
Math. Program., Ser. A (2019) 177:321–341
https://doi.org/10.1007/s10107-018-1271-7

FULL LENGTH PAPER

On the existence of Pareto solutions for polynomial
vector optimization problems

Do Sang Kim1 · Tiến-So.n Pha. m2 ·
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Abstract We are interested in the existence of Pareto solutions to the vector opti-
mization problem

MinR
m+{ f (x) | x ∈ R

n},

where f : R
n → R

m is a polynomial map. By using the tangency variety of f we
first construct a semi-algebraic set of dimension at most m − 1 containing the set of
Pareto values of the problem. Thenwe establish connections between the Palais–Smale
conditions, M-tameness, and properness for the map f . Based on these results, we
provide some sufficient conditions for the existence of Pareto solutions of the problem.
We also introduce a generic class of polynomial vector optimization problems having
at least one Pareto solution.
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1 Introduction

Existence of solutions andunboundedness are important issues in (vector) optimization
theory; we refer the readers to the book [22] and to the papers [2,3,5,15,16] with the
references therein. In this paper, we are interested in the question about the existence
of Pareto solutions to the unconstrained vector optimization problem

MinR
m+{ f (x) | x ∈ R

n}, (VP)

where f : R
n → R

m is a polynomial map.
We first consider the case m = 1. It is well known that (VP) has a solution if the

objective function f is coercive on R
n, i.e., f (x) → +∞ when ‖x‖ → ∞. This

condition is equivalent to the fact that f is bounded from below and satisfies the so-
called Palais–Smale condition; see the survey [32] for more details. Regarding to the
coercivity property of polynomials, see the recent papers [1,25].

Wenext assume thatm > 1.By introducing somevariants of theEkeland variational
principle for set-valued maps, it was proved in [2,3,16] that the set of weak Pareto
solutions of (VP) is nonempty, provided that the following two conditions hold true:

• f is bounded from below, i.e., there exists an element a ∈ R
m such that

f (Rn) ⊂ a + R
m+.

• f satisfies a Palais–Smale type condition.

Note that both of these assumptions seem to be rather restrictive (see examples in
Sects. 3 and 4 below). So we would like to find better sufficient conditions for the
existence of Pareto solutions of (VP) in the case where f is a polynomial map.

ContributionWestudy the existence of Pareto solutions in polynomial vector optimiza-
tion problems. To do this, we will use the so-called tangency varieties and tangency
values at infinity. It is worth noting that these concepts play important roles in the
study of polynomial optimization problems; see [19]. Namely, assume that the map f
is polynomial, then our contribution is as follows:

(a) We will construct a semi-algebraic subset of R
m of dimension at most m − 1

containing the set of Pareto values of (VP).This subset canbe estimated effectively
as shown very recently in [8].

(b) Under the assumption that the image f (Rn)has a bounded section at some t̄ ∈ R
m,

which is indeed necessary for the existence of Pareto solutions of (VP), we show
that the following statements are equivalent:
• f is proper at the sublevel t̄ .
• f satisfies the Palais–Smale condition at the sublevel t̄ .
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• f satisfies the weak Palais–Smale condition at the sublevel t̄ .
• f is M-tame at the sublevel t̄ .

(c) Based on these results, we provide some sufficient conditions under which the
set of Pareto solutions of (VP) is nonempty. Finally, we show a generic class of
vector optimization problems having at least one Pareto solution.

We hope that the results in this paper will be useful in finding Pareto solutions/values
of polynomial vector optimization problems.

To be concrete, we state the results for polynomial maps. Analogous results, with
essentially identical proofs, hold for maps definable in an “o-minimal structure” (such
as semi-algebraic maps) or, even more generally, for “tame” maps. See [37] for more
on the subject.

The rest of the paper is organized as follows. In Sect. 2 we recall some prelimi-
nary results from semi-algebraic geometry. Section 3 is devoted to Pareto values and
tangencies. Some relationships between Palais–Smale conditions, M-tameness, and
properness for polynomial maps are also established in this section. Several sufficient
conditions for the existence of Pareto solutions of (VP) are given in Sect. 4. Section 5
draws some conclusions.

2 Preliminaries

We use the following notation and terminology. Fix a number n ∈ N, n ≥ 1, and
abbreviate (x1, x2, . . . , xn) by x . The space R

n is equipped with the usual scalar
product 〈·, ·〉 and the corresponding Euclidean norm ‖ · ‖. The interior (resp., the
closure) of a set S is denoted by int S (resp., cl S). The closed unit ball inR

n is denoted
by B

n . Let R
m+ := {t := (t1, . . . , tm) | ti ≥ 0, i = 1, . . . , m} be the nonnegative

orthant in R
m . The cone R

m+ induces the following partial order in R
m : x, y ∈ R

m ,
x ≤ y if and only if y − x ∈ R

m+.

Now, we recall some notions and results of semi-algebraic geometry, which can be
found in [4,19].

Definition 2.1 (i) A subset of R
n is called semi-algebraic if it is a finite union of sets

of the form

{x ∈ R
n | fi (x) = 0, i = 1, . . . , k; fi (x) > 0, i = k + 1, . . . , p}

where all fi are polynomials.
(ii) Let A ⊂ R

n and B ⊂ R
m be semi-algebraic sets. A map F : A → B is said to be

semi-algebraic if its graph

{(x, y) ∈ A × B | y = F(x)}
is a semi-algebraic subset in R

n × R
m .

By definition, it is easy to see that the class of semi-algebraic sets is closed under
taking finite intersections, finite unions and complements; a Cartesian product of semi-
algebraic sets is a semi-algebraic set. Furthermore, we have the following result (see
[4, Proposition 2.2.7] or [19, Sect. 6]).
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Theorem 2.1 (Tarski–Seidenberg Theorem) The image and inverse image of a semi-
algebraic set under a semi-algebraic map are semi-algebraic sets.

Remark 2.1 As an immediate consequence of the Tarski–Seidenberg Theorem, we
get semialgebraicity of any set {x ∈ A | ∃y ∈ B, (x, y) ∈ C}, provided that A, B,

and C are semi-algebraic sets in the corresponding spaces. It also follows that {x ∈
A | ∀y ∈ B, (x, y) ∈ C} is a semi-algebraic set as its complement is the union of the
complement of A and the set {x ∈ A | ∃y ∈ B, (x, y) /∈ C}. Thus, if we have a finite
collection of semi-algebraic sets, then any set obtained from them with the help of a
finite chain of quantifiers is also semi-algebraic. In particular, it is not hard to see that
the closure and the interior of a semi-algebraic set are semi-algebraic sets.

By the Cell Decomposition Theorem (see [4, Theorem 2.3.6]), for any p ∈ N and
any nonempty semi-algebraic subset A ⊂ R

n, we can write A as a disjoint union of
finitely many semi-algebraic C p-manifolds of different dimensions. The dimension
dim A of a nonempty semi-algebraic set A can thus be defined as the dimension of the
manifold of highest dimension of its decomposition. This dimension is well defined
and independent of the decomposition of A.Byconvention, the dimension of the empty
set is taken to be negative infinity. We will need the following result (see [4,19]).

