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Abstract Westudy the behavior of the trajectories of a second-order differential equa-
tion with vanishing damping, governed by the Yosida regularization of a maximally
monotone operator with time-varying index, along with a new Regularized Inertial
Proximal Algorithm obtained by means of a convenient finite-difference discretiza-
tion. These systems are the counterpart to accelerated forward–backward algorithms
in the context of maximally monotone operators. A proper tuning of the parameters
allows us to prove the weak convergence of the trajectories to zeroes of the operator.
Moreover, it is possible to estimate the rate at which the speed and acceleration van-
ish. We also study the effect of perturbations or computational errors that leave the
convergence properties unchanged. We also analyze a growth condition under which
strong convergence can be guaranteed. A simple example shows the criticality of the
assumptions on the Yosida approximation parameter, and allows us to illustrate the
behavior of these systems compared with some of their close relatives.
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1 Introduction

LetH be a realHilbert space endowedwith the scalar product 〈·, ·〉 and norm ‖·‖. Given
a maximally monotone operator A : H → 2H, we study the asymptotic behavior, as
time goes to +∞, of the trajectories of the second-order differential equation

ẍ(t) + α

t
ẋ(t) + Aλ(t)(x(t)) = 0, t > t0 > 0, (1)

where

Aλ = 1

λ

(
I − (I + λA)−1

)

stands for the Yosida regularization of A of index λ > 0 (see “Appendix A.1” for its
main properties), along with a new Regularized Inertial Proximal Algorithm obtained
by means of a convenient finite-difference discretization of (1). The design of rapidly
convergent dynamics and algorithms to solve monotone inclusions of the form

0 ∈ Ax (2)

is a difficult problem of fundamental importance in optimization, equilibrium theory,
economics and game theory, partial differential equations, statistics, among other sub-
jects. We shall come back to this point shortly. The dynamical systems studied here
are closely related to Nesterov’s acceleration scheme, whose rate of convergence for
the function values is worst-case optimal. We shall see that, properly tuned, these
systems converge to solutions of (2), and do so in a robust manner. We hope to open
a broad avenue for further studies concerning related stochastic approximation and
optimization methods. Let us begin by putting this in some more context. In all that
follows, the set of solutions to (2) will be denoted by S.

1.1 From the heavy ball to fast optimization

Let� : H → R be a continuously differentiable convex function. The heavy ball with
friction system

(HBF) ẍ(t) + γ ẋ(t) + ∇�(x(t)) = 0 (3)

was first introduced, from an optimization perspective, by Polyak [31]. The conver-
gence of the trajectories of (HBF) in the case of a convex function� has been obtained
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by Álvarez in [1]. In recent years, several studies have been devoted to the study of
the Inertial Gradient System (IGS)γ , with a time-dependent damping coefficient γ (·)

(IGS)γ ẍ(t) + γ (t)ẋ(t) + ∇�(x(t)) = 0. (4)

A particularly interesting situation concerns the case γ (t) → 0 of a vanishing damping
coefficient. Indeed, as pointedout bySuet al. in [37], the (IGS)γ systemwithγ (t) = α

t ,
namely:

ẍ(t) + α

t
ẋ(t) + ∇�(x(t)) = 0, (5)

can be seen as a continuous version of the fast gradient method of Nesterov (see
[26,27]), and its widely used successors, such as the Fast Iterative Shrinkage-
Thresholding Algorithm (FISTA) of Beck and Teboulle [15]. When α ≥ 3, the rate of

convergence of these methods is �(xk) −minH � = O
(

1
k2

)
, where k is the number

of iterations. Convergence of the trajectories generated by (5), and of the sequences
generated by Nesterov’s method, has been an elusive question for decades. However,
when considering (5) with α > 3, it was shown by Attouch et al. [6] and May [24],
that each trajectory converges weakly to an optimal solution, with the improved rate of
convergence �(x(t)) − minH � = o( 1

t2
). Corresponding results for the algorithmic

case have been obtained by Chambolle and Dossal [20] and Attouch and Peypou-
quet [8]. Independently, and mainly motivated by applications to partial differential
equations and control problems, Jendoubi and May [22] and Attouch and Cabot [3,4]
consider more general time-dependent damping coefficient γ (·). The latter includes
the corresponding forward–backward algorithms, and unifies previous results. In the
case of a convex lower semicontinuous proper function � : H → R ∪ +{∞}, the
(IGS)γ dynamic (4) is not well-posed, see [5]. A natural idea is to replace � by its
Moreau envelope �λ, and consider

ẍ(t) + α

t
ẋ(t) + ∇�λ(t)(x(t)) = 0 (6)

(see [14,29] for details, including the fact that ∇�λ = (∂�)λ). Fast minimization
and convergence properties for the trajectories of (6) and their related algorithms have
been recently obtained by Attouch et al. [9]. This also furnishes a viable path towards
its extension to the maximally monotone operator setting. It is both useful and natural
to consider a time-dependent regularization parameter, as we shall explain now.

1.2 Inertial dynamics and cocoercive operators

In analogy with (3), Álvarez and Attouch [2] and Attouch and Maingé [7] studied the
equation

ẍ(t) + γ ẋ(t) + A(x(t)) = 0, (7)

where A is a cocoercive operator. Cocoercivity plays an important role, not only to
ensure the existence of solutions, but also in analyzing their long-term behavior. They
discovered that it was possible to prove weak convergence to a solution of (2) if the
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394 H. Attouch, J. Peypouquet

cocoercivity parameter λ and the damping coefficient γ satisfy λγ 2 > 1. Taking into
account that for λ > 0, the operator Aλ is λ-cocoercive and that A−1

λ (0) = A−1(0)
(see “Appendix A.1”), we immediately deduce that, under the condition λγ 2 > 1,
each trajectory of

ẍ(t) + γ ẋ(t) + Aλ(x(t)) = 0

converges weakly to a zero of A. In the quest for a faster convergence, our analysis of
Eq. (1), led us to introduce a time-dependent regularizing parameter λ(·) satisfying

λ(t) × α2

t2
> 1

for t ≥ t0. A similar condition appears in the study of the corresponding algorithms.
We mention that a condition of the type λ(t) ∼ t2 appears to be critical to obtain fast
convergence of the values in the case A = ∂�, according to the results in [9]. But
system (1) is not just an interesting extension of the heavy ball dynamic. It also arises
naturally in stochastic variational analysis.

1.3 Connections with stochastic optimization

Let us present some links bewteen our approach and stochastic optimization.

1.3.1 Stochastic approximation algorithms

A close relationship between stochastic approximation algorithms and inertial dynam-
ics with vanishing damping was established by Cabot et al. in [19]. Let us briefly (and
skipping the technicalities) comment on this link and see how it naturally extends to
our setting.

When A is a sufficiently smooth operator, stochastic approximation algorithms are
frequently used to approximate, with a random version of the Euler’s scheme, the
behavior of the ordinary differential equation ẋ(t) + A(x(t)) = 0. If A is a general
maximally monotone operator, a natural idea is to apply this method to the regularized
equation ẋ(t)+ Aλ(x(t)) = 0, which has the same equilibrium points, since A and Aλ

have the same set of zeros. Consider first the case where λ > 0 is a fixed parameter. If
we denote by (Xn)n∈N the random approximants, (wn)n≥1 and (ηn)n≥1 two auxiliary
stochastic processes, the recursive approximation is written as

Xn+1 = Xn − εn+1Aλ(Xn, wn+1) + εn+1ηn+1, (8)

where εn is a sequence of positive real numbers, and ηn is a small residual perturba-
tion. Under appropriate conditions (see [19]), solutions of (8) asymptotically behave
like those of the deterministic differential equation ẋ(t)+ Aλ(x(t)) = 0. A very com-
mon case occurs when (wn)n≥1 is a sequence of independent identically distributed
variables with distribution μ and
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Aλ(x) =
∫

Aλ(x, ω)μ(dω).

When A = ∂� derives from a potential, this gives a stochastic optimization algorithm
(see [32]). When the random variable Aλ(Xn, ·) has a large variance, the stochastic
approximation of Aλ(Xn) by Aλ(Xn, wn+1) can be numerically improved by using
the following modified recursive definition:

Xn+1 = Xn − εn+1∑
εi

∑
i

εi Aλ(Xi , wi+1). (9)

As proved in [19, Appendix A], the limit ordinary differential equation has the form

Ẍ(t) + 1

t + b
Ẋ(t) + 1

t + b
Aλ(X (t)) = 0, (10)

where b is a positive parameter. After the successive changes of the time variable
t �→ t − b, t �→ 2

√
t , we finally obtain

Ẍ(t) + 1

t
Ẋ(t) + Aλ(X (t)) = 0, (11)

which is precisely (1) with α = 1 and λ(t) ≡ λ.
This opens a number of possible lines of research: First, it would be interesting to

see how the coefficient α will appear in the stochastic case. Next, it appears important
to understand the connection between (10) and (11) with a time-dependent coefficient
λ(·). Combining these two developments, we could be able to extend the stochastic
approximation method to a wide range of equilibrium problems, and expect that the
fast convergence results to hold, considering that (1) is an accelerated method in the
case of convex minimization when α ≥ 3. In the case of a gradient operator, the
above results also suggest a natural link with the epigraphic law of large numbers of
Attouch and Wets [11]. The analysis can be enriched using the equivalence between
epi-convergence of a sequence of functions and the convergence of the associated
evolutionary semigroups.

1.3.2 Robust optimization, regularization

Supposewe are interested infinding a zero of an operator A, which is not exactly known
(a situation that is commonly encountered in inverse problems, for instance). If the
uncertainty follows a known distribution, then the stochastic approximation approach
described above may be applicable. Otherwise, if A is known to be sufficiently close
to some model Â (in a sense to be precised below), an alternative is to use robust
analysis techniques, interpreting A as a perturbation of Â. Regularization techniques
(like Tikhonov’s, where the operator A is replaced by a regularized operator A+ ρB)
follow a similar logic. We recall the notion of graph-distance bewteen two operators,
introduced by Attouch and Wets in [12,13] (see also [35]). It can be formulated using
Yosida approximations as
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dλ,ρ(A, Â) = sup
‖x‖≤ρ

‖Aλ(x) − Âλ(x)‖,

where ρ is a positive parameter. These pseudo-distances are particularly well adapted
to our dynamics, which is expressed using Yosida approximations. In the case of min-
imization problems, they are associated with the notion of epi-distance. The calculus
rules developed in [12,13] make it possible to estimate these distances in the case of
operators with an additive or composite structure. In Sect. 4, the convergence of the
algorithm is examined in the case of errors that go asymptotically to zero. A more
general situation, where approximation and iterative methods are coupled in the pres-
ence of noise, is an ongoing research topic. See [25,36,38] for recent results in this
direction.

