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Abstract Packing and covering linear programs (PC-LPs) form an important class
of linear programs (LPs) across computer science, operations research, and optimiza-
tion. Luby and Nisan (in: STOC, ACM Press, New York, 1993) constructed an iterative
algorithm for approximately solving PC-LPs in nearly linear time, where the time
complexity scales nearly linearly in N, the number of nonzero entries of the matrix, and
polynomially in ¢, the (multiplicative) approximation error. Unfortunately, existing
nearly linear-time algorithms (Plotkin et al. in Math Oper Res 20(2):257-301, 1995;
Bartal et al., in: Proceedings 38th annual symposium on foundations of computer sci-
ence, IEEE Computer Society, 1997; Young, in: 42nd annual IEEE symposium on
foundations of computer science (FOCS’01), IEEE Computer Society, 2001; Koufo-
giannakis and Young in Algorithmica 70:494-506, 2013; Young in Nearly linear-time
approximation schemes for mixed packing/covering and facility-location linear pro-
grams, 2014. arXiv:1407.3015; Allen-Zhu and Orecchia, in: SODA, 2015) for solving
PC-LPs require time at least proportional to £ 2. In this paper, we break this long-
standing barrier by designing a packing solver that runs in time 0 (Ne~1) and covering
LP solver that runs in time O (Ne~ 1), Our packing solver can be extended to run in
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time O (Ne™1) for a class of well-behaved covering programs. In a follow-up work,
Wang et al. (in: ICALP, 2016) showed that all covering LPs can be converted into
well-behaved ones by a reduction that blows up the problem size only logarithmically.

Mathematics Subject Classification 90C05, Linear programming - 90C25, Convex
programming - 65K05, Mathematical programming methods - 49M20, Methods of
relaxation type

1 Introduction

A packing linear program (LP) takes the form max{c’ x : Ax < b} where ¢ € ]R;O,

b e R”;, and A € RZ;". A covering LP can be written as min{bTy : ATy > ¢},
with the same requirements on A, b, and c. We denote by N the number of non-zero
elements in matrix A. We assume without loss of generality that the two LP programs

are in their standard forms:

Packing LP:  max {17x : Ax <1}, (1.1)
XERgo

Covering LP:  min {ILTy : ATy > 1}. (1.2)
yeR”

>0

The two programs are dual to each other, so we denote by OPT > 0 their shared
optimum. We say x is a (1 — &)-approximation for the packing LP if Ax < 1 and
17x > (1 — &)OPT, and y a (1 + &)-approximation for the covering LP if ATy > 1
and 17y < (1 + ¢)OPT.

In this paper, we study first-order iterative methods for solving packing and covering
linear programs (PC-LPs) efficiently.! Of course, it is possible to adopt the Interior
Point or Ellipsoid methods to obtain approximate solvers with a log(1/¢) dependence
on the number of iterations. However, the computational cost of such algorithms is
typically high, as each iteration requires solving a linear system, and thus is not suitable
for large-scale applications.

To address this issue, researchers have developed iterative approximate PC-LP
solvers that achieve a better dependence on the problem size (e.g., nearly linear in
N) at the cost of having a poly(1/¢) dependence on the approximation parameter ¢.
Such iterative solvers have been widely applied in approximation algorithms (e.g.,
MINSETCOVER [24], MAXSET, MAXDICUT, MAX- k- CSP [32], bipartite matching),
probabilistic checkable proofs [32], zero-sum matrix games [29], scheduling [31],
graph embedding [31], flow controls [10, 11], auction mechanisms [37], wireless sen-
sor networks [14], and many other areas. In addition, techniques developed in this
line of research have inspired important results on other fundamental algorithmic
problems, such as the design of fast algorithms for multi-commodity flow prob-
lems [9,18,19,25,31] and the equivalence between QIP and PSPACE [21].

