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Abstract Much of statistics relies upon four key elements: a law of large numbers,
a calculus to operationalize stochastic convergence, a central limit theorem, and a
framework for constructing local approximations. These elements arewell-understood
for objects in a vector space (e.g., points or functions); however, much statistical
theory does not directly translate to sets because they do not form a vector space.
Building on probability theory for random sets, this paper uses variational analysis
to develop operational tools for statistics with set-valued functions. These tools are
first applied to nonparametric estimation (kernel regression of set-valued functions).
The second application is to the problem of inverse approximate optimization, in
which approximate solutions (corrupted by noise) to an optimization problem are
observed and then used to estimate the amount of suboptimality of the solutions and
the parameters of the optimization problem that generated the solutions. We show
that previous approaches to this problem are statistically inconsistent when the data is
corrupted by noise, whereas our approach is consistent under mild conditions.
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1 Introduction

While statistical theory is well-developed for problems concerning (single-valued)
functions [13,46], there has been less work on statistics with sets or set-valued
functions. Most attention in statistics on sets has been focused on the problem of
estimating a single set under different measurement models [18,21,23,26,36,37,44].
The problem of estimating set-valued functions is less well studied, though it has
potential applications in varied domains including healthcare, robotics, and energy.
For instance, we study in this paper the problem of inverse approximate optimization,
where approximate solutions (corrupted by noise) to a parametric optimization prob-
lem are observed and then used to estimate the amount of suboptimality of the solutions
and the parameters that generated the solutions. Inverse approximate optimization can
be used to construct predictivemodels of human behavior and decision-making, where
the explicit model is that an individual makes decisions by approximately solving an
optimization problem. Statistical estimation in this context could be used to quantify
the tradeoffs made by a particular individual between competing objectives, as well
as quantify the predictability of the decision-making process. This particular problem
of inverse approximate optimization is related to the broader topic of statistics with
set-valued functions because the solution mapping of an (even strictly convex) opti-
mization problem becomes a set when suboptimality of solutions is allowed. Thus a
framework for statistics with set-valued functions is needed to study such problems.

A substantial impediment to studying such estimation problems is the lack of statis-
tical tools for random sets and set-valued functions, and two technical issues prevent
the use of existing tools. The first is that most statistical theory assumes objects belong
to a vector space, which is the case for points and functions. But sets do not form a
vector space, and so existing statistical theory cannot be used. This is a fundamental
difficulty, and even the usual notion of expectation does not apply to sets [31]. The
second is that most statistical theory has been developed by using metrics and distance
functions to derive results. But analyzing sets using distances is difficult, and most
analysis tools and results for sets do not use this approach [10,38].

Arguably the most natural approach to statistics with random sets is to define a
family of sets parametrized by a random vector, and then perform standard statistical
analysis with respect to this parametrization. However it is not clear without further
analysis whether stochastic convergence of the estimated parameters implies stochas-
tic convergence of the corresponding set estimates. We study this question in a more
general framework and give a counterexample to demonstrate how parameter conver-
gence does not always imply set convergence.Moreover, the parametrization approach
does not lead to a useful definition for the expectation of random sets [31]; the reason
is that the expectation of the parameters does not characterize the expectation of the
set in a way in that ensures the law of large numbers holds.

One goal of this paper is to establish tools for statistics with set-valued functions,
and this requires understanding four main ingredients: a law of large numbers, a
calculus to operationalize stochastic convergence, a central limit theorem, and tools for
constructing local approximations. Probability theory for random sets [31] provides
an expectation for random sets [8,27], a law of large numbers [3], and a central
limit theorem [49]. Here we use variational analysis [38] to advocate a notion of local
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Statistics with set-valued functions 227

approximation for set-valued functions, and to develop results that allow us to interpret
stochastic convergence and expectations of random sets as operators.

The paper begins by describing our notation and providing some useful definitions
related to set-valued functions. We focus in this paper on almost sure (a.s.) conver-
gence because the corresponding definitions and approach most clearly demonstrate
the tight link between variational analysis and statistics. Defining set convergence
in probability requires metrization, which partially obscures the relationship to varia-
tional analysis. We also focus on Lipschitz continuity for set-valued functions because
we advocate using this concept as a notion of local approximation for set-valued
functions. The utility of this approach is displayed later in the paper when we use
Lipschitz continuity as a replacement for differentiability when proving a Delta
method-like result and proving statistical consistency of a kernel regression estima-
tor.

The next section shows how to interpret stochastic convergence and expectation of
random sets as operators. We study the limit of sequences of sets under different set
operations, after proving a set-based generalization of the continuousmapping theorem
[13] from statistics. Then we study the expectation of random sets under various
set operations. Standard proofs about the properties of the expectation of random
variables do not extend because the expectation of a random set cannot be computed by
integration. This means properties like distribution of expectation under independence
of the product of a random matrix with a random set or Jensen’s inequality have not
been previously established, and we prove such results. We conclude by reviewing a
law of large numbers and a central limit theorem for random sets.

Another goal of this paper is to study two problems of estimating set-valued func-
tions, and through the process of analyzing these problems we demonstrate the utility
of our tools for statistics with set-valued functions. The first problem we study is
estimating a set-valued function using noisy measurements of the set. We propose a
kernel regression estimator that can be interpreted as a generalization of methods for
functions [4,5,12,33,48]. The key step in proving statistical consistency is using Lips-
chitz continuity of the set-valued function to construct local approximations. We show
that statistical consistency follows by combining our results on stochastic convergence
with convergence bounds on (vector-valued) random variables.

The second problem we study is inverse approximate optimization, where noisy
measurements of approximate solutions to an optimization problem are used to esti-
mate the suboptimality of the solutions and the parameters of the optimization problem.
In contrast, past work on inverse optimization assumes no noise [1,16,20] or exact
solutions [7,11,24]. We develop a method for inverse approximate optimization and
prove its statistical consistency using stochastic epi-convergence [4,19,22,25,28,42].
Combining with our results on stochastic convergence and results on the continuity of
solutions to optimization problems [38,39] shows our method consistently estimates
the (set-valued) approximate solution mapping that generates the data.

We conclude by examining extensions of the problem of inverse approximate opti-
mization, as well as discussing related open questions about statistics with set-valued
functions. In particular, we describe how some extensions lead to formulations of opti-
mization problems with structures (e.g., objective functions that are integrals whose
domain of integration depends on the decision variable) that have not beenwell-studied
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228 A. Aswani

from the perspective of numerical optimization. Performing statistics with sets and set-
valued functions also leads to questions about the design of numerical representations
of sets. We argue that further study of statistics with set-valued functions will require
developing new numerical methods and optimization theory.

2 Preliminaries

This section presents the notation used in this paper, as well as several useful concepts
from variational analysis. Most of the variational analysis definitions are from [38].
The definition of set-valued set functions is from [30], and we use the definitions of
the Minkowski set operations from [43]. We abbreviate almost surely using a.s.

2.1 Notation

Let F(E) be the space of closed subsets of E , and let K(E) be the space of compact
subsets of E . We will focus on cases where E is a Euclidean space, and so will use
the notation F ,K to refer to the corresponding spaces. Clearly F ⊃ K by definition.

Suppose C, D are sets and Ψ is a matrix or scalar. We use the set notation: C ∪ D
is the union of C, D; C ∩ D is the intersection of C, D; C ⊆ D denotes that C is
a subset of D; C ⊇ D denotes that C is a superset of D; cl(C) is the closure of C ;
co(C) is the convex hull of C ; C c is the complement of C ; ∂C is the boundary of C ;
C ⊕ D = {c + d : c ∈ C, d ∈ D} is the Minkowski sum of C, D; C 	 D = {x :
x ⊕ D ⊆ C} is the Minkowski difference of C, D; Ψ · C = {Ψ · c : c ∈ C}; and
Ψ −1C = {Ψ −1 · c : c ∈ C}.

2.2 Limit definitions and set-valued mappings

The outer limit of the sequence of sets Cn is defined as

lim supn Cn = {x : ∃nk s.t. xnk → x with xnk ∈ Cnk }, (1)

and the inner limit of the sequence of sets Cn is defined as

lim infn Cn = {x : ∃xn → x with xn ∈ Cn}. (2)

The outer limit consists of all the cluster points of Cn , whereas the inner limit consists
of all limit points of Cn . The limit of the sequence of sets Cn exists if the outer and
inner limits are equal, and we define that limn Cn := lim supn Cn = lim infn Cn .

Let R = [−∞,∞] denote the extended real line. A sequence of extended-real-
valued functions fn : X → R is said to epi-converge to f if at each x ∈ X we
have {

lim infn fn(xn) ≥ f (x) for every sequence xn → x

lim supn fn(xn) ≤ f (x) for some sequence xn → x
(3)
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Statistics with set-valued functions 229

The notion of epi-convergence is so-named because it is equivalent to set convergence
of the epigraphs of fn , meaning that epi-convergence is equivalent to the condition
limn{(x, α) ∈ X × R : fn(x) ≤ α} = {(x, α) ∈ X × R : f (x) ≤ α}.