1.4 Organization of the paper

In Sect. 2, we study the asymptotic convergence properties of the trajectories of the
continuousdynamics (1).Weprove that each trajectory convergesweakly, as t → +∞,
to a solution of (2), with ‖ẋ(t)‖ = O(1/t) and ‖ẍ(t)‖ = O(1/t2). Then, in Sect. 3,
we consider the corresponding proximal-based inertial algorithms and prove parallel
convergence results. The effect of external perturbations on both the continuous-time
system and the corresponding algorithms is analyzed in Sect. 4, yielding the robustness
of bothmethods. InSect. 5,wedescribe howconvergence is improvedunder a quadratic
growth condition. Finally, in Sect. 6, we give an example that shows the sharpness of
the results and illustrates the behavior of (1) compared to other related systems. Some
auxiliary technical results are gathered in an “Appendix”.

2 Convergence results for the continuous-time system

In this section, we shall study the asymptotic properties of the continuous-time system:

ẍ(t) + α

t
ẋ(t) + Aλ(t)(x(t)) = 0, t > t0 > 0. (12)

Although some of the results presented in this paper are valid when λ(·) is locally
integrable,we shall assumeλ(·) to be continuous, for simplicity. The function (t, x) �→
Aλ(t)(x) is continuous in (t, x), and uniformly Lipschitz-continuous with respect to
x . This makes (12) a classical differential equation, whose solutions are unique, and
defined for all t ≥ t0, for every initial condition x(t0) = x0, ẋ(t0) = v0. 1 See Lemma
(A.1) for the corresponding result in the case where λ(·) is just locally integrable.

The main result of this section is the following:

1 The idea consisting in regularizing with the help of the Moreau envelopes an inertial dynamic governed
by a nonsmooth operator was already used in the modeling of elastic shocks in [5].
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Theorem 2.1 Let A : H → 2H be a maximally monotone operator such that S =
A−1(0) �= ∅. Let x : [t0,+∞[→ H be a solution of (12), where

α > 2 and λ(t) = (1 + ε)
t2

α2 for some ε >
2

α − 2
.

Then, x(t) converges weakly, as t → +∞, to an element of S. Moreover
limt→+∞ ‖ẋ(t)‖ = limt→+∞ ‖ẍ(t)‖ = 0.

2.1 Anchor

As a fundamental tool we will use the distance to equilibria in order to anchor the
trajectory to the solution set S = A−1(0). To this end, given a solution trajectory
x : [t0,+∞[→ H of (12), and a point z ∈ H, we define hz : [t0,+∞[→ R by

hz(t) = 1

2
‖x(t) − z‖2. (13)

We have the following:

Lemma 2.2 Given z ∈ S = A−1(0), define hz by (13). For all t ≥ t0, we have

ḧz(t) + α

t
ḣz(t) + λ(t)‖Aλ(t)(x(t))‖2 ≤ ‖ẋ(t)‖2. (14)

Proof First observe that

ḣz(t) = 〈x(t) − z, ẋ(t)〉 and ḧz(t) = 〈x(t) − z, ẍ(t)〉 + ‖ẋ(t)‖2.

By (12), it ensues that

ḧz(t) + α

t
ḣz(t) + 〈Aλ(t)(x(t)), x(t) − z〉 = ‖ẋ(t)‖2. (15)

Since z ∈ S = A−1(0), we have Aλ(t)(z) = 0, and the λ(t)-cocoercivity of Aλ(t) gives

〈Aλ(t)(x(t)), x(t) − z〉 ≥ λ(t)‖Aλ(t)(x(t))‖2. (16)

It suffices to combine (15) and (16) to conclude. ��
As suggested in 1.2, we are likely to need a growth assumption on λ(t) −related to

λ(t) × (
α
t

)2
> 1 − in order to go further. Whence, the following result:

Lemma 2.3 Given z ∈ S = A−1(0), define hz by (13) and let

λ(t)
α2

t2
≥ 1 + ε (17)
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for some ε > 0. Then, for each z ∈ S = A−1(0) and all t ≥ t0, we have

ḧz(t) + α

t
ḣz(t) + ε‖ẋ(t)‖2 + α λ(t)

t

d

dt
‖ẋ(t)‖2 + λ(t)‖ẍ(t)‖2 ≤ 0. (18)

Proof By (12), we have

Aλ(t)(x(t)) = −ẍ(t) − α

t
ẋ(t).

Replacing Aλ(t)(x(t)) by this expression in (14), we obtain

ḧz(t) + α

t
ḣz(t) + λ(t)

∥∥∥ẍ(t) + α

t
ẋ(t)

∥∥∥
2 ≤ ‖ẋ(t)‖2. (19)

After expanding the third term on the left-hand side of this expression, we obtain

ḧz(t) + α

t
ḣz(t) +

(
λ(t)

α2

t2
− 1

)
‖ẋ(t)‖2 + α

λ(t)

t

d

dt
‖ẋ(t)‖2 + λ(t)‖ẍ(t)‖2 ≤ 0.

The result follows from (17). ��

2.2 Speed and acceleration decay

We now focus on the long-term behavior of the speed and acceleration. We have the
following:

Proposition 2.4 Let A : H → 2H be a maximally monotone operator such that
S = A−1(0) �= ∅. Let x : [t0,+∞[→ H be a solution of (12), where

α > 2 and λ(t) = (1 + ε)
t2

α2 for some ε >
2

α − 2
.

Then, the trajectory x(·) is bounded, ‖ẋ(t)‖ = O(1/t), ‖ẍ(t)‖ = O(1/t2) and

∫ +∞

t0
t‖ẋ(t)‖2 dt < +∞.

Proof As before, take z ∈ S = A−1(0) and define hz by (13). First we simplify the
writing of Eq. (18), given in Lemma 2.3. By setting g(t) = ‖ẋ(t)‖2, and β = 1+ε

α
,

we have
ḧz(t) + α

t
ḣz(t) + εg(t) + βt ġ(t) + λ(t)‖ẍ(t)‖2 ≤ 0. (20)

Neglecting the positive term λ(t)‖ẍ(t)‖2 and multiplying by t , we obtain

t ḧz(t) + αḣz(t) + εtg(t) + βt2 ġ(t) ≤ 0. (21)
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Integrate this inequality from t0 to t . We have

∫ t

t0

(
sḧz(s) + αḣz(s)

)
ds = t ḣz(t) − t0ḣz(t0) −

∫ t

t0
ḣz(s)ds + αhz(t) − αhz(t0)

= t ḣz(t) + (α − 1)hz(t) − t0ḣz(t0) − (α − 1)hz(t0)∫ t

t0

(
εsg(s) + βs2 ġ(s)

)
ds = βt2g(t) − βt0

2g(t0) − 2β
∫ t

t0
sg(s)ds + ε

∫ t

t0
sg(s)ds

= βt2g(t) − βt0
2g(t0) + (ε − 2β)

∫ t

t0
sg(s)ds.

Adding the two above expressions, we obtain

t ḣz(t) + (α − 1)hz(t) + βt2g(t) + (ε − 2β)

∫ t

t0
sg(s)ds ≤ C (22)

for some positive constant C that depends only on the initial data. By the definition of

β = 1+ε
α

, we have ε − 2β = α−2
α

(
ε − 2

α−2

)
. Since α > 2 and ε > 2

α−2 , we observe

that ε − 2β > 0. Hence, (22) gives

t ḣz(t) + (α − 1)hz(t) ≤ C. (23)

Multiply this expression by tα−2 to obtain

d

dt
tα−1h(t) ≤ Ctα−2.

Integrating from t0 to t , we obtain

hz(t) ≤ C

α − 1
+ D

tα−1 ,

for some other positive constant D. As a consequence, hz(·) is bounded, and so is the
trajectory x(·). Set

M := sup
t≥t0

‖x(t)‖ < +∞,

and note that

|ḣz(t)| = |〈x(t) − z, ẋ(t)〉| ≤ ‖x(t) − z‖‖ẋ(t)‖ ≤ (M + ‖z‖)‖ẋ(t)‖. (24)

Combining (22) with (24) we deduce that

β
(
t‖ẋ(t)‖)2 ≤ C + (M + ‖z‖) (t‖ẋ(t)‖).
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This immediately implies that

sup
t≥t0

t‖ẋ(t)‖ < +∞. (25)

This gives
‖ẋ(t)‖ = O(1/t). (26)

From (12), we have

‖ẍ(t)‖ ≤ α

t
‖ẋ(t)‖ + ‖Aλ(t)(x(t))‖ ≤ α

t
‖ẋ(t)‖ + M + ‖z‖

λ(t)
. (27)

Using (26) and the definition of λ(t), we conclude that

‖ẍ(t)‖ = O(1/t2). (28)

Finally, returning to (22), and using (24) and (25) we infer that

∫ +∞

t0
t‖ẋ(t)‖2dt < +∞, (29)

which completes the proof. ��

2.3 Proof of Theorem 2.1

We are now in a position to prove the convergence of the trajectories to equilibria.
According to Opial’s Lemma A.2, it suffices to verify that limt→+∞ ‖x(t)− z‖ exists
for each z ∈ S, and that every weak limit point of x(t), as t → +∞, belongs to S.