1 Luby and Nisan, who originally studied iterative solvers for this class of problems [24], dubbed them
positive LPs. However, the class of LPs with non-negative constraint matrices is slightly larger, including
mixed-packing-and-covering LPs. For this reason, we prefer to stick to the PC-LP terminology.
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Nearly linear-time packing and covering LP solvers 309

Table 1 Comparisons among iterative approximate solvers for packing and covering LPs

Paper Running time Width Nearly

independent? linear-time?

20pT2
31] O(N x LOPT logm OP; logm No No
PT1
(7] O(N x £OFTjoem,) No No
[26,29] O(N x 2OPTlogm, No No
[13] O(N x YKnlozm, Yes No
[15,27]: packing LP O(N x (n+ @)) Yes No
2
Parallel solvers O(N x log}\';%) atbest  Yes Yes
[4,8,10,11,24,34,35]
[35] O((md + N) x ‘%N) Yes Almost yes
[10,11] O (um x 125N Yes Almost yes
(36 O(N x 18N, Yes Yes
[23] O(N + (n +m) x 1"8‘572”) Yes Yes
1
Theorem 3.4 packing LP O(N x %) Yes Yes
-1

Theorem 5.3 O(N x %) Yes Yes

well-behaved covering LP

-1
Theorem 6.6 covering LP O(N x %) Yes Yes

The width p € [1/OPT, co) is defined as the largest entry of the constraint matrix A. The parameter d is
the maximum number of constraints each variable is in; md may be larger than N

Previous iterative approximate solvers can be divided into two classes, width-
dependent and width-independent solvers (see also Table 1).
Width-dependent solvers > Based on multiplicative weight update ideas (a.k.a. expo-
nentiated gradient updates), researchers have obtained solvers for PC-LPs with a
running time at least N multiplied with pOPT € [1, 00), where p is the width of the
program, i.e., the largest entry of matrix A. For instance, PC-LPs can be solved in

O(W)—time [31], or O(W)—time using some more refined anal-
ysis [7]. These algorithms only require “oracle-access” to the matrix A. When A is
given explicitly like in this paper, the running time can be reduced to O(Npopgﬂ)
by deploying Nesterov’s accelerated gradient method [29], or Nemirovski’s mirror

prox method [26].

2 Most width-dependent solvers study the minmax problem min m:

T
20,1 x=1 MBX oo g7y Y7 AX,
whose optimal value equals 1/OPT. Their approximation guarantees are often written in terms of additive

error. We have translated their performances to multiplicative error for a clear comparison.
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310 Z. Allen-Zhu, L. Orecchia

Width-dependent algorithms are not polynomial time but only pseudo-polynomial
time.

Width-independent, but super linear-time solvers Researchers also tried to appro-
priately scale the matrix so as to avoid the width penalty in the above methods. For
instance, Bienstock and Iyengar [13] built on Nesterov’s method [29] and obtained
a running time O (¢ ' N/Knlogm) where K is the maximum number of non-zeros
per row of A. This is O(¢~!'Nny/logm) in the worst case. The results of [15,27]
improved this complexity (for packing LP only) to O(e™'N /1), at a cost of enduring
an O(Nn)-time preprocessing stage.

Width-independent, nearly linear-time solvers Perhaps the most desirable complex-
ity is a running time that is both independent of the width parameter p, and also nearly
linearly scales with N .3 This line of research was initiated by a seminal paper of Luby
and Nisan [24], who gave an algorithm running in 0(1\”2#) time with no depen-
dence on the width p. This is also the first nearly linear-time approximate solver for
PC-LPs, and also the first to run in parallel in nearly linear-work and polylogarithmic
depth.

The parallel algorithm of Luby and Nisan was extended by [4,8,10,33,35]. Most

notably, the algorithm of Wang ef al. [33] runs in O(IngNgl—gg(l/e)) iterations, each
costing a matrix-vector multiplication that can be implemented in O (N) total work.