Proposition 2.1 (i) Let A ⊂ R
n be a semi-algebraic set and f : A → R

m a semi-
algebraic map. Then dim f (A) ≤ dim A.

(ii) Let A ⊂ R
n be a nonempty semi-algebraic set. Then

dim(cl A\A) < dim A.

In particular, dim cl A = dim A.

(iii) Let A, B ⊂ R
n be semi-algebraic sets. Then

dim(A ∪ B) = max{dim A, dim B}.

In the sequel, we will need the following useful results (see, for example, [19]).

Lemma 2.1 (Curve Selection Lemma at infinity) Let A ⊂ R
n be a semi-algebraic set,

and let f := ( f1, . . . , fm) : R
n → R

m be a semi-algebraic map. Assume that there
exists a sequence {x�} such that x� ∈ A, lim�→∞ ‖x�‖ = ∞ and lim�→∞ f (x�) =
y ∈ (R)m, where R := R ∪ {±∞}. Then there exists a smooth semi-algebraic curve
ϕ : (0, ε) → R

n such that ϕ(t) ∈ A for all t ∈ (0, ε), limt→0 ‖ϕ(t)‖ = ∞, and
limt→0 f (ϕ(t)) = y.

Lemma 2.2 (Growth Dichotomy Lemma) Let f : (0, ε) → R be a semi-algebraic
function with f (t) �= 0 for all t ∈ (0, ε). Then there exist constants c �= 0 and q ∈ Q

such that f (t) = ctq + o(tq) as t → 0+.

Lemma 2.3 (Monotonicity Lemma) Let a < b in R. If f : [a, b] → R is a semi-
algebraic function, then there is a partition a =: t1 < · · · < tN := b of [a, b] such
that f |(tl ,tl+1) is C1, and either constant or strictly monotone, for l ∈ {1, . . . , N − 1}.
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3 Pareto values and tangencies

3.1 Pareto values

Let f := ( f1, . . . , fm) : R
n → R

m be a map and consider the vector optimization
problem (VP) formulated in Sect. 1.

Definition 3.1 Let t ∈ cl f (Rn). We say that:

(i) t is a Pareto (optimal) value of (VP) if

f (x) /∈ t − (Rm+\{0}) for all x ∈ R
n .

The set of all Pareto values of (VP) is denoted by val (VP).
(ii) t is a weak Pareto (optimal) value of (VP) if

f (x) /∈ t − intRm+ for all x ∈ R
n .

The set of all weak Pareto values of (VP) is denoted by valw (VP).
(iii) A point x∗ is said to be a Pareto (optimal) solution (resp., weak Pareto (optimal)

solution) if f (x∗) is a Pareto value (resp., weak Pareto value) of (VP). The set of
all Pareto solutions (resp., weak Pareto solutions) is denoted by sol (VP) (resp.,
solw (VP)).

Remark 3.1 (i) By definition, it is clear that val (VP)⊂ valw (VP). Note that the inclu-
sion may be strict.

(ii) In the case of m = 1 and f is bounded from below on R
n ,

val (VP) = valw (VP) = { inf
x∈Rn

f (x)}.

(iii) A (weak) Pareto value of the problem (VP) does not necessarily belong to f (Rn)

as shown in the example below.

Example 3.1 (i) Let f : R
3 → R

2 be the polynomial map defined by

f (x1, x2, x3) := (x3, x21 + (x1x2 − 1)2 + x23 ).

We have that

f (R3) = {t = (t1, t2) ∈ R
2 | t2 > t21 }

is an open set in R
2. Furthermore, it is easy to see that

val (VP) = valw (VP) = {t = (t1, t2) ∈ R
2 | t2 = t21 , t1 ≤ 0} �= ∅.

Hence val (VP) ∩ f (R3) = valw (VP) ∩ f (R3) = ∅, and so sol (VP) =
solw (VP) = ∅.
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(ii) In the recent paper [13] (see also [12,14]) it was proved that the open quadrant

{(t1, t2) ∈ R
2 | t1 > 0, t2 > 0}

is the image of the polynomial map f : R
2 → R

2, (x1, x2) �→ ((x21 x42 + x41 x22 −
x22 − 1)2 + x61 x42 , (x61 x22 + x21 x22 − x21 − 1)2 + x61 x42 ). For this f, we have

val (VP) = valw (VP) = {(t1, t2) ∈ R
2 | t1t2 = 0, t1 ≥ 0, t2 ≥ 0} �= ∅.

Therefore, val (VP) ∩ f (R2) = valw (VP) ∩ f (R2) = ∅, and so sol (VP) =
solw (VP) = ∅.

Remark 3.2 It was proved very recently in [20] that both the proper Pareto solution
set and the weak Pareto solution set of a vector variational inequality, where the con-
vex constraint set is given by polynomial functions and all the components of the
basic operators are polynomial functions, have finitely many connected components,
provided that the Mangasarian–Fromovitz constraint qualification is satisfied at every
point of the constraint set. In addition, if the proper Pareto solution set is dense in
the Pareto solution set, then the latter also has finitely many connected components.
Applying the above result to vector optimization problems under polynomial con-
straints, where all the components of the basic operators are polynomial functions, the
authors obtained some topological properties of the stationary point set, as well as the
weak Pareto solution set, of the problem in question.

We would like to remark that all the results in the cited paper can be concluded
immediately from Theorem 2.1 without any convexity assumption or constraint qual-
ification conditions. Indeed it suffices to assume that maps and constraint sets are
semi-algebraic. As an illustrative example, we prove here that the sets val (VP) and
sol (VP) are semi-algebraic provided that f is a (not necessarily continuous) semi-
algebraic map and so, thanks to Bochnak et al. [4, Theorem 2.4.4], they have a finite
number of (path) connected components.

Let f := ( f1, . . . , fm) : R
n → R

m be a semi-algebraic map. By Theorem 2.1, the
set f (Rn) is semi-algebraic and so is cl f (Rn). Let φ and ψ be two functions defined
by

φ : R
n × R

m → R, (x, t) �→ max
i

{ fi (x) − ti },

ψ : R
n × R

m → R, (x, t) �→
m∑

i=1

[ fi (x) − ti ]2.

In view of Theorem 2.1, it is easy to see that φ and ψ are semi-algebraic functions.
Furthermore, by definition we have

val (VP) = {t ∈ cl f (Rn) | ∀x ∈ R
n, f (x) /∈ t − (Rm+\{0})}

= {t ∈ cl f (Rn) | ∀x ∈ R
n, φ(x, t) > 0 or ψ(x, t) = 0}.
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Note that ψ(x, t) ≥ 0 on R
n × R

m . Hence

cl f (Rn)\val (VP) = {t ∈ cl f (Rn) | ∃x ∈ R
n, φ(x, t) ≤ 0 and ψ(x, t) > 0}.