We begin by proving that limt→∞ ‖x(t) − z‖ exists for every z ∈ S. By Lemma
2.2, we have

t ḧz(t) + αḣz(t) + tλ(t)‖Aλ(t)(x(t))‖2 ≤ t‖ẋ(t)‖2. (30)

Since hz is nonnegative, and in view of (29), Lemma A.6 shows that

lim
t→+∞ hz(t)

exists. It follows that limt→∞ ‖x(t) − z‖ exists for every z ∈ S.
From Lemma A.6 and (30), we also have

∫ +∞

t0
tλ(t)‖Aλ(t)(x(t))‖2dt < +∞. (31)

Since λ(t) = ct2 for some positive constant c we infer

∫ +∞

t0
‖λ(t)Aλ(t)(x(t))‖2 1

t
dt < +∞. (32)
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The central point of the proof is to show that this property implies

lim
t→+∞ ‖λ(t)Aλ(t)(x(t))‖ = 0. (33)

Suppose, for a moment, that this property holds. Then the end of the proof follows
easily: let tn → +∞ such that x(tn) → x̄ weakly. We have λ(tn)Aλ(tn)(x(tn)) → 0
strongly. Since λ(tn) → +∞, we also have Aλ(tn)(x(tn)) → 0 strongly. Passing to
the limit in

Aλ(tn)(x(tn)) ∈ A(x(tn) − λ(tn)Aλ(tn)(x(tn)))

and using the demi-closedness of the graph of A, we obtain

0 ∈ A(x̄).

In other words, x̄ ∈ S, and we conclude by Opial’s Lemma.
As a consequence, it suffices to prove (33). To obtain this result, we shall estimate

the variation of the function t �→ λ(t)Aλ(t). By applying Lemma A.4 with γ = λ(t),
δ = λ(s), x = x(t) and y = y(s) with s, t ≥ t0, we obtain

‖λ(t)Aλ(t)x(t)−λ(s)Aλ(s)x(s)‖ ≤ 2‖x(t)−x(s)‖+2‖x(t)−z‖ |λ(t) − λ(s)|
λ(t)

(34)

for each fixed z ∈ S. Dividing by t − s with t �= s, and letting s tend to t , we deduce
that

∥∥∥∥
d

dt

(
λ(t)Aλ(t)x(t)

)∥∥∥∥ ≤ 2‖ẋ(t)‖ + 2‖x(t) − z‖ |λ̇(t)|
λ(t)

for almost every t > t0. According to Proposition 2.4, the trajectory x(·) is bounded
by some M ≥ 0. In turn,

‖ẋ(t)‖ ≤ C

t
,

for some C ≥ 0 and all t ≥ t0, by (25). Finally, the definition of λ(t) implies

|λ̇(t)|
λ(t)

= 2

t

for all t ≥ t0. As a consequence,

∥∥∥∥
d

dt
(λ(t)Aλ(t)x(t))

∥∥∥∥ ≤ 2C + 4(M + ‖z‖)
t

.
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402 H. Attouch, J. Peypouquet

This property, along with the boundedness of λ(t)Aλ(t)x(t), and estimation (32),
together imply that the nonnegative function w(t) := ‖λ(t)Aλ(t)x(t)‖2 satisfies

∣∣∣∣
d

dt
w(t)

∣∣∣∣ ≤ η(t)

for almost every t > t0, and

∫ +∞

t0
w(t) η(t) dt < +∞,

where

η(t) = 2C + 4(M + ‖z‖)
t

.

Noting that η /∈ L1(t0,+∞), we conclude thanks to Lemma A.5.

3 Proximal-based inertial algorithms with regularized operator

In this section, we introduce the inertial proximal algorithm which results from the
discretization with respect to time of the continuous system

ẍ(t) + α

t
ẋ(t) + Aλ(t)(x(t)) = 0, (35)

where Aλ(t) is the Yosida approximation of index λ(t) of the maximally monotone
operator A. Further insight into the relationship between continuous- and discrete-time
systems in variational analysis can be found in [30].

3.1 A regularized inertial proximal algorithm

We shall obtain an implementable algorithm by means of an implicit discretization
of (35) with respect to time. Note that, in view of the Lipschitz continuity property
of the operator Aλ, the explicit discretization might work well too. We choose to
discretize it implicitely for two reasons: implicit discretizations tend to follow the
continuous-time trajectories more closely; and the explicit discretization has the same
iteration complexity (they each need one resolvent computation per iteration). Taking
a fixed time step h > 0, and setting tk = kh, xk = x(tk), λk = λ(tk), an implicit
finite-difference scheme for (35) with centered second-order variation gives

1

h2
(xk+1 − 2xk + xk−1) + α

kh2
(xk − xk−1) + Aλk (xk+1) = 0. (36)
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After expanding (36), we obtain

xk+1 + h2Aλk (xk+1) = xk +
(
1 − α

k

)
(xk − xk−1). (37)

Setting s = h2, we have

xk+1 = (
I + s Aλk

)−1
(
xk +

(
1 − α

k

)
(xk − xk−1)

)
, (38)

where
(
I + s Aλk

)−1 is the resolvent of index s > 0 of the maximally monotone
operator Aλk . This gives the following algorithm

⎧⎨
⎩

yk = xk + (
1 − α

k

)
(xk − xk−1)

xk+1 = (
I + s Aλk

)−1
(yk) .

(39)

Using equality (84):

(Aλ)s = Aλ+s,

we can reformulate this last equation as

(I + s Aλ)
−1 = λ

λ + s
I + s

λ + s
(I + (λ + s)A)−1 .

Hence, (39) can be rewritten as

(RIPA)

⎧
⎪⎪⎨
⎪⎪⎩

yk = xk +
(
1 − α

k

)
(xk − xk−1)

xk+1 = λk

λk + s
yk + s

λk + s
(I + (λk + s)A)−1 (yk),

where (RIPA) stands for the Regularized Inertial Proximal Algorithm. Let us refor-
mulate (RIPA) in a compact way. Observe that

xk+1 = λk

λk + s
yk + s

λk + s
(I + (λk + s)A)−1 (yk)

=
(
1 − s

λk + s

)
yk + s

λk + s
(I + (λk + s)A)−1 (yk)

= yk − s
1

λk + s

(
yk − (I + (λk + s)A)−1 (yk)

)
.

By the definition of Aλk+s , this is

xk+1 = yk − s Aλk+s (yk) . (40)
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Thus, setting αk = 1 − α
k , (RIPA) is just

⎧⎨
⎩

yk = xk + αk(xk − xk−1)

xk+1 = yk − s Aλk+s (yk) ,

(41)

Remark 3.1 Letting λk → 0 in (41), we obtain the classical form of the inertial
proximal algorithm ⎧⎨

⎩
yk = xk + αk(xk − xk−1)

xk+1 = (I + s A)−1(yk).
(42)

The case 0 ≤ αk ≤ ᾱ < 1 has been considered by Álvarez and Attouch in [2]. The
case αk → 1, which is the most interesting for obtening fast methods (in the line of
Nesterov’s accelerated methods), and the one that we are concerned with, was recently
studied by Attouch and Cabot [3,4]. In these two papers, the convergence is obtained
under the restrictive assumption

∑
k

αk‖xk+1 − xk‖2 < +∞.

By contrast, our approach, which supposes that λk → +∞, provides convergence of
the trajectories, without any restrictive assumption on the trajectories. Let us give a
geometrical interpretation of (RIPA). As a classical property of the resolvents ([14,
Theorem 23.44]), for any x ∈ H, Jλx → projS(x) as λ → +∞. Thus the algorithm
writes

xk+1 = θk yk + (1 − θk)Jλk+s (yk)

with λk ∼ +∞, θk = λk
λk+s ∼ 1, and Jλk+s (yk) ∼ projS(yk). This is illustrated in the

following picture.

yk = xk + (
1 − α

k

)
(xk − xk−1)

xk+1 = θk yk + (1 − θk)Jλk+s (yk) ∼ θk yk + (1 − θk)projS(yk)

•

xk•

xk−1•

•

S

Remark 3.2 As amain difference with (42), (RIPA) contains an additional momentum
term λk

λk+s yk , which enters the definition of xk+1. Although there is some similarity,
this is different from the algorithm introduced by Kim and Fessler in [23], which also
contains an additional momentum term, but which comes within the definition of yk .
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It is important to mention that, in both cases, the introduction of this momentum term
implies additional operations whose cost is negligible.

3.2 Preliminary estimations

Given z ∈ H and k ≥ 1, write

hz,k := 1

2
‖xk − z‖2. (43)

Since there will be no risk of confusion, we shall write hk for hz,k to simplify the
notation. The following result is valid for an arbitrary sequence αk ≥ 0:

Lemma 3.3 Let αk ≥ 0. For any z ∈ H, the following holds for all k ≥ 1:

(hk+1 − hk) − αk(hk − hk−1) − 〈xk+1 − yk, xk+1 − z〉
+1

2
‖xk+1 − yk‖2 = 1

2
(αk + αk

2)‖xk − xk−1‖2. (44)

Proof Since yk = xk + αk(xk − xk−1), we have

‖yk − z‖2 = ‖(xk − z) + αk(xk − xk−1)‖2
= ‖xk − z‖2 + αk

2‖xk − xk−1‖2 + 2αk〈xk − z, xk − xk−1〉,
= ‖xk − z‖2 + αk

2‖xk − xk−1‖2 + αk‖xk − z‖2
+ αk‖xk − xk−1‖2 − αk‖xk−1 − z‖2

= ‖xk − z‖2 + αk(‖xk − z‖2 − ‖xk−1 − z‖2) + (αk + αk
2)‖xk − xk−1‖2

= 2(hk + αk(hk − hk−1)) + (αk + αk
2)‖xk − xk−1‖2. (45)

Combining (45) with the elementary equality

(hk+1 − hk) − αk(hk − hk−1) = 1

2
‖xk+1 − z‖2 − (hk + αk(hk − hk−1)),

we deduce that

(hk+1 − hk) − αk(hk − hk−1)

= 1

2
‖xk+1 − z‖2 − 1

2
‖yk − z‖2 + 1

2
(αk + αk

2)‖xk − xk−1‖2

= 〈xk+1 − yk,
1

2
(xk+1 + yk) − z〉 + 1

2
(αk + αk

2)‖xk − xk−1‖2

= 〈xk+1 − yk, (xk+1 − z) + 1

2
(yk − xk+1)〉 + 1

2
(αk + αk

2)‖xk − xk−1‖2

= 〈xk+1 − yk, xk+1 − z〉 − 1

2
‖xk+1 − yk‖2 + 1

2
(αk + αk

2)‖xk − xk−1‖2
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which gives the claim. ��
Let us nowuse the specific formof the inertial algorithm (RIPA) and the cocoercivity

of the operator Aλ. The following result is the discrete counterpart of Lemma 2.2:

Lemma 3.4 Let S = A−1(0) �= ∅, and 0 ≤ αk ≤ 1. For any z ∈ S, the following
holds for all k ≥ 1

(hk+1 − hk) − αk(hk − hk−1) + sλk‖Aλk+s (yk) ‖2 ≤ αk‖xk − xk−1‖2. (46)

Proof By Lemma 3.3 and the fact that xk+1 = yk − s Aλk+s (yk) (see (40)), we have

(hk+1 − hk) − αk(hk − hk−1) + s〈Aλk+s (yk) , yk − s Aλk+s (yk) − z〉

+ s2

2
‖Aλk+s (yk) ‖2 = 1

2
(αk + αk

2)‖xk − xk−1‖2.

