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Abstract Given a graph G = (V, E) and an integer k ∈ N, we study k-Vertex
Separator (resp. k-Edge Separator), where the goal is to remove the minimum
number of vertices (resp. edges) such that each connected component in the result-
ing graph has less than k vertices. We also study k-Path Transversal, where the
goal is to remove the minimum number of vertices such that there is no simple path
of length k. Our main results are the following improved approximation algorithms.

– O(log k)-approximation algorithm for k-Vertex Separator that runs in time
2O(k)n + nO(1). It improves the simple k-approximation, and runs faster than the
lower bound kΩ(OPT)nΩ(1) for exact algorithms assuming the exponential time
hypothesis (ETH) when OPT > k. We also prove that there is no n(1/ log log n)c -
approximation algorithm that runs in time poly(n, k) assuming the ETH.

– O(log k)-approximation algorithm for k-Edge Separator that runs in time
nO(1). It improves the best previous graph partitioning algorithm for small
k = no(1).

– O(log k)-approximation algorithm for k-Path Transversal that runs in time
nO(1) +2O(k3 log k)n2 log n. Previously, the existence of an (1−δ)k-approximation
algorithm for fixed δ > 0 (even using n f (k) time) was open.
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1 Introduction

Graph partitioning is a general task of removing a small number of edges or vertices
to make the resulting graph consist of smaller connected components. We study the
following natural graph partitioning problems.

k-VERTEX SEPARATOR

Input: An undirected graph G = (V, E) and k ∈ N.
Output: Subset S ⊆ V such that in the subgraph induced on V \S (denoted by
G[V \S]), each connected component has strictly less than k vertices.
Goal: Minimize |S|.

The edge version can be defined similarly.

k-EDGE SEPARATOR

Input: An undirected graph G = (V, E) and k ∈ N.
Output: Subset S ⊆ E such that in the subgraph (V, E\S), each connected com-
ponent has strictly less than k vertices.
Goal: Minimize |S|.

The best previous approximation algorithms achieve k-approximation for k-Vertex
Separator [3] andO(

√
log n log(n/k))-approximation [26].Assuming theExponen-

tial TimeHypothesis (ETH), k-Vertex Separator cannot be solved in ko(OPT)nO(1)

time [12].
Graph partitioning has been one of the most actively studied combinatorial opti-

mization problems. It is not only related to fundamental graph properties such as
expansion and spectrum (see a course devoted to this connection [34]), but also often
used as an important subroutine for Divide-and-Conquer approaches to numerous
other optimization problems. In this paper, an improved algorithm for (a generaliza-
tion of) k-Vertex Separator yields an improved algorithm for the following natural
problem. Let l(G) be the length of the longest path ofG including both endpoints (e.g.,
length of a single edge is 2).

k-PATH TRANSVERSAL

Input: An undirected graph G = (V, E) and k ∈ N.
Output: Subset S ⊆ V such that l(G[V \S]) < k.
Goal: Minimize |S|.

k-Path Transversal is motivated by applications in transportation and wireless
sensor networks, and has also been actively studied as k-Path Vertex Cover

or Pk-Hitting Set in terms of their structural property, approximability, and fixed
parameter tractability [6,7,9,24,35]. However, approximation algorithms that beat the
trivial k-approximation were known only for k = 3, 4 [9,35], and it was open whether
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Partitioning a graph into small pieces with applications… 3

we can get (1 − δ)k-approximation for k-Path Transversal for a general k and a
universal constant δ > 0.

1.1 Our results and applications

For k-Vertex Separator, k-Edge Separator, and k-Path Transversal, we
present improved approximation algorithms. Our focus is when k is much smaller
than n. Our algorithms for the vertex problems (k-Vertex Separator and k-
Path Transversal) run in time 2poly(k)nO(1), so they can be regarded as fixed
parameter tractable (FPT) approximation algorithms (see [30] for a survey). We also
prove a hardness result shwoing that we cannot achieve polylog(n)-approximation in
time poly(n, k) assuming the ETH. Our algorithm for k-Edge Separator strictly
improves the previous best approximation algorithm [26] when k = no(1).

Our result for k-Vertex Separator is based on the following algorithm for
k-Vertex Separator. For fixed constants b, c > 1, an algorithm for k-Vertex
Separator is called an (b, c)-bicriteria approximation algorithm if given an instance
G = (V, E) and k ∈ N, it outputs S ⊆ V such that (1) each connected component
of G[S\V ] has at most bk vertices and (2) |S| is at most c times the optimum of
k-Vertex Separator.

Theorem 1 For any ε ∈ (0, 1/4], there is an
(

1
1−2ε , O

(
log k

ε

))
-bicriteria approxi-

mation algorithm for k-Vertex Separator that runs in time nO(1).

Setting ε = 1
4 and running the algorithm yields S ⊆ V with |S| ≤ O(log k)·OPT such

that each component in G[V \S] has at most 2k vertices. To contrast with bicriteria
approximation, we often say that an algorithm achieves true approximation when
each component inG[V \S] has atmost k vertices as desired. Performing an exhaustive
search in each connected component yields the following true approximation algorithm
whose running time depends exponentially only on k.

Corollary 1 There is an O(log k)-approximation algorithm for k-Vertex Separa-

tor that runs in time nO(1) + 2O(k)n.

This gives an FPT approximation algorithm when parameterized by k only, and its
approximation ratio O(log k) improves the simple k-approximation [3], though the
latter runs in poly(n, k) time. WhenOPT � k, it runs even faster than the time lower
bound kΩ(OPT)nΩ(1) for the exact algorithm assuming the ETH [12].