A set-valued set function G : V ⇒ U assigns to each set S ⊆ V a set G(S) ⊆ U .
The outer limit of G at the set S ∈ V is defined as

lim sup
S→S

G(S) = {u : ∃Sn → S s.t. un → u with Sn ⊆ V, un ∈ G(Sn)}, (4)

and the inner limit of G at the set S ⊆ V is defined as

lim inf
S→S

G(S) = {u : ∀Sn → S, ∃un → u with Sn ⊆ V, un ∈ G(Sn)}. (5)

The intuition is similar to the notions for sequences of sets. The set-valued set function
G is outer semicontinuous (osc) at S if lim supS→S G(S) ⊆ G(S), and G is inner
semicontinuous (isc) at S if lim inf S→S G(S) ⊇ G(S). The set-valued set function G
is continuous at S when it is both osc and isc, that is when limS→S G(S) = G(S).

Variational analysis typically uses set-valued functions, rather than set-valued set
functions. A set-valued function F : X →→ U assigns to each point x ∈ X a set
F(x) ⊆ U . Outer limits, inner limits, outer semicontinuity, inner semicontinuity, and
continuity are defined as above but with points replacing sets in the domain.Moreover,
a set-valued function applied pointwise to sets is an osc, isc, continuous set-valued set
function whenever the set-valued function is osc, isc, continuous, respectively.

2.3 Probability definitions and stochastic convergence

Let (Ω,F,P) be a complete probability space, where Ω is the sample space, F is the
set of events, and P is the probability measure. A map S : Ω → F is a random set
if {ω : S(ω) ∈ X } ∈ F for each X in the Borel σ -algebra on F [31]. Like the usual
convention for random variables, we notationally drop the argument for a random set.

When discussing samples for estimation, we use the convention that capital letters
denote random variables, and lowercase letters denote measured data. Also, we use
the notation U (a, b) to specify a uniform distribution with support [a, b].

We next define almost sure stochastic convergence of random sets. The notation
as-lim supn Cn ⊆ C denotes P(lim supn Cn ⊆ C) = 1, the notation as-lim infn Cn ⊇
C denotes P(lim infn Cn ⊇ C) = 1, and the notation as-limn Cn = C denotes
P(limn Cn = C) = 1. Note as-lim supn Cn ⊆ C and as-lim infn Cn ⊇ C if and
only if as-limn Cn = C , since a countable intersection of almost sure events occurs
almost surely.

2.4 Distances and Lipschitz continuity

Let d(x, C) = inf y∈C ‖x − y‖ and d2(x, C) = inf y∈C ‖x − y‖2 be the distance and
squared distance, respectively, from a point x to set C . The support function of C is
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h(x, C) = supy∈C xTy. We also define the indicator function δ(x, C) to equal 0 when
x ∈ C and+∞when x /∈ C . The (integrated) set distance between C and D is defined
as dl(C, D) = ∫ ∞

0 dlr (C, D)e−r dr , where the pseudo-distance between sets C and D
is given by dlr (C, D) = max‖x‖≤r

∣∣d(x, C) − d(x, D)
∣∣. Note dlr ({x}, C) �= d(x, C)

for all r . The integrated set distance dl is a metric that characterizes the convergence
defined earlier for sets in F , and the Pompeiu–Hausdorff distance dl∞ is a metric that
characterizes the convergence defined earlier for sets in K. Since these metrics are
complex, the sequence characterization of convergence is arguably more natural for
sets.

One exception to this statement is in defining Lipschitz continuity for set-valued
functions. A set-valued function F : X →→U is Lipschitz continuous on X with constant
κ ∈ R+ if it is nonempty, closed-valued and such that

F(x ′) ⊆ F(x) + κ‖x ′ − x‖B for x, x ′ ∈ X, (6)

where B = {u : ‖u‖ ≤ 1} is the unit ball. A set-valued set function G : V ⇒ U is
Lipschitz continuous on V with constant κ ∈ R+ if it is nonempty, closed-valued and

G(S′) ⊆ G(S) + κdl∞(S′, S)B for S, S′ ⊆ V with S, S′ ∈ K. (7)

We will make use of Lipschitz continuity as a zeroth-order local approximation.

3 Mathematical tools for statistics with set-valued functions

This section develops mathematical tools that allow us to interpret stochastic conver-
gence and the expectation of random sets as operators. We prove results on the limit
of sequences of sets under different set operations, define an expectation for random
sets, and then derive results about the behavior of this expectation under different set
operations. We conclude this section by briefly summarizing a law of large numbers
and a central limit theorem for random sets.

3.1 Stochastic limit theorems

Our reason for considering set-valued set functions is this allows us to more precisely
generalize the classical continuous mapping theorem of statistics [13] to mappings
applied to sequences of sets. Because semicontinuity is an important aspect of set
convergence, a generalization that considers semicontinuity leads to a richer set of
results than simply considering continuity.

Theorem 1 (Semicontinuous mapping theorem) Let G be a set-valued set function,
and suppose as-limn Cn = C. There are three cases:

(a) If G is osc at C, then as-lim supn G(Cn) ⊆ G(C).
(b) If G is isc at C, then as-lim infn G(Cn) ⊇ G(C).
(c) If G is continuous at C, then as-limn G(Cn) = G(C).
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Statistics with set-valued functions 231

Proof Thedefinition of osc (isc)means limn Cn = C implies lim supn G(Cn) ⊆ G(C)

(lim infn G(Cn) ⊆ G(C)). This means P(lim supn G(Cn) ⊆ G(C)) ≥ P(limn Cn =
C) = 1 (P(lim infn G(Cn) ⊇ G(C)) ≥ P(limn Cn = C) = 1), which shows the first
two cases. The third case follows from the first two cases by recalling that continuity
at C is equivalent to being both osc and isc at C . ��
Remark 1 One consequence is that the set-valued function S(θ) parametrized by θ

has the behavior that as-limn θn = θ0 implies as-limn S(θn) = S(θ0) only when the set
is continuous with respect to the parametrization. For example, consider S(θ) = {1}
if θ > 0, S(θ) = {−1} if θ < 0, and S(θ) = [−1, 1] if θ = 0. If θn = 1/n, then
S(θn) ≡ {1} and so as-limn S(θn) = {1}. But as-limn θn = 0 and S(0) = [−1, 1].

As is customary in statistics, we immediately get some useful corollaries to our
semicontinuous mapping theorem by applying the theorem to specific mappings. Our
first corollary applies the semicontinuous mapping theorem to set operations like
unions and intersections of sets, the boundary of sets, the convex hull of sets, etc.

Corollary 1 Let Cn, Dn ∈ F be almost surely convergent sequences of sets (i.e.,
as-limn Cn = C and as-limn Dn = D). Then we have:

(a) as-limn(Cn ∪ Dn) = C ∪ D
(b) as-lim supn(Cn ∩ Dn) ⊆ C ∩ D
(c) as-lim infn cl(C c

n ) ⊇ cl(Cc)

(d) as-lim infn ∂Cn ⊇ ∂C
(e) as-lim infn co(Cn) ⊇ co(C)

(f) as-limn co(Cn) = co(C), when there is a deterministic C0 ∈ K so Cn ⊆ C0 a.s.

Proof We interpret ∪,∩ as set-valued set functions with a domain over the product
space F × F : The function G1(S, T ) = S ∪ T is continuous [30], and the function
G2(S, T ) = S ∩ T is osc [30]. The set complement and boundary operators can be
interpreted as set-valued set functions with domain F : The function G3(S) = cl(Sc)

is isc [30], and the function G4(S) = ∂S is isc [30]. The convex hull operation can
be cast as set-valued set functions: G5(S) = co(S) is isc when the domain is F , and
G6(S) = co(S) is continuous when the domain is C0 [30]. The results now follow
from the corresponding parts of the semicontinuous mapping theorem. ��
Remark 2 Note the above result states that the stochastic limit of the convex hull
operator is sensitive to the domain of the sequence of sets.

We can also apply the semicontinuous mapping theorem to the Minkowski set
operations. These results are useful for proving convergence of statistical estimators.

Corollary 2 Let Cn, Dn ∈ F be almost surely convergent sequences of sets (i.e.,
as-limn Cn = C and as-limn Dn = D), and let Ψn be an almost surely convergent (in
the Frobenius norm) sequence of matrices or scalars (i.e., as-limn Ψn = Ψ ). If there
exists a deterministic D0 ∈ K so Dn ⊆ D0 a.s., then

(a) as-limn(Cn ⊕ Dn) = C ⊕ D
(b) as-lim supn(Cn 	 Dn) ⊆ C 	 D, when D �= ∅
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232 A. Aswani

(c) as-limn Ψn · Dn = Ψ · D
(d) as-limn Ψ −1

n D−1
n = Ψ −1

n D, when Ψ is invertible

Proof We interpret ⊕,	 as set-valued set functions with a domain over the product
space F × K: The function G1(S, T ) = S ⊕ T is continuous [30], and the function
G2(S, T ) = S 	 T is osc if T �= ∅ [30]. So the first two results follow from
Theorem 1. Themultiplication operation can be interpreted as a set-valued set function
G3(S, T ) = T · S with domain over the product spaceM× D0, whereM is the space
of matrices of appropriate dimension or the space of scalars. We show it is continuous.
Suppose G3 is not osc at S × T ; then there exist Tn → T , Sn → S, and un → u
with Tn ∈ M, Sn ∈ F , un ∈ Tn · Sn , and u /∈ T · S. But by the definition of matrix-
set (or scalar-set) multiplication there exists vn ∈ Sn with un = Tn · vn , and by
the boundedness by assumption of D0 there exist nk and v such that vnk → v with
v ∈ S, which is a contradiction since matrix-vector (or scalar-vector) multiplication
is osc. Thus G3 is osc. Next, we show G3 is isc at T · S: Consider any x ∈ S and
u = T · x , and let Tn, Sn be any sequences satisfying Tn → T and Sn → S. By the
inner limit definition there exists xn → x with xn ∈ Sn , and so Tn · xn → T · x with
Tn · xn ∈ Tn · Sn . So G3 satisfies the definition of being isc at T · S, and is continuous
since it is also osc. The third result follows fromTheorem 1. The fourth result is proved
by noting Theorem 1 implies as-limn Ψ −1

n = Ψ −1
n since the matrix inverse operation

is continuous except at points of singularity, and so as-limn Ψ −1
n C−1

n = Ψ −1
n C by the

third result. ��
Our final results on stochastic limits are not based on the semicontinuous mapping

theorem, but are nevertheless useful for writing stochastic convergence proofs.