Since z ∈ S, we have Aλk+s(z) = 0. By the (λk + s)-cocoercivity property of Aλk+s ,
we deduce that

〈Aλk+s (yk) , yk − z〉 ≥ (λk + s)‖Aλk+s (yk) ‖2.

As a consequence,

(hk+1 − hk) − αk(hk − hk−1) + s
(
λk + s

2

)
‖Aλk+s (yk) ‖2

≤ 1

2
(αk + αk

2)‖xk − xk−1‖2.

But 1
2 (αk + αk

2) ≤ αk because 0 ≤ αk ≤ 1. Since s ≥ 0, the result follows immedi-
ately. ��

It would be possible to continue the analysis assuming the right-hand side of (46) is
summable. The main disadvantage of this hypothesis is that it involves the trajectory
(xk), which is unknown. In the following lemma, we show that the two antagonistic
terms s(λk + s

2 )‖Aλk+s (yk) ‖2 and αk‖xk − xk−1‖2 can be balanced, provided λk is
taken large enough.

Lemma 3.5 Let S = A−1(0) �= ∅, and take αk = 1− α
k with α > 2. For each k ≥ 1,

set
λk = (1 + ε)

s

α2 k
2, (47)

for some ε > 0, and write β = 1+ε
α

. Then, for each z ∈ S and all k ≥ 1, we have

(hk+1−hk)−αk(hk−hk−1)+ε‖xk−xk−1‖2+βk
(
‖xk+1 − xk‖2 − ‖xk − xk−1‖2

)
≤ 0.

(48)
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Proof First, rewrite (46) as

(hk+1 − hk) − αk(hk − hk−1) + λk

s
‖xk+1 − yk‖2 ≤ αk‖xk − xk−1‖2. (49)

Let us write ‖xk+1 − yk‖2 in a recursive form. To this end, we use the specific form
of αk = 1 − α

k to obtain

‖xk+1 − yk‖2 = ‖(xk+1 − xk) − αk(xk − xk−1)‖2
= ‖(xk+1 − xk) − (xk − xk−1) + (1 − αk)(xk − xk−1)‖2

=
∥∥∥(xk+1 − xk) − (xk − xk−1) + α

k
(xk − xk−1)

∥∥∥
2

= ‖(xk+1 − xk) − (xk − xk−1)‖2 + α2

k2
‖xk − xk−1‖2

+ 2
α

k
〈(xk+1 − xk) − (xk − xk−1), xk − xk−1〉.

But

1

2
‖xk+1 − xk‖2 = 1

2
‖xk − xk−1‖2 + 〈(xk+1 − xk) − (xk − xk−1), xk − xk−1〉

+1

2
‖(xk+1 − xk) − (xk − xk−1)‖2.

By combining the above equalities, we get

‖xk+1 − yk‖2 =
(
1 − α

k

)
‖(xk+1 − xk) − (xk − xk−1)‖2 + α2

k2
‖xk − xk−1‖2

+ α

k

(
‖xk+1 − xk‖2 − ‖xk − xk−1‖2.

)

Using this equality in (49), and neglecting the nonnegative term (1 − α
k )‖(xk+1 −

xk) − (xk − xk−1)‖2, we obtain

(hk+1 − hk) − αk(hk − hk−1)

+ λkα
2

sk2
‖xk − xk−1‖2 + λkα

sk

(
‖xk+1 − xk‖2 − ‖xk − xk−1‖2

)
≤ ‖xk − xk−1‖2.

(50)

Using (47) and the definition β = 1+ε
α

, inequality (50) becomes (48). ��

3.3 Main convergence result

We are now in position to prove the main result of this section, namely:
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Theorem 3.6 Let A : H → 2H be a maximally monotone operator such that S =
A−1(0) �= ∅. Let (xk) be a sequence generated by the Regularized Inertial Proximal
Algorithm

(RIPA)

⎧⎪⎪⎨
⎪⎪⎩

yk = xk +
(
1 − α

k

)
(xk − xk−1)

xk+1 = λk

λk + s
yk + s

λk + s
(I + (λk + s)A)−1 (yk),

where α > 2 and

λk = (1 + ε)
s

α2 k
2

for some ε > 2
α−2 and all k ≥ 1. Then,

(i) The speed tends to zero. More precisely, ‖xk+1 − xk‖ = O( 1k ) and
∑

k k‖xk −
xk−1‖2 < +∞.

(ii) The sequence (xk) converges weakly, as k → +∞, to some x̂ ∈ S.
(iii) The sequence (yk) converges weakly, as k → +∞, to x̂ .

Proof First, we simplify the writing of the Eq. (48) given in Lemma 3.5. Setting
gk := ‖xk − xk−1‖2, we have

(hk+1 − hk) − αk(hk − hk−1) + εgk + βk (gk+1 − gk) ≤ 0.

Then, we multiply by k to obtain

k(hk+1 − hk) − (k − α)(hk − hk−1) + εkgk + βk2 (gk+1 − gk) ≤ 0.

We now write these inequalities in a recursive form, in order to simplify their summa-
tion. We have

k(hk+1 − hk) − (k − 1)(hk − hk−1) + (α − 1)(hk − hk−1) + εkgk
+βk2gk+1 − β(k − 1)2gk − β(2k − 1)gk ≤ 0.

Summing for p = 1, . . . , k, we obtain

k(hk+1 − hk) + (α − 1)hk + (ε − 2β)

k∑
1

pgp + βk2gk+1 + β

k∑
1

gp ≤ C (51)

for some positive constantC that depends only on the initial data. Since β = 1+ε
α

with

α > 2 and ε > 2
α−2 , we have ε − 2β = α−2

α

(
ε − 2

α−2

)
> 0. From (51) we infer that

k(hk+1 − hk) + (α − 1)hk ≤ C (52)
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for all k ≥ 1. Since α > 2 and hk ≥ 0, (52) implies

k(hk+1 − hk) + hk ≤ C.

Equivalently,

khk+1 − (k − 1)hk ≤ C.

Applying this fact recursively, we deduce that

khk+1 ≤ Ck,

which immediately gives supk hk < +∞. Therefore, the sequence (xk) is bounded.
Set

M := sup
k

‖xk‖ < +∞.

Now, (51) also implies that

k(hk+1 − hk) + βk2gk+1 ≤ C (53)

But

|hk+1 − hk | = 1

2

∣∣∣‖xk+1 − z‖2 − ‖xk − z‖2
∣∣∣ =

∣∣∣∣
〈
xk+1 − xk,

1

2
(xk+1 + xk) − z

〉∣∣∣∣
≤ (M + ‖z‖)‖xk+1 − xk‖. (54)

Combining this inequality with (53), and recalling the definition gk = ‖xk − xk−1‖2,
we deduce that

β
[
k‖xk+1 − xk‖

]2 − (M + ‖z‖) [k‖xk+1 − xk‖
]− C ≤ 0.

This immediately implies that

sup
k

k‖xk+1 − xk‖ < +∞. (55)

In other words, ‖xk+1 − xk‖ = O( 1k ). Another consequence of (51) is that

(ε − 2β)

k∑
p=1

p‖xp − xp−1‖2 ≤ C − k(hk+1 − hk).
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By (54), we deduce that

(ε − 2β)

k∑
p=1

p‖xp − xp−1‖2 ≤ C + k(M + ‖z‖)‖xk+1 − xk‖.

Then, (55) gives ∑
k

k‖xk − xk−1‖2 < +∞, (56)

which completes the proof of item i).
For the convergence of the sequence (xk), we use Opial’s Lemma A.3. First, since

αk = 1 − α
k ≤ 1, Lemma 3.4 gives

(hk+1 − hk) + sλk‖Aλk+s (yk) ‖2 ≤
(
1 − α

k

)
(hk − hk−1) + ‖xk − xk−1‖2

for all k ≥ 1. Using (56) and invoking Lemma A.7, we deduce that

∑
k

kλk‖Aλk+s (yk) ‖2 < +∞. (57)

and

∑
k

[hk − hk−1]+ < +∞.

Since hk is nonnegative, this implies the existence of limk→+∞ hk , and also that of
limk→+∞ ‖xk − z‖.

In order to conclude using Opial’s Lemma A.3, it remains to show that every weak
limit point of the sequence (xk), as k → +∞, belongs to S. We begin by expressing
(57) with respect to xk , instead of yk . We have

‖Aλk+s (xk) ‖2 ≤ 2‖Aλk+s (yk) ‖2 + 2‖Aλk+s (xk) − Aλk+s (yk) ‖2

≤ 2‖Aλk+s (yk) ‖2 + 2

(λk + s)2
‖yk − xk‖2

≤ 2‖Aλk+s (yk) ‖2 + 2

λ2k
‖xk − xk−1‖2,

where the last inequality follows from the definition of yk given in (39). Using (55)
and the definition of λk , we may find a constant D ≥ 0 such that

‖Aλk+s (xk) ‖2 ≤ 2‖Aλk+s (yk) ‖2 + D

k2λ2k
.
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Hence,

∑
k

kλk‖Aλk+s (xk) ‖2 ≤ 2
∑
k

kλk‖Aλk+s (yk) ‖2 +
∑
k

D

kλk
.

Now, using (57) and the definition of λk , we conclude that

∑
k

kλk‖Aλk+s (xk) ‖2 < +∞.

Since λk tends to infinity, this immediately implies

∑
k

k(λk + s)‖Aλk+s (xk) ‖2 < +∞.

To simplify the notations, set μk = λk + s, so that

∑
k

kμk‖Aμk (xk) ‖2 < +∞. (58)

As we shall see, this fact implies

lim
k→+∞ ‖μk Aμk (xk) ‖ = 0. (59)

Suppose, for a moment, that this is true. Let (xkn )n be a subsequence of (xk) which
converges weakly to some x̄ . We want to prove that x̄ ∈ S = A−1(0). Since μk tends
to infinity, we also have

lim
k→+∞ ‖Aμk (xk) ‖ = 0.