Thanks to Theorem 2.1, this set is semi-algebraic because it is the projection onto the
last m coordinates of the following semi-algebraic set

{(x, t) ∈ R
n × cl f (Rn) | φ(x, t) ≤ 0 and ψ(x, t) > 0}.

Therefore, val(VP) is a semi-algebraic set.
Finally, the set sol (VP) = f −1(val (VP)) is semi-algebraic because of Theorem2.1

again.
Similarly, it is easy to check that the sets valw (VP) and solw (VP) are semi-algebraic

and so, by Bochnak et al. [4, Theorem 2.4.4], they have a finite number of connected
components, which are semi-algebraic.

3.2 Tangencies

Let f := ( f1, . . . , fm) : R
n → R

m be a polynomial map. A point t ∈ R
m is called a

regular value for f if either f −1(t) = ∅ or the derivative map D f (x) : R
n → R

m is
surjective at every point x ∈ f −1(t). A point t ∈ R

m that is not a regular value of f
is called a critical value. We will denote by K0( f ) the set of critical values of f .

Definition 3.2 (see [19])

(i) By the tangency variety of f we mean the set

Γ ( f ) := {x ∈ R
n | ∃λi , μ ∈ R, not all zero, such that

m∑

i=1

λi∇ fi (x) + μx = 0},

here and in the following ∇ fi (x) stands for the gradient of fi at x .

(ii) The set of tangency values (at infinity) of f is defined by

T∞( f ) := {t ∈ R
m | ∃{xk} ⊂ Γ ( f ), ‖xk‖ → +∞ and f (xk) → t as k → ∞}.

Remark 3.3 Very recently, relying on results from semi-algebraic geometry, it was
proved in [8] (see also [7,24]) that the set of tangency values at infinity of polynomial
maps can be estimated effectively.

Lemma 3.1 Γ ( f ) is an unbounded nonempty semi-algebraic set.

Proof By Theorem 2.1, it is easy to check that the set Γ ( f ) is semi-algebraic.
We next show that Γ ( f ) �= ∅. To this end, take any R > 0. Then the sphere

SR := {x ∈ R
n | ‖x‖2 = R2} is nonempty compact. Hence, the optimization problem

MinR
m+{ f (x) | x ∈ SR} has a Pareto solution, say x(R) ∈ SR . The Fritz-John optimal-

ity conditions [22, Theorem 7.4] imply that x(R) ∈ Γ ( f ), and so Γ ( f ) �= ∅. Finally,
it is clear that if R → ∞ then ‖x(R)‖ = R → ∞, which proves the lemma. ��
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We now give a simple and constructive proof of the following known result [7,
Theorem 2.5], [6, Theorem 5.7], [19, Theorem 1.1] and [29, Theorem 1.5].

Proposition 3.1 T∞( f ) is a closed semi-algebraic set of dimension at most m − 1.

Proof By definition and Theorem 2.1, it is not hard to check that T∞( f ) is a closed
semi-algebraic set.

Consider the semi-algebraic map

Φ : R
n → R

m+1, x �→ ( f (x), ‖x‖2).

In view of Lemma 3.1 and Theorem 2.1, the image Φ(Γ ( f )) is semi-algebraic. By
definition, Γ ( f ) is the set of critical points of Φ. Thanks to Sard’s theorem (see, for
example, [19, Theorem 1.9]), the set Φ(Γ ( f )) is of dimension at most m, and so it
cannot contain a nonempty open subset of R

m+1.

On the other hand, since Φ(Γ ( f )) is semi-algebraic, we can write

Φ(Γ ( f )) =
s⋃

i=1

{(t, R) ∈ R
m × R | gi (t, R) = 0, hi j (t, R) > 0, j = 1, . . . , ki }

for some polynomials gi and hi j . Then we must have gi �≡ 0 for all i = 1, . . . , s,
because otherwise Φ(Γ ( f )) would contain a nonempty open subset of R

m+1, a con-
tradiction. Let P : R

m+1 → R be the product of all the polynomials gi , i = 1, . . . , s.
Clearly, P �≡ 0 and

Φ(Γ ( f )) ⊂ {(t, R) ∈ R
m × R | P(t, R) = 0}.

Write

P(t, R) = a0(t)Rd + · · · + ad(t)

for some polynomials ai (t) with a0(t) �≡ 0. By definition, then

T∞( f ) = {t ∈ R
m | ∃(tk, Rk) ∈ Φ(Γ ( f )), Rk → +∞ and tk → t as k → ∞}

⊂ {t ∈ R
m | ∃(tk, Rk) ∈ P−1(0), Rk → +∞ and tk → t as k → ∞}

⊂ {t ∈ R
m | a0(t) = 0}.

Therefore, dim T∞( f ) ≤ m − 1, which completes the proof. ��
Remark 3.4 In [30,31], by using semidefinite programming relaxations, the authors
provided several methods to approximate as closely as desired the image of semi-
algebraic sets under polynomial maps with super-level sets of single polynomials of
fixed degrees. This fact, together with the proof of Proposition 3.1, gives us a hope
that the set Φ(Γ ( f )) and so T∞( f ) can be approximated effectively.

The next statement describes a relation between Pareto values and tangency values.
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Theorem 3.1 The following inclusions hold true

val (VP) ⊂ valw (VP) ⊂ K0( f ) ∪ T∞( f ).

In particular, the semi-algebraic sets val (VP) and valw (VP) are of dimension at most
m − 1.

Proof The first inclusion is obvious. Let us prove the second one. Fix t ∈ valw (VP).
If t ∈ f (Rn), then t ∈ K0( f )due to theKarush–Kuhn–Tucker necessary conditions

[22, Theorem 7.4]. So assume that t ∈ cl f (Rn)\ f (Rn). Then there is a sequence {xk}
such that limk→∞ f (xk) = t . We claim that limk→∞ ‖xk‖ = +∞. Indeed, if it is
not the case, then the sequence {xk} has an accumulation point, say x∗ ∈ R

n . By the
continuity of f , we have t = f (x∗) ∈ f (Rn), which is a contradiction.

For each k ∈ N, we consider the scalar optimization problem

min ‖ f (x) − t‖2
s.t. x ∈ R

n, ‖x‖2 = ‖xk‖2.

Since {x ∈ R
n | ‖x‖2 = ‖xk‖2} is a nonempty compact set inR

n , this problem admits
an optimal solution, say yk . It is easy to check that the sequence {yk} has the following
properties:

(a) limk→∞ ‖yk‖ = limk→∞ ‖xk‖ = +∞,
(b) 0 ≤ ‖ f (yk) − t‖2 ≤ ‖ f (xk) − t‖2, and
(c) there exists μk ∈ R such that

m∑

i=1

( fi (yk) − ti )∇ fi (yk) + μk yk = 0.