Lemma 1 (Sandwich lemma) Let Ln ∈ F and Un ∈ F be almost surely convergent
sequences of sets (i.e., as-limn Ln = L and as-limn Un = U), and let Cn ∈ F be a
sequence of sets. Then we have

(a) as-lim supn Cn ⊆ U, when Cn ⊆ Un a.s.
(b) as-lim infn Cn ⊇ L, when Cn ⊇ Ln a.s.
(c) as-limn Cn = L = U, when Ln ⊆ Cn ⊆ Un a.s. and L = U

Proof For the first two results, note as-lim supn Cn ⊆ as-lim supn Un = as-limn Un =
U and as-lim infn Cn ⊇ as-lim infn Ln = as-limn Ln = L . The third result follows
from the first two results and the definition of limit. ��

This sandwich lemma is valuable for statistical analysis, and we next present a
convergence result that is helpful in proving statistical consistency.

Corollary 3 Let Cn, Dn ∈ F be sequences of sets, with Dn ⊆ rnB for a sequence rn ∈
R+. If as-limn rn = 0 and as-limn Cn ⊕Dn exists, then as-limn Cn = as-limn Cn ⊕Dn.

Proof Consider any c ∈ as-lim supn Cn , and note that by the outer limit definition
there exist nk and cnk ∈ Cnk such that cnk → c. Thus cnk + dnk → c for any dn ∈ Dn

since by assumption dn → 0. This means as-lim supn Cn ⊆ as-lim supn Cn ⊕ Dn =
as-limn Cn ⊕ Dn , where the equality holds since as-limn Cn ⊕ Dn exists. Next, choose
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Statistics with set-valued functions 233

any u ∈ as-limn Cn ⊕ Dn . By the inner limit definition there exists un ∈ Cn ⊕ Dn such
that un → u, and so by theMinkowski sum definition there exist cn ∈ Cn and dn ∈ Dn

such that un = cn +dn or equivalently that cn = un −dn . Since by assumption dn → 0,
this means cn → u. Thus as-lim infn Cn ⊇ as-limn Cn ⊕ Dn . The result follows by
noting as-lim infn Cn ⊆ as-lim supn Cn always holds, and combining with the above.

��

3.2 Expectation

Because sets do not form a vector space, defining expectations for random sets is not
straightforward. In fact, a number of different definitions have been proposed [31]
that capture different features that might be desired for an expectation operation. One
particularly useful definition is the selection expectation [8,27]. This definition for the
expectation of random sets is the most well studied because it leads to a corresponding
law of large numbers and central limit theorem [31].

For a random set X , a selection ξ is a (single-valued) random vector that almost
surely belongs to X . We say the selection ξ is integrable if E‖ξ‖1 is finite, where ‖ ·‖1
is the usual �1-norm. The selection expectation of a random set X is defined as

E(X) = cl{Eξ : ξ ∈ S1(X)}, (8)

where S1(X) is the set of all integrable selections of X . The random set X is called
integrable if S1(X) �= ∅, and note this property implies X is almost surely non-empty.

The selection expectation is difficult to use because it cannot be computed by taking
an integral, as is the case for expectations for objects in a vector space. But since we
assume E is Euclidean space, the definition of the selection expectation simplifies and
has a sharp characterization [31]: If the probability space is nonatomic and X is a
bounded and closed integrable random set, then E(X) = {Eξ : ξ ∈ S1(X)} is a com-
pact set, E(X) is convex, E(X) = E(co(X)), and h(u,E(X)) = E(h(u, X)) for all
u ∈ E , where h is the support function. This support function characterization is pow-
erful, and allows us to prove several properties about the selection expectation. More
importantly, the following results allow us to operationalize the selection expectation,
which is useful from a practical standpoint for performing statistical analysis.

Proposition 1 Suppose C, D are bounded and closed integrable random sets, and let
Ψ be a random matrix or a random scalar. If the probability space is nonatomic, then

(a) E(C) = co(C), when C is deterministic
(b) E(C ⊕ D) = E(C) ⊕ E(D)

(c) E(Ψ C) = E(Ψ ) · E(C), when Ψ is independent of C
(d) E(C) ⊆ E(D), when C ⊆ D a.s.
(e) E(C) ∪ E(D) ⊆ E(C ∪ D)

(f) E(C ∩ D) ⊆ E(C) ∩ E(D)

(g) E(C 	 D) ⊆ E(C) 	 E(D), when C 	 D is a.s. non-empty.

Proof The first result holds sinceE(X) = E(co(X)) and h(u,E(C)) = E(h(u, C)) =
h(u, C). The next result follows from h(u, C ⊕ D) = h(u, C) + h(u, D) [43], since
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h(u,E(C ⊕ D)) = E(h(u, C ⊕ D)) = E(h(u, C) + h(u, D)) = E(h(u, C)) +
E(h(u, D)) = h(u,E(C)) + h(u,E(D)) = h(u,E(C) ⊕ E(D)). The fourth result
holds since h(u, C) ≤ h(u, D) when C ⊆ D [43], which implies h(u,E(C)) =
E(h(u, C)) ≤ E(h(u, D)) = h(u,E(D)). For the fifth result, note C ⊆ C ∪ D and
D ⊆ C ∪ D. The fourth result gives E(C) ⊆ E(C ∪ D) and E(D) ⊆ E(C ∪ D),
which implies E(C) ∪ E(D) ⊆ E(C ∪ D). The sixth result follows since combining
C ∩ D ⊆ C , C ∩ D ⊆ D, and the fourth result gives: E(C ∩ D) ⊆ E(C) and
E(C ∩ D) ⊆ E(D), which implies E(C ∩ D) ⊆ E(C) ∩ E(D). To prove the seventh
result, note (C 	 D) ⊕ D ⊆ C [43]. Applying the second and fourth results yields
E(C 	 D) ⊕ E(D) ⊆ E(C), and so E(C 	 D) ⊆ E(C) 	 E(D) [43].

The third result cannot be proved using support functions since h(x, Ψ C) cannot
be written in terms of h(x, C). (If Ψ = −1, then h(x, Ψ C) = inf y∈C xTy while
h(x, C) = supy∈C xTy.) Our approach is to show S1(Ψ C) = ΨS1(C), since this
implies E(Ψ C) = {E(Ψ ξ) : ξ ∈ S1(C)} = {E(Ψ ) · E(ξ) : ξ ∈ S1(C)} = E(Ψ ) ·
{E(ξ) : ξ ∈ S1(C)} = E(Ψ ) · E(C). The inclusion S1(Ψ C) ⊇ ΨS1(C) is obvious
by definition. To prove the reverse inclusion, let {ξn, n ≥ 1} with ξn ∈ S1(C) be
the Castaing representation [15,31,38] of C . Then {Ψ ξn, n ≥ 1} is the Castaing
representation of Ψ C . But by Lemma 1.3 of [31], each selection in S1(Ψ C) can be
approximated arbitrarily well by step functions with arguments from {Ψ ξn, n ≥ 1}.
Thus S1(Ψ C) ⊆ ΨS1(C), and so S1(Ψ C) = ΨS1(C) since both inclusions were
shown. ��
Remark 3 Note the assumptions for part (c) include the cases where: Ψ is determin-
istic, C is deterministic, or Ψ has positive or negative entries.

Another result used in statistics is Jensen’s inequality [13], which bounds changing
the order of applying an expectation and a convex function to a random variable. Our
next result shows we can generalize Jensen’s inequality to set-valued functions.

Proposition 2 (Jensen’s inequality) Let S(u) be a graph-convex set-valued function
(i.e., S((1 − λ)u0 + λu1) ⊇ (1 − λ) · S(u0) + λ · S(u1) for λ ∈ (0, 1)), and let X
be bounded and closed integrable random set. If S(·) is locally bounded (i.e., S(B) is
bounded for every bounded set B) and continuous, then we have S(E(X)) ⊇ E(S(X)).

Proof The selection expectation equals the Debreu expectation under our assumptions
[31]. This means there exists a sequence of random sets Xn with the distribution

Xn = Fin with probability pin, for i = 1, . . . , n, with
n∑

i=1
pin = 1 (9)

such that as-lim Xn = X , E(X) = limn E(Xn), and E(Xn) = ⊕n
i=1 pin · Fin .