Passing to the limit in

Aμk n

(
xkn
) ∈ A(xkn − μkn Aμkn

(
xkn
)
),

and using the demi-closedness of the graph of A, we obtain

0 ∈ A(x̄).

In other words, x̄ ∈ S. As a consequence, it only remains to prove (59) in order to
obtain ii) by Opial’s Lemma. To this end, define

ωk := ‖μk Aμk (xk) ‖2.
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We intend to prove that limk→+∞ ωk = 0. Using (58) and the definition of μk , we
deduce that ∑

k

1

k
ωk < +∞. (60)

Therefore, if limk→+∞ ωk exists, it must be zero. Since

‖μk Aμk (xk) ‖ = ‖xk − Jμk A(xk)‖ ≤ ‖xk − z‖ ≤ M + ‖z‖,

we have

|ωk+1 − ωk | =
∣∣∣‖μk+1Aμk+1 (xk+1) ‖2 − ‖μk Aμk (xk) ‖2

∣∣∣
≤ 2

(
M + ‖z‖)‖μk+1Aμk+1 (xk+1) − μk Aμk (xk) ‖. (61)

On the other hand, by Lemma A.4 we have

‖μk+1Aμk+1 (xk+1) − μk Aμk (xk) ‖ ≤ 2‖xk+1 − xk‖ + 2‖xk+1 − z‖ |μk+1 − μk |
μk+1

≤ 2‖xk+1 − xk‖ + 2‖xk+1 − z‖ |λk+1 − λk |
λk+1

≤ 2‖xk+1 − xk‖ + 4(M + ‖z‖)
k + 1

,

by the definition of λk . Using (55) and replacing the resulting inequality in (61), we
deduce that there is a constant E ≥ 0 such that

|ωk+1 − ωk | ≤ E

k
.

But then

∑
k

|(ωk+1)
2 − (ωk)

2| ≤ E
∑
k

1

k
(ωk+1 + ωk) < +∞

by (60). It follows that limk→+∞ ω2
k exists and, since ωk ≥ 0, limk→+∞ ωk exists as

well. This completes the proof of item ii). Finally, item iii) follows from the fact that
limk ‖xk+1 − yk‖ = limk ‖s Aλk+s (yk) ‖ = 0. ��

3.4 An application to convex–concave saddle value problems

As shown by Rockafellar [33], to each closed convex–convave function L : X ×Y →
R̄ acting on the product of two Hilbert spaces X and Y is associated a maximally
monotone operator M : X × Y ⇒ X × Y which is given by M = (∂x L ,−∂y L). This
makes it possible to convert convex–concave saddle value problems into the search
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for the zeros of a maximally monotone operator, and thus to apply our results. Let’s
illustrate it in the case of the convex constrained structured minimization problem

(P) min { f (x) + g(y) : Ax − By = 0} ,

where data satisfy the following assumptions:

• X,Y, Z are real Hilbert spaces
• f : X → R∪ {+∞} and g : Y → R∪ {+∞} are closed convex proper functions.
• A : X → Z and B : Y → Z are linear continuous operators.

Let us first reformulate (P) as a saddle value problem

min
(x,y)∈X×Y

max
z∈Z { f (x) + g(y) + 〈z, Ax − By〉} . (62)

The Lagrangian L : X × Y × Z → R ∪ {+∞} associated to (62)

L(x, y, z) = f (x) + g(y) + 〈z, Ax − By〉

is a convex–concave extended-real-valued function. The maximal monotone operator
M : X × Y × Z ⇒ X × Y × Z that is associated to L is given by

M(x, y, z) = (
∂x,y L ,−∂z L

)
(x, y, z) = (

∂ f (x) + At z, ∂g(y) − Bt z, By − Ax
)
.

(63)
When the proximal algorithm is applied to the maximally monotone operator M ,
we obtain the so-called proximal method of multipliers. This method was initiated
by Rockafellar [34]. By combining this method with the alternating proximal mini-
mization algorithm for weakly coupled minimization problems, a fully split method
is obtained. This approach was successfully developed by Attouch and Soueycatt in
[10]. Introducing inertial terms in this algorithm, as given by (RIPA), is a subject of
further study, which is part of the active research on the acceleration of the (ADMM)
algorithms.

4 Stability with respect to perturbations, errors

In this section, we discuss the stability of the convergence results with respect to
external perturbations. We first consider the continuous case, then the corresponding
algorithmic results.

4.1 The continuous case

The continuous dynamics is now written in the following form

ẍ(t) + α

t
ẋ(t) + Aλ(t)(x(t)) = f (t), (64)
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where, depending on the context, f can be interpreted as a source term, a perturbation,
or an error. We suppose that f is locally integrable to ensure existence and uniqueness
for the correspondingCauchy problem (see LemmaA.1 in the “Appendix”). Assuming
that f (t) tends to zero fast enough as t → +∞, wewill see that the convergence results
proved in Sect. 2 are still valid for the perturbed dynamics (64). Due to its similarity
to the unperturbed case, we give the main lines of the proof, just highlighting the
differences.

Theorem 4.1 Let A : H → 2H be a maximally monotone operator such that
S = A−1(0) �= ∅. Let x : [t0,+∞[→ H be a solution of the continuous dynamic

(64), where α > 2 and λ(t) = (1 + ε) t2

α2 with ε > 2
α−2 . Assume also that∫ +∞

t0
t3‖ f (t)‖2dt < +∞ and

∫ +∞
t0

t‖ f (t)‖dt < +∞. Then, x(t) converges weakly,
as t → +∞, to an element of S. Moreover ‖ẋ(t)‖ = O(1/t).

Proof First, a similar computation as in Lemma 2.2 gives

ḧz(t) + α

t
ḣz(t) + λ(t)‖Aλ(t)(x(t))‖2 ≤ ‖ẋ(t)‖2 + ‖x(t) − z‖‖ f (t)‖. (65)

Following the arguments in the proof of Lemma 2.3, we use (64), then develop and
simplify (65) to obtain

ḧz(t) + α

t
ḣz(t) + εg(t) + βt ġ(t) ≤ ‖x(t) − z‖‖ f (t)‖ + 2βt‖ẋ(t)‖‖ f (t)‖, (66)

where, as in the proof of Proposition 2.4, we have set g(t) = ‖ẋ(t)‖2. Using the fact
that for any 0 < θ < 1

2βt‖ẋ(t)‖‖ f (t)‖ ≤ εθ‖ẋ(t)‖2 + β2

εθ
t2‖ f (t)‖2,

and multiplying by t , we obtain

t ḧz(t)+αḣz(t)+ε(1−θ)tg(t)+βt2 ġ(t) ≤ t‖x(t)−z‖‖ f (t)‖+ β2

εθ
t3‖ f (t)‖2. (67)

Integration from t0 to t yields

t ḣz(t) + (α − 1)hz(t) + βt2g(t) + (ε(1 − θ) − 2β)

∫ t

t0
sg(s)ds ≤ C

+
∫ t

t0
s‖x(s) − z‖‖ f (s)‖ds + β2

εθ

∫ t

t0
s3‖ f (s)‖2ds (68)

for some positive constantC that depends only on the initial data. In all that follows,C
is a generic notation for a constant. By the definition β = 1+ε

α
and the assumptions and
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the parametersα and ε, we can choose θ positive small enough to get ε(1−θ)−2β > 0.
Taking into account also the hypothesis

∫ +∞
t0

t3‖ f (t)‖2dt < +∞, we deduce that

t ḣz(t) + (α − 1)hz(t) ≤ C +
∫ t

t0
s‖x(s) − z‖‖ f (s)‖ds.

Multiply this expression by tα−2, integrate from t0 to t , and use Fubini’s Theorem to
obtain

1

2
‖x(t) − z‖2 ≤ C + 1

α − 1

∫ t

t0
t‖x(t) − z‖‖ f (t)‖dt.

Themain differencewith Sect. 2 is here.We applyGronwall’s Lemma (see [16, Lemma
A.5]) to get

‖x(t) − z‖ ≤ C + 1

α − 1

∫ t

t0
t‖ f (t)‖dt.

Since
∫ +∞
t0

t‖ f (t)‖dt < +∞, we deduce that the trajectory x(·) is bounded. The rest
of the proof is essentially the same. First, we obtain

sup
t≥t0

t‖ẋ(t)‖ < +∞,

by bounding that quantity between the roots of a quadratic expression. Then, we go
back to (68) to get that

∫ +∞

t0
t‖ẋ(t)‖2dt < +∞.

We use Lemma A.6 to deduce that limt→+∞ hz(t) exists and

∫ +∞

t0
tλ(t)‖Aλ(t)(x(t))‖2dt < +∞.

The latter implies limt→+∞ λ(t)‖Aλ(t)(x(t))‖ = 0, and we conclude by means of
Opial’s Lemma A.2. ��

4.2 The algorithmic case

Let us first consider how the introduction of the external perturbation f into the
continuous dynamics modifies the corresponding algorithm. Setting fk = f (kh), a
discretization similar to that of the unperturbed case gives

1

h2
(xk+1 − 2xk + xk−1) + α

kh2
(xk − xk−1) + Aλk (xk+1) = fk .
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After expanding this expression, and setting s = h2, we obtain

xk+1 + s Aλk (xk+1) = xk +
(
1 − α

k

)
(xk − xk−1) + s fk,

which gives

⎧⎨
⎩

yk = xk + (
1 − α

k

)
(xk − xk−1)

xk+1 = (
I + s Aλk

)−1
(yk + s fk) .

Using the resolvent Eq. (84), we obtain the Regularized Inertial Proximal Algorithm
with perturbation

(RIPA-pert)

⎧⎪⎨
⎪⎩

yk = xk +
(
1 − α

k

)
(xk − xk−1)

xk+1 = λk

λk + s
(yk + s fk) + s

λk + s
J(λk+s)A (yk + s fk).

Setting αk = 1− α
k , and with help of the Yosida approximation, this can be written in

a compact way as

⎧⎨
⎩

yk = xk + αk(xk − xk−1)

xk+1 = (yk + s fk) − s Aλk+s (yk + s fk) .

(69)

When fk = 0 we recover (RIPA). The convergence of (RIPA-pert) algorithm is ana-
lyzed in the following theorem.