The natural question is whether there is an algorithm that runs in time poly(n, k)
and achieves true O(log k)-approximation. The following theorem proves hardness
of k-Vertex Separator based on Densest k-Subgraph. Densest k-Subgraph
is a problem where given a graph G = (V, E) and k ∈ N, we want to find S ⊆ V ,
|S| = k to maximize the number of edges induced by S. In particular, we show
that a polynomial time O(log k)-approximation algorithm for k-Vertex Separator

will imply an O(log2 n)-approximation algorithm for Densest k-Subgraph. Using
the recent hardness result of Manurangsi [29] that showed n(1/ log log n)c -hardness of
approximation for Densest k-Subgraph under the ETH, we can conclude that any
polylog(n) approximation cannot be done in time poly(n, k).
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4 E. Lee

Theorem 2 If there is a poly(n, k)-time f -approximation algorithm for k-Vertex
Separator, then there is a poly(n, k)-time 2 f 2-approximation algorithm for Dens-
est k-Subgraph. In particular, assuming the Exponential Time Hypothesis, there is
no algorithm for k-Vertex Separator that runs in time poly(n, k) and achieves
n(1/ log log n)c -approximation for some absolute constant c > 0.

For k-Edge Separator, we prove that the true O(log k)-approximation can be
achieved in polynomial time. This shows a stark difference between the vertex version
and the edge version.

Theorem 3 There is an O(log k)-approximation algorithm for k-Edge Separator

that runs in time nO(1).

When k = no(1), our algorithm outperforms the previous best O(
√
log n log(n/k))-

approximation algorithm [26].
We show that k-Path Transversal admits O(log k)-approximation in FPT

time. This is the first approximation algorithm that strictly improves the simple k-
approximation algorithm for general constant k. Note that the running time cannot be
polynomial time k for any approximation algorithm since detecting a single k-path is
NP-hard (it includes Hamiltonian Path as a special case).

Theorem 4 There is an O(log k)-approximation algorithm for k-Path Transver-

sal that runs in time 2O(k3 log k)n2 log n + nO(1).

1.2 Related work

k-Vertex Separator, k-Edge Separator, and k-Path Transversal have been
actively studied in a number of different research contexts that have been developed
independently. We categorize past research into three groups.

Graph partitioning. In the graph partitioning literature, the edge versions have
received more attention. One of the most well-studied formulations is called l-
Balanced Partitioning. Given a graph G = (V, E) and l ∈ N, the goal is to
remove the smallest number of edges so that the resulting graph has l (l ≥ 2) con-
nected components with (roughly) the same number n

l of vertices.1 The case l = 2
has been studied extensively and produced elegant approximation algorithms. The
best results are O(log n)-true approximation (i.e., each component must have n

2 ver-
tices) [33] and O(

√
log n)-bicriteria approximation (i.e., each component must have at

most 2n
3 vertices) [2]. The extension to l ≥ 3 has been studied more recently. While it

is NP-hard to achieve any nontrivial true approximation for general l [1], Krauthgamer
et al. [26] presented an O(

√
log n log l)-bicriteria approximation where the resulting

graph is guaranteed to have each connected component with at most 2n
l vertices.

The true approximation for l-Balanced Partitioning is ruled out by encoding
Integer 3- Partition in graphs, and hard instances contain disjoint cliques of size2

1 In the literature it is called k-Balanced Partitioning. We use l in order to avoid confusion between
l-Balanced Partitioning and k-Edge Separator (l = n

k ).
2 In this paper, unless otherwise stated, the size of a graph indicates the number of vertices.
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Partitioning a graph into small pieces with applications… 5

at most nl . Even et al. [13] defined a similar problem called ρ-Separator, which is our
k-Edge Separator with ρ = k

n .
3 They “believe that the definition of ρ-Separator

captures type of partitioning that is actually required in applications”, since “instead
of limiting the number of resulting parts, which is not always important for divide-
and-conquer applications or for parallelism, it limits only the sizes or weights of
each part.” They provided a bicriteria approximation algorithm that removes at most
O

( 1+ε
ε

log n
) · OPT edges to make sure that each component has size (1 + ε)ρn for

any ε > 0, which is improved to O
(
1+ε
ε

√
log(1/ερ) log n

)
· OPT by Krauthgamer

et al. [26]. In our notation, it is O
(
1+ε
ε

√
log(n/εk) log n

)
·OPT. Both [13] and [26]

only presented bicriteria approximation algorithms, but the (folklore) trick presented
in Sect. 4 shows that after setting ε ≤ 0.5, their algorithm can be made to true
approximation algorithms by adding O(log k) to the approximation ratios. When k =
no(1), our approximation ratio O(log k) = o(log n) improves O(

√
log(n/k) log n +

log k) = O(log n) of [26].
Some of the ideas can be used for the analogous vertex versions, but they have

not received the same amount of attention. Often additional algorithmic ideas were
required to achieve the same guarantee [15], or matching the same guarantee is proved
to be NP-hard under some complexity assumptions [27].

Subgraph deletion. Here we focus on the vertex versions. Note that k-Vertex Sepa-

rator and k-Path Transversal are equivalent when k = 2, 3, 4 (every connected
graph with at most 3 vertices has a Hamiltonian path), and these cases have been
actively studied. 2-Vertex Separator is the famous Vertex Cover problem.
When k = 3, Papadimitriou and Yannakakis [32,36] defined the dissociation num-
ber to be n minus the optimum of 3-Vertex Separator in the context of certain
constrained spanning tree problems, which have been studied independently from the
graph partitioning literature (see [31] for a survey).

A simple k-approximation for k-Vertex Separator can be achieved by viewing
them as a special case of k-Hypergraph Vertex Cover (k-HVC). Given a graph
G = (V, EG), we construct a hypergraph H = (V, EH ) where EH contains every
set of k vertices {v1, . . . , vk} ⊆ V that induces a connected graph. This reduction is
complete and sound because a subset S ⊆ V intersects every hyperedge in EH if and
only if G[V \S] has no connected component of size at least k. Since k-Hypergraph
Vertex Cover admits a simple k-approximation (e.g., take any hyperedge e not
intersecting S and let S ← S ∪ e), we get a k-true approximation for k-Vertex Sep-

arator. This was observed in the work of Ben-Ameur et al. [3]. A k-approximation
algorithm for k-Path Transversal can be obtained similarly.

