomposition of the piecewise lin-
earization, e.g., the number of polyhedra and the occurring signatures.

123

350 S. Fiege et al.

Fig. 2 Left: piecewise linearization of Eq. (3) evaluated at x̊ = (−1, 0.5). Right: the decomposition of its
domain and its signatures

3 Successive piecewise linearization

3.1 Minimization of the piecewise smooth function

As already stated in [4], we propose to minimize piecewise smooth functions using an
algorithm called LiPsMin (Algorithm 1) that relies on an algorithm PLMin (Algo-
rithm 3) to solve the local subproblems obtained by piecewise linearization. PLMin in
turn relies on an algorithm ComputeDesDir (Algorithm 2) to generate descent direc-
tions at vertices of the PL model. Their nesting without an outer stopping criterion
generates conceptually an infinite sequence of iterates {xk}k∈N.
Algorithm 1 (LiPsMin)

LiPsMin(x , qlb, κ)
// Precondition: x ∈ R

n, κ > 1 and qlb > 0

Set x0 = x and q0 = qlb.
for k = 0, 1, 2, . . .

1. Generate the PL model f PL
xk

(.) at the current iterate xk .
2. Use PLMin(xk , qk), see Algorithm 3, to solve

Δxk = argmin
Δx∈Rn

f PLxk (Δx) + κ
2q

k‖Δx‖2.

3. Set xk+1 = xk + Δxk if f (xk + Δxk) < f (xk) and xk+1 = xk otherwise .
4. Compute

q̂k+1 ≡ q̂k(xk+1,Δxk) ≡ 2| f (xk+1) − f PL
xk

(Δxk)|
‖Δxk‖2

and set qk+1 = max{q̂k+1, μ qk + (1 − μ) q̂k+1, qlb} with μ ∈ [0, 1].

123

An algorithm for nonsmooth optimization by successive… 351

As can be seen, the main ingredient of the approach is the successive piecewise
linearizationwhichwas introduced in the previous section. The localmodelwill always
be generated in step 1 of LiPsMin. In step 2 an overestimation of a local subproblem

f̂xk (Δx) ≡ f PLxk (Δx) + κ
2q

k‖Δx‖2, (16)

with κ > 1 is solved by an inner loop which is discussed explicitly in Sect. 3.2. Actu-
ally, while we aim to compute the global minimum of f̂xk (Δx) all we can guarantee
is to reach a Clarke stationary point of the PL model.

The overestimation is necessary to ensure lower boundedness of the model and to
obtain the required convergence behavior. In this algorithmic specification we have
not yet given a termination criterion so that the conceptual algorithm generates an
infinite sequence of iterates {xk}k∈N that can be examined in the convergence analysis.
Naturally, wewould like Algorithm 1 to generate iterates with cluster points x∗ that are
minimizers or at least Clarke stationary, i.e., 0 ∈ ∂ f (x∗), not only for the PL models
but for the underlying PS objective. Therefore, we establish the following assertion.

Lemma 1 i) If the piecewise smooth function f is locally minimal at x, then the
piecewise quadratic model f̂x is locally minimal at Δx = 0 for all q ≥ 0.

ii) If the piecewise quadratic model f̂x is Clarke stationary at Δx = 0 for some
q ≥ 0, then the piecewise smooth function f is Clarke stationary at x.

Proof Note that according to Proposition 9 in [4] the subdifferential of the piecewise
smooth function f at x contains that of the piecewise linearization (9) based on x at
Δx = 0, i.e.,

∂ f (x) ⊃ ∂ f PLx (0).

We define h : Rn → R as h(Δx) := q
2‖Δx‖2 which is a twice continuously differen-

tiable function with a minimizer at Δx = 0. The minimizer is unique, if q > 0. The
subdifferential of h is given by ∂h(Δx) = {qΔx}. Then, the quadratic model can be
written as f̂x (Δx) = f PLx (Δx) + h(Δx).

i) Let us assume for simplicity that f is locally minimal at x with f (x) = 0 and
hence f̂x (0) = 0. Suppose that f̂x (·) is not minimal at 0 for some q ≥ 0. Then we
have for some Δx and t > 0

f̂x (tΔx) = tg
σ Δx + o(t) < 0,

where we have used the directional differentiability of the piecewise linear model and
gσ is a suitable subgradient. Then it follows by the generalized Taylor expansion [4]
that for sufficiently small t also

f (x + tΔx) − f (x) = tg
σ Δx + o(t) < 0,

yielding a contradiction to the minimality of f at x .

123

352 S. Fiege et al.

ii) If f̂x is Clarke stationary in Δx = 0, it implies that

0 ∈ ∂ f̂x (0) = ∂(f PLx + h)(0) ⊆ ∂ f PLx (0) + ∂h(0).

Since ∂h(0) = {0} one obtains that 0 ∈ ∂ f PLx (0). By using the inclusion relation
of the subdifferentials noted above this implies that also 0 ∈ ∂ f (x) and hence, f is
Clarke stationary in x . ��

3.2 Minimization of the piecewise linear subproblem as sequence of QPs

For the general scenario we have Algorithm 3 to compute a stationary point of the
local model

argmin
Δx∈Rn

f PLx (Δx) + κ
2q‖Δx‖2 (17)

for step 2 ofAlgorithm1. Sincewe consider the kth iteration ofAlgorithm1 throughout
this subsection, we use x , Δx , and q instead of xk , Δxk and qk for simplicity. The
essential difference to the true descent algorithm introduced in [8, Algorithm 4] is the
solution of a quadratic subproblem on polyhedral subdomains instead of computing
just a critical step multiplier to traverse them. In both approaches the objective (16) is
consistently reduced but since we now make sure that in each polyhedral subdomain
the minimal value is reached it can be visited only once. Hence there can be no
cycling, which previously we could only exclude for the descent trajectory under the
assumption of convexity. In this way we get a finite sequence of iterates {Δx j } j< for
Algorithm 3, where the upper bound may of course be quite large depending on the
particular problem.

To solve the piecewise quadratic model (17) Algorithm 3 builds a sequence of
constrained QPs each defined on an essential polyhedron Pσ . Therefore, we face two
tasks. First, the individual QPs have to be formulated. Second, having computed the
minimizer of the current QP, this minimizer has to be tested for stationarity. If the
minimizer of the current QP is in the interior of its domain, we have found at least
a local minimizer of (17) so that Algorithm 3 can terminate; otherwise, Algorithm 2
can be applied to check stationarity. In case the minimizer is not a stationary point
Algorithm 2 returns a descent direction d which then can be used to identify a new
essential polyhedron and therewith, the subsequent QP. Algorithm 2 gets the current
iterate of the inner loop Δx and the overestimated quadratic coefficient qκ as input
parameters together with the initial bundle G = {gσ } containing the gradient of the
current polyhedron Pσ .