Using the semicontinuous mapping theorem implies as-limn S(Xn) = S(X), and
so we have equality of the selection expectation and Debreu expectation [31]. This
means thatE(S(X)) = limn E(S(Xn)) andE(S(Xn)) = ⊕n

i=1 pin · S(Fin). Next note
S(

⊕n
i=1 pin ·Fin) ⊇ ⊕n

i=1 pin ·S(Fin) by the graph-convexity of S(·). Taking the limit
of this set relationship gives S(E(X)) = lim S(

⊕n
i=1 pin · Fin) ⊇ limn

⊕n
i=1 pin ·

S(Fin) = E(S(X)), where we have used the fact that limn S(
⊕n

i=1 pin · Fin) =
S(E(X)) by definition of the continuity of the set-valued function S(·). ��
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Remark 4 Jensen’s inequality is sometimes stated for concave functions, and such a
generalization exists for set-valued mappings. If S(u) is a graph-concave set-valued
function (i.e., S((1 − λ)u0 + λu1) ⊆ (1 − λ) · S(u0) + λ · S(u1) for λ ∈ (0, 1))) and
the other assumptions of the above theorem hold, then we have S(E(X)) ⊆ E(S(X)).

Lastly, we present a strong law of large numbers (SLLN) for the selection expec-
tation. The key idea is the Minkowski sum takes the role of averaging.

Theorem 2 (Artstein and Vitale [3]) Suppose the probability space is non-atomic. If
X, Xi , i ≥ 1, are i.i.d. bounded and closed integrable random sets, then we have that:
as-limn

1
n

⊕n
i=1 Xi = E(X).

This particular strong law of large numbers can be generalized in a number of ways,
and a survey of the different generalizations possible can be found in [31].

3.3 Central limit theorems

Unlike laws of large numbers that relate convergence of Minkowski sums of i.i.d.
random sets 1

n

⊕n
i=1 Xi to their selection expectation E(X), analogs of the central

limit theorem (CLT) relatingMinkowski sums and selection expectations are lesswell-
understood. One major impediment is that the 	 operator does not generally invert
the ⊕ operator, which means it is generally not possible to normalize (in the sense of
having a zeromean) theMinkowski sum 1

n

⊕n
i=1 Xi . As a result, the standard approach

to generalizing the central limit theorem is to normalize by instead considering the
Hausdorff distance between Minkowski sum and the selection expectation.

Theorem 3 (Weil [49]) Suppose the probability space is nonatomic. If X, Xi , i ≥
1, are i.i.d. bounded and closed integrable random sets, then we have that:

√
n ·

dl∞( 1n
⊕n

i=1 Xi ,E(X)) → supu{‖ζ(u)‖ | ‖u‖ ≤ 1} in distribution, where ζ(u) for
‖u‖ ≤ 1 is a centered Gaussian random field with covariance given by: E(ζ(u) ·
ζ(v)) = E(h(u, X) · h(v, X)) − E(h(u, X)) · E(h(v, X)).

The difficulty with this central limit theorem is that it lacks a clear geometrical
interpretation (in contrast to the classical central limit theorem for random variables)
for the limiting distribution, and the question of whether such a geometrical interpre-
tation exists remains open [31]. However, one advantage of this formulation is that it
lends itself to a generalization of the Delta method [13] from statistics.

Proposition 3 (Approximate delta method) Suppose rndl∞(Cn, C) → w in distri-
bution, where rn is a strictly increasing sequence, Cn ∈ K is a sequence of random
sets, C ∈ K is a deterministic set, and w is a random variable. If S is a Lipschitz
continuous set-valued set function, then

lim supn P(rndl∞(S(Cn), S(C)) ≥ u) ≤ P(κ · w ≥ u), (10)

where κ ∈ R+ is the Lipschitz constant of S.
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Proof Lipschitz continuity of S gives rndl∞(S(Cn), S(C)) ≤ κ · rndl∞(Cn, C). Thus
P(rndl∞(S(Cn), S(C)) ≥ u) ≤ P(κ · rndl∞(Cn, C) ≥ u). The limit superior of both
sides gives the result since rndl∞(Cn, C) → w in distribution. ��
Remark 5 The Delta method relates asymptotic distributions of random variables
under differentiable functions [13], and the intuition is the derivative is used as a
local approximation of the function. The above result demonstrates one instancewhere
Lipschitz continuity can be used as a local approximation for set-valued mappings.

Though 	 does not generally invert ⊕, there is one special case when inversion is
possible. If C, D are compact convex sets, then (C ⊕ D) 	 D = C [43]. Using this
property, we describe a new central limit theorem for random sets with a particular
structure that is useful for statistical applications. Specifically, this result applies to
randomly translated sets (RaTS), which are random sets of the form C = K ⊕ ξ ,
where K is a deterministic compact convex set, and ξ is a (vector-valued) random
variable.

Theorem 4 (Central limit theorem for RaTS) Suppose the probability space is
nonatomic, and that X, Xi , i ≥ 1, are i.i.d. random sets with Xi = K ⊕ξi , where K is
a deterministic compact convex set and ξ, ξi , i ≥ 1, are i.i.d. (vector-valued) random
variables with zero mean and finite variance. Then

√
n · (( 1n

⊕n
i=1 Xi ) 	 E(X)) → N (0,E(ξξT)) (11)

in distribution, where N (0,E(ξξT)) is a jointly Gaussian random variable with zero
mean and covariance matrix given by E(ξξT).

Proof Since ( 1n
⊕n

i=1 Xi )	E(X) = (( 1n
∑n

i=1 ξi )⊕ K )	 K = 1
n

∑n
i=1 ξi , the result

follows by the classical central limit theorem [13]. ��
The benefit of this new formulation of the central limit theorem is that it has a clear

geometrical interpretation like the classical central limit theorem for random variables,
but unfortunately this result only applies to the specific class of RaTS.

4 Kernel regression

Wewill construct a nonparametric estimator for set-valued functions using an approach
that can be viewed as a natural generalization of kernel regression methods for func-
tions [4,5,12,33,48]. These techniques are considered nonparametric because, in
contrast to parametric models with a finite number of parameters, the number of
parameters in nonparametric models increases as the amount of data increases.

4.1 Problem setup

Consider a Lipschitz continuous set-valued function S(u) : U ⇒ R
q with random

samples (Xi , Si ) ∈ U × R
q for i = 1, . . . , n, where: U ⊆ R

d is a convex compact
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set; S(u) is a convex compact set for each u ∈ U ; Xi are i.i.d. (vector-valued) ran-
dom variables with a Lipschitz continuous density function fX that has the property
fX (u) > 0 for u ∈ U ; and Si = S(Xi ) ⊕ Wi with Wi i.i.d. (vector-valued) random
variables that have zero mean E(W ) = 0 and finite variance ‖E(W WT)‖ < +∞. The
problem is to estimate S(u) at any u ∈ U using the above described samples, and we
need convexity of U to ensure its tangent cone is derivable at ∂U [38]; however, our
results will hold for all u ∈ int(U ) unconditional of any such regularity assumptions.

4.2 Kernel functions

Kernel regression is so named because these approaches use kernel functions ϕ : R →
R, which are functions that are non-negative, bounded, even (i.e., ϕ(−u) = ϕ(u)),
and have finite support (i.e., there is a constant η ∈ (0, 1) such that ϕ(u) > 0 when
|u| ≤ η, and ϕ(u) = 0 for |u| ≥ 1). One example of a kernel function is the indicator
function ϕ(u) = (1/2) · 1(|u| < 1), and another example is the Epanechnikov kernel
ϕ(u) = (3/4) · (1 − u2) · 1(u ≤ 1). Notationally, it is useful to define the family of
kernel functions ϕh(u) = h−dϕ(‖u‖/h) and the function γ (u) = ∫

z∈TU (u)
ϕ1(z)dz,

where TU (u) is the tangent cone of U at the point u. (Note γ (u) is strictly greater than
zero and finite because of the assumptions.) We first prove a lemma about ϕh(u):

Lemma 2 If h = n−1/(d+4), then for u ∈ U we have

(a) as-limn
1
n

n∑
i=1

ϕh(Xi − u) = γ (u) · fX (u)

(b) as-limn
1
n

n∑
i=1

ϕh(Xi − u) · Wi = 0

(c) as-limn
1
n

n∑
i=1

ϕh(Xi − u) · ‖Xi − u‖ = 0

Proof Weprove these three results by verifying the hypothesis ofKolmogorov’s strong
law of large numbers holds in each case, then applying this law of large numbers, and
finally computing the expectation of the corresponding quantity in each case. To prove
the first result, observe that

limn

n∑
i=1

n−2 · var(ϕh(Xi − u)
) ≤ limn c/

(
nhd

)
< ∞, (12)

where the first inequality holds for some constant c ∈ R
+ because ϕh(Xi − u) is

bounded and nonzero with probability at most s · hd for some constant s ∈ R
+;

and the second inequality holds because nhd = n4/(d+4). The finiteness of the above
summation means we can apply Kolmogorov’s strong law of large numbers, which
gives as-limn