Approximating k-HVC better than the trivial factor k (resp. k − 1) will refute the
Unique Games Conjecture (resp. P 
= NP) [11,25], so we cannot hope to be able
to get a significantly better algorithm for k-HVC. An interesting line of research has
tried to find a better approximation algorithm when the hypergraph H is promised
to have additional structure. When H is k-uniform and k-partite, Lovász [28] gave a

3 Except the minor difference that we want strictly less than k vertices in each component.
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6 E. Lee

k
2 -approximation algorithm that is shown to be tight under the Unique Games Con-
jecture [22] (the same work also showed almost tight k

2 − 1 + 1
2k NP-hardness).

Given two graphs G, H where H is the pattern graph with k vertices, Guruswami
and Lee [21] studied the problem of removing the minimum number of vertices from
G such that the resulting graph has no copy of H as a subgraph. They showed that
if H is 2-vertex connected, this problem is as hard to approximate as the general
k-HVC. They also showed an O(log k)-approximation algorithm for k-Star (a tree
with k − 1 leaves). Our result for k-Path Transversal gives the second example
of connected H that admits O(log k)-approximation for general k. The previous best
approximation algorithms for k-Path guarantee a 2-approximation for k = 3 [35] and
a 3-approximation for k = 4 [9].

k-Vertex Separator can be regarded as a special case of a more general class of
problems where we are given a graph G and a set of pattern graphsH with k vertices
and asked to remove the minimum number of vertices to ensure G does not have any
graph in H as a subgraph (in this case H is the set of all connected graphs with k
vertices).

Generally, for a fixed graph H or a family of graphs H, the problems of deleting
the minimum number of vertices or edges from G so that G does not have any H
(∈ H) as a subgraph [21]/induced subgraph [5]/minor [16]/immersion [19] have been
studied actively in terms of their approximability and parameterized complexity.

Fixed parameter tractability. Given a graph G and an integer k, the optimum of
k-Vertex Separator has been known as k-Component Order Connectivity in math-
ematics. We refer the reader to the survey by Gross et al. [20] for more background.

Let OPT be the optimal value. For small values of k and OPT, the complexity
of exact algorithms has been studied in terms of their fixed parameter tractability.
While the trivial algorithm takes nO(OPT) time to find the exact solution for k-Vertex
Separator,Drange et al. [12] presented an exact algorithm that runs in time kO(OPT)n,
so the problem is in FPTwhen parameterized by both k andOPT. They complemented
their result by showing that the problem is W[1]-hard when parameterized by only
one of them. They also showed that any exact algorithm that runs in time ko(OPT)nO(1)

will refute the Exponential Time Hypothesis.
Unlike k-Vertex Separator, it is not trivial to check whether a given S ⊆ V is

a valid k-Path Transversal. Finding a path of length k has played a central role
in development of FPT algorithms—it is NP-hard to do for general k, but there are
various randomized and deterministic algorithms that run in time 2O(k)nO(1) (see [17]
for a survey). The parameterized complexity of k-Path Transversal is not as well
understood as k-Vertex Separator. Vertex Cover (k = 2) admits an exact FPT
algorithm parameterized by OPT, which was extended to k = 3 [24].

Given an instance of a problem with a parameter κ , an approximation algorithm is
said to be an FPT c-approximation algorithm if it runs in time f (κ) · nO(1) for some
function f and achieves c-approximation. See the survey of Marx [30] and the recent
work of Chitnis et al. [10]. For k-Vertex Separator, the simple k-approximation
runs in polynomial time regardless of OPT and k, but any exact algorithm requires
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Partitioning a graph into small pieces with applications… 7

both OPT and k to be parameterized. Our algorithms for k-Vertex Separator and
k-Path Transversal are FPT approximation algorithms in this sense.

2 Techniques

Our algorithms for k-Vertex Separator and k-Edge Separator combine a pre-
viously considered linear programming (LP) relaxation and a rounding algorithm
developed in different contexts. Our algorithm for k-Path Transversal is achieved
by establishing a close connection to a generalization of k-Vertex Separator called
k-Subset Vertex Separator formally defined in Sect. 3.

2.1 k-VERTEX SEPARATOR

Our algorithms for k-Vertex Separator and k-Edge Separator consist of the
following three steps. We give a simple overview of our techniques for k-Vertex
Separator.

1. Spreading metrics. Spreading metrics were introduced in Even et al. [14] and
subsequently used for ρ-separator [13].4 They assign lengths to vertices such that
any subset S of vertices with |S| ≥ k that induce a single connected component is
spread apart.
Given lengths xv to each vertex v ∈ V , define du,v to be the smallest sum of the
lengths of vertices along any path from u to v, including the lengths of both u and
v (so that du,u = xu). Given a feasible solution S ⊆ V for k-Vertex Separator,
let xv = 1 if v ∈ S, and xv = 0 if v /∈ S. It is easy to see that two vertices u
and v lie on the same component of G[V \S] if and only if du,v = 0. Otherwise,
du,v ≥ 1. Therefore, for every vertex v, the number of vertices that have distance
strictly less than 1 from v must be strictly less than k.
Spreading metrics are a continuous relaxation of the above integer program. We
relax each distance xv to have value in [0, 1], and let du,v still be the length of the
shortest path from u to v. Let fu,v = max(1 − du,v, 0). In the integral solution, it
indicates whether du,v < 1 or not. The constraint

∑
u fv,u ≤ k − 1 for all v ∈ V

is a relaxation of the requirement that the number of vertices that have distance
strictly less than 1 from v must be strictly less than k.
Even though this relaxation does not exactly capture the integer problem, one
crucial property of this relaxation is that for every v ∈ V and ε ∈ (0, 1

4 ], the
number of vertices that have distance at most ε from v can be at most k

1−2ε . This
can proved via a simple averaging argument.