Algorithm 2 (Computation of Descent Direction)
ComputeDesDir(Δx , qκ , G)

// Precondition: Δx ∈ R
n, q ≥ 0, κ > 1, ∅ �= G ⊂ ∂L f PLx (Δx)

repeat
Compute d = −short(qκΔx,G) as defined in Equation (18).
Evaluate g = g(Δx; d).

123

An algorithm for nonsmooth optimization by successive… 353

Augment the bundle G = G ∪ {g}.
until (g + qκ Δx)d ≤ −β‖d‖2
Set G = ∅.
return d

In this algorithm, G is a subset of the limiting subdifferential of the PL function f PLx
at the current iterate Δx , i.e., G ⊆ ∂L f PLx (Δx). For an arbitrary quadratic coefficient
q and increment Δx the direction d is defined as

d ≡ −short(qΔx,G)

≡ − argmin

⎧
⎨

⎩
‖g‖

∣
∣
∣
∣
∣
∣
g =

|G|∑

j=1

λ j g j + qΔx, g j ∈ G, λ j ≥ 0,
|G|∑

j=1

λ j = 1

⎫
⎬

⎭
. (18)

Hence, the evaluation of each d requires the solution of a QP similar to the one
occurring in bundle methods. Subsequently, the bundle G gets augmented by further
directionally active gradients g(x; d) as defined in Eq. (4) corresponding to neigh-
boring polyhedra. This can only happen finitely often so that the algorithm must
terminate as proven in Proposition 3.2 of [8]. We introduce here the additional mul-
tiplier β ∈ (0, 1) to relax the descent condition compared to [8, Algorithm 2] where
β was set to 1. However, for the more general case considered here, we only want to
identify a polyhedron Pσ that provides descent compared to the current polyhedron.

Now, given a point Δx and a descent direction d �= 0 we must look for a signature
σ such that the closure Pσ of Pσ as defined in Eq. (11) contains Δx as an element and
d is an element of its tangent cone at Δx . This means we must identify an essential
polyhedron Pσ with σ ∈ E at each pointΔx ∈ R

n whetherΔx is differentiable or not.
Therefore, we define the directionally active signature vector σ ≡ σ(Δx; d) which
corresponds to an essentially active selection function fσ that coincides with f PLx on
a nonempty and open Pσ such that x, x + τd ∈ Pσ with τ > 0 arbitrary small. These
signature vectors are, unlike those signature vectors defined in Table 2, necessarily
elements of the set E of essentially active signature vectors. Hence, it follows by
continuity that Pσ is open and as shown in Proposition 2 of [8]

Pσ ≡ {Δx ∈ R
n : σ(Δx) � σ }. (19)

Such directionally active signature vectors σ(Δx; d) are defined by

σ(Δx; d) = (σi (Δx; d))i=1,...,s ≡ (firstsign(zi (Δx); ∇zi (Δx)E))i=1,...,s, (20)

where d ∈ R
n is the direction obtained from Algorithm 2, E ∈ R

n×n is a nonsingular
matrix and firstsign(z;∇z(Δx)E)) returns for each component σi , i = 1, . . . , s, the
sign of the first nonvanishing entry of the vector (zi (Δx); ∇zi (Δx)E) ∈ R

n+1. For
our application we choose

E = [d, e1, . . . , e j∗−1, e j∗+1, en] with j∗ = argmax j=1,...,n|d j |,

123

354 S. Fiege et al.

where ei , i = 1, . . . , n, are the unit vectors. This computation of the directionally
active signature yields lexicographic differentiation as defined in [18] and applies the
idea of polynomial escape introduced in [4]. There, it is shown that the polynomial
arc

a(τ) = Δx + τd +
n∑

j=2

t j d j with det (d, d2, . . . , dn) �= 0,

where d j ∈ R
n must be n linearly independent vectors with d1 ≡ d, cannot be trapped

in one of the kink surfaces of f PLx (Δx).
Due to the previous considerationswe can nowbuild a sequence of constrainedQPs.

An inital direction d can be computed by Algorithm 2 and an initial signature vector
σ ≡ σ(Δx; d) corresponding to an essential polyhedron can be identified according
to Eq. (20).

For all Δx + δx ∈ Pσ the switching vector z = z(Δx + δx) is given by the affine
function

z = (I − LΣ)−1(cz + ZΔx)
︸ ︷︷ ︸

z(Δx)

+ (I − LΣ)−1Zδx
︸ ︷︷ ︸

∇z(Δx)δx

(21)

according to Eq. (12) where j̄ is the number of the previously solved QPs and Δx =
∑ j̄

l=0 δx j sums up all the obtained minimizers δx j , j = 0, . . . , j̄ . This is necessary
to maintain the relationship between the current essential polyhedron Pσ and the base
point x of the piecewise linearization. Hence, one obtains the following subproblem

δx j = argmin
δx∈Rn

fσ (Δx + δx) + κ
2q ‖Δx + δx‖2 ,

s.t. zi (Δx) + ∇zi (Δx) (Δx + δx)

⎧
⎪⎨

⎪⎩

≤ 0 if σ
j
i < 0

≥ 0 if σ
j
i > 0

= 0 if σ
j
i = 0

for i = 1, . . . , s.

(22)

By construction any such QP is convex, feasible and bounded so that theoretically
a solution always exists. However, the minimizer may be degenerate and there may
be a large number of redundant constraints slowing down the computation.

The above approach can be summarized as follows, where we use the base point
x and the step Δx as in Algorithm 1 for clarity. The base point x and the quadratic
coefficient q serve as input variables. The increment Δx is the parameter returned to
Algorithm 1.

Algorithm 3 (PLMin)
PLMin(x , q) // Precondition: x ∈ R

n, q > 0

Set Δx0 = 0.
For j = 0, 1, 2, . . . ,

123

An algorithm for nonsmooth optimization by successive… 355

1. Compute direction d by Algorithm 2.
2. If ‖d‖ = 0: STOP.
3. Identify new polyhedron Pσ j using direction d.
4. Determine solution δx j of local QP (22) on current polyhedron Pσ j .
5. Update Δx j+1 = Δx j + δx j .

return Δx

Algorithm 3 converges finitely to a stationary point Δx since any polyhedron Pσ can
only be visited at most once as argued at the beginning of this section.