1
n

∑n
i=1 ϕh(Xi − u) − E( 1n

∑n
i=1 ϕh(Xi − u)) = 0. Our next step is to

compute this expectation. Note that

E( 1n

n∑
i=1

ϕh(Xi − u)) = ∫
x∈Rd ϕh(x − u) · fX (x)dx

= ∫
z∈B∩(U⊕{−u})/h ϕ1(z) · fX (u + hz)dz

(13)
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where in the last line we made the change of variables z = (x − u)/h. Let R(h) =
(B ∩ (U ⊕ {−u})/h)\TU (u) and S(h) = (B ∩ TU (u))\(U ⊕ {−u})/h. So we have

∣∣E( 1n

n∑
i=1

ϕh(Xi − u)) − fX (u) · ∫
z∈B∩TU (u)

ϕ1(z)dz
∣∣

≤ ∫
z∈B ϕ1(z) · ∣∣ fX (u + hz) − fX (u)

∣∣dz + ∫
z∈R(h)∪S(h)

|ϕ1(z) fX (u + hz)|dz

≤ ∫
z∈B ϕ1(z) · κh‖z‖dz + s

∫
z∈R(h)

dz + s
∫

z∈S(h)
dz (14)

≤ h · κ
∫

z∈B ϕ1(z)dz + s
∫

z∈R(h)
dz + s

∫
z∈S(h)

dz

where κ ∈ R+ is the Lipschitz constant of the density fX (u), and s ∈ R+ is a
constant that exists by continuity of fX (u). Next note s

∫
z∈R(h)

dz + s
∫

z∈S(h)
dz → 0

as h → 0 by Proposition 6.2 and Theorem 4.10 of [38]. Thus taking the limit of (14)
gives limn E( 1n

∑n
i=1 ϕh(Xi −u)) = fX (u)·∫z∈Rd ϕ1(z)dz. This proves the first result

when combined with the implication of Kolmogorov’s strong law of large numbers in
our setting, and after noting γ (u) = ∫

z∈B∩TU (u)
ϕ1(z)dz since ϕ1(u) = 0 for ‖u‖ > 1.

For the proof of the second result, let 〈w〉 j denote the j th component of the vector
w. Next observe that

limn

n∑
i=1

n−2 · var(ϕh(Xi − u) · 〈Wi 〉 j
) ≤ limn c · var(〈W 〉 j

)
/
(
nhd

)
< ∞,

(15)

where the first inequality holds for some constant c ∈ R
+ because the Wi have zero

mean and becauseϕh(Xi −u) is bounded and nonzerowith probability atmost s ·hd for
some constant s ∈ R

+; and the second inequality holds because nhd = n4/(d+4). The
finiteness of the above summation means Kolmogorov’s strong law of large numbers
gives as-limn

1
n

∑n
i=1 ϕh(Xi − u) · 〈Wi 〉 j − E( 1n

∑n
i=1 ϕh(Xi − u) · 〈Wi 〉 j ) = 0. But

the Wi are zero mean, and so we have that E( 1n
∑n

i=1 ϕh(Xi − u) · 〈Wi 〉 j ) = 0.
To prove the third result, observe that

limn

n∑
i=1

n−2 · var(ϕh(Xi − u) · ‖Xi − u‖) ≤ limn c/
(
nhd

)
< ∞, (16)

where the first inequality holds for some constant c ∈ R
+ because U is a compact set

and because ϕh(Xi − u) is bounded and nonzero with probability at most s · hd for
some constant s ∈ R

+; and the second inequality holds because nhd = n4/(d+4). The
finiteness of the above summation means we can apply Kolmogorov’s strong law of
large numbers,which gives as-limn

1
n

∑n
i=1 ϕh(Xi −u)·‖Xi −u‖−E( 1n

∑n
i=1 ϕh(Xi −

u) · ‖Xi − u‖) = 0. Our next step is to compute this expectation. Note that

E( 1n

n∑
i=1

ϕh(Xi − u) · ‖Xi − u‖) ≤ ∫
x∈Rd ϕh(x − u) · ‖x − u‖ · fX (x)dx

≤ h
∫

z∈Rd ϕ1(z) · z · fX (u + hz)dz

≤ c · h = c · n−1/(d+4)

(17)
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where the second line makes the change of variables z = (x −u)/h, and the third line
holds for some constant c ∈ R

+ because the kernel has finite support and the density
is continuous. The above expectation is non-negative, and so limn E( 1n

∑n
i=1 ϕh(Xi −

u) · ‖Xi − u‖) = 0. This proves the third result when combined with the outcome of
Kolmogorov’s strong law of large numbers. ��

4.3 Kernel regression estimator

We define a kernel regression estimate of S at the point u to be

Ŝ(u) =
[
1
n

⊕n
i=1 ϕh(Xi − u) · Si

]
·
[
1
n

n∑
i=1

ϕh(Xi − u)
]−1

(18)

The following theorem proves the strong pointwise consistency of this estimator.

Theorem 5 If h = n−1/(d+4), then as-limn Ŝ(u) = S(u) for u ∈ U.

Proof Let κ ∈ R+ be the Lipschitz constant of S, and note that by Lipschitz continuity
we have

1
n

⊕n
i=1 ϕh(Xi − u) · (

S(u) ⊕ Wi
) ⊆

1
n

⊕n
i=1 ϕh(Xi − u) · (

Si ⊕ κ‖Xi − u‖B) ⊆
1
n

⊕n
i=1 ϕh(Xi − u) · (

S(u) ⊕ 2κ‖Xi − u‖B ⊕ Wi
)

(19)

Corollary 2(c) and Lemma 2(a) give as-limn
1
n

⊕n
i=1 ϕh(Xi − u) · S(u) = γ (u) ·

fX (u) · S(u), and Corollary 2(a) and Lemma 2(b) yield as-limn
1
n

⊕n
i=1 ϕh(Xi −

u) · (S(u) ⊕ Wi ) = γ (u) · fX (u) · S(u). Corollary 2(c) and Lemma 2(c) give
as-limn

1
n

⊕n
i=1 ϕh(Xi − u) · κ‖Xi − u‖B = 0, and so Corollary 2(a) implies

as-limn
1
n

⊕n
i=1 ϕh(Xi − u) · (S(u) ⊕ 2κ‖Xi − u‖B⊕ Wi

) = γ (u) · fX (u) · S(u). So
applying the sandwich lemma to (19) yields as-limn

1
n

⊕n
i=1 ϕh(Xi −u)·(Si ⊕κ‖Xi −

u‖B) = γ (u) · fX (u) · S(u). Corollary 3 gives as-limn
1
n

⊕n
i=1 ϕh(Xi − u) · Si =

γ (u) · fX (u) · S(u). Finally, using Corollary 2(d) and Lemma 2(a) imply that
as-limn Ŝ(u) = S(u). ��

4.4 Algorithms to compute kernel regression estimator

The statistical consistency of our kernel regression estimator is a theoretical result,
and numerical computation of this estimator using the measured data (ui , si ) for i =
1, . . . , n needs some discussion. The key point is that the corresponding algorithm
used to compute the estimator depends on the representation of the sets si . Since
the random sets Si are RaTS, we only need to consider different representations of
convex sets. Moreover, we focus our discussion on polytope representations since any
compact convex set can be approximated arbitrarily well by polytopes [43].
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If the sets si are each represented by polynomial time membership oracles, then

1
n

⊕n
i=1 ϕh(xi − u) · si =

{
1
n

⊕n
i=1 ϕh(xi − u) · ti : ti ∈ si for i = 1, . . . , n

}
, (20)

and so membership in the Minkowski sum can be determined in polynomial time.
Polynomial timemembership oracles exist for si in a known compact setG, with a self-
concordant barrier function for G and the functions defining si [32]: the measurement
of si would consist of the function parameters defining si , and set membership is
determined by using interior point to solve a feasibility problem. Examples include
polytopes si = {ti : ai ti ≤ bi }, with measured data ai , bi ; second-order cone sets
si = {ti : ‖ai, j ti + bi, j‖2 ≤ cTi, j ti + di, j for j = 1, . . . , k}, with measured data
ai, j , bi, j , ci, j , di, j ; and combinations thereof. Other examples can be found in [32].

Next suppose the sets si are each represented by the zonotopes si = ⊕p
k=1 wik ·

zk , where wik are weights and zk are vectors, which are polytopes defined as the
Minkowski sum of vectors. Restated, the observations are the wik and zk . Then

1
n

⊕n
i=1 ϕh(xi − u) · si = ⊕p

k=1

[ 1
n

n∑
i=1

ϕh(xi − u) · wik
] · zk, (21)

and so the Minkowski sum is polynomial time computable for this representation.
Lastly, suppose the sets si are represented by the convex hull of a finite set of pi

vertices, meaning that si = co({vi1, . . . , vi pi }). In this setting the measurements are
the vertices of each set si , and the Minkowski sum is given by

1
n

⊕n
i=1 ϕh(xi − u) · si = co

({ 1
n

n∑
i=1

ϕh(xi − u) · vi ji :
for ji = 1, . . . , pi and i = 1, . . . , n

})
. (22)

This is a polynomial time computation since the number of vertices is finite.