(This follows from the Karush–Kuhn–Tucker necessary conditions.)

Since t /∈ f (Rn), one has f (yk) �= t for all k ∈ N. Therefore {yk} ⊂ Γ ( f ). Moreover,
we have

0 ≤ lim
k→∞ ‖ f (yk) − t‖2 ≤ lim

k→∞ ‖ f (xk) − t‖2 = 0,

and so limk→∞ f (yk) = t. Thus t ∈ T∞( f ).

Finally, due to the Sard theorem (see, for example, [19, Theorem 1.9]), K0( f ) is a
semi-algebraic set of dimension at most m − 1. This, together with Propositions 2.1
and 3.1, implies the last statement. ��

3.3 Palais–Smale conditions, M-tameness and properness

Given a differentiable map f := ( f1, . . . , fm) : R
n → R

m and a value t̄ ∈ (R ∪
{+∞})m, we let
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K̃∞,≤t̄ ( f ) := {t ∈ R
m | ∃{xk} ⊂ R

n, f (xk) ≤ t̄, ‖xk‖ → +∞, f (xk) → t, and

ν f (xk) → 0 as k → ∞},
K∞,≤t̄ ( f ) := {t ∈ R

m | ∃{xk} ⊂ R
n, f (xk) ≤ t̄, ‖xk‖ → +∞, f (xk) → t, and

‖xk‖ν f (xk) → 0 as k → ∞},
T∞,≤t̄ ( f ) := {t ∈ R

m | ∃{xk} ⊂ Γ ( f ), f (xk) ≤ t̄, ‖xk‖ → +∞, and

f (xk) → t as k → ∞},

where ν f : R
n → R is the Rabier function (see [28,36]) defined by

ν f (x) := min∑m
i=1 |λi |=1

∥∥∥∥∥

m∑

i=1

λi∇ fi (x)

∥∥∥∥∥ .

Note that if m = 1 then ν f (x) = ‖∇ f (x)‖.
For simplicity of notation, when t̄ = (+∞, . . . ,+∞), we write K̃∞( f ), K∞( f ),

and T∞( f ) instead of K̃∞,≤t̄ ( f ), K∞,≤t̄ ( f ), and T∞,≤t̄ ( f ), respectively.
The following result is a generalization of [7, Theorem 2.8], [18, Theorem 1.1],

and [28, Proposition 3.1].

Proposition 3.2 Let f : R
n → R

m be a polynomial map and t̄ ∈ (R ∪ {+∞})m . The
following inclusions hold:

T∞,≤t̄ ( f ) ⊂ K∞,≤t̄ ( f ) ⊂ K̃∞,≤t̄ ( f ).

Furthermore, if n ≤ m, then these inclusions are equalities.

Proof The second inclusion is immediate from the definitions.
To prove the first inclusion, take any t ∈ T∞,≤t̄ ( f ). By definition, there exist

sequences {xk} ⊂ R
n and {(λk, μk)} ⊂ (Rm × R) \{0} such that

lim
k→∞ ‖xk‖ = +∞, lim

k→∞ f (xk) = t, f (xk) ≤ t̄,
m∑

i=1

λk
i ∇ fi (xk) + μk xk = 0

We can assume, after a scaling if necessary, that ‖(λk, μk)‖ = 1 for all k ∈ N.
Let

A := {
(x, λ, μ) ∈ R

n × R
m × R| f (x) ≤ t̄,

m∑

i=1

λi∇ fi (x) + μx = 0, ‖(λ, μ)‖ = 1
}
.

ThenA is a semi-algebraic set and the sequence (xk, λk, μk) ∈ A tends to infinity as
k → ∞. By applying Lemma 2.1 for the semi-algebraic mapA → R

m, (x, λ, μ) �→
f (x), we get a smooth semi-algebraic curve

(ϕ, λ, μ) : (0, ε) → R
n × R

m × R, τ �→ (ϕ(τ), λ(τ ), μ(τ)),
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satisfying the following conditions

(a) limτ→0+ ‖ϕ(τ)‖ = +∞;
(b) limτ→0+ f (ϕ(τ)) = t;
(c) f (ϕ(τ)) ≤ t̄;
(d)

∑m
i=1 λi (τ )∇ fi (ϕ(τ)) + μ(τ)ϕ(τ) ≡ 0;

(e) ‖(λ(τ ), μ(τ))‖ ≡ 1.

Since the (smooth) functions λi , μ, and fi ◦ ϕ are semi-algebraic, we can assume,
by shrinking ε if necessary, that these functions are either constant or strictlymonotone
(see Lemma 2.3).

It follows from (d) that

μ(τ)

2

d‖ϕ(τ)‖2
dτ

= μ(τ)

〈
ϕ(τ),

dϕ(τ)

dτ

〉

= −
m∑

i=1

λi (τ )

〈
∇ fi (ϕ(τ)),

dϕ(τ)

dτ

〉

= −
m∑

i=1

λi (τ )
d

dτ
( fi ◦ ϕ)(τ).

Let I := {i ∈ {1, . . . , m} | λi (τ ) d
dτ

( fi ◦ ϕ)(τ) �≡ 0}. Then

μ(τ)

2

d‖ϕ(τ)‖2
dτ

= −
∑

i∈I

λi (τ )
d

dτ
( fi ◦ ϕ)(τ). (1)

Assume that I = ∅. From (a) and (1) we haveμ(τ) ≡ 0.By (d), hence ν f (ϕ(τ)) ≡
0, which together with (a)–(c), yields t ∈ K∞,≤t̄ ( f ).

We now assume that I �= ∅. For each i ∈ I, we have λi (τ ) �≡ 0 and fi ◦ϕ(τ) �≡ ti .
By Lemma 2.2, we may write

λi (τ ) = aiτ
αi + higher order terms in τ,

fi ◦ ϕ(τ) = ti + biτ
βi + higher order terms in τ,

where ai �= 0, bi �= 0 and αi , βi ∈ Q. By Conditions (e) and (b) respectively, we have
αi ≥ 0 and βi > 0. In particular, θ := mini∈I (αi + βi ) > 0.

On the other hand, from (d) and (1), we have

∥∥∥
∑m

i=1
λi (τ )∇ fi (ϕ(τ))

∥∥∥
2‖ϕ(τ)‖

∣∣∣∣
d‖ϕ(τ)‖2

dτ

∣∣∣∣ =
∣∣∣∣∣
∑

i∈I

λi (τ )
d

dτ
( fi ◦ ϕ)(τ)

∣∣∣∣∣ .