3.3 Convergence results for LiPsMin

To prove that cluster points of Algorithm 1 are Clarke stationary, we suppose that
our piecewise smooth objective function f : Rn → R is bounded below and has a
bounded level set N0 ≡ {x ∈ R

n : f (x) ≤ f (x0)} with x0 the starting point of
the generated sequence of iterates. Hence, the level set is compact. Furthermore, we
assume that f satisfies all the assumptions of Sect. 2 on an open neighborhood Ñ0 of
N0. In [4] it was proven that the piecewise linearization f PLx yields a second order
approximation of the underlying function f . Therewith, it holds that

f (x + Δx) = f (x) + Δ f (x;Δx) + O(‖Δx‖2) (23)

≤ f (x) + Δ f (x;Δx) + c‖Δx‖2

with the coefficient c ∈ R. Subsequently, this coefficient is set as c := 1
2 q̃ . The

coefficient q̃(x;Δx) can be computed for certain x and Δx . However, it is possible
that q̃(x;Δx) is negative and thus, the local quadratic model is not bounded below.
Therefore, the coefficient q̂(x;Δx) is chosen as

q̂(x;Δx) ≡ |q̃(x;Δx)| = 2| f (x + Δx) − f (x) − Δ f (x;Δx)|
||Δx ||2 . (24)

By doing so, one obtains from Eq. (23) for all descent directions Δx the estimate

f (x + Δx) − f (x) ≤ Δ f (x;Δx) + 1
2 q̂(x;Δx)‖Δx‖2 ≤ 0. (25)

In [4, Proposition 1] it was proven as well that there exists a monotonic mapping
q̄(δ) : [0,∞) → [0,∞) such that for all x ∈ N0 and Δx ∈ R

n

2| f (x + Δx) − f (x) − Δ f (x;Δx)|
||Δx ||2 ≤ q̄(||Δx ||) (26)

under the assumptions of this section.This holds because if the line segment [x, x+Δx]
is fully contained in Ñ0, then the scalar q̄(‖Δx‖)denotes the constant of [4, Proposition
1]. Otherwise those steps Δx for which the line segment [x, x + Δx] is not fully
contained in Ñ0 must have a certain minimal size, since the base points x are restricted

123

356 S. Fiege et al.

toN0. Then the denominators in Eq. (26) are bounded away from zero so that q̄(||Δx ||)
exists.

Since q̄ is a monotonic descending mapping which is bounded below, it converges
to some limit q̄∗ ∈ (0,∞). Nevertheless q̄ will generally not be known, so that
we approximate it by estimates, referred to as quadratic coefficients throughout. We
generate the sequences of iterates {xk}k∈N with xk ∈ N0 and corresponding steps
{Δxk}k∈N with Δxk ∈ R

n by Algorithm 1 and consistently update the quadratic
coefficient starting from some q0 > 0 according to

qk+1 = max{q̂k+1, μ qk + (1 − μ) q̂k+1, qlb} (27)

with q̂k+1 := q̂(xk;Δxk), μ ∈ [0, 1] and where qlb > 0 is a lower bound. Then the
following lemma holds.

Lemma 2 Under the general assumptions of this section, one has:

a) The sequence of steps {Δxk}k∈N exists.
b) The sequences {Δxk}k∈N and {q̂k}k∈N are uniformly bounded.
c) The sequence {qk}k∈N is bounded.

Proof a) By minimizing the supposed upper bound Δ f (xk;Δx) + 1
2q

kκ‖Δx‖2 on
f (xk + Δx) − f (xk) at least locally we always obtain a step

Δxk ≡ argmin
s

(Δ f (xk; s) + κ
2q

k‖s‖2).

A globally minimizing stepΔxk must exist sinceΔ f (xk; s) can only decrease linearly
so that the positive quadratic term always dominates for large ‖s‖. Moreover, Δxk

vanishes only at first order minimal points xk where Δ f (xk; s) and f ′(xk; s) have the
local minimizer s = 0.

b) It follows from qk ≥ qlb > 0 and the continuity of all quantities on the compact
setN0 that the step size δ ≡ ‖Δx‖must be uniformly bounded by some δ̄. This means
that the q̂ are uniformly bounded by q̄ ≡ q̄(δ̄).

c) Obviously, the sequence {qk}k∈N is bounded below by qlb. Considering the
first two arguments of Eq. (27), one obtains that qk+1 = q̂k+1 and qk+1 > qk if
q̂k+1 > μ qk + (1 − μ) q̂k+1. Respectively, if q̂k+1 ≤ μ qk + (1 − μ) q̂k+1, one
obtains qk+1 ≥ q̂k+1 and qk+1 ≤ qk . This means that the maximal element of the
sequence is given by a q̂ j with j ∈ {1, . . . , k + 1} and thus bounded by q̄(‖Δx j‖).
Therefore, the sequence {qk}k∈N is bounded above. ��

The proof of Lemma 2 c) gives us the important insight that qk+1 ≥ q̂k+1 holds.
With these results we can now prove the main convergence result of this paper.

Theorem 4 Let f : R
n → R be a piecewise smooth function as described at the

beginning of Sect. 2 which is bounded below and has a bounded level set N0 = {x ∈
R
n | f (x) ≤ f (x0)} with x0 the starting point of the generated sequence of iterates

{xk}k∈N.

123

An algorithm for nonsmooth optimization by successive… 357

Then a cluster point x∗ of the infinite sequence {xk}k∈N generated by Algorithm 1
exists. All cluster points of the infinite sequence {xk}k∈N are Clarke stationary points
of f .

Proof The sequence of steps {Δxk}k∈N is generated by solving the overestimated
quadratic problem in step 2 of Algorithm 1 of the form

Δxk = argmin
s

(Δ f (x; s) + 1
2κq

k‖s‖2).

Unless xk satisfies first order optimality conditions the step Δxk satisfies

Δ f (xk;Δxk) + 1
2κq

k‖Δxk‖2 < 0. (28)

Therewith, one obtains from Eq. (25)

f (xk + Δxk) − f (xk) ≤ 1
2

[
qk+1 − κqk

]
‖Δxk‖2 (29)

where q̂k+1 ≤ qk+1 holds as a result of Eq. (27) and due to Eq. (28) one has
Δ f (xk;Δxk) ≤ − 1

2q
kκ‖Δxk‖2. The latter inequality can be overestimated by apply-

ing the limit superior q̄ = lim supk→∞ qk+1 as follows:

f (xk + Δxk) − f (xk) ≤ 1
2

[
q̄ − κqk

]
‖Δxk‖2.