Theorem 4.2 Let A : H → 2H be a maximally monotone operator such that S =
A−1(0) �= ∅. Let (xk) be a sequence generated by the algorithm (RIPA-pert) where
α > 2 and

λk =
(
1 + s

2
+ ε

) 2s

α2 k
2

for some ε > 2+s
α−2 and all k ≥ 1. Suppose that

∑
k k‖ fk‖ < +∞ and

∑
k k

3‖ fk‖2 <

+∞. Then,

(i) The speed tends to zero. More precisely, ‖xk+1 − xk‖ = O( 1k ) and
∑

k k‖xk −
xk−1‖2 < +∞.

(ii) The sequence (xk) converges weakly, as k → +∞, to some x̂ ∈ S.
(iii) The sequence (yk) converges weakly, as k → +∞, to x̂ .

Proof Let us observe that the definitions of yk and hk are the same as in the unperturbed
case. Hence, it is only when using the constitutive equation xk+1 = (yk + s fk) −
s Aλk+s (yk + s fk), which contains the perturbation term, that changes occur in the
proof. Thus, the beginning of the proof and Lemma 3.3 is still valid, which gives

(hk+1 − hk) − αk(hk − hk−1) − 〈xk+1 − yk, xk+1 − z〉

123



Convergence of inertial dynamics and proximal algorithms... 417

+ 1

2
‖xk+1 − yk‖2 = 1

2
(αk + αk

2)‖xk − xk−1‖2. (70)

The next step, which corresponds to Lemma 3.4, uses the constitutive equation. Let
us adapt it to our situation. By (70) and xk+1 − yk = s( fk − Aλk+s (yk + s fk)), it
follows that

(hk+1 − hk) − αk(hk − hk−1) + s〈Aλk+s (yk + s fk)

− fk, (yk + s fk − z) − s Aλk+s (yk + s fk)〉

+ s2

2
‖Aλk+s (yk + s fk) − fk‖2 = 1

2
(αk + αk

2)‖xk − xk−1‖2. (71)

Since z ∈ S, we have Aλk+s(z) = 0. By the (λk + s)-cocoercivity property of Aλk+s ,
we deduce that

〈Aλk+s (yk + s fk) , yk + s fk − z〉 ≥ (λk + s)‖Aλk+s (yk + s fk) ‖2.

Using the above inequality in (71), and after development and simplification,we obtain

(hk+1 − hk) − αk(hk − hk−1) + s
(
λk + s

2

)
‖Aλk+s (yk + s fk) ‖2

≤ s2

2
‖ fk‖2 + s〈yk − z, fk〉 + 1

2
(αk + αk

2)‖xk − xk−1‖2. (72)

From Aλk+s (yk + s fk) = 1
s (yk + s fk − xk+1) it follows that

(hk+1 − hk) − αk(hk − hk−1) + 1

s

(
λk + s

2

)
‖(yk − xk+1) + s fk‖2

≤ s2

2
‖ fk‖2 + s〈yk − z, fk〉 + 1

2
(αk + αk

2)‖xk − xk−1‖2.

Using the elementary inequality ‖yk − xk+1‖2 ≤ 2‖(yk − xk+1) + s fk‖2 + 2‖s fk‖2,
we deduce that

(hk+1 − hk) − αk(hk − hk−1) + 1

2s

(
λk + s

2

)
‖xk+1 − yk‖2

≤ s2

2
‖ fk‖2 + s

(
λk + s

2

)
‖ fk‖2 + s〈yk − z, fk〉 + 1

2
(αk + αk

2)‖xk − xk−1‖2.

Since 1
2 (αk + αk

2) ≤ αk ≤ 1, s > 0, and by using Cauchy–Schwarz inequality, it
follows that

(hk+1 − hk) − αk(hk − hk−1) + λk

2s
‖xk+1 − yk‖2

≤ s(s + λk)‖ fk‖2 + s‖yk − z‖‖ fk‖ + ‖xk − xk−1‖2. (73)
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By the definition of yk and elementary inequalities we have

‖yk − z‖‖ fk‖ ≤ ‖xk − z‖‖ fk‖ + ‖xk − xk−1‖‖ fk‖ ≤ ‖xk − z‖‖ fk‖
+ 1

2
‖ fk‖2 + 1

2
‖xk − xk−1‖2.

Combining this inequality with (73) we obtain

(hk+1 − hk) − αk(hk − hk−1) + λk

2s
‖xk+1 − yk‖2

≤ s

(
1

2
+ s + λk

)
‖ fk‖2 + s‖xk − z‖‖ fk‖

+ (1 + s

2
)‖xk − xk−1‖2. (74)

Let us write ‖xk+1 − yk‖2 in a recursive form. The same computation as in Lemma
3.5 gives

‖xk+1 − yk‖2 =
(
1 − α

k

)
‖(xk+1 − xk) − (xk − xk−1)‖2

+ α2

k2
‖xk − xk−1‖2 + α

k

(
‖xk+1 − xk‖2 − ‖xk − xk−1‖2

)
.

Using this equality in (74), and neglecting the nonnegative term (1 − α
k )‖(xk+1 −

xk) − (xk − xk−1)‖2, we obtain

(hk+1 − hk) − αk(hk − hk−1) + λkα
2

2sk2
‖xk − xk−1‖2

+ λkα

2sk

(
‖xk+1 − xk‖2 − ‖xk − xk−1‖2

)

≤ s

(
1

2
+ s + λk

)
‖ fk‖2 + s‖xk − z‖‖ fk‖ +

(
1 + s

2

)
‖xk − xk−1‖2. (75)

Usingλk = (1+ s
2+ε) 2s

α2 k
2 and the definitionβ = 1+ s

2+ε

α
, inequality (75) becomes

(hk+1 − hk) − αk(hk − hk−1) + ε‖xk − xk−1‖2 + βk
(
‖xk+1 − xk‖2 − ‖xk − xk−1‖2

)

≤ s

(
1

2
+ s + λk

)
‖ fk‖2 + s‖xk − z‖‖ fk‖. (76)

Setting gk := ‖xk − xk−1‖2, we have

(hk+1 − hk) − αk(hk − hk−1) + εgk + βk (gk+1 − gk)

≤ s

(
1

2
+ s + λk

)
‖ fk‖2 + s‖xk − z‖‖ fk‖.
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Then, we multiply by k to obtain

k(hk+1 − hk) − (k − α)(hk − hk−1) + εkgk + βk2 (gk+1 − gk)

≤ sk

(
1

2
+ s + λk

)
‖ fk‖2 + sk‖xk − z‖‖ fk‖.

We now write these inequalities in a recursive form, in order to simplify their summa-
tion. We have

k(hk+1 − hk) − (k − 1)(hk − hk−1) + (α − 1)(hk − hk−1)

+ εkgk + βk2gk+1 − β(k − 1)2gk − β(2k − 1)gk

≤ sk

(
1

2
+ s + λk

)
‖ fk‖2 + sk‖xk − z‖‖ fk‖.

Summing for p = 1, . . . , k, we obtain

k(hk+1 − hk) + (α − 1)hk + (ε − 2β)

k∑
1

pgp + βk2gk+1 + β

k∑
1

gp

≤ s
k∑
1

p‖xp − z‖‖ f p‖ + s
k∑
1

p

(
1

2
+ s + λp

)
‖ f p‖2. (77)

Since β = 1+ s
2+ε

α
with α > 2 and ε > 2+s

α−2 , we have ε − 2β = ε(α−2)−(s+2)
α

> 0.
Moreover by the definition of λk and the assumption

∑
k k

3‖ fk‖2 < +∞, we have
s
∑k

1 p(
1
2 + s + λp)‖ f p‖2 ≤ C for some positive constant C . Whence

k(hk+1 − hk) + (α − 1)hk + βk2gk+1 ≤ C +
k∑
1

p‖xp − z‖‖ f p‖ (78)

for all k ≥ 1. Since α > 2 and hk ≥ 0, (78) implies

khk+1 − (k − 1)hk ≤ C +
k∑
1

p‖xp − z‖‖ f p‖.

By summing the above inequalities, and applying Fubini’s Theorem, we deduce that

khk+1 ≤ Ck +
k∑
1

p‖xp − z‖‖ f p‖(k − p) ≤ Ck + k
k∑
1

p‖xp − z‖‖ f p‖.
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Hence

1

2
‖xk+1 − z‖2 ≤ C +

k∑
1

p‖xp − z‖‖ f p‖(k − p) ≤ C +
k∑
1

p‖xp − z‖‖ f p‖.

Applying the discrete form of the Gronwall’s Lemma A.8, and
∑

k k‖ fk‖ < +∞, we
obtain supk hk < +∞. Therefore, the sequence (xk) is bounded. The remainder of
the proof is pretty much as that of Theorem 3.6. We first derive

sup
k

k‖xk+1 − xk‖ < +∞. (79)

Then, we combine (77) with (79) to obtain

∑
k

k‖xk − xk−1‖2 < +∞. (80)

Since αk = 1 − α
k ≤ 1, inequalities (72) and (80) give

(hk+1 − hk) + s
(
λk + s

2

)
‖Aλk+s (yk) ‖2 ≤

(
1 − α

k

)
(hk − hk−1) + θk

for all k ≥ 1, and
∑

k∈N kθk < +∞. Invoking Lemma A.7, we deduce that
limk→+∞ hk exists and

∑
k

kλk‖Aλk+s (yk) ‖2 < +∞. (81)

We conclude using Opial’s Lemma A.3 as in the unperturbed case. ��
Remark 4.3 The perturbation can be interpreted either as a miscomputation of yk
from the two previous iterates, or as an error due to the fact that the resolvent can be
computed at a neighboring point yk + s fk , rather than yk . Anyway, perturbations of
order less than 1

k2
are admissible and the convergence properties are preserved.