Note that asymptotically as τ → 0+,

‖ϕ(τ)‖2 � τ
d‖ϕ(τ)‖2

dτ
.
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Therefore,

‖ϕ(τ)‖
∥∥∥∥∥

m∑

i=1

λi (τ )∇ fi (ϕ(τ))

∥∥∥∥∥ �
∥∥∥
∑m

i=1
λi (τ )∇ fi (ϕ(τ))

∥∥∥
2‖ϕ(τ)‖

∣∣∣∣τ
d‖ϕ(τ)‖2

dτ

∣∣∣∣

=
∣∣∣∣∣
∑

i∈I

λi (τ )τ
d

dτ
( fi ◦ ϕ)(τ)

∣∣∣∣∣

= cτ θ + higher order terms in τ,

for some constant c ≥ 0. Since θ > 0, we have

lim
t→0+ ‖ϕ(τ)‖

∥∥∥∥∥

m∑

i=1

λi (τ )∇ fi (ϕ(τ))

∥∥∥∥∥ = 0.

Combining this with (a)–(c) one gets t ∈ K∞,≤t̄ ( f ), thus ending the proof of the first
part of our statement.

We now assume that n ≤ m. By definition, Γ ( f ) = R
n, and so

T∞,≤t̄ ( f ) ⊃ K̃∞,≤t̄ ( f ).

This, together with proven inclusions, gives the following equalities:

T∞,≤t̄ ( f ) = K∞,≤t̄ ( f ) = K̃∞,≤t̄ ( f ).

��
Remark 3.5 (i) The first inclusion in Proposition 3.2 may be strict. For example,

consider a class of polynomial functions defined by

fnq : R
3 → R, (x1, x2, x3) �→ x1 − 3x2n+1

1 x2q
2 + 2x3n+1

1 x3q
2 + x2x3,

where n, q ∈ N\{0}. By a similar argument as in [35],we can show that T∞( fnq) =
∅ and that K∞( fnq) = ∅ if, and only if, n ≤ q. For n > q we therefore get
T∞( fnq) � K∞( fnq) �= ∅.

(ii) According to [28, Lemma 3.5] (see also [21, Theorem 2] and [23, Theorem 6.4]),
we have

dim K∞,≤t̄ ( f ) ≤ dim K∞( f ) < m.

On the other hand, without some extra hypothesis the set K̃∞,≤t̄ ( f ) may be quite
large in the sense that dim K̃∞,≤t̄ ( f ) = m. For example, let f : R

3 → R be the
polynomial defined by f (x1, x2, x3) := x1 + x21 x2 + x41 x2x3. Then it is not hard to
check that K̃∞( f ) = R (see [28, Example 2.1]), and hence

dim T∞( f ) = 0 < 1 = dim K̃∞( f ).

123



On the existence of Pareto solutions for… 333

Definition 3.3 Let A be a subset in R
m and t̄ ∈ R

m . The set A ∩ (t̄ − R
m+) is called a

section of A at t̄ and denoted by [A]t̄ . The section [A]t̄ is said to be bounded if, and
only if, there is a ∈ R

m such that

[A]t̄ ⊂ a + R
m+.

Remark 3.6 (i) Let f : R
n → R

m be a map. Clearly, if the problem (VP) admits a
Pareto solution, say x̄ , then the section [ f (Rn)] f (x̄) = { f (x̄)} is bounded. Thus
the condition that f (Rn) has at least one bounded section is a necessary one for
the existence of Pareto solutions of (VP).

(ii) By definition, the section [ f (Rn)]t̄ is bounded if, and only if, for each sequence
{xk} ⊂ R

n with f (xk) ≤ t̄ ,wehave { f (xk)}possesses a convergent subsequence.
(iii) By definition, we have for all t̄ ∈ (R ∪ {+∞})m,

K̃∞,≤t̄ ( f ) ⊂ [K̃∞( f )]t̄ , K∞,≤t̄ ( f ) ⊂ [K∞( f )]t̄ , T∞,≤t̄ ( f ) ⊂ [T∞( f )]t̄ .

These inclusions may be strict as shown in the following example.

Example 3.2 Let f (x1, x2) := (x1x2 − 1)2 + x21 be a polynomial function in two
variables x1, x2. We have f is strictly positive on R

2 and so

K̃∞,≤0( f ) = K∞,≤0( f ) = T∞,≤0( f ) = ∅.

On the other hand, it is not hard to check that

K̃∞( f ) = K∞( f ) = T∞( f ) = {0}.

Consequently,

[K̃∞( f )]0 = [K∞( f )]0 = [T∞( f )]0 = {0}.

Definition 3.4 Let f : R
n → R

m be a map. We say that:

(i) f is proper at a sublevel t̄ ∈ R
m if for each compact subset A ⊂ [Rm]t̄ , the

inverse image f −1(A) is also compact;
(ii) f is proper if it is proper at every sublevel t̄ ∈ R

m .

Remark 3.7 Bydefinition, f is proper if, and only if, for each compact subset A ⊂ R
m ,

the inverse image f −1(A) is also compact.

By definition, it is clear that if f is proper at the sublevel t̄, then

K̃∞,≤t̄ ( f ) = K∞,≤t̄ ( f ) = T∞,≤t̄ ( f ) = ∅.

The converse does not hold. For example, let f : R
2 → R be the function defined by

f (x1, x2) := x1 + x2. We see that

K̃∞,≤t̄ ( f ) = K∞,≤t̄ ( f ) = T∞,≤t̄ ( f ) = ∅
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for all t̄ ∈ R but f is not proper at every sublevel. However, we have the following
result.

Theorem 3.2 Let f : R
n → R

m be a polynomial map. Assume that there exists t̄ ∈
f (Rn) such that the section [ f (Rn)]t̄ is bounded. Then the following statements are
equivalent:

(i) f is proper at the sublevel t̄ .
(ii) f satisfies the Palais–Smale condition at the sublevel t̄ : K̃∞,≤t̄ ( f ) = ∅.

(iii) f satisfies the weak Palais–Smale condition at the sublevel t̄ : K∞,≤t̄ ( f ) = ∅.
(iv) f is M-tame1 at the sublevel t̄ : T∞,≤t̄ ( f ) = ∅.

Furthermore, the set [ f (Rn)]t̄ is closed provided that one of the above equivalent
conditions is satisfied.

Proof The implications (i)⇒(ii)⇒(iii) are immediate from the definitions.
(iii)⇒(iv): This follows from Proposition 3.2.
(iv)⇒(i): Arguing by contradiction, assume that f is not proper at the sublevel

t̄ . Then there exists a compact set A ⊂ [Rm]t̄ such that f −1(A) is a non-compact
subset in R

n . By the continuity of f , the set f −1(A) is unbounded. Thus there exists
a sequence {xk} ⊂ f −1(A) satisfying limk→∞ ‖xk‖ = +∞. Since { f (xk)} ⊂ A, we
have

f (xk) ≤ t̄ for all k ∈ N.

For each k ∈ N, we consider the problem

MinR
m+{ f (x) | x ∈ R

n, f (x) ≤ t̄ and ‖x‖2 = ‖xk‖2 }.