Considering a subsequence of {qk j } j∈N converging to the limit superior, it follows that
for each ε > 0 there exists j̄ ∈ N such that for all j ≥ j̄ one obtains ‖q̄ − qk j ‖ < ε.
Therewith the overestimated local problem provides that the term q̄−κqk j < 0. Since
the objective function f is bounded below onN0, infinitely many significant descent
steps can not be performed and thus f (xk j + Δxk j) − f (xk j) has to converge to 0 as
j tends towards infinity. As a consequence, the right hand side of Eq. (29) has to tend
towards 0 as well. Therefore, the subsequence {Δxk j } j∈N is a null sequence. Since
the level set N0 is compact, the sequence {xk j } j∈N has a subsequence that tends to a
cluster point x∗. Hence, a cluster point x∗ of the sequence {xk}k∈N exists.

Assume that the subsequence {xk j } of {xk} converges to a cluster point. As shown
above the corresponding sequence of penalty coefficients {Δxk j } j∈N converges to
zero if j tends to infinity. Therewith, one can apply Lemma 1 at the cluster point x∗,
where it was proven that if f̂x is Clarke stationary at Δx = 0 for one q ≥ 0, then the
piecewise smooth function f is Clarke stationary in x yielding the assertion. ��

4 Numerical results

The nonsmooth optimizationmethodLiPsMin introduced in this paperwill be tested in
the following section. Therefore, we introduce piecewise linear and piecewise smooth
test problems in the Sects. 4.1 and 4.2. In both cases the test set contains convex and

123

358 S. Fiege et al.

nonconvex test problems. In Sect. 4.3 results of numerous optimization runs will be
given and compared to other nonsmooth optimization software.

4.1 Piecewise linear test problems

The test set of piecewise linear problems comprises:

1. Counterexample of HUL

f (x) = max {−100, 3x1 ± 2x2, 2x1 ± 5x2} , (x1, x2)
0 = (9, −2).

2. MXHILB

f (x) = max
1≤i≤n

∣
∣
∣
∣
∣
∣

n∑

j=1

x j
i + j − 1

∣
∣
∣
∣
∣
∣
, x0i = 1, for all i = 1, . . . , n.

3. MAXL

f (x) = max
1≤i≤n

|xi |, x0i = i, for all i = 1, . . . , n.

4. Second Chebyshev–Rosenbrock

f (x) = 1
4 |x1 − 1| +

n−1∑

i=1

|xi+1 − 2|xi | + 1|

x0i = −0.5, when mod (i, 2) = 1, i = 1, . . . , n and
x0i = 0.5, when mod (i, 2) = 0, i = 1, . . . , n.

Table 4 provides further information about the test problems such as the optimal value
f ∗ of the function, the dimension n and the number of absolute value functions s
occurring during the function evaluation depending on the dimension n. With s given
in this way the relation of n and s can be given as well. Additionally, a reference is
given for each test problem.

Table 4 Information about piecewise linear test problems

n s s ∼ n f ∗ Properties References

1 2 2n n < s −100 PL, convex [11]
2 Any 2n − 1 n ≤ s 0 PL, convex [10]
3 Any 2n − 1 n ≤ s 0 PL, convex [16]
4 Any 2n − 1 n ≤ s 0 PL, nonconvex [9]

123

An algorithm for nonsmooth optimization by successive… 359

4.2 Piecewise smooth test problems

The test set of piecewise smooth problems is listed below.

5. MAXQ

f (x) = max
1≤i≤n

x2i ,

x0i = i, for i = 1, . . . , n/2 and
x0i = −i, for i = n/2 + 1, . . . , n.

6. Chained LQ

f (x) =
n−1∑

i=1

max
{
−xi − xi+1, −xi − xi+1 + (x2i + x2i+1 − 1)

}

x0i = −0.5, for all i = 1, . . . , n.

7. Chained CB3 II

f (x) = max { f1(x), f2(x), f3(x)} ,

with f1(x) =
n−1∑

i=1

(
x4i + x2i+1

)
, f2(x) =

n−1∑

i=1

(
(2 − xi)

2 + (2 − xi+1)
2
)

and f3(x) =
n−1∑

i=1

(
2e−xi+xi+1

)
,

x0i = 2, for all i = 1, . . . , n.

8. MAXQUAD

f (x) = max
1≤i≤5

(
xAi x − xbi

)

Ai
k j = Ai

jk = e j/k cos(jk) sin(i), for j < k, j, k = 1, . . . , 10

Ai
j j = j

10 |sin(i)| + ∑
k �= j

∣
∣
∣Ai

jk

∣
∣
∣ ,

bij = e j/ i sin(i j),

x0i = 0, for all i = 1, . . . , 10.

9. Chained Cresent I

f (x) = max { f1(x), f2(x)} ,

with f1(x) =
n−1∑

i=1

(
x2i + (xi+1 − 1)2 + xi+1 − 1

)

123

360 S. Fiege et al.

Table 5 Information about piecewise smooth test problems

n s s ∼ n f ∗ Properties References

5 Any n − 1 s < n 0 PS, convex [10]
6 Any n − 1 s < n −(n − 1)21/2 PS, convex [10]
7 Any 2 s ≤ n 2(n − 1) PS, convex [10]
8 10 4 s < n −0.8414083 PS, convex [15]
9 Any 2 s ≤ n 0 PS, nonconvex [10]
10 Any n − 1 s ≤ n 0 PS, nonconvex [10]
11 Any n − 1 s < n 0 PS, nonconvex [9]
12 Any n + 1 n < s 0 PS, nonconvex [10]

and f2(x) =
n−1∑

i=1

(
−x2i − (xi+1 − 1)2 + xi+1 + 1

)
,

x0i = −1.5, when mod (i, 2) = 1, i = 1, . . . , n and
x0i = 2, when mod (i, 2) = 0, i = 1, . . . , n.

10. Chained Cresent II

f (x) =
n−1∑

i=1

max
{
f1,i (x), f2,i (x)

}
,

with f1,i (x) = x2i + (xi+1 − 1)2 + xi+1 − 1,

and f2,i (x) = −x2i − (xi+1 − 1)2 + xi+1 + 1,

x0i = −1.5, when mod (i, 2) = 1, i = 1, . . . , n and
x0i = 2, when mod (i, 2) = 0, i = 1, . . . , n.