2. Low-diameter decomposition. Before we introduce our rounding algorithm, we
briefly discuss why the previous algorithms based on the same (or stronger) relax-
ation have the approximation ratio depending on n.
The current best algorithm by Krauthgamer et al. [26] further strengthened the
above spreading metrics by requiring that they also form an �22 metric, and trans-

4 The conference version of [14] precedes that of [13].
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8 E. Lee

formed them to an �2 metric. This black-box transformation of an n-points �22
metric incurs distortion of Ω(

√
log n), so the approximation ratio must depend on

n.
The older work of Even et al. [13] used the rounding algorithm of Garg et al. [18]
that iterative takes a ball of small radius from the graph. More specifically, they
defined vol(v, r) to be the total sum of lengths in the ball of radius r centered at

v, and grow r until the boundary-volume ratio becomes O

(
log

(
vol(v, 12 )

vol(v,0)

))
. To

make vol(v, 0) nonzero, a seed value of ε ·OPTmust be added to the the definition
of vol(v, r). But when k = O(1) so that the number of balls we need to remove
from the graph is Ω(n), this incurs extra cost of Ω(εnOPT), forcing ε to depend
on n.
We apply another standard technique for the low-diameter decomposition to our
spreading metrics. In particular, our algorithm is similar to that of Calinescu et
al. [8], preceded by a simple rounding algorithm that removes every vertex with
large xv . One simple but crucial observation is that the performance of this algo-
rithm only depends on the size of the ball around each vertex, which is exactly
what spreading metrics is designed for! Since the size of each ball of radius 1

4 is at
most O(k), we can guarantee that we can delete at most O(log k) · OPT vertices
so that each connected component has at most O(k) vertices.
When k = O(1), to the best of our knowledge, this is a rare examplewhere the num-
ber of partitions (i.e., the number of balls taken) isΩ(n) but the approximation ratio
is much smaller than that. The original rounding algorithm of Calinescu et al. [8]
is applied to 0-Extension with k terminals to achieve O(log k)-approximation,
where only k balls are needed to be taken. The famous O(log k)-approximation
for Multicut with k source-sink pairs [18] also required only k partitions.

3. Cleanup. After running the bicriteria approximation algorithm to make sure that
each connected component has size at most O(k), for k-Vertex Separator,
we perform an exhaustive search in each component to get a true approximation
overall. This incurs the extra running time of 2O(k)n, but our hardness result implies
that we cannot get polylog(n, k)-approximation in time poly(n, k).

For k-Edge Separator, essentially the same bicriteria approximation algorithm
works. After that, for each component, we use (a variant of) Racke’s O(log n)-true
approximation algorithm for Minimum Bisection [33] to each component to make
sure that each component has strictly less than k vertices. The existence of a true
approximation for Minimum Bisection is a key difference between the vertex ver-
sion and the edge version. Even an O(

√
log n)-bicriteria approximation is known for

the vertex version of Minimum Bisection [15], but our hardness result for the vertex
version suggests that this algorithm is not likely to be applicable. While Minimum

Bisection asks to partition the graph into two pieces and k-Edge Separator may
need to partition it into many pieces, we prove that as long as each connected compo-
nent has size at most 3k

2 , a simple trick makes the two problems equivalent.
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Partitioning a graph into small pieces with applications… 9

2.2 k-PATH TRANSVERSAL

Note that S ⊆ V is a valid solution for k-Vertex Separator if it is for k-Path
Transversal, simply because a graph cannot have a k-path if every connected com-
ponent has at most k − 1 vertices. Therefore, OPTS ≥ OPTP when OPTS and
OPTP denote the optimal value of k-Vertex Separator and k-Path Transver-

sal respectively.
Let S∗ ⊆ V be the optimal k-Path Transversal. Ideally, if S∗ is also a valid

k-Vertex Separator (which implies that it is also optimal for k-Vertex Sep-

arator), then we can use our O(log k)-approximation algorithm for k-Vertex
Separator to find a S ⊆ V with |S| ≤ (log k)|S∗|, which is a valid k-Vertex
Separator and k-Path Transversal.

Of course, this ideal situation is not always true because the subgraph G[V \S∗] is
only guaranteed not to have a k-path and each connected component can be arbitrarily
large. For example, a star graph (a tree where all but one vertex are leaves) does not
even have a 4-path but can have arbitrarily large number of vertices. But it is also fragile
in the sense that deleting one vertex results in many connected components with one
vertex. Therefore, we can hope that if we delete S∗ and some more vertices, the graph
is guaranteed to break into many small components. This impliesOPTP ≤ O(OPTS)

so that we can use the previous argument!
Our algorithm for k-Vertex Separator formalizes this intuition in an indirect

way. The first step of the algorithm is to compute a k-approximation solution R ⊆ V .
Call them red vertices. Our key lemma proves that if we delete a set S′ of atmostOPTP
more vertices on top of S∗, the graph G[V \(S∗ ∪ S′)] has at most k3 red vertices in
each connected component.

At this point, we introduce a generalization of k-Vertex Separator called k-
Subset Vertex Separator where given a graph G and a (arbitrary) subset R, the
goal is to delete the minimum number of vertices so that each connected component
has less than k vertices from R.While it seems a nontrivial generalization of k-Vertex
Separator, we prove that the same technique gives an FPT O(log k)-approximation
algorithm for k-Subset Vertex Separator.