Since {x ∈ R
n | f (x) ≤ t̄ and ‖x‖2 = ‖xk‖2 } is a nonempty compact subset of R

n

and the objective function f is continuous, the problem admits a Pareto solution, say
yk . By the Fritz-John optimality conditions [22, Theorem 7.4], there are (α, β, γ ) ∈(
R

m+ × R
m+ × R

) \{0} such that

m∑

i=1

αi∇ fi (yk) +
m∑

i=1

βi∇( fi (·) − t̄i )(yk) + 2γ yk = 0

or, equivalently,
m∑

i=1

(αi + βi )∇ fi (yk) + 2γ yk = 0.

Put λi := αi + βi for i := 1, . . . , m, and μ = 2γ. We have

m∑

i=1

λi∇ fi (yk) + μyk = 0.

1 This definition is inspired from the one given in [34].
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Since (α, β, γ ) ∈ (
R

m+ × R
m+ × R

) \{0}, it holds that (λ1, . . . , λm, μ) �= 0, and so
yk ∈ Γ ( f ).

We therefore see that the sequence {yk} has the following properties:

(a) {yk} ⊂ Γ ( f ),
(b) ‖yk‖ = ‖xk‖ → +∞ as k → ∞, and
(c) f (yk) ≤ t̄ for all k ∈ N.

Now the assumption that [ f (Rn)]t̄ is bounded implies that the sequence { f (yk)} has an
accumulation point, say t ∈ R

m . Clearly, t ≤ t̄ . Thus t ∈ T∞,≤t̄ ( f ), a contradiction.
We now assume that the condition (i) holds. To prove the set [ f (Rn)]t̄ is closed,

we need to show that it contains all its limit points. Indeed, let {tk} ⊂ [ f (Rn)]t̄
be an arbitrary sequence which converges to t ∈ R

m . Then there exists a sequence
{xk} ⊂ R

n such that f (xk) = tk ≤ t̄ for all k ∈ N. Since limk→∞ f (xk) = t , there
exists a compact set A ⊂ R

m such that { f (xk)} ⊂ A. Clearly, the set A ∩ [Rm]t̄ is
compact, and so is f −1 (A ∩ [Rm]t̄ ) because f is proper at the sublevel t̄ . It follows
that the sequence {xk} ⊂ f −1 (A ∩ [Rm]t̄ ) has an accumulation point, say x̄ ∈ R

n .
By the continuity of f and the fact that limk→∞ f (xk) = t , one has f (x̄) = t .
Consequently, t ∈ f (Rn). Note that t ≤ t̄ . Therefore t ∈ [ f (Rn)]t̄ , as required. ��

4 Existence of Pareto solutions

The following result concerns the existence of Pareto solutions for polynomial vector
optimization problems. To the best of our knowledge, the result is new even in the
case m = 1.

Theorem 4.1 Let f : R
n → R

m be a polynomial map. Assume that there exists t̄ ∈
f (Rn) such that the section [ f (Rn)]t̄ is bounded. Then the problem (VP) admits a
Pareto solution, if one of the following equivalent conditions holds:

(i) f is proper at the sublevel t̄ .
(ii) f satisfies the Palais–Smale condition at the sublevel t̄ : K̃∞,≤t̄ ( f ) = ∅.

(iii) f satisfies the weak Palais–Smale condition at the sublevel t̄ : K∞,≤t̄ ( f ) = ∅.
(iv) f is M-tame at the sublevel t̄ : T∞,≤t̄ ( f ) = ∅.

Proof By Theorem 3.2, it suffices to assume that f is proper at the sublevel t̄ . We
claim that [ f (Rn)]t̄ is a nonempty compact subset of R

m . Indeed, let {yk} be an
arbitrary sequence in [ f (Rn)]t̄ . Then there exists a sequence {xk} ⊂ R

n such that
f (xk) = yk ≤ t̄ for all k ∈ N. Since the section [ f (Rn)]t̄ is bounded, { f (xk)} has
a convergent subsequence. On the other hand, [ f (Rn)]t̄ is a closed set in R

n due to
Theorem 3.2. Thus [ f (Rn)]t̄ is a nonempty compact set in R

n . Thanks to [5, Theorem
1], the set f (Rn) has at least one Pareto efficient point, i.e., there exists t∗ ∈ f (Rn)

such that f (x) /∈ t∗ − (Rm+\{0}) for all x ∈ R
n . This means that the problem (VP)

admits a Pareto solution. The proof is complete. ��
As a consequence of Theorem 4.1, we obtain the following.

Corollary 4.1 Let f : R
n → R

m be a polynomial map such that the section [ f (Rn)]t

is bounded for all t ∈ R
m . Then the problem (VP) admits a Pareto solution, provided

that one of the following equivalent conditions holds:
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(i) f is proper.
(ii) f satisfies the Palais–Smale condition: K̃∞( f ) = ∅.

(iii) f satisfies the weak Palais–Smale condition: K∞( f ) = ∅.

(iv) f is M-tame: T∞( f ) = ∅.

Remark 4.1 Hà [16] obtained some results on the existence of weak Pareto solutions
for multiobjective optimization problems, where the objective function is bounded
from below and satisfies the so-called (PS)1 condition. More recently, using the
so-called quasiboundedness from below and refined subdifferential Palais–Smale con-
dition (RSPS for short), Bao and Mordukhovich [2,3] studied the existence of relative
Pareto solutions for multiobjective optimization problems. Note that the existence
theorems established in the papers mentioned do not ensure the existence of Pareto
solutions, but only of weak and relative ones.

Regarding toCorollary 4.1 on the existence ofPareto solutions of the problem (VP),
let us mention the following three remarks in comparison with previous results:

• Since the interior of the coneR
m+ is not empty, all the three relative Pareto solutions

introduced in [3] agree and in fact they all are weak Pareto solutions. Hence, the
results established in [2,3,16] only ensure the existence of weak Pareto solutions.

• Recall that a map f : R
n → R

m is said to be bounded from below if there exists
an element a ∈ R

m such that

f (Rn) ⊂ a + R
m+.

Clearly, the map f is bounded from below if, and only if, it is quasibounded from
below (see [2,3]) in the sense that there exists a bounded set A ⊂ R

m such that

f (Rn) ⊂ A + R
m+.

Furthermore, it follows from definitions that if f is bounded from below, then the
section [ f (Rn)]t is bounded for all t ∈ R

m . The converse is true in the case m = 1
but fails to hold in the general case.

• Let f : R
n → R

m a differentiable map. By definition, we can check that the
(PS)1 condition2 (considered in [16]) holds for f is equivalent to the fact that
K̃∞( f ) = ∅, which means that f satisfies the Palais–Smale condition. On the
other hand, the (RSPS) condition introduced in [3] is stronger than the Palais–
Smale condition. To see this, recall that the map f satisfies the (RSPS) condition
if every sequence {xk} ⊂ R

n such that ν f (xk) → 0 as k → ∞ contains a
convergent subsequence, provided that { f (xk)} is quasibounded from below, i.e.