11. First Chebyshev–Rosenbrock

f (x) = 1
4 (x1 − 1)2 +

n−1∑

i=1

∣
∣
∣xi+1 − 2x2i + 1

∣
∣
∣

x0i = −0.5, when mod (i, 2) = 1, i = 1, . . . , n and
x0i = 0.5, when mod (i, 2) = 0, i = 1, . . . , n.

12. Number of active faces

f (x) = max
1≤i≤n

⎧
⎨

⎩
g

⎛

⎝−
n∑

j=1

x j

⎞

⎠ , g(xi)

⎫
⎬

⎭
, where g(y) = ln (|y| + 1) .

x0i = 1, for all i = 1, . . . , n.

In Table 5 further information about the test problems are given, compare Table 4.

123

An algorithm for nonsmooth optimization by successive… 361

4.3 Performance results of LiPsMin and comparison with other nonsmooth
optimization methods

In the following, the introduced routine LiPsMin is compared with the nonsmooth
optimization routine MPBNGC, which is a proximal bundle method described in
[16], and the quasi-Newton type method HANSO described in [14].

The idea of the bundlemethodMPBNGC is to approximate the subdifferential of the
objective function at the current iterate by collecting subgradients of previous iterates
and storing them into a bundle. Thus, more information about the local behavior of the
function is available. To reduce the required storage the amount of stored subgradients
has to be restricted. Therefore an aggregated subgradient is computed from several
previous subgradients so that these subgradients can be removed without losing their
information. For more details see [16,17].

HANSO 2.2 combines the BFGS method [14] with an inexact line search and the
gradient sampling approach described in [1]. The gradient sampling approach is a
stabilized steepest descent method. At each iterate the corresponding gradient and
additional gradients of nearby points are evaluated. The descent direction is chosen
as the vector with the smallest norm in the convex hull of these gradients. However,
by default the gradient sampling method is not used in HANSO 2.2, since it is mainly
required for coherent convergence results.

As stopping criteria of routines LiPsMin and PLMin we used ε = 1e−8 and the
maximal iteration number max I ter = 1000. In the implementation of Algorithm 1
we chose the parameter μ = 0.9. Under certain conditions, e.g., a large number of
active constraints at the optimal point, it is reasonable to add a termination criterion
that considers the reduction of the function value in two consecutive iterations, i.e.,
| f (xk) − f (xk+1)| < ε. For the bundle method MPBNGC we choose the following
parameter settings. The maximal bundle size equals the dimension n. If the considered
test function is convex then the parameter gam equals 0 otherwise gam is set to
0.5. Further stopping criteria are the number of iterations nI ter = 10,000 (Iter),
the number of function and gradient evaluations NFASG= 10,000 (# f = #∇ f)
and the final accuracy EPS= 1e−8. For HANSO we choose normtol = 1e−8 and
maxit = 10,000 (Iter).

Performance results of piecewise linear test problems

First, we consider the problems of the piecewise linear test set, see Sect. 4.1. The results
of the piecewise linear and convex problems are presented in Table 6 and Table 7.
Each table contains all results of a single test problem generated by the three different
optimization routines mentioned. The columns of the tables give the dimension n
of the problem, the final function value f ∗, the number of function evaluations # f ,
the number of gradient evaluations #∇ f and number of iterations. Additionally, the
initial penalty coefficient q0 of LiPsMin is given. Since we assume that all our test
problems are bounded below and we consider piecewise linear problems, the initial
penalty coefficient is chosen as q0 = 0. For the test problem MXHILB the additional
stopping criterion considering the function value reduction was added.

123

362 S. Fiege et al.

Table 6 Results for
Counterexample of HUL

n f ∗ # f #∇ f Iter

LiPsMin 2 −100 3 8 2
HANSO 2 −100 9 9 3
MPBNGC 2 −100 7 7 6

Table 7 Results for MXHILB and MAXL

n MXHILB MAXL

f ∗ # f #∇ f Iter f ∗ # f #∇ f Iter

LiPsMin 2 5.6e−17 3 7 2 0 3 7 2
5 2.7e−10 3 35 2 0 3 10 2

10 5.6e−10 3 26 2 0 3 15 2
20 4.7e−9 3 34 2 0 3 25 2
50 3.0e−9 3 20 2 0 3 203 2
100 2.1e−12 3 8 2 0 3 404 2

HANSO 2 5.5e−7 47 47 23 1.5e−5 21 21 17
5 1.4e−29 636 636 255 7.6e−6 28 28 21

10 1.5e−13 643 643 259 7.6e−6 38 38 26
20 1.4e−12 782 782 328 3.8e−6 59 59 37
50 3.0e−11 879 879 382 3.8e−6 119 119 67
100 2.8e−11 1233 1233 494 1.9e−6 220 220 118

MPBNGC 2 4.2e−17 9 9 8 3.4e−9 67 67 42
5 1.8e−8 10,000 10,000 1681 1.7e−16 17 17 15

10 2.9e−10 11 11 10 1.2e−13 29 29 27
20 1.6e−9 13 13 11 3.8e−11 56 56 54
50 5.5e−12 15 15 13 1.0e−12 123 123 121
100 4.0e−10 18 18 15 1.7e−9 176 176 165

In Fig. 3 a comparison of the behavior of optimization runs generated by LiPsMin,
HANSO, and MPBNGC is illustrated for the Counterexample of HUL. As intended
LiPsMin uses the additional information of the polyhedral decomposed domain
efficiently in order to minimize the number of iterations. As a consequence the opti-
mization run computed by LiPsMin is more predictable and purposeful than the runs
computed by HANSO andMPBNGC. This behavior is characteristic for all piecewise
linear problems solved by LiPsMin. In contrast to the first three test problems the 2nd
Chebyshev–Rosenbrock function is nonconvex. The corresponding results are given
in Table 8. For n > 2, all optimization routines failed to detect the unique minimizer.
The detected points are Clarke stationary points.