Going back to k-Path Transversal, the key lemma ensures that the optimal
value of k3-Subset Vertex Separator is at most 2OPTP (as certified by S∗ ∪ S′).
Then we run our algorithm for k3-Subset Vertex Separator to delete at most
O(log k3) · 2OPTP = O(log k)OPTP vertices so that each connected component
has at most k3 red vertices. Since R is a valid solution for k-Vertex Separator, it
means that the optimal value is at most k3 in each connected component. We use a
simple FPT algorithm to optimally find the k-Path Transversal in each connected
component.

Organization. We prove our result for k-Subset Vertex Separator in Sect. 3 that
implies our results for k-Vertex Separator. Sections 4 and 5 present our results
for k-Edge Separator and k-Path Transversal respectively. Section 6 contains
our hardness result for k-Vertex Separator.
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10 E. Lee

3 k-SUBSET VERTEX SEPARATOR

In this section, we present an algorithm for the vertex-weighted version of k-Subset
Vertex Separator, a generalization of k-Vertex Separator. Introducing vertex
weights will be helpful when we use this algorithm for k-Edge Separator. We
formally define k-Subset Vertex Separator.

k-SUBSET VERTEX SEPARATOR

Input: An undirected graph G = (V, E) with vertex weights {wv}v∈V , a subset
R ⊆ V , and k ∈ N.
Output: Subset S ⊆ V such that in G[V \S], each connected component has
strictly less than k vertices from R.
Goal: Minimize w(S) := ∑

v∈S wv .

In this section, we prove the following theorem that implies Theorem 1 andCorollary 1
for k-Vertex Separator as corollaries (by taking R = V ).

Theorem 5 For any ε ∈ (0, 1/4], there is a polynomial time ( 1
1−2ε , O(

log k
ε

))-
bicriteria approximation algorithm for k-Subset Vertex Separator.

3.1 Spreading metrics

Our relaxation is close to spreading metrics used for ρ-separator [13]. While their
relaxation involves an exponential number of constraints and is solved by the ellipsoid
algorithm, we present a simpler relaxation where the total number of variables and
constraints is polynomial. Given a graph G = (V, E), k ∈ N, and a subset R ⊆ V of
red vertices, our relaxation has the following variables.

– xv for v ∈ V : It indicates whether v is removed or not.
– du,v for (u, v) ∈ V×V : Given {xv}v∈V as lengths on vertices, du,v is supposed to be
theminimumdistance between u and v. LetPu,v be the set of simple paths from u to
v, and given P = (u0 := u, u1, . . . , u p := v) ∈ Pu,v , let d(P) = xu0 +· · ·+ xu p .
Formally, we want

du,v = min
P∈Pu,v

d(P).

Note that du,v = dv,u and du,u = xu .
– fu,v for all (u, v) ∈ V × V : It indicates whether u and v belong to the same
connected component or not.

Our LP is written as follows.

minimize
∑

v∈V
wvxv

subject to du,v ≤ min
P∈Pu,v

d(P) ∀(u, v) ∈ V × V (1)

fu,v ≥ 1 − du,v ∀(u, v) ∈ V × V
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Partitioning a graph into small pieces with applications… 11

fu,v ≥ 0 ∀(u, v) ∈ V × V
∑

u∈R

fv,u ≤ k − 1 ∀v ∈ V

xv ≥ 0 ∀v ∈ V (2)

(1) can be formally written as

du,u = xu ∀u ∈ V

du,w ≤ du,v + xw ∀(u, v) ∈ V × V, (v,w) ∈ E

Therefore, the size of our LP is polynomial in n. It is easy to verify that our LP is a
relaxation—given a subset S ⊆ V such that each connected component of G[V \S]
has less than k red vertices, the following is a feasible solution with

∑
v xv = w(S).

– xv = 1 if v ∈ S. xv = 0 if v /∈ S.
– du,v = minP∈Pu,v

d(P).
– fu,v = 1 if u and v are in the same component of G[V \S]. Otherwise fu,v = 0.

Fix an optimal solution {xv}v, {du,v, fu,v}u,v for the above LP. It only ensures that
du,v ≤ minP∈Pu,v

d(P), so a priori du,v can be strictly less thanminP∈Pu,v
d(P). How-

ever, in that case increasing du,v still maintains feasibility, since larger du,v provides
a looser lower bound of fu,v and lower fu,v helps to satisfy (2). For the subsequent
sections, we assume that du,v = minP∈Pu,v

d(P), and fu,v = max(1− du,v, 0) for all
u, v.

3.2 Low-diameter decomposition

Given the above spreading metrics, we show how to decompose a graph such that
each connected component has a small number of vertices, proving Theorem 5. Our
algorithm is based on that of Calinescu et al. [8]. One major difference is to bound the
size of each ball by O(k) in the analysis, and simple algorithmic steps to ensure this
fact.

Fix ε ∈ (0, 1
4 ]. Given an optimal solution {xv}v∈V , the first step of the rounding

algorithm is to remove every vertex v ∈ V with xv ≥ ε. This simple step is crucial in
bounding the size of the ball around each vertex. Since the total weight of the vertices
with xv ≥ ε is at most FRAC/ε where FRAC denotes the value of the optimal LP
solution, the total weight of the removed vertices is at most OPT/ε.

Let V ′ := V \{v : xv ≥ ε}, and G ′ = (V ′, E ′) be the subgraph of G induced
by V ′. Let R′ = V ′ ∩ R. Let d ′

u,v be the minimum distance between u and v in G ′,
and let f ′

u,v := max(1 − d ′
u,v, 0). Since removing vertices only increases distances,

d ′
u,v ≥ du,v and f ′

u,v ≤ fu,v for all (u, v) ∈ V ′ × V ′.
Our low-diameter decomposition removes vertices of total weight at most O(

log k
ε

) ·
∑

v∈V ′ xvwv vertices so that each resulting connected component has at most k
1−2ε

red vertices. It proceeds as follows.
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12 E. Lee

– Pick t ∈ [ε/2, ε] uniformly at random.
– Choose a permutation π : R′ �→ R′ uniformly at random.
– Consider the red vertices one by one, in the order given by π . Let w be the con-
sidered vertex (we consider every vertex whether it was previously disconnected,
removed or not).
– For each vertex v ∈ V ′ with d ′

w,v − xv ≤ t ≤ d ′
w,v , we remove v when it was

neither removed nor disconnected previously.
– The vertices in {v : d ′

w,v < t} are now disconnected from the rest of the graph.
Say these vertices are disconnected.