The ideas of Luby and Nisan also led to sequential width-independent, nearly linear-
time PC-LP solvers [10,11,23,35,36]. Most notably, the algorithm of Koufogiannakis
and Young [23] runs in time O (N + loggzN X (n+m)).

Despite the amount of work in this area, the O(1/&%) convergence rate was estab-
lished in 1997 [10, 11] and has not been improved since then. On a separate note, Klein
and Young [22] showed that all Dantzig-Wolfe type algorithms have to suffer from a
O(1/¢%) convergence rate. This lack of progress constitutes a significant limitation,
as the ¢ ~2-dependence (also known as the 1/+/T convergence) on the approximation
parameter ¢ is particularly poor.

1.1 Our results
Packing LP We present an algorithm PacL P Solver thatrunsin O (w N)
total time. This gives the first width-independent, and the first nearly linear-time solver
for packing LP with an ¢! convergence (i.e., an 1/7T convergence). In contrast, no
nearly linear-time algorithm has achieved any convergence rate faster than £ =2 before
our work.

Interestingly, the maximum (weighted) bipartite matching is just one instance of
a packing LP. As a consequence, our PacL P Solver algorithm finds an approximate
maximum bipartite matching in time O(me™"). This new matching algorithm, which
arises purely from convex-optimization arguments, matches the running time of the
best known combinatorial algorithm for maximum weighted bipartite matching [16].

3 Some of these solvers still have a polylog(p) dependence. Since each occurrence of log(p) can be replaced
with log(nm) after slightly modifying the matrix A, we have done so in Table 1 for a fair comparisons.
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Nearly linear-time packing and covering LP solvers 311

Covering LP A symmetric design of PacL P Solver gives rise to an algorithm
CovL P Solver"? with the same running time O(MN ), but only solving
well-behaved covering LP instances. At a high level, we say an instance is well-
behaved if the constraint A7 y > 1 is “never redundant”: for instance, if the optimal
solution y* satisfies C -1 > ATy* > 1 for some constant C > 1 then the covering LP
is well-behaved. For the general covering LP without well-behavior assumptions, we
propose a different algorithm Cov L P Solver that runs in time O(W#N ).
Again, we emphasize that no nearly linear-time covering LP solver can achieve a
convergence rate faster than £ =2 (or equivalently O (1/+/T)) before our work.

REMARK After the first version of this paper appeared on arXiv in 2014, Wang,
Rao and Mahoney [34] showed all covering LPs can be converted into well-behaved
ones, by blowing up the problem size logarithmically. In other words, they obtained
a nearly linear-time covering LP solver with ¢~! convergence by a reduction to
CovL P Solver"?. Nevertheless, our CovL P Solver, being a direct method, may still
be of practical and theoretical interests.

1.2 Main challenge and our approach

Width-independence versus acceleration Previous solvers for PC-LPs are based
on standard techniques in non-smooth optimization. They first implicitly or explicitly
smoothen the objective, often by the entropy regularizer. Then, they minimize the
resulting convex objective either via variations of full-gradient methods, yielding par-
allel algorithms, or via variations of coordinate-gradient methods, yielding sequential
algorithms. The main challenge in previous work is to show that the width dependence
can sometimes be completely removed for PC-LPs, if the underlying minimization
method is designed cleverly.

Of course, the slower the convergence rate is, the easier it is to design nearly linear-
time solvers. The 8_4-convergence solver of Awerbuch and Khandekar [8] and the
e~ 3-convergence solver of [4] are arguably the simplest nearly linear-time solvers at
this point.

In this paper, we achieve the ¢! convergence that is typical for accelerated gra-
dient descent over smoothened objectives [29], but without paying the width or any
additional super-logarithmic factors. The challenge in this approach is to preserve
the width-independence and the accelerated rate at the same time. We stress here
that our algorithm is not an instance of any known variant of accelerated gradient
descent.* Moreover, the incorporation of width-independence and Nesterov’s acceler-
ation requires significant effort, as witnessed by the lack of progress on this problem
for the last 15 years.