To distinguish minimizers and Clarke stationary points that are not optimal, new
optimality conditions were established in [7]. These optimality conditions are based
on the linear independent kink qualification (LIKQ) which is a generalization of LICQ
familiar from nonlinear optimization. It is shown in the mentioned article that the 2nd
Chebyshev–Rosenbrock function satisfies LIKQ globally, i.e., throughout Rn . The
following special purpose algorithm for piecewise linear functions was designed such
that it can only stop at stationary points satisfying first order minimality conditions.
The call of the routine ComputeDesDir() in Algorithm 3 is replaced by a reflection

123

An algorithm for nonsmooth optimization by successive… 363

Fig. 3 Optimization runs of test problem HUL performed by LiPsMin, HANSO and MPBNGC

Table 8 Results for 2nd
Chebyshev–Rosenbrock

n f ∗ # f #∇ f Iter

LiPsMin 2 1.29e−11 4 11 3
5 1.9e−1 5 53 4

10 4.0e−1 4 42 3
20 4.0e−1 3 45 2
50 4.0e−1 3 57 2

100 4.0e−1 3 120 2
HANSO 2 3.8e−7 211 211 61

5 3.1e−1 8742 8742 2521
10 4.0e−1 1383 1383 514
20 4.0e−1 5268 5268 2177
50 4.0e−1 2607 2607 463

100 4.0e−1 2278 2278 290
MPBNGC 2 1.7e−16 80 80 52

5 2.5e−1 10,000 10,000 3561
10 4.0e−1 10,000 10,000 9807
20 4.0e−1 66 66 65
50 4.0e−1 188 188 187

100 3.5e−1 251 251 249

of the signature vector σ of the current polyhedron into the opposing polyhedron by
switching all active signs from 1 to -1 or vice versa.

Algorithm 5 (PLMin_Reflection)
PLMin_Reflection(x) // Precondition: x, Δx ∈ R

n, Δx = 0

1. Determine solution δx of local QP (22) on current Pσ .
2. If ‖δx‖ > ε

Compute new σ by switching all active signs.
Update Δx = Δx + δx.
Go to 1.

else
STOP.

return Δx

The results of Algorithm 5 applied on the 2nd Chebyshev–Rosenbrock function are
given inTable 9.As stopping criterionwe used the tolerance ε = 1e−8. Each evaluated
gradient ∇ f represents an open polyhedron. The algorithm takes 2n−1 iterations,
which indicates that from the given starting point it visits almost all the other 2n−1

123

364 S. Fiege et al.

Table 9 Results for 2nd
Chebyshev–Rosenbrock with
Algorithm 5 incorporated into
LiPsMin

n f ∗ # f #∇ f Iter

2 1.3e−11 3 6 2
5 1.1e−16 3 17 2
10 1.6e−14 3 414 2
20 1.1e−16 4 419,438 3

Table 10 Results for MAXQ, q0 = 0.1 and Chained LQ, q0 = 0.1

n MAXQ Chained LQ

f ∗ # f #∇ f Iter f ∗ # f #∇ f Iter

LiPsMin 2 2.3e−9 27 156 26 − 1.41421 10 26 9
5 1.8e−9 36 486 35 − 5.65685 47 471 46

10 2.7e−9 34 939 33 − 12.7278 15 128 18
20 1.9e−9 36 1980 35 − 26.8701 15 258 14
50 1.4e−8 58 8011 57 − 69.2965 15 646 14

100 3.5e−8 117 32,359 116 − 140.007 15 1341 14
HANSO 2 3.2e−19 18 18 16 − 1.41421 156 156 51

5 3.0e−17 242 242 116 − 5.65685 190 190 52
10 6.2e−16 787 787 352 − 12.7279 315 315 100
20 1.1e−16 1362 1362 637 − 26.8701 578 578 165
50 2.1e−16 4409 4409 1906 − 69.2965 1238 1238 274

100 3.0e−16 8922 8922 3991 − 140.007 2353 2353 416
MPBNGC 2 7.6e−9 15 15 14 − 1.41421 9 9 8

5 3.1e−9 60 60 49 − 5.65685 34 34 30
10 3.4e−9 126 126 34 − 12.7279 40 40 33
20 2.6e−9 244 244 222 − 26.8701 63 63 61
50 3.8e−9 577 577 549 − 69.2965 143 143 108

100 4.5e−9 1118 1118 1083 − 140.007 468 468 273

stationary points before reaching the unique minimizer. That enormous effort may
be unavoidable for a constant descent method. We are currently in the process of
incorporating a variant of the reflection idea into the general purpose PLMin algorithm.

In summary it can be said, that we use many fewer iterations on PL problems
than the other software packages HANSO and MPBNGC, but searching for a descent
direction still requires a significant number of active gradients that overall corresponds
to the number of gradient (and function) evaluations of the bundle method.

Performance results of piecewise smooth test problems

In the following, we consider the problems of the piecewise smooth test set, as intro-
duced in Sect. 4.2. The results of the piecewise smooth problems are presented in
Tables 10, 11, 12 and 13. Each table contains all results of a single test problem gener-
ated by the three different optimization routines mentioned above. The initial penalty
coefficient is chosen as q0 = 0.1 in most cases. In the other cases it is chosen as
q0 = 1.

In Tables 10, 11 and 12 the results of the piecewise smooth and convex test problems
are presented. The additional stopping criterion of LiPsMin considering the function

123

An algorithm for nonsmooth optimization by successive… 365

Table 11 Results for Chained
CB3 II, q0 = 1

n f ∗ # f #∇ f Iter

LiPsMin 2 2.00000 12 72 11
5 8.00000 69 530 68

10 18.0000 67 515 66
20 38.0000 63 482 62
50 98.0000 61 465 60

100 198.000 59 449 58
HANSO 2 2.00000 193 193 65

5 8.00000 270 270 96
10 18.0000 198 198 71
20 38.0000 215 215 80
50 98.0000 202 202 79

100 198.000 208 208 69
MPBNGC 2 2.00001 10,000 10,000 9999

5 8.00000 35 35 34
10 18.0000 46 46 45
20 38.0000 42 42 41
50 98.0000 60 60 59

100 198.000 41 41 40

Table 12 Results for MAXQUAD

n f ∗ # f #∇ f Iter

LiPsMin 10 −8.414083 48 426 47
HANSO 10 0 32 32 1
HANSO with GS 10 −8.41397 2943 2943 1 + 3 GS
MPBNGC 10 −8.414083 40 40 39

value reduction was applied for test problemMAXQ. A large number of optimization
runs detected successfully minimal solutions. The bundle method MPBNGC stopped
once because the maximal number of function and gradient evaluations was reached,
see Table 11. HANSO failed once, see Table 12. By enabling the gradient sampling
mode, the minimal point could be detected as indicated in the additional row of that
table. The number of function value and gradient evaluations are hardly comparable
as a consequence of the varying underlying information. However, several optimiza-
tion runs performed by HANSO, see, e.g., Table 10, and LiPsMin, see, e.g., Table 10
resulted in a higher number of function and gradient evaluations than the other two
respective routines, whereas the iteration numbers of all three routines are of compa-
rable order of magnitude.