4.5 Numerical example

We conclude our discussion on kernel regression of set-valued functions with a
numerical example to visually demonstrate the estimation problem being solved by
our estimator. Consider the set-valued function in the bottom-left of Fig. 1, given by

S(u) =

⎧⎪⎨
⎪⎩

[ − 2,− 2u+1
u + 2

]
, if u ∈ [ − 2,− 1

4

][ − 2, 2
]
, if u ∈ [ − 1

4 ,
1
4

][ 4u−1
u − 2, 2

]
, if u ∈ [ 1

4 , 2
] (23)

The Xi variables have a U (−2, 2) distribution, and each measurement si is in a vertex
representation. The noise Wi has a U (−1, 1) distribution, meaning its variance is 1/6.
The top row of Fig. 1 shows measurements for n = 102, n = 103, and n = 104

data points, respectively; and the bottom row shows estimates computed by (18) and
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Fig. 1 The x-axes on the plots are u. The top row from left to right shows the noisy measurements (ui , si )

for n = 102, n = 103, and n = 104 data points, respectively, and the bottom row shows the set-valued
function S(u) being estimated and the corresponding estimates Ŝ(u) from our kernel regression estimator

(22) with an Epanechnikov kernel.1 This example shows that as the amount of data
increases, the estimates Ŝ(u) converge pointwise to the actual set-valued function
S(u).

5 Inverse approximate optimization

Inverse optimization involves computing parameters that make measured solutions
optimal [1,7,11,16,20,24]. In contrast, the inverse approximate optimization prob-
lemmakes noisy measurements of suboptimal solutions, and the goal is to estimate the
amount of suboptimality and to estimate the parameters of the optimization problem
generating the data. In principle, the VIA [11] and KKT [24] estimators can provide
estimates of the desired quantities; but we show their estimates are statistically incon-
sistent. As a result, we construct an estimator for inverse approximate optimization,
prove its statistical consistency, and then discuss some possible generalizations.

5.1 Problem setup

Consider a parametric convex optimization problem

V (u, θ) = minx
{

f (x, u, θ)
∣∣ g(x, u, θ) ≤ 0

}
(24)

in which f, g are continuous functions that are convex in x for each fixed value of u
and θ , and assume that for all u, θ the constraint qualification there exists x such that
g(x, u, θ) < 0 holds. (Note this constraint representation is fully general since we

1 Our code http://ieor.berkeley.edu/~aaswani/code/ssvf.zip runs in a few seconds.
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can write g = max gi .) We use the definition that ε-optimal solutions are those in the
set

S(u, ε, θ) = ε-argminx
{

f (x, u, θ)
∣∣ g(x, u, θ) ≤ 0

} =
{x : f (x, u, θ) ≤ V (u, θ) + ε, g(x, u, θ) ≤ 0}. (25)

Our results also apply when ε-optimal solutions are defined as in (25) but with
g(x, u, θ) ≤ ε. The difference is (25) does not allow any constraint violation, while
the alternative definition allows ε constraint violation. Note there are other notions of
ε-optimal solutions like distance to the KKT graph, but we do not consider these.

Now suppose ε-optimal solutions of (24) generate random samples (Ui , Yi ) ∈ D ×
R

p for i = 1, . . . , n, where: Ui are i.i.d. (vector-valued) random variables distributed
on the set D ⊆ R

d ; Yi = Xi + Wi , where Xi are i.i.d. (vector-valued) random
variables distributed on S(Ui , ε0, θ0) with constants ε0 ∈ R+ and θ0 ∈ R

p; and Wi

are i.i.d. (vector-valued) random variables with zero mean E(Wi ) = 0 and distributed
on a known convex set W with finite support (which implies finite variance). We also
assume the densities of Wi , Xi are strictly positive on the interior of their supports
(i.e., fW (u) > 0 for u ∈ int(W ) and fX (u|Ui ) > 0 for u ∈ int(S(Ui , ε0, θ0))).

The inverse approximate optimization problem is to estimate (ε0, θ0) using the
(Ui , Yi ) for i = 1, . . . , n. Note that we assume the functional forms of f, g are
fixed. Let E ⊆ R+ be a known closed set such that ε0 ∈ E , and let Θ ⊆ R

p be a
known compact set such that θ0 ∈ Θ; the intuition is that these sets represent prior
knowledge that constrain the parameters and amount of solution suboptimality. The
choice E = R+ corresponds to a situation with no such prior knowledge on ε0, and
the compactness assumption on Θ is not restrictive in practice because this set can be
made arbitrarily large. (Unbounded Θ can also be used when a compactification with
certain technical properties exists [9].) A so-called identifiability condition [13] is
also needed.We assume that if (ε0, θ0) ∈ E ×Θ thenE(d2(Yi , S(Ui , ε, θ)⊕W )) > 0
for all ε ∈ [0, ε0) and θ ∈ Θ\{θ0}. An identifiability condition (such as the one we
have assumed) intuitively says that different parameters of themodel produce different
outputs.

5.2 Inconsistency of existing estimators

The VIA [11] (which minimizes the first order suboptimality of the data) and KKT
[24] (which minimizes the KKT suboptimality of the data) estimators are statistically
inconsistent for ε0 = 0 [7], but since these approaches minimize the amount of sub-
optimality of the measured data it is initially unclear without further analysis whether
these approaches are inconsistent for problem instances with ε0 > 0. The following
result provides qualitative insights into the behavior of these estimators.

Proposition 4 Let r ∈ R+ be a constant, and suppose f = x2, g = [x − 1;−x − 1],
ε0 = 1, W = {w : ‖w‖ ≤ r}, and Wi , Xi are uniformly distributed. Then estimates ε̂

generated by the VIA [11] and KKT [24] methods are such that as-lim infn ε̂ > r/3.
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Proof The KKT estimate is given by

ε̂ = max
{1

n

n∑
i=1

〈g(Yi )〉+1 , 1
n

n∑
i=1

〈g(Yi )〉+2 , 1
n

n∑
i=1

|2Yi + 〈Λi 〉1 − 〈Λi 〉2|,
1

n

n∑
i=1

|〈Λi 〉1 · (Yi − 1)|, 1
n

∑n
i=1 |〈Λi 〉2 · (−Yi − 1)|

}
(26)

where these Λi are the minimizers of the below optimization problem

min
{ 1

n

n∑
i=1

|2Yi + 〈λi 〉1 − 〈λi 〉2| + 〈λi 〉1 · |Yi − 1| +
〈λi 〉2 · | − Yi − 1| ∣∣ λi ≥ 0, i = 1, . . . , n

}
. (27)

Since ε-argminx { f (x, u, θ) | g(x, u, θ) ≤ 0} = [−1, 1] under the hypothesis of this
proposition, it holds the Yi are i.i.d. and have triangular distribution with lower limit
−r − 1, upper limit r + 1, and mode 0. Hence the density of Ci = 〈g(Yi )〉+1 is given
by

fC (u) =
(
1
2 + 1

r+1 − 1
2(r+1)2

)
· δ(u) +

(
r

(r+1)2
− 1

(r+1)2
· u

)
· 1(u ∈ [0, r ]), (28)

where δ(u) is the Dirac delta function. So E(Ci ) = r+1
3 , and the strong law

of large numbers implies r+1
3 = as-limn

1
n

∑n
i=1 Ci = as-lim infn

1
n

∑n
i=1 Ci ≤

as-lim infn ε̂.
The VIA estimate is given by ε̂ = 1

n

∑n
i=1 |ε̂i | where εi are the minimizers to

min
{
1
n

n∑
i=1

|ε̂i |
∣∣∣ 2Yi (xi − Yi ) ≥ −ε̂i for xi ∈ [−1, 1], i = 1, . . . , n

}
(29)

However, observe that 2Yi (xi −Yi ) ≥ −ε̂i for xi ∈ [−1, 1] simplifies to the constraint
−2(|Yi | + Y 2

i ) ≥ −ε̂i . Since the above optimization is minimizing each |ε̂i |, this
means the constraint will be ε̂i = 2(|Yi | + Y 2

i ) at optimality. Recall that as shown in
the proof for KKT, the Yi have a triangular distribution with lower limit −r −1, upper

limit r + 1, and mode 0. This means E(|ε̂i |) = 2r+2
3 + (r+1)2

9 . Applying the strong

law of large numbers gives 2r+2
3 + (r+1)2

9 = as-limn
1
n

∑n
i=1 |ε̂i | = as-limn ε̂. ��

This proposition shows that existing approaches cannot distinguish between noise
in measurements versus suboptimality of the solutions. The reason is that these
approaches are minimizing an incorrect error metric: They minimize the amount of
suboptimality of the measured data, and this is an incorrect error metric when the
measured data is noisy because the noise increases the suboptimality of the measured
data. Moreover, this indistinguishability of existing approaches is unbounded in the
sense that as the noise variance increases then their estimates of suboptimality increase
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in an unbounded way. Such behavior is undesirable, and in fact the above result gives
the following corollary on the statistical properties of VIA and KKT.

Corollary 4 The VIA [11] and KKT [24] estimators are statistically inconsistent.