5 Quadratic growth and strong convergence

In this section, we examine the case of a maximally monotone operator A satisfying
a quadratic growth property. More precisely, we assume that there is ν > 0 such that

〈x∗, x − z〉 ≥ ν dist(x, S)2 (82)

whenever x∗ ∈ Ax and z ∈ S. If A is strongly monotone, then (82) holds and S is a
singleton. Another example is the subdifferential of a convex function � satisfying a
quadratic error bound (see [18]). Indeed,

〈x∗, x − z〉 ≥ �(x) − min(�) ≥ ν dist(x, S)2
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if x∗ ∈ ∂�(x) and z ∈ S = argmin(�). A particular case is when A = M∗M ,
where M is a bounded linear operator with closed range (if �(x) = 1

2‖Mx‖2, then
∇�(x) = M∗Mx). We have,

〈Ax, x − z〉 = ‖M(x − z)‖2 ≥ ν dist(x,Ker(M))2

(see [17, Exercise 2.14]).
We obtain the following convergence result:

Theorem 5.1 Let A : H → 2H be a maximally monotone operator satisfying (82)
for some ν > 0 and all x ∈ H and z ∈ S. Let x : [t0,+∞[→ H be a solution of the
continuous dynamic

ẍ(t) + α

t
ẋ(t) + Aλ(t)(x(t)) = 0,

where α > 2 and

λ(t) = (1 + ε)
t2

α2 with ε >
2

α − 2
.

Then, limt→+∞ dist(x(t), S) = 0. If, moreover, S = {z̄}, then x(t) converges strongly
to z̄ as t → +∞.

Proof First, fix t ≥ t0 and observe that

〈Aλ(t)(x(t)), x(t) − z〉 = 〈Aλ(t)(x(t)), Jλ(t)A(x(t)) − z〉
+〈Aλ(t)(x(t)), x(t) − Jλ(t)A(x(t))〉

≥ ν dist(Jλ(t)A(x(t)), S)2 + 1

λ(t)
‖x(t) − Jλ(t)A(x(t))‖2

≥ ν dist(Jλ(t)A(x(t)), S)2

+ 1

λ(t)

[
(1 − ζ )‖x(t) − z‖2

+
(
1 − 1

ζ

)
‖z − Jλ(t)A(x(t))‖2

]

for all ζ > 0 (we shall select a convenient value later on). In turn, the left-hand side
satisfies

〈Aλ(t)(x(t)), x(t) − z〉 ≤ ‖Aλ(t)(x(t))‖ ‖x(t) − z‖
≤ λ(t)‖Aλ(t)(x(t))‖2 + ‖Aλ(t)(x(t))‖ ‖Jλ(t)A(x(t)) − z‖
≤
(

λ(t) + ζ

2ν

)
‖Aλ(t)(x(t))‖2 + ν

2ζ
‖Jλ(t)A(x(t)) − z‖2.
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Since ‖x(t) − z‖ ≥ dist(x(t), S), by taking z as the projection of Jλ(t)A(x(t)) onto S,
and combining the last two inequalities, we obtain

(1 − ζ )

λ(t)
dist(x(t), S)2 +

(
ν − ν

2ζ
+ ζ − 1

ζλ(t)

)
dist(Jλ(t)A(x(t)), S)2

≤
(

λ(t) + ζ

2ν

)
‖Aλ(t)(x(t))‖2.

whenever 0 < ζ < 1. Set

ζ = 2 + λ(t)ν

2(1 + λ(t)ν)
= 1

2
+ 1

2(1 + λ(t)ν)
,

so that

0 <
1

2
< ζ ≤ 1

2
+ 1

2(1 + λ(t0)ν)
< 1,

and

ν − ν

2ζ
+ ζ − 1

ζλ(t)
= 2ζλ(t)ν − λ(t)ν + 2ζ − 2

2ζλ(t)
= 2ζ(1 + λ(t)ν) − (2 + λ(t)ν)

2ζλ(t)
= 0.

It follows that

(1 − ζ )

λ(t)
dist(x(t), S)2 ≤

(
λ(t) + ζ

2ν

)
‖Aλ(t)(x(t))‖2,

and so

dist(x(t), S)2 ≤
[
2(1 + λ(t0)ν)

λ(t0)ν

]
λ(t)

(
λ(t) + 1

2ν

)
‖Aλ(t)(x(t))‖2.

The right-hand side goes to zero by (33). ��
A similar result holds for (RIPA), namely:

Theorem 5.2 Let A : H → 2H be a maximally monotone operator satisfying (82)
for some ν > 0 and all x ∈ H and z ∈ S. Let Let (xk) be a sequence generated

by the algorithm (RIPA), where α > 2 and λk = (1 + ε) sk
2

α2 with ε > 2
α−2 . Then,

limk→+∞ dist(xk, S) = 0. If, moreover, S = {z̄}, then xk converges strongly to z̄ as
k → +∞.

6 Further conclusions from a keynote example

Let us illustrate our results in the case whereH = R
2, and A is the counterclockwise

rotation centered at the origin and with the angle π
2 , namely A(x, y) = (−y, x). This

is a model situation for a maximally monotone operator that is not cocoercive. The
linear operator A is antisymmetric, that is, 〈A(x, y), (x, y)〉 = 0 for all (x, y) ∈ H.
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6.1 Critical parameters

Our results are based on an appropriate tuning of the Yosida approximation parameter.
Let us analyze the asymptotic behavior of the solution trajectories of the second-order
differential equation

ü(t) + α

t
u̇(t) + Aλ(t)(u(t)) = 0, (83)

where u(t) = (x(t), y(t)). Since 0 is the unique zero of A, the question is to find
the conditions on λ(t) which ensure the convergence of u(t) to zero. An elementary
computation gives

Aλ = 1

1 + λ2

(
λ −1
1 λ

)
.

For easy computation, it is convenient to set z(t) = x(t) + iy(t), and work with
the equivalent formulation of the problem in the Hilbert space H = C, equipped
with the real Hilbert structure 〈z1, z2〉 = Re(z1 z̄2). So, the operator and its Yosida
approximation are given respectively by Az = i z and Aλz = λ+i

1+λ2
z. Then (83)

becomes

z̈(t) + α

t
ż(t) + λ + i

1 + λ2
z(t) = 0.

Passing to the phase space C × C, and setting Z(t) = (
z(t), ż(t)

)T , we obtain the
first-order equivalent system

Ż(t) + M(t)Z(t) = 0 where M(t) =
(

0 −1
λ(t)+i
1+λ(t)2

α
t

)
.

The asymptotic behavior of the trajectories of this system can be analyzed by exami-
nating the eigenvalues of the matrix M(t), which are given by

θ(t) = α

2t

⎧⎨
⎩1 ±

√
1 − 4t2

α2

λ(t) + i

1 + λ(t)2

⎫⎬
⎭ .

Let us restrict ourselves to the case λ(t) ∼ t p. If p > 2, the eigenvalues θ+ and θ−
satisfy

θ+(t) ∼ 1

t
and θ−(t) ∼ 1

t p−1 .

Although the solutions of the differential equation v̇(t) + 1
t v(t) = 0 converge to 0,

those of v̇(t) + 1
t p−1 v(t) = 0 do not. Thus, to obtain the convergence results of our

theorem, we are not allowed to let λ(t) tend to infinity at a rate greater than t2, which
shows that t2 is a critical size for λ(t).
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Table 1 Distance to the unique equilibrium for a solution of each equation

Key Differential equation Distance to (0, 0) at t = 100

(E1) ẋ(t) + Ax(t) = 0 14.141911

(E2) ẍ(t) + α
t ẋ(t) + Ax(t) = 0 3.186e24

(E3) ẋ(t) + Aλ(t)(x(t)) = 0 0.0135184

(E4) ẋ(t) + Aλ(x(t)) = 0 0.0007827

(E5) ẍ(t) + α
t ẋ(t) + Aλ(t)x(t) = 0 0.000323

6.2 A comparative illustration

As an illustration,we depict solutions of somefirst- and second-order equations involv-
ing the rotation operator A, obtained using Scilab’s ode solver. In all cases, the initial
condition at t0 = 1 is (10, 10). For second-order equations, we take the initial velocity
as (0, 0) in order not to force the system in any direction. When relevant, we take
λ(t) = (1 + ε)t2/α2 with α = 10 and ε = 1 + 2(α − 2)−1. For the constant λ, we
set λ = 10. Table 1 shows the distance to the unique equilibrium (x̄, ȳ) = (0, 0) at
t = 100.

Observe that the final position of the solution of (E5) is comparable to that of (E4),
which is a first-order equation governed by the strongly monotone operator Aλ.

Acknowledgements The authors thank P. Redont for his careful and constructive reading of the paper.

A Auxiliary results

A.1 Yosida regularization of an operator A

Given a maximally monotone operator A and λ > 0, the resolvent of A with index λ

and the Yosida regularization of A with parameter λ are defined by

JλA = (I + λA)−1 and Aλ = 1

λ
(I − JλA) ,

respectively. The operator JλA : H → H is nonexpansive and eveywhere defined
(indeed it is firmly non-expansive). Moreover, Aλ is λ-cocoercive: for all x, y ∈ H
we have

〈Aλy − Aλx, y − x〉 ≥ λ‖Aλy − Aλx‖2.

This property immediately implies that Aλ : H → H is 1
λ
-Lipschitz continuous.

Another property that proves useful is the resolvent equation (see, for example, [16,
Proposition 2.6] or [14, Proposition 23.6])

(Aλ)μ = A(λ+μ), (84)
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which is valid for any λ,μ > 0. This property allows to compute simply the resolvent
of Aλ: for any λ,μ > 0 by

JμAλ = λ

λ + μ
I + μ

λ + μ
J(λ+μ)A.

Also note that for any x ∈ H, and any λ > 0

Aλ(x) ∈ A(JλAx) = A(x − λAλ(x)).

Finally, for any λ > 0, A and Aλ have the same solution set S := A−1
λ (0) = A−1(0).

For a detailed presentation of the properties of the maximally monotone operators and
the Yosida approximation, the reader can consult [14] or [16].

A.2 Existence and uniqueness of solution in the presence of a source term

Let us first establish the existence and uniqueness of the solution trajectory of the
Cauchy problem associated to the continuous regularized dynamic (1) with a source
term.

Lemma A.1 Take t0 > 0. Let us suppose that λ : [t0,+∞[→ R
+ is a measurable

function such that λ(t) ≥ λ for some λ > 0. Suppose that f ∈ L1([t0, T ],H) for all
T ≥ t0. Then, for any x0 ∈ H, v0 ∈ H, there exists a unique strong global solution
x : [t0,+∞[→ H of the Cauchy problem

{
ẍ(t) + α

t ẋ(t) + Aλ(t)(x(t)) = f (t)
x(t0) = x0, ẋ(t0) = v0.