For each vertex w ∈ V ′, let B(w) := {v ∈ R′ : d ′
w,v ≤ 2ε}. A simple averaging

argument bounds |B(w)|.
Lemma 1 For each vertex w ∈ V ′, |B(w)| ≤ k

1−2ε .

Proof Assume towards contradiction that |B(w)| > k
1−2ε . For all u ∈ B(w),

fw,u ≥ f ′
w,u ≥ 1 − d ′

w,u ≥ 1 − 2ε.

Furthermore, even for u /∈ B(w), our LP ensures that fw,u ≥ 0. Therefore,

∑

u∈R

fw,u ≥
∑

u∈B(w)

fw,u ≥ (1 − 2ε)|B(w)| > k,

contradicting (2) of our LP. ��
Note that at the end of the algorithm, every red vertex is removed or disconnected,

since every w ∈ V ′ becomes removed or disconnected after being considered. More-
over, each connected component is a subset of {v : d ′

w,v < t} for some w ∈ V ′ and
t ≤ ε, which is a subset of B(w). Therefore, each connected component has at most

k
1−2ε red vertices. We finally analyze the probability that a vertex v ∈ V ′ is removed.

Lemma 2 The probability that v ∈ V ′ is removed is at most O(
log k

ε
) · xv .

Proof Fix a vertex v ∈ V ′. When w ∈ R′ is considered, v can be possibly removed
only if

d ′
v,w − xv ≤ ε

⇒ d ′
v,w ≤ 2ε (since xv ≤ ε)

⇒ w ∈ B(v).

Let W = {w1, . . . , wp} be such vertices such that d ′
v,w1

≤ · · · ≤ d ′
v,wp

≤ 2ε. By

Lemma 1, p ≤ k
1−2ε .

Fix i and consider the event that v is removed when wi is considered. This happens
only if d ′

v,wi
− xv ≤ t ≤ d ′

v,wi
. For fixed such t , a crucial observation is that if w j

with j < i is considered before wi , since d ′
v,w j

− xv ≤ t , v will be either removed
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Partitioning a graph into small pieces with applications… 13

or disconnected when w j is considered. In particular, v will not be removed by wi .
Given these observations, the probability that v is removed is bounded by

Pr[v is removed]

=
p∑

i=1

Pr[v is removed when wi is considered]

≤
p∑

i=1

Pr[t ∈ [d ′
v,wi

− xv, d
′
v,wi

] and wi comes before w1, . . . , wi−1 in π ]

≤
p∑

i=1

2xv

εi
= xv · O

(
log p

ε

)
= xv · O

(
log k

ε

)
,

where the last inequality follows from the fact that Pr[t ∈ [d ′
v,wi

−xv, d ′
v,wi

]] = 2xv/ε

(t is sampled from [ε/2, ε]), Pr[wi comes before w1, . . . , wi−1 in π ] = 1/ i , and
these two events are independent. ��

Therefore, the low-diameter decomposition removes at most O(
log k

ε
) · ∑

v xv ≤
O(

log k
ε

) · OPT vertices so that each resulting connected component has at most
k

1−2ε red vertices. This gives a bicriteria approximation algorithm that runs in time
poly(n, k). We finally show how to make the algorithm deterministic, finishing the
proof of Theorem 5.

Derandomization. Note that our algorithm samples the following two random vari-
ables: t ∈ [ε/2, ε] and π : R′ �→ R′. Sampling t can be easily derandomized, because
the only way t is used in the algorithm is to check whether t ∈ [d ′

w,v − xv, d ′
w,v]

for some (w, v) ∈ V 2. There are at most n2 such intervals and 2n2 endpoints
∪u,v{d ′

w,v − xv, d ′
w,v}. Sort these 2n2 numbers along with ε/2, ε in increasing order.

As long as t belongs to an interval formed by two consecutive numbers, the execution
of our algorithm does not change, so we can just try every interval formed by these
consecutive numbers and output the best outcome.

Once t is fixed, we use the standard method of conditional expectation to deran-
domize the choice of π . For each i = 1, . . . , n, we try each remaining vertex as a
possible candidate of the i th vertex in π , compute the conditional expected value of
the algorithm given the first i vertices, and fix the one with the minimum value as the
i th vertex and proceed. Given t and the first i vertices, the probability that a given
vertex v is deleted can be efficiently computed following the proof of Lemma 2.

4 Algorithm for k-EDGE SEPARATOR

We present an O(log k)-true approximation algorithm for k-Edge Separator, prov-
ing Theorem 3. We fist claim that we can obtain an bicriteria approximation algorithm
for k-Edge Separator from the bicriteria approximation algorithm for k-Subset
Vertex Separator.
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14 E. Lee

Lemma 3 For any ε ∈ (0, 1/4], there is an ( 1
1−2ε , O(

log k
ε

))-bicriteria approximation

algorithm for k-Edge Separator that runs in time nO(1).

Proof Given an instance G = (V, E) and k ∈ N for k-Edge Separator, we con-
struct an instanceG ′ = (V ′, E ′), {wv}v∈V ′ , R ⊆ V ′, and k ∈ N for the vertex-weighted
k-Subset Vertex Separator by subdividing each edge as follows.