{ f (xk)} ⊂ A + R
m+

for some bounded set A ⊂ R
m . By definition, if f satisfies the (RSPS) condition,

then it also satisfies the Palais–Smale condition, but the converse fails to hold as
can be checked directly for the polynomial

2 By a private communication [17], we would like to note that in the definition of the function θ, which is
used in the (PS)1 condition, the closed unit ball should be replaced by the unit sphere.
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f : R
2 → R

2, (x1, x2) �→ f (x1, x2) := (x21 + x22 , x21 − x22 ).

(This polynomial f is proper, and so it satisfies the Palais–Smale condition; fur-
thermore, we have

ν f (k, 0) = 0 and f (k, 0) ∈ {(0, 0)} + R
2+ for all k ∈ N,

which implies that f does not satisfy the (RSPS) condition.)

According to the above discussions, it turns out that our results, in the polynomial
setting, improve and extend [16, Theorem 4.1], [2, Theorem 4] and [3, Theorem 4.4].

Let us illustrate Theorem 4.1 and Corollary 4.1 with some examples.

Example 4.1 Let us consider the Motzkin polynomial (see [19,33])

M(x1, x2) := x21 x42 + x41 x22 − 3x21 x22 + 1.

It is not difficult to see that M(x1, x2) ≥ 0 for all x := (x1, x2) ∈ R
2. Moreover, we

have

• If 0 < t < 1, then M−1(t) is the union of 4 ovals.
• If 1 < t, then M−1(t) is the union of 4 non-compact components.
• The set M−1(1) is non-compact:

M−1(1) = {x1 = 0} ∪ {x2 = 0} ∪ {x21 + x22 = 3}.

Consequently, the polynomial M is proper at the sublevel t̄ if, and only if,
t̄ < 1. Thanks to Theorem 4.1, M attains its infimum on R

2. In fact, we can
see that the set of optimal solutions of the problem inf x∈R2 M(x) is M−1(0) =
{(1, 1), (1,− 1), (− 1, 1), (− 1, 1)}. Note that 1 ∈ T∞(M) and hence, by Proposi-
tion 3.2, M does not satisfy the Palais–Smale and weak Palais–Smale conditions.
Therefore, [16, Theorem 4.1], [2, Theorem 4], [3, Theorem 4.4], and [32, Theorem 2]
cannot be applied for this example.

Example 4.2 Let f : R
3 → R

2 be the polynomial map defined by

f (x1, x2, x3) = (x21 + x22 + x23 , x33).

It is not hard to see that f is proper and [ f (R3)]t is bounded for each t ∈ R
2. By

Corollary 4.1, the problem (VP) has at least one Pareto solution. On the other hand,
f is not bounded from below, and so, [16, Theorem 4.1], [2, Theorem 4], and [3,
Theorem 4.4] cannot be applied for this example.

The next example shows that if the objective function satisfies one of the equivalent
conditions in Theorem 4.1 and f (Rn) has at least a bounded section, then the set of
Pareto solutions of (VP) is nonempty.
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Example 4.3 Consider the polynomial map

f : R
3 → R

3, (x1, x2, x3) �→ (x1, x2, M(x1, x2) + x23 ),

where M is the Motzkin polynomial defined in Example 4.1. We have

f (R3) =
{

t = (t1, t2, t3) ∈ R
3 | t3 ≥ M(t1, t2)

}

and the section [ f (R3)]t is unbounded for every t = (t1, t2, t3) ∈ R
3 with t3 ≥ 1. On

the other hand, if we take t̄ := (1, 1, 0) ∈ R
3 then the section [ f (R3)]t̄ is bounded and

f is proper at the sublevel t̄ . Thus, by Theorem 4.1, the problem (VP) has at least one
Pareto solution. However, f is not bounded from below, and so [16, Theorem 4.1], [2,
Theorem 4], and [3, Theorem 4.4] cannot be applied for this example.

In the rest of the paper we shall give some classes of vector optimization problems,
which satisfy the conditions in Theorem 4.1. We start with the class of linear vector
optimization problems.

Corollary 4.2 (compare [11, Theorem 6.5]) Let fi (x) := 〈ai , x〉+bi , where ai ∈ R
n

and bi ∈ R for all i = 1, . . . , m. Assume that the set of vectors {a1, . . . , am} is linearly
independent. If f (Rn) has a bounded section, then (VP) admits a Pareto solution.

Proof For each x ∈ R
n , we have

ν f (x) = min∑m
i=1 |λi |=1

∥∥∥∥∥

m∑

i=1

λi∇ fi (x)

∥∥∥∥∥ = min∑m
i=1 |λi |=1

∥∥∥∥∥

m∑

i=1

λi ai

∥∥∥∥∥ .

By the compactness of the set {λ = (λ1, . . . , λm) ∈ R
m | ∑m

i=1 |λi | = 1}, there
exists λ̄ = (λ̄1, . . . , λ̄m) ∈ R

m with
∑m

i=1 |λ̄i | = 1 such that

ν f (x) =
∥∥∥∥∥

m∑

i=1

λ̄i ai

∥∥∥∥∥ =: δ.

Since the set of vectors {a1, . . . , am} is linearly independent and
∑m

i=1 |λ̄i | = 1, we
have ν f (x) = δ > 0 for all x ∈ R

n . Consequently,

K̃∞( f ) = K∞( f ) = T∞( f ) = ∅.

Thanks to Theorem 4.1, (VP) admits a Pareto solution. ��
We finish this section with a generic class of polynomial vector optimization prob-

lems having at least one Pareto solution. To do this, we begin with some definitions.
If κ = (κ1, . . . , κn) ∈ N

n, we denote by xκ the monomial xκ1
1 . . . xκn

n and by |κ| the
sum κ1 + · · · + κn . Note that when κ = (0, . . . , 0), xκ = 1.
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Let f : R
n → R be a polynomial function. Suppose that f is written as f =∑

κ aκ xκ . By the Newton polyhedron at infinity of f, denoted by N ( f ), we mean
the convex hull in R

n of the set {κ | aκ �= 0} ∪ {0}. The polynomial f is said to be
convenient ifN ( f ) intersects each coordinate axis in a point different from the origin.
The Newton boundary at infinity of f , denoted byN∞( f ), is defined as the set of the
faces of N ( f ) which do not contain the origin 0 in R

n . For each face Δ of N∞( f ),

we define the principal part of f at infinity with respect to Δ, denoted by fΔ, as the
sum of the terms aκ xκ such that κ ∈ Δ.

Let f := ( f1, . . . , fm) : R
n → R

m be a polynomial map. We say that f is conve-
nient if all its components fi are convenient. Let N ( f ) denote the Minkowski sum
N ( f1) + · · · + N ( fm), i.e.,

N ( f ) := {κ1 + · · · + κm | κ i ∈ N ( fi ) for all i = 1, . . . , m}.