In Tables 13 and 14 the results of the piecewise smooth and nonconvex test problems
are presented. From general theory one can expect that these problems are difficultly to
solve and indeed the results are not as clear as those results of the previously considered
test problems. The results of test problems Chained Cresent I and Number of active
faces given in Tables 13 and 14 are encouraging. However, the final function values
generated by HANSO are partly less accurate than expected andMPBNGC terminates
several times because the maximum number of function and gradient evaluation was
reached. Comparing test problems Chained Cresent I and II one can see how minor

123

366 S. Fiege et al.

Table 13 Results for Chained Cresent II, q0 = 0.1, and Chained Cresent I, q0 = 1

n Chained Cresent II Chained Cresent I

f ∗ # f #∇ f Iter f ∗ # f #∇ f Iter

LiPsMin 2 6.4e−13 53 304 52 7.0e−13 56 327 55
5 8.3e−13 62 695 61 8.0e−13 61 347 60

10 5.8e−13 64 1228 63 9.1e−13 64 375 63
20 9.1e−13 64 2231 63 9.5e−13 65 381 64
50 7.0e−13 65 5260 64 1.1e−13 149 875 148

100 7.9e−13 65 10,251 64 2.1e−13 92 543 91
HANSO 2 0 175 175 51 0 175 175 51

5 8.9e−16 346 346 120 0 170 170 57
10 5.2e−15 626 626 238 0 171 171 49
20 1.1e−14 1155 1155 292 0 178 178 48
50 7.4e−7 453 453 92 1.7e−15 180 180 52

100 4.3e−7 457 457 111 1.7e−15 145 145 46
MPBNGC 2 1.4e−8 52 52 45 1.4e−8 52 52 45

5 4.1e−9 80 80 79 4.2e−9 78 78 57
10 5.1e−9 196 196 195 1.1e−8 49 49 40
20 7.0e−9 488 488 485 4.5e−9 65 65 50
50 7.1e−9 519 519 518 5.7e−9 167 167 83

100 8.0e−9 733 733 684 4.2e−9 96 96 66

changes in the objective function influence the optimization results. The required
number of iterations of all three optimization methods increased.

As in the piecewise linear case the Chebyshev–Rosenbrock function seems to be
more difficult than the other test problems. According to [9] the function has only one
Clarke stationary point which is the minimizer as well. Only a few optimization runs
detected theminimizer f ∗ = 0with sufficient accuracy. In the test with n ≥ 10 none of
the methods seem to reach the unique stationary point within the given computational
limitations. LiPsMin and HANSO often get stuck at a pseudo stationary value of
0.81814. This effects warrants further investigation.

The above results illustrate that in the piecewise smooth case the introduced opti-
mizationmethodLiPsMin compareswellwith the state of the art optimization software
HANSO and MPBNGC. These results can be confirmed by Figs. 4 and 5 that give an
idea of the convergence rate of LiPsMin. Each figure corresponds to one test problem
and it shows how the function value f (xk) of the k-th iteration decreases during an opti-
mization run for n = 10 and n = 100. On PS problems with s = n active switches we
can expect superlinear convergence. Otherwise curvature becomes important, which
is not reflected in the piecewise linear models. In particular for unconstrained smooth
problems our method reduces to steepest descent with a particular line-search. Hence
the convergence rate can only be linear as indicated in Figs. 4 and 5. A superlinear
rate can possibly be achieved by generalizing the proximal term to an ellispoidal norm
defined by a positive definite approximation of the Hessian of a suitable Lagrangian.

5 Conclusion and Outlook

In [8] we proposed a method for the optimization of Lipschitzian piecewise smooth
functions by successive piecewise linearization. The central part of that previous article

123

An algorithm for nonsmooth optimization by successive… 367

Ta
bl
e
14

R
es
ul
ts
fo
r
1s
tC

he
by

sh
ev
–R

os
en
br
oc
k,
q
0

=
0.
1,

an
d
N
um

be
r
of

A
ct
iv
e
Fa
ce
s,
q
0

=
0.
1

n
1s
tC

he
by

sh
ev
–R

os
en
br
oc
k

N
um

be
r
of

ac
tiv

e
fa
ce
s

f∗
#
f

#∇
f

It
er

f∗
#
f

#∇
f

It
er

L
iP
sM

in
2

2.
2e

−1
4

30
8

18
14

30
7

6.
7e

−1
6

3
7

2
5

6.
4e

−2
10

01
15

,0
95

10
00

2.
2e

−1
6

4
8

3
10

0.
81

74
4

10
01

30
,3
71

10
00

4.
2e

−1
5

4
8

3
20

0.
81

81
4

10
01

42
,1
50

10
00

8.
2e

−1
5

5
9

4
50

0.
81

81
4

6
25

6
5

2.
5e

−1
4

9
13

8
10

0
0.
81

81
4

6
54

2
5

6.
8e

−1
4

14
18

13
H
A
N
SO

2
9.
6e

−1
5

59
4

59
4

25
5

2.
1e

−6
23

23
8

5
7.
0e

−2
27

,9
80

27
,9
80

10
,0
00

1.
3e

−5
24

24
11

10
0.
81

70
7

18
,7
53

18
,7
53

10
,0
00

8.
4e

−5
23

23
11

20
0.
81

81
4

22
32

22
32

10
93

3.
2e

−5
25

25
9

50
0.
81

81
4

26
54

26
54

48
2

2.
4e

−5
27

27
11

10
0

0.
81

81
4

51
73

51
73

75
7

1.
3e

−4
29

29
11

M
PB

N
G
C

2
8.
7e

−9
14

3
14

3
75

8.
2e

−1
3

20
20

14
5

0.
16

99
5

10
,0
00

10
,0
00

35
09

2.
2e

−1
0

12
12

10
10

0.
62

64
7

10
,0
00

10
,0
00

97
86

7.
6e

−9
20

20
15

20
0.
81

81
4

20
1

20
1

20
0

2.
0e

−7
10

,0
00

10
,0
00

99
95

50
0.
63

02
7

35
3

35
3

35
2

6.
4e

−7
10

,0
00

10
,0
00

64
28

10
0

0.
06

10
9

22
83

22
83

18
42

4.
4e

−5
10

,0
00

10
, 0
00

99
93

123

368 S. Fiege et al.

Fig. 4 Convergence behavior of LiPsMin, HANSO and MPBNGC for MAXQ (left) and Chained CB3 II
(right) with n = 10 and n = 100

Fig. 5 Convergence behavior of LiPsMin, HANSO and MPBNGC for number of active faces (left) and
Chained Cresent I (right) with n = 10 and n = 100

was the concept of piecewise linearization and the exploitation of the therewith gained
information. An approach of the outer routine LiPsMin was introduced and tested. In
the current work we gave an overview of a refined version of the LiPsMin method.