– V ′ = V ∪ E .
– E ′ = {(u, e) : u ∈ V, e ∈ E, u ∈ e}.
– wv = ∞ for all v ∈ V (alternatively, set xv = 0 when we solve the LP for
k-Subset Vertex Separator so that v is never deleted).

– we = 1 for e ∈ E .
– R = V , and k stays the same.

There is one-to-one correspondence between the feasible solutions of k-Edge Sep-

arator and the feasible solutions of k-Subset Vertex Separator that only remove
e ∈ E . By construction, any feasible solution of k-Subset Vertex Separatorwith
finite value removes only e ∈ E . Therefore, Theorem 5 for k-Subset Vertex Sep-

arator implies the lemma. ��
To get true approximation, we use the algorithm for b-Balanced Cut. For an

undirected graphG = (V, E)with n vertices and a real b ∈ (0, 1/2], the b-Balanced
Cut problem asks to find a subset S ⊆ V with bn ≤ |S| ≤ (1 − b)n such that the
number of edges that have exactly one endpoint in S is minimized. Racke [33] gave
an O(log n)-true approximation algorithm for b-Balanced Cut.5

We set ε = 1
6 such that each connected component after the low-diameter decom-

position, each connected component has less than 3k
2 vertices. Fix a component of size

k′. If k′ < k, we are done. Otherwise, we use the O(log k′) = O(log k)-approximation
algorithm for b-Balanced Cutwithin the component. Usually k-Edge Separator

(requires many connected components) and b-Balanced Cut (requires 2 connected
components) behave very differently, but given k′ < 3k

2 , we show that they are equiv-
alent.

Lemma 4 In a graph G = (V, E) with at most k′ ∈ (k, 3
2k) vertices, the optimum

solution of k-Edge Separator and b-Balanced Cut with b = k′−k+1
k′ are the

same.

Proof Any cut (S, V \S) feasible for b-Balanced Cut ensures that max(|S|, |V \S|)
is at most (1 − b)k′ = k − 1, so it is feasible for k-Edge Separator.

For the other direction, given a feasible solution of k-Edge Separator where V
is partitioned into S1, . . . , Sl (assume k ≥ |S1| ≥ · · · ≥ |Sl |), if l = 2, (S1, S2) is
a feasible solution for b-Balanced Cut and we are done. If l ≥ 3, merge Sl−1, Sl

5 His algorithm is originally stated for Minimum Bisection, the special case with b = 1
2 . For any

c ∈ [0, 1− 2b], adding a disjoint clique with cn vertices and infinite-weight edges (his algorithm works in
weighted version), forces the Minimum Bisection algorithm to output a cut in the original graph where
the smaller side contains exactly (1−c)n

2 ∈ [bn, n
2 ] vertices. Trying every value of c ∈ [0, 1 − 2b] that

makes cn an integer and taking the best cut gives the desired O(log n)-true approximation for b-Balanced
Cut. The author thanks to Anupam Gupta for this idea.
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Partitioning a graph into small pieces with applications… 15

into one set (one Si may contain multiple connected components). This reduces l by
1, and since |Sl−1| + |Sl | ≤ 2

l · k′ ≤ 2
3k

′ < k, maintains the invariant that |Si | < k
for all i . Iterating until l = 2 gives a feasible solution for b-Balanced Cut with the
same number of edges cut. ��

Therefore, running the approximation algorithm b-Balanced Cut for each
component guarantees that we remove O(log k) · OPT additional edges and each
component has less than k vertices. This proves Theorem 3.

5 k-PATH TRANSVERSAL

Let G = (V, E) and k ∈ N be an instance of k-Path Transversal, where we want
to find the smallest S ⊆ V such that the length of the longest path inG[V \S] (denoted
by l(G[V \S])) is strictly less than k. Recall that the length here denotes the number
of vertices in a path. Call a path l-path if it has l vertices.

The first step of our algorithm is to compute an k-approximation solution R ⊆ V by
iteratively finding a k-path p in the graph G[V \R] and add p to R until there is no k-
path. Since finding a k-path takes time 2O(k)n log n [17], this step can be implemented
in time 2O(k)n2 log n.

Let S∗ be the optimal solution of k-Path Transversal. Let V ∗ := V \S∗, R∗ :=
R\S∗ and G∗ = G[V \S∗]. The result for k-Path Transversal requires the follow-
ing lemma.

Lemma 5 There exists S′ ⊆ V ∗ with |S′| ≤ |R∗|
k so that in the induced subgraph

G∗[V ∗\S′], each connected component has at most k3 red vertices.

Proof We prove the lemma by the following (possibly exponential time) algorithm:
For each connected component C that has more than k3 red vertices, take an arbitrary
longest path, remove all vertices in it (i.e., add them to S′) and charge its cost to all
red vertices in C uniformly. Since the length of any longest path should not exceed k
and C has more than k3 red vertices, each red vertex in C gets charged at most 1

k2
in

each iteration.
We argue that each vertex inG∗ is charged at most k times. This is based on the fact

that in a connected component C , any two longest paths should intersect. Therefore,
if we remove one longest path from C , whether the remaining graph is still connected
or divided into several connected components, the length of the longest path in each
resulting connected component should be strictly less than the length of the longest
path in C . Therefore, each vertex in G∗ can be charged at most k times, and the total
amount of charge is k · 1

k2
= 1

k . ��
Consider S∗ ∪ S′. Since R is a k-approximate solution, |S∗ ∪ S′| ≤ OPT+ |R∗|

k ≤
2OPT, and each component of G[S∗ ∪ S′] has at most k3 red vertices. Run the
bicriteria approximation algorithm for k-Subset Vertex Separator in Theorem 5
with k ← k3 and ε ← 1

4 . This returns a subset S ⊆ V such that |S| ≤ O(log k) ·OPT
and each connected component of GV \S has at most 2k3 red vertices.