We denote by N∞( f ) the set of faces of N ( f ) which do not contain the origin 0
in R

n . Let Δ be a face of the N ( f ). According to -Dinh et al. [9, Lemma 2.1], we
have a unique decomposition Δ = Δ1 + · · · + Δm, where Δi is a face of N ( fi ) for
i = 1, . . . , m.We denote by fΔ the map ( f1,Δ1 , . . . , fm,Δm ) : R

n → R
m , where fi,Δi

is the principal part of fi at infinity with respect to Δi .

Definition 4.1 (see [26,27]) We say that f = ( f1, . . . , fm) is Khovanskii non-
degenerate at infinity if, and only if, for any face Δ of N∞( f ) and for all x ∈
(R\{0})n ∩ f −1

Δ (0), we have

rank

⎛

⎜⎜⎝

x1
∂ f1,Δ1
∂x1

(x) · · · xn
∂ f1,Δ1
∂xn

(x)

... · · · ...

x1
∂ fm,Δm

∂x1
(x) · · · xn

∂ fm,Δm
∂xn

(x)

⎞

⎟⎟⎠ = m.

Remark 4.2 We should emphasize that the class of polynomial maps (with fixed
Newton polyhedra), which are non-degenerate at infinity, is an open and dense semi-
algebraic set in the corresponding Euclidean space of data. For more details, see [9]
and [19, Theorem 5.2].

We now present an efficient consequence of Theorem 4.1 ensuring the existence
of Pareto solutions for the class of polynomials which are convenient and Khovanskii
non-degenerate at infinity.

Corollary 4.3 (Frank–Wolfe type theorem) Let f : R
n → R

m be a polynomial map.
Suppose that f is convenient and Khovanskii non-degenerate at infinity. If f (Rn) has
a bounded section, then (VP) admits a Pareto solution.

Proof Thanks to [10, Theorem 3.2], K̃∞( f ) = ∅. Then the assertion follows imme-
diately from Theorem 4.1. ��
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5 Conclusions

In this paper, we obtained some results on the existence of Pareto solutions of
polynomial vector optimization problems. Some relationships between Palais–Smale
conditions, M-tameness, and properness are also examined. Further research for opti-
mization problems with constraints will be studied in future work.
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8. Dias, L.R.G., Tanabé, S., Tibăr, M.: Toward effective detection of the bifurcation locus of real poly-

nomial maps. Found. Comput. Math. 17, 837–849 (2017)
9. -Dinh, S.T., Hà, H.V., Pha.m, T.S.: A Frank–Wolfe type theorem and Hölder-type global error bound

for generic polynomial systems. Preprint 2012, VIASM. Available online from http://viasm.edu.vn/
wp-content/uploads/2012/11/Preprint_1227.pdf

10. -Dinh, S.T.,Hà,H.V., Pha.m,T.S.:AFrank–Wolfe type theorem for nondegenerate polynomial programs.
Math. Program. Ser. A. 147, 519–538 (2014)

11. Ehrgott, M.: Multicriteria Optimization. Springer, Berlin (2005)
12. Fernando, J.F., Gamboa, J.M.: Polynomial images of R

n . J. Pure Appl. Algebra 179, 241–254 (2003)
13. Fernando, J.F., Gamboa, J.M., Ueno, C.: The open quadrant problem: a topological proof. In: A

Mathematical Tribute to Professor José María Montesinos Amilibia, pp. 337–350. Dep. Geom. Topol.
Fac. Cien. Mat. UCM, Madrid (2016)

14. Fernando, J.F., Ueno, C.: A short proof for the open quadrant problem. J. Symb. Comput. 79, 57–64
(2017)

15. Gutiérrez, C., López, R., Novo, V.: Existence and boundedness of solutions in infinite-dimensional
vector optimization problems. J. Optim. Theory Appl. 162, 515–547 (2014)

16. Hà, T.X.D.: Variants of the Ekeland variational principle for a set-valued map involving the Clarke
normal cone. J. Math. Anal. Appl. 316, 346–356 (2006)

17. Hà, T.X.D.: Private communication (2017)
18. Hà, H.V., Pha.m, T.S.: An estimation of the number of bifurcation values for real polynomials. Acta

Math. Vietnam. 32, 141–153 (2007)
19. Hà, H.V., Pha.m, T.S.: Genericity in Polynomial Optimization. World Scientific Publishing, Singapore

(2017)
20. Huong, N.T.T., Yao, J.-C., Yen, N.D.: Polynomial vector variational inequalities under polynomial

constraints and applications. SIAM J. Optim. 26, 1060–1071 (2016)
21. Ioffe, A.: A Sard theorem for tame set-valued mappings. J. Math. Anal. Appl. 335, 882–901 (2007)
22. Jahn, J.: Vector Optimization. Theory Applications, and Extensions. Springer, Berlin (2004)
23. Jelonek, Z.: Geometry of real polynomial mappings. Math. Z. 239, 321–333 (2002)

123

http://viasm.edu.vn/wp-content/uploads/2012/11/Preprint_1227.pdf
http://viasm.edu.vn/wp-content/uploads/2012/11/Preprint_1227.pdf


On the existence of Pareto solutions for… 341

24. Jelonek, Z., Kurdyka, K.: Reaching generalized critical values of a polynomial. Math. Z. 276, 557–570
(2014)

25. Jeyakumar, V., Lasserre, J.B., Li, G.: On polynomial optimization over non-compact semi-algebraic
sets. J. Optim. Theory Appl. 163, 707–718 (2014)

26. Khovanskii, A.G.: Newton polyhedra and toroidal varieties. Funct. Anal. Appl. 11, 289–296 (1978)
27. Kouchnirenko, A.G.: Polyhedres de Newton et nombre de Milnor. Invent. Math. 32, 1–31 (1976)
28. Kurdyka, K., Orro, P., Simon, S.: Semialgebraic Sard theorem for generalized critical values. J. Differ.

Geom. 56, 67–92 (2000)
29. Loi, T.L., Zaharia, A.: Bifurcation sets of functions definable in o-minimal structures. Ill. J. Math. 42,

449–457 (1998)
30. Magron, V., Henrion, D., Lasserre, J.B.: Approximating Pareto curves using semidefinite relaxations.

Oper. Res. Lett. 42, 432–437 (2014)
31. Magron, V., Henrion, D., Lasserre, J.B.: Semidefinite approximations of projections and polynomial

images of semialgebraic sets. SIAM J. Optim. 25, 2143–2164 (2015)
32. Mawhin, J., Willem, M.: Origin and evolution of the Palais–Smale condition in critical point theory.

J. Fixed Point Theory Appl. 7, 265–290 (2010)
33. Motzkin, T.: The arithmetic-geometric inequalities. In: Shisha O. (ed.) Inequalities. Proceeding Sym-

posium on Wright-Patterson Air Force Base, OH, 19–27 Aug 1965, pp. 205–224. Academic Press
(1967)

34. Némethi, A., Zaharia, A.: On the bifurcation set of a polynomial function and Newton boundary. Publ.
Res. Inst. Math. Sci. 26, 681–689 (1990)
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