Proof By definition an estimator is consistent for a class of models if and only if it
is consistent for each model in that class. Thus to show inconsistency of VIA and
KKT it suffices to show inconsistency for a single model. The above proposition
establishes inconsistency of VIA and KKT for a particular model because ε0 = 1
while as-lim infn ε̂ > r/3, meaning these approaches are inconsistent when r > 3. ��

5.3 Approximate bilevel programming (ABP) estimator

To correct the indistinguishability (between suboptimality of solutions and noise in
measurements) problem faced by existing approaches, we instead propose an estimator
that explicitly models the measured data as consisting of a suboptimal solution added
to noise. More specifically, we propose the following statistical estimator

(ε̆, θ̆ ) ∈ argmin
{
1
n

n∑
i=1

d2(Yi , S(Ui , ε, θ) ⊕ W ) + λ · ε

∣∣∣ ε ∈ E, θ ∈ Θ
}

(30)

where λ ∈ R+ and d2 is the squared distance function defined in the preliminaries.
It is also useful to consider estimators defined as approximate solutions to the above
optimization problem. Let z ∈ R+ be a nonnegative value, and define the estimates

(ε̂, θ̂ ) ∈
{
ε ∈ E, θ ∈ Θ : 1

n

n∑
i=1

d2(Yi , S(Ui , ε, θ) ⊕ W ) + λ · ε ≤

1
n

n∑
i=1

d2(Yi , S(Ui , ε̆, θ̆ ) ⊕ W ) + λ · ε̆ + z
}
. (31)

For notational convenience, we will call this estimator the ABP estimator. Note these
estimates are defined as being any z -argmin of the optimization problem (30).

Theorem 6 The ABP estimator is strongly statistically consistent, meaning we have
as-limn(ε̂, θ̂ ) = (ε0, θ0) whenever λ = 1/n and limn(n · z) = 0.

Proof Our first step is to show d2(y, S(u, ε, θ)⊕ W ) satisfies certain continuity prop-
erties. Note {x : g(x, u, θ) ≤ 0} is continuous byExample 5.10 of [38], and so V (u, θ)

is continuous by the Berge maximum theorem [10]. Noting d2(y, S(u, ε, θ) ⊕ W ) =
min{‖y − ŷ‖2 | ŷ = x̂ + ε̂, ε̂ ∈ W, f (x̂, u, θ) ≤ V (u, θ)+ ε, g(x̂, u, θ) ≤ 0}, we can
apply the Berge maximum theorem [10] since this feasible set is osc by Example 5.8
of [38]: This implies d2(y, S(u, ε, θ) ⊕ W ) is lower semicontinuous in (ε, θ), and so
E(d2(Yi , S(Ui , ε, θ) ⊕ W )) is lower semicontinuous in (ε, θ) by Fatou’s lemma.

Next note that the estimate (ε̆, θ̆ ) also minimizes the optimization problem

min
{ n∑

i=1
d2(Yi , S(Ui , ε, θ) ⊕ W ) + nλ · ε

∣∣∣ ε ∈ E, θ ∈ Θ
}

(32)
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But nλ = 1 by assumption, and so the objective of (32) is nondecreasing in n. Hence
P(e-limn

∑n
i=1 d2(Yi , S(Ui , ε, θ)⊕ W )+ ε = supn

∑n
i=1 d2(Yi , S(Ui , ε, θ)⊕ W )+

ε) = 1 by Proposition 7.4 of [38], where e-lim is the epi-limit [38]. We next prove
that

P(supn
∑n

i=1 d2(Yi , S(Ui , ε, θ) ⊕ W ) > 0

for (ε, θ) ∈ ([0, ε0] × Θ)\{(ε0, θ0)}) = 1, (33)

and our approach is to use a well-known covering argument originally due to Wald
[47]. Let Sk be a decreasing sequence (i.e., Sk ⊇ Sk+1 ⊇ · · · ) of open neighbor-
hoods of (ε0, θ0), with limk Sk = {(ε0, θ0)}. Since E(d2(Yi , S(Ui , ε, θ) ⊕ W )) is
lower semicontinuous in (ε, θ), this means min{E(d2(Yi , S(Ui , ε, θ)⊕ W )) | (ε, θ) ∈
([0, ε0] × Θ)\Sk} > 0 by the identifiability condition. Thus there exists νk > 0
such that E(d2(Yi , S(Ui , ε, θ) ⊕ W )) > 2νk for (ε, θ) ∈ ([0, ε0] × Θ)\Sk . By
lower semicontinuity of d2(y, S(u, ε, θ) ⊕ W ) and the monontone convergence the-
orem, there exists an open neighborhood Tk(ε, θ) for each (ε, θ) ∈ ([0, ε0] ×
Θ)\Sk so that we have E(inf{d2(Yi , S(Ui , ε

′, θ ′) ⊕ W ) | (ε′, θ ′) ∈ Tk(ε, θ)) >

E(d2(Yi , S(Ui , ε, θ) ⊕ W )) − νk . Since ([0, ε0] × Θ)\Sk is compact, there exists
a finite set Fk ∈ ([0, ε0] × Θ)\Sk such that Tk(ε, θ) for (ε, θ) ∈ Fk forms a
finite subcover of ([0, ε0] × Θ)\Sk . Combining the above with the Borel-Cantelli
lemma implies P(inf{supn

∑n
i=1 d2(Yi , S(Ui , ε

′, θ ′) ⊕ W ) | (ε′, θ ′) ∈ Tk(ε, θ)} >

0) = 1 for each (ε, θ) ∈ Fk , which by the finiteness of Fk implies that
P(supn

∑n
i=1 d2(Yi , S(Ui , ε, θ) ⊕ W ) > 0 for (ε, θ) ∈ ([0, ε0] × Θ)\Sk)) = 1.

The desired (33) follows since we choose the sequence Sk such that Sk ↓ {(ε0, θ0)}.
Next consider the optimization problem

min
{
supn

n∑
i=1

d2(Yi , S(Ui , ε, θ) ⊕ W ) + ε

∣∣∣ ε ∈ E, θ ∈ Θ
}

(34)

Note (ε0, θ0) is feasible for both (32) and (34), and so the minimums of (32) and
(34) are both less than or equal to ε0. This means ε > ε0 cannot minimize (34).
Furthermore, using (33) implies that almost surely the (unique) minimizer of (34) is
(ε0, θ0), and almost surely the minimum value of (34) is ε0. But from the argument
in the preceding paragraph, (32) epi-converges almost surely to (34) since E,Θ are
fixed. The result now follows from Theorem 7.33 of [38]. ��

The above result concerns almost sure convergence of the ABP estimates (ε̂, θ̂ )

to the actual parameters (ε0, θ0), but a related question is whether the corresponding
solution set estimates S(u, ε̂, θ̂ ) converge to the actual solution sets S(u, ε0, θ0). Our
semicontinuous mapping theorem can be used to establish almost sure convergence
of the solution set estimates, and this argument leads to the the following corollary.

Corollary 5 We have that as-lim supn S(u, ε̂, θ̂ ) ⊆ S(u, ε0, θ0) for u ∈ D. If ε0 > 0
or f (·, u, θ) is strictly convex in x, then as-limn S(u, ε̂, θ̂ ) = S(u, ε0, θ0) for u ∈ D.

Proof The above proof established that S(u, ε, θ) is osc in ε, θ . And so the first part
of the corollary follows by the semicontinuous mapping theorem. If ε0 > 0 then
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S(u, ε0, θ0) is continuous at (ε0, θ0) by Example 5.10 of [38]. If f (·, u, θ) is strictly
convex in x , then S(u, 0, θ0) is single-valued [38]. Hence S(u, 0, θ0) is continuous
because a single-valued, osc, and locally bounded function is continuous [38]. Thus
the second part of the corollary follows from the semicontinuous mapping theorem.��

5.4 Algorithms to compute ABP estimator

We next discuss numerical computation of ABP using the data (ui , yi ) for i =
1, . . . , n. The ABP estimator is an approximate (i.e., the solution sets have ε possibly
greater than zero) bilevel program, which are optimization problems where some deci-
sion variables are solutions to optimization problems that are called the lower level
problem. One approach to solve bilevel programs replaces the lower level problem
with its KKT conditions [2,17], and this can sometimes be rewritten as mixed-integer
programs thatmay be numerically solved quickly [6]. Another approach upper bounds
the objective function of the lower level problem by its value function [35,50].

Here we describe how a third approach that upper bounds the objective function of
the lower level problem by its dual function [7,34] can be used to compute the ABP
estimator. If h(u, θ, λ) is the Lagrangian dual function corresponding to (24), then
under mild conditions ensuring zero duality gap the ABP estimator is given by

(ε̆, θ̆ ) ∈ argmin 1
n

n∑
i=1

‖yi − x̂i‖2 + λ · ε

s.t. f (x̂i , ui , θ) ≤ h(ui , θ, λi ) + ε

g(x̂i , ui , θ) ≤ 0

λi ≥ 0, ε ∈ E, θ ∈ Θ

(35)

This duality-based reformulation can be numerically solved by two different algo-
rithms [7,34], which we briefly describe here. More details can be found in the
corresponding references, and both algorithms assume the sets E,Θ are compact.