Now we solve the problem for each connected component C . Since every k-path
has to have at least one red vertex, removing every red vertex destroys every k-path.
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16 E. Lee

In particular, the optimal solution has at most 2k3 vertices in C . We run the following
simple recursive algorithm.

– Find a k-path P = (v1, . . . , vk) if exists.
– Otherwise, we found a solution—compare with the current best one and return.

– If the depth of the recursion is more than 2k3, return.
– For each 1 ≤ i ≤ k,

– Remove vi from the graph and recurse.

Finding a path takes time 2O(k)n log n [17]. In each stage the algorithm makes k
branches, but the depth of the recursion is at most 2k3 and the algorithm is guaranteed
to find the optimal solution. Since the number of connected components is at most n,
it runs in time (2O(k)n log n) · (k2k3) ·n = 2O(k3 log k)n2 log n. This proves Theorem 4.

6 Hardness of k-VERTEX SEPARATOR

In this section, we prove that an f -true approximation algorithm for k-Vertex
Separator that runs in time poly(n, k) will result in 2 f 2-approximation algo-
rithm for Densest k-Subgraph, proving Theorem 2. In particular, O(log k)-true
approximation for k-Vertex Separator in time poly(n, k) will lead to O(log2 n)-
approximation for Densest k-Subgraph.

Given an undirected graph G = (V, E) and an integer k, Densest k-Subgraph
asks to find S ⊆ V with |S| = k to maximize the number of edges of G[S]. The
current best approximation algorithm achieves ≈ O(n1/4)-approximation [4]. Using
the recent hardness result of Manurangsi [29] that showed n(1/ log log n)c -hardness of
approximation for Densest k-Subgraph under the ETH, we can conclude that any
polylog(n) approximation cannot be done in time poly(n, k) unless the ETH is false.

Our reduction is close to that ofDrange et al. [12]who reducedClique to k-Vertex
Separator to prove W[1]-hardness. Formally, we introduce another problem called
Minimum k-Edge Coverage. Given an undirected graph G and an integer k, the
problem asks to find the minimum number of vertices whose induced subgraph has
at least k edges. This problem can be thought as a dual of Densest k-Subgraph in
a sense that given the same input graph, the optimum of Densest a-Subgraph is
at least b if and only if the optimum of Minimum b-Edge Coverage is at most a.
Hajiaghayi and Jain [23] proved the following theorem, relating their approximation
ratios.

Theorem 6 [23] If there is a polynomial time f -approximation algorithm for
Minimum k-Edge Coverage, then there is a polynomial time 2 f 2-approximation
algorithm for Densest k-Subgraph.

We introduce a reduction fromMinimum k-Edge Coverage to k-Vertex Sep-

arator. Given an instance G = (V, E) and k for Minimum k-Edge Coverage,
the instance of k-Vertex Separator G ′ = (V ′, E ′) and k′ is created as follows. Let
n = |V |, m = |E |, and M = n + 1.

– V ′ = V ∪ {ei : e ∈ E, i ∈ [M]}. Note that |V ′| = n + Mm.
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Partitioning a graph into small pieces with applications… 17

– E ′ = (V
2

) ∪ {(u, ei ) : u ∈ V, e ∈ E, u ∈ e, i ∈ [M]}. Intuitively, the subgraph
induced by V ⊆ V ′ forms a clique, and for each e = (u, v) ∈ E and i ∈ [M], ei
is connected to u and v in G ′.

– k′ = |V ′| − Mk.

Lemma 6 Every instance G ′ = (V ′, E ′) of k-Vertex Separator produced by the
above reduction has an optimal solution S ⊆ V ′ such that indeed S ⊆ V .

Proof Take an optimal solution S to k-Vertex Separator. Suppose S contains ei
for some e = (u, v) ∈ E and i ∈ [M]. There are three cases.
– u, v /∈ S: Since there is an edge (u, v) ∈ E ′, u and v are in the same connected
component in G ′[V ′\S]. Removing ei from S and adding u to S still results in an
optimal solution.

– u ∈ S, v /∈ S: Removing ei from S and adding v to S decreases the size of the
connected component of v by 1, and creates a new singleton component consisting
ei . It is still an optimal solution.

– u, v ∈ S: Removing ei from S just creates a new singleton component consisting
ei . It is a strictly better solution.

We can repeatedly apply one of these three operations until S is an optimal solution
contained in V . ��

When S ⊆ V , G ′[V ′\S] has the following connected components.

– One component (V \S) ∪ {ei : e = (u, v) ∈ E, {u, v} � S, i ∈ [M]}. Call it the
giant component.

– For each e = (u, v) ∈ E with u, v ∈ S and i ∈ [M], a singleton component {ei }.
Call them singleton components.

Suppose that the instance G of Minimum k-Edge Coverage admits a solution
T ⊆ V such that the induced subgraph G[T ] has l ≥ k edges. Let S = T . Since
|V \S| = n − |T | and |{(u, v) ∈ E : {u, v} � T }| = m − l, in G ′[V ′\S], the giant
component will have cardinality

n − |T | + M(m − l) ≤ n − |T | + M(m − k) < n + M(m − k) = |V ′| − Mk = k′.

On the other hand, suppose that the instance G ′ of k′-Vertex Separator has a
solution S. By Lemma 6, assume that S ⊆ V . Let l be the number of edges in G[S].
The size of the giant component is at least n − |S| + M(m − l) > n + M(m − l − 1)
since M > n ≥ |S|. Since S is a feasible solution of the k′-Vertex Separator, we
must have

n + M(m − l − 1) < k′ = n + M(m − k)

⇒ l ≥ k.

Therefore, S is also a solution toMinimum k-Edge Coverage. This proves that the
above reduction is an approximation preserving reduction from Minimum k-Edge
Coverage to k-Vertex Separator, proving Theorem 2.
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