(85)

Proof The argument is standard, and consists in writing (85) as a first-order system
in the phase space. By setting

X (t) =
(
x(t)
ẋ(t)

)
, F(t, u, v) =

(
v

−α
t v − Aλ(t)u + f (t)

)
and X0 =

(
x0
v0

)
,

the system can be written as

⎧
⎨
⎩

Ẋ(t) = F(t, X (t))

X (t0) = X0.

(86)

Using the 1
λ
-Lipschitz continuity property of Aλ, one can easily verify that the con-

ditions of the Cauchy–Lipschitz theorem are satisfied. Precisely, we can apply the
non-autonomous version of this theorem given in [21, Proposition 6.2.1]. Thus, we
obtain a strong solution, that is, t �→ ẋ(t) is locally absolutely continuous. If, more-
over, we suppose that the functions λ(·) and f are continuous, then the solution is a
classical solution of class C2. ��
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A.3 Opial’s Lemma

The following results are often referred to as Opial’s Lemma [28]. To our knowledge,
it was first written in this form in Baillon’s thesis. See [30] for a proof.

Lemma A.2 Let S be a nonempty subset ofH and let x : [0,+∞[→ H. Assume that

(i) for every z ∈ S, limt→∞ ‖x(t) − z‖ exists;
(ii) every weak sequential limit point of x(t), as t → ∞, belongs to S.

Then x(t) converges weakly as t → ∞ to a point in S.

Its discrete version is

Lemma A.3 Let S be a non empty subset of H, and (xk) a sequence of elements of
H. Assume that

(i) for every z ∈ S, limk→+∞ ‖xk − z‖ exists;
(ii) every weak sequential limit point of (xk), as k → ∞, belongs to S.

Then xk converges weakly as k → ∞ to a point in S.

A.4 Variation of the function γ �→ γ Aγ x

Lemma A.4 Let γ, δ > 0, and x, y ∈ H. Then, for each z ∈ S = A−1(0), and all
t ≥ t0, we have

‖γ Aγ x − δAδ y‖ ≤ 2‖x − y‖ + 2‖x − z‖ |γ − δ|
γ

(87)

Proof We use successively the definition of the Yosida approximation, the resolvent
identity [14, Proposition 23.28 (i)], and the nonexpansive property of the resolvent, to
obtain

‖γ Aγ x − δAδ y‖ ≤ ‖x − y‖ + ‖Jγ Ax − JδAy‖
= ‖x − y‖ + ‖JδA

(
δ

γ
x +

(
1 − δ

γ

)
Jγ Ax

)
− JδAy‖

≤ ‖x − y‖ + ‖ δ

γ
x +

(
1 − δ

γ

)
Jγ Ax − y‖

≤ 2‖x − y‖ + |1 − δ

γ
|‖Jγ Ax − x‖.

Since Jγ Az = z for z ∈ S, and using again the nonexpansive property of the resolvent,
we deduce that
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‖γ Aγ x − δAδ y‖ ≤ 2‖x − y‖ + |1 − δ

γ
|‖(Jγ Ax − Jγ Az) + (z − x‖)

≤ 2‖x − y‖ + 2‖x − z‖ |γ − δ|
γ

,

which gives the claim. ��

A.5 On integration and decay

Lemma A.5 Letw, η : [t0,+∞[→ [0,+∞[ be absolutely continuous functions such
that η /∈ L1(t0,+∞),

∫ +∞

t0
w(t) η(t) dt < +∞,

and |ẇ(t)| ≤ η(t) for almost every t > t0. Then, limt→+∞ w(t) = 0.

Proof First, for almost every t > t0, we have

∣∣∣∣
d

dt
w2(t)

∣∣∣∣ = 2

∣∣∣∣
d

dt
w(t)

∣∣∣∣w(t) ≤ 2w(t) η(t).

Therefore, | ddt w2| belongs to L1. This implies that limt→+∞ w2(t) exists. Since w is
nonnegative, it follows that limt→+∞ w(t) exists as well. But this limit is necessarily
zero because η /∈ L1. ��

A.6 On boundedness and anchoring

Lemma A.6 Let t0 > 0, and let w : [t0,+∞[→ R be a continuously differentiable
function which is bounded from below. Given a nonegative function θ , let us assume
that

tẅ(t) + αẇ(t) + θ(t) ≤ k(t), (88)

for some α > 1, almost every t > t0, and some nonnegative function k ∈ L1(t0,+∞).
Then, the positive part [ẇ]+ of ẇ belongs to L1(t0,+∞), and limt→+∞ w(t) exists.
Moreover, we have

∫ +∞
t0

θ(t)dt < +∞.

Proof Multiply (88) by tα−1 to obtain

d

dt

(
tαẇ(t)

)+ tα−1θ(t) ≤ tα−1k(t).

By integration, we obtain

ẇ(t) + 1

tα

∫ t

t0
sα−1θ(s)ds ≤ t0α|ẇ(t0)|

tα
+ 1

tα

∫ t

t0
sα−1k(s)ds. (89)
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Hence,

[ẇ]+(t) ≤ t0α|ẇ(t0)|
tα

+ 1

tα

∫ t

t0
sα−1k(s)ds,

and so,

∫ ∞

t0
[ẇ]+(t)dt ≤ t0α|ẇ(t0)|

(α − 1)tα−1
0

+
∫ ∞

t0

1

tα

(∫ t

t0
sα−1k(s)ds

)
dt.

Applying Fubini’s Theorem, we deduce that

∫ ∞

t0

1

tα

(∫ t

t0
sα−1k(s)ds

)
dt =

∫ ∞

t0

(∫ ∞

s

1

tα
dt

)
sα−1k(s)ds = 1

α − 1

∫ ∞

t0
k(s)ds.

As a consequence,

∫ ∞

t0
[ẇ]+(t)dt ≤ t0α|ẇ(t0)|

(α − 1)tα−1
0

+ 1

α − 1

∫ ∞

t0
k(s)ds < +∞.

This implies limt→+∞ w(t) exists. Back to (89), integrating from t0 to t , using Fubini’s
Theorem again, and then letting t tend to +∞, we obtain

lim
t→+∞ w(t) − w(t0) + 1

α − 1

∫ ∞
t0

θ(s)ds ≤ t0
α |ẇ(t0)|

(α − 1)tα−1
0

+ 1

α − 1

∫ ∞
t0

k(s)ds < +∞.

Hence
∫∞
t0

θ(s)ds < +∞. ��

A.7 A summability result for real sequences

Lemma A.7 Let α > 1, and let (hk) be a sequence of real numbers which is bounded
from below, and such that

(hk+1 − hk) −
(
1 − α

k

)
(hk − hk−1) + ωk ≤ θk (90)

for all k ≥ 1. Suppose that (ωk), and (θk) are two sequences of nonnegative numbers,
such that

∑
k kθk < +∞. Then

∑
k∈N

[hk − hk−1]+ < +∞ and
∑
k∈N

kωk < +∞.

Proof Since (ωk) is nonegative, we have

(hk+1 − hk) −
(
1 − α

k

)
(hk − hk−1) ≤ θk .
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Setting bk := [hk − hk−1]+ the positive part of hk − hk−1, we immediately infer that

bk+1 ≤
(
1 − α

k

)
bk + θk

for all k ≥ 1. Multiplying by k and rearranging the terms, we obtain

(α − 1)bk ≤ (k − 1)bk − kbk+1 + kθk .

Summing for k = 1, . . . , K , and using the telescopic property, along with the fact that
KbK+1 ≥ 0, we deduce that

(α − 1)
K∑

k=1

bk ≤
K∑

k=1

kθk,

which gives

∑
k∈N

[hk − hk−1]+ < +∞.

Let us now prove that
∑

k∈N kωk < +∞, which is the most delicate part of the proof.
To this end, write δk = hk − hk−1, and αk = (

1 − α
k

)
, so that (90) becomes

δk+1 + ωk ≤ αkδk + θk .

An immediate recurrence (it can be easily seen by induction) shows that

δk+1 +
k∑

i=1

⎡
⎣
⎛
⎝

k∏
j=i+1

α j

⎞
⎠ωi

⎤
⎦ ≤

⎛
⎝

k∏
j=1

α j

⎞
⎠ δ1 +

k∑
i=1

⎡
⎣
⎛
⎝

k∏
j=i+1

α j

⎞
⎠ θi

⎤
⎦ ,

with the convention
∏k

j=k+1 α j = 1. To simplify the notation, write Ak
i = ∏k

j=i α j .
Sum the above inequality for k = 1, . . . , K to deduce that

hK+1 − h1 +
K∑

k=1

k∑
i=1

Ak
i+1ωi ≤ δ1

K∑
k=1

Ak
1 +

K∑
k=1

k∑
i=1

Ak
i+1θi . (91)

Now, using Fubini’s Theorem, we obtain

hK+1 − h1 +
K∑
i=1

[
ωi

K∑
k=i

Ak
i+1

]
≤ δ1

K∑
k=1

Ak
1 +

K∑
i=1

[
θi

K∑
k=i

Ak
i+1

]
. (92)

Simple computations (using integrals in the estimations) show that

(
i

k

)α

≤ Ak
i+1 ≤

(
i + 1

k + 1

)α

,
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and

i

α − 1
≤

∞∑
k=i

Ak
i+1 ≤ i

α − 1

(
i + 1

i

)α

(see also [4] for further details). Letting K → +∞ in (92), we deduce that

∞∑
i=1

iωi ≤ C + D
∞∑
i=1

iθi < +∞

for appropriate constants C and D. ��

A.8 A discrete Gronwall lemma

Lemma A.8 Let c ≥ 0 and let (ak) and (β j ) be nonnegative sequences such that (β j )

is summable and

a2k ≤ c2 +
k∑
j=1

β j a j

for all k ∈ N. Then, ak ≤ c +
∞∑
j=1

β j for all k ∈ N.

Proof For k ∈ N, set Ak := max1≤m≤k am . Then, for 1 ≤ m ≤ k, we have

a2m ≤ c2 +
m∑
j=1

β j a j ≤ c2 + Ak

∞∑
j=1

β j .

Taking the maximum over 1 ≤ m ≤ k, we obtain

A2
k ≤ c2 + Ak

∞∑
j=1

β j .

Bounding by the roots of the corresponding quadratic equation, we obtain the result.
��
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