While computing the results of the piecewise linear examples by the inner routine
PLMin in [8], it became obvious that the computation of the critical step multiplier
during the line-search was not as numerically accurate as required. Therefore, it was
replaced by the more efficient solution of the quadratic subproblem introduced in
Sect. 3.2. For this adapted inner routine of LiPsMin we confirmed convergence in
finitely many iteration. A first version of the LiPsMin algorithm was introduced in [4].
In the current version a more aggressive updating strategy of the penalty multiplier q
was applied. In Sect. 3.3 it was proven that LiPsMin combined with the new updating
strategy maintains its global convergence to a stationary point. This property holds for
HANSO in a probabilistic sense if the gradint sampling is switched on, which does
however considerably reduce the effciency on most problems.

The performance results of LiPsMin in the piecewise linear case, see Sect. 4.3,
confirmed well our expectation. The incorporation of additional information gained
by the abs-normal form leads to a pointed and predictable descent trajectory. In the

123

An algorithm for nonsmooth optimization by successive… 369

piecewise smooth case the performance results generated by LiPsMin also compared
well with the state of the art optimization software toolsMPBNGC and HANSO. Both
the tables and the figures of Sect. 4 affirmed this conclusion. The results also indicated
that LiPsMin may converge superlinearly under certain conditions. These conditions
should be analyzed in future work.

Nevertheless, the results also illustrated that it is useful to check if stationary points
are also minimal points. That is why it should be an important question of future
work how to incorporate the optimality conditions of [7] such that minimizers can be
uniquely identified. Hence, it would be beneficial to gain more information about the
polyhedral decomposition of the domain, such as convexity properties of the func-
tion. The additional information can be used to identify the subsequent polyhedron
more efficiently which is especially relevant when the considered function is high
dimensional or includes a higher number of absolute value function evaluations.

Acknowledgements The authos are indebted to the two referees for their careful reading of the first
submission and their many objections and suggestions, which helped to greatly improve the consistency
and the readability of the paper.

References

1. Burke, J., Lewis, A., Overton, M.: A robust gradient sampling algorithm for nonsmooth nonconvex
optimization. SIAM J. Optim. 15(3), 751–779 (2005)

2. Clarke, F.: Optimization and Nonsmooth Analysis. SIAM, Philadelphia (1990)
3. de Oliveira, W., Sagastizábal, C.: Bundle methods in the XXIst century: a birds’-eye view. Pesqui.

Oper. 34(3), 647–670 (2014)
4. Griewank, A.: On stable piecewise linearization and generalized algorithmic differentiation. Optim.

Methods Softw. 28(6), 1139–1178 (2013)
5. Griewank, A., Bernt, J.U., Radons, M., Streubel, T.: Solving piecewise linear systems in abs-normal

form. Linear Algebra Appl. 471, 500–530 (2015)
6. Griewank, A., Walther, A.: Evaluating Derivatives: Principles and Techniques of Algorithmic Differ-

entiation. SIAM, Philadelphia (2008)
7. Griewank, A.,Walther, A.: First and second order optimality conditions for piecewise smooth objective

functions. Optim. Methods Softw. 31(5), 904–930 (2016)
8. Griewank, A.,Walther, A., Fiege, S., Bosse, T.: On Lipschitz optimization based on gray-box piecewise

linearization. Math. Program. Ser. A 158, 383–415 (2016)
9. Gurbuzbalaban, M., Overton, M.L.: On Nesterov’s nonsmooth Chebyshev–Rosenbrock functions.

Nonlinear Anal. Theory Methods Appl. 75(3), 1282–1289 (2012)
10. Haarala,M.,Miettinen,K.,Mäkelä,M.:New limitedmemory bundlemethod for large-scale nonsmooth

optimization. Optim. Methods Softw. 19(6), 673–692 (2004)
11. Hiriart-Urruty, J.B., Lemaréchal, C.: ConvexAnalysis andMinimizationAlgorithms I. Springer, Berlin

(1993)
12. Karmitsa, N., Mäkelä, M.: Limited memory bundle method for large bound constrained nonsmooth

optimization: convergence analysis. Optim. Methods Softw. 25(6), 895–916 (2010)
13. Lemaréchal, C., Sagastizábal, C.: Variable metric bundle methods: from conceptual to implementable

forms. Math. Program. 76(3), 393–410 (1997)
14. Lewis, A., Overton, M.: Nonsmooth optimization via quasi-Newton methods. Math. Program. 141(1–

2), 135–163 (2013)
15. Lukšan, L., Vlček, J.: Test problems for nonsmooth unconstrained and linearly constrained optimiza-

tion. Technical report 798, Institute of Computer Science, Academy of Sciences of the Czech Republic
(2000)

16. Mäkelä, M., Neittaanmäki, P.: Nonsmooth Optimization: Analysis and Algorithms with Applications
to Optimal Control. World Scientific Publishing Co., Singapore (1992)

123

370 S. Fiege et al.

17. Mäkelä, M.M.: Multiobjective proximal bundle method for nonconvex nonsmooth optimization: For-
tran subroutine MPBNGC 2.0. Reports of the Department of Mathematical Information Technology,
Series B, Scientific computing No. B 13/2003, University of Jyväskylä (2003)

18. Nesterov, Y.: Lexicographic differentiation of nonsmooth functions. Math. Program. 104(2–3), 669–
700 (2005)

19. Scholtes, S.: Introduction to Piecewise Differentiable Functions. Springer, Berlin (2012)
20. Shor, N.: Nondifferentiable Optimization and Polynomial Problems. Kluwer, Amsterdam (1998)

123

	An algorithm for nonsmooth optimization by successive piecewise linearization
	Abstract
	1 Introduction
	2 Notation and background
	3 Successive piecewise linearization
	3.1 Minimization of the piecewise smooth function
	3.2 Minimization of the piecewise linear subproblem as sequence of QPs
	3.3 Convergence results for LiPsMin

	4 Numerical results
	4.1 Piecewise linear test problems
	4.2 Piecewise smooth test problems
	4.3 Performance results of LiPsMin and comparison with other nonsmooth optimization methods
	Performance results of piecewise linear test problems
	Performance results of piecewise smooth test problems

	5 Conclusion and Outlook
	Acknowledgements
	References