Since the reformulation (35) is a convex optimization problem for fixed (ε, θ), one
algorithm [7] for computing ABP is to: discretize the set E × Θ into a finite set
Δ = {(ε1, θ1), . . . , (εk, θk)} such that it forms a set covering with balls of a prescribed
radius, compute the minimum objective function value of (35) for (ε, θ) ∈ Δ (which
we call Q(ε, θ)), and then choose estimates (ε̂, θ̂ ) = argmin{Q(ε, θ) | (ε, θ) ∈ Δ}. A
result from [7] implies that estimates chosen using this enumeration algorithm satisfy
the assumptions of Theorem 6, which is sufficient for statistical consistency.

A second algorithm [34] replaces the Lagrangian dual by a numerically computed
dual. Partial dualization is used to define a regularized dual function (RDF)

hμ(u, θ, λ) = minx
{
μ · ‖x‖2 + f (x, u, θ) + λTg(x, u, θ) | x ∈ X}. (36)

Here, X is any compact set defined such that {x : ∃(u, θ) ∈ U × Θ s.t. g(x, u, θ) ≤
0} ⊆ int(X). The intuition is that X is a set that contains all the feasible sets of
(24) within its interior. When g does not depend on (u, θ), we can choose X = {x :
li − 1 ≤ xi ≤ ui + 1} with ui = max{xi | g(x) ≤ 0} and li = min{xi | g(x) ≤ 0}

123



Statistics with set-valued functions 247

that are computed by solving convex optimization problems. Many applications of
inverse approximate optimization consist of such a setting where the feasible set is
independent of the inputs u or the parameters θ . The benefit of the RDF is it can
be numerically computed because it is a convex optimization problem, and that its
gradient

∇θ hμ(u, θ, λ) = ∇θ f (x, u, θ) + λT · ∇θ g(x, u, θ)

∇λhμ(u, θ, λ) = g(x, u, θ)
(37)

always existswhenμ > 0. In contrast, theLagrangian dual is usually only directionally
differentiable but not differentiable. The algorithm proceeds by using a nonlinear
numerical solver to solve a sequence of optimization problems in which μ goes to 0.

A third possibility is a polynomial time approximation algorithm with the property
that statistical consistency holds as the amount of samples n increases to infinity. Such
an algorithm has been constructed, when f is affine in θ and g does not depend on θ ,
for inverse optimization with noisy data [7]; it uses kernel regression to pre-smooth
the data and then solves a convex problem corresponding to inverse optimization
assuming no noise in the pre-smoothed data. Here we sketch a similar algorithm for
inverse approximate optimization, and we leave its analysis for future work. Define
Ŝ(u) = co({yi : ‖ui − u‖ ≤ h})	 W for h ∈ R+, and choose the data x̂i by sampling
from the uniform distribution on Ŝ(ui ). The estimate (ε̆, θ̆ ) is computed by solving
(35) with the change that the g(x̂i , ui , θ) ≤ 0 constraints are removed.

5.5 Numerical example

We next consider a numerical example to visually compare estimates of S(u, ε0, θ0)

produced by our ABP estimator and the VIA [11] and KKT [24] estimators. Suppose
x ∈ R, f = −(θ + u) · x , g = [x − 2;−x − 2], ε0 = 1, θ0 = 0, W = {w : ‖w‖ ≤ 1},
Ui has a uniform distribution U (−2, 2), Xi is uniformly distributed on S(Ui , ε0, θ0),
E = {ε : 0.1 ≤ ε ≤ 10}, and Θ = {θ : −2 ≤ θ ≤ 2}. The solution set S(u, ε0, θ0) in
this setting is shown in the left column of Fig. 2. Each measurement (ui , yi ) for this
example is a point, and the top row of Fig. 2 shows the measurements for n = 101,
n = 102, and n = 103 data points, respectively. The rows below show the estimated
(using the measurements shown above) solution set as computed by ABP, KKT, and
VIA, respectively.2 This example shows that as the number ofmeasurements increases,
the solution set estimated by ABP (KKT and VIA) converges (does not converge) to
the actual solution set. This statistical behavior is expected given our theoretical results
on the strong consistency of ABP and the statistical inconsistency of KKT and VIA.

2 Our code http://ieor.berkeley.edu/~aaswani/code/ssvf.zip runs in about five minutes.
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Fig. 2 The x-axes on the plots areu. For the solution set S(u, ε, θ) = ε-argminx {−(θ+u)·x |−2 ≤ x ≤ 2},
the left column shows the actual S(u, ε0, θ0) when ε0 = 1 and θ0 = 0. The top row from left to right shows
the noisy measurements (ui , yi ) for n = 101, n = 102, and n = 103 data points, respectively, and the rows
below show the estimated solution set as computed by ABP, KKT, and VIA, respectively

5.6 Related inverse optimization problems

In our problem setup, the measurement noise Wi had a distribution with a finite
support. However, noise models commonly used in statistics include distributions
with unbounded support but finite variance. The canonical example is Wi that are
jointly Gaussian with zero mean and finite covariance. A heuristic approach for dis-
tributions with unbounded support is to use our ABP estimator with the choices of
W = (2 log n)1/2 · Σ for sub-Gaussian distributions (i.e., distributions bounded from
above by a jointly Gaussian random variable) and W = ((2 log n)1/2 + log n) · Σ for
sub-exponential distributions (i.e., distributions with exponentially decaying tails),
where Σ = E(WT

i WT
i ) is the covariance matrix of Wi . The reason for this suggested
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heuristic is these choices of W are analogous to bounds on the maximum expected
values of sub-Gaussian and sub-exponential random variables [14].

Since the ABP estimator is a heuristic in this setting, an obvious topic is to design
a statistically consistent estimator for inverse approximate optimization problems
with unbounded noise. Maximum likelihood estimation is arguably the most natural
approach because otherwise it is difficult to distinguish between noise and subop-
timality of solutions. Specifically, consider the original problem setup but with the
changes that the random sample is (ui , Xi ), the Xi are uniformly distributed within
S(ui , ε0, θ0), and that Wi is distributed according to some known density fW (u). Then
the maximum likelihood estimator (MLE) for this modified problem setup is given by

(εmle, θmle) ∈ argmin
{

− 1
n

n∑
i=1

log
∫

x∈S(ui ,ε,θ)
fW (Yi − x)dx

+ 1
n

n∑
i=1

log
∫

x∈S(ui ,ε,θ)
dx

∣∣∣ ε ∈ E, θ ∈ Θ
}
. (38)

This optimization problem has a challenging structure in which the domains of inte-
gration depend upon the decision variables [41], and presents an opportunity for the
further study of designing numerical algorithms to solve such optimization problems.
We do note that for fixed (ε, θ), the integrals in the objective can be numerically com-
puted in polynomial time using hit-and-run techniques for sampling from convex sets
[29,45]. And so the enumeration algorithmwe described earlier for theABP estimator
could be easily modified to solve thisMLE problem.

Remark 6 The ABP and MLE estimators are actually qualitatively the same. The
1
n

∑n
i=1 d2(Yi , S(Ui , ε, θ) ⊕ W ) term in ABP and the − 1

n

∑n
i=1 log

∫
x∈S(ui ,ε,θ)

fW (Yi − x)dx term in MLE both penalize estimates in which the solutions Yi are
far from the solution sets S(·, ε, θ), and the 1

n

∑n
i=1 log

∫
x∈S(ui ,ε,θ)

dx term in MLE
and the λ · ε term in ABP both penalize estimates that generate large solution sets.

In the two inverse approximate optimization problem setups considered above, we
assumed the approximate solutions Xi were drawn from the solution sets S(Ui , ε0, θ0)

according to some distribution. However, another modified problem setup would be to
assume the Xi were chosen from the solution sets by solution of another optimization
problem. This kind of setup corresponds to a scenario in which the Xi are solutions
to an optimistic bilevel optimization problem with unique solutions:

x = argmin
{

F(u, x, z)
∣∣ x ∈ S(u, ε0, θ0), G(u, x, z) ≤ 0

}
. (39)

In this case, the estimation procedure can be posed as a least squares problem

(εble, θble) ∈ argmin 1
n

∑n
i=1 ‖Yi − xi‖2

s.t. xi = argmin
{

F(Ui , x, z)
∣∣ x ∈ S(Ui , ε, θ), G(Ui , x, z) ≤ 0

}
ε ∈ E, θ ∈ Θ.

(40)

This is a challenging multi-level optimization problem and presents an opportunity
for the further study of designing numerical algorithms to solve such optimization
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problems.Wedonote that for fixed (ε, θ), this becomes a convexoptimization problem.
And so the enumeration algorithm we described earlier for the ABP estimator could
be easily modified to solve this least squares problem.

6 Conclusion

In this paper, we used variational analysis to develop tools for statistics with set-valued
functions, and then applied these tools to two estimation problems. We constructed
and studied a kernel regression estimator for set-valued functions and an estimator for
the inverse approximate optimization problem. The area of statistics with set-valued
functions remains largely unexplored with many remaining problems. One question
is the design of numerical representations of sets and set-valued functions. Though
constraint representations of sets are pervasive, numerical machinery like epi-splines
[40] may offer greater representational flexibility. Another question is the develop-
ment of numerical algorithms to solve optimization problems that arise in statistical
estimation for set-valued functions. Related inverse optimization problems lead to for-
mulations (38) and (40) with structures that are not well-studied from the perspective
of numerical optimization. Further study of statistics with set-valued functions will
require developing new numerical methods and optimization theory.
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