Our high-level approach Our approach is based on an improved convex formaliza-
tion f(x) of the PC-LP objective, together with our linear-coupling framework for
designing efficient first-order methods [5] for minimizing f(x).

4 This can be verified by observing that our objective f}, (x), to be introduced later, is not globally Lipschitz
smooth, so that one cannot apply accelerated gradient descent directly.
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312 Z. Allen-Zhu, L. Orecchia

The improved formalization shows that our smoothened objective f(x) satisfies
either the classical condition for Lipschitz smoothness or a different condition based
on multiplicative change. This formalization also clarifies why width-independent
algorithms exist in the first place. See Lemma 2.7 and the related discussion for more
details.

The linear-coupling framework in our previous work [5] provides a different inter-
pretation of Nesterov’s acceleration for smooth optimization [28]. In a nutshell, this
linear-coupling framework allows us to construct accelerated algorithms by coupling
the executions of a gradient descent algorithm, yielding iterates {yx} and a mirror
descent step algorithm, with iterates {z;}. The name “linear coupling” stems from the
fact that, at iteration k+ 1, the gradient of the objective is queried at a point X 41, which
is alinear combination of gradient and mirror steps, i.e., X¢+1 = (1—7)-2x+(1—17)- y&.

In this paper, we apply linear coupling in a very non-trivial manner. We design
a gradient and a mirror descent step, each very specific to the underlying PC-LP
problem. We also perform a coupling step X1 = (1 —7) - zx + (1 — T) - %, but
need to design a different analysis to preserve width independence. None of these
components has appeared in [5].

Arithmetic precision Throughout this paper, we assume exact arithmetic opera-
tions for presenting the cleanest proofs. If the updates are calculated within precision

m, or equivalently when word size O (log(s ™! +n +m)) is used, our results

still hold.?

Roadmap We relax the packing LP in Sect. 2, and provide our packing LP solver in
Sect. 3. We relax the covering LP in Sect. 4, and provide our covering LP solver in
the well-behaved case in Sect. 5. In Sect. 6, we provide our full covering LP solver.

2 Relaxation of the packing linear program

To solve packing LP, we minimize a relaxed version of the original LP, where the hard
constraint Ax < 1 is regularized by entropy and replaced by an exponential penalty
function.

Notations Recall that the packing LP in its standard form is max,>o{1 Ty : Ax <1).
Let us denote by OPT the optimal value of this linear program, and x* any optimal
solution. We say that x is a (1 — ¢)-approximation for the packing LP if Ax < 1 and
17x > (1 —¢)OPT.

Throughout this paper, we use the indices i € [n] to denote the columns of A,
and the indices j € [m] to denote the rows of A. We let A.; be the i-th column

5 Dueto space limitation, we quickly sketch why logarithmic word size suffices for our algorithms. On one
hand, one can prove in an iteration, if x is calculated with a small additive error 1/poly(1/e, n, m), then the
objective f(x) may increase only by 1/poly(1/e, n, m) in that iteration. The proof of this relies on the fact
that (1) one can assume without loss of generality all entries of A are no more than poly(1/e, n, m) and
(2) our algorithms ensure f(x) < poly(1/e, n, m) for all iterations with high probability, so even though
we are using the exponential functions, f(x) will not change additively by much. On the other hand, one
can similarly prove that each V; f (x) can be calculated within an additive error 1/poly(1/e, n, m) in each
iteration. They together imply that the total error incurred by arithmetic operations can be made negligible.
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Nearly linear-time packing and covering LP solvers 313

vector of A, and A ;. the j-th row vector of A. Given any vector x, we denote by

lxlla = \/Zieln] xi2 - |A.illcc the A-norm of x. By simple scaling, we can assume

without loss of generality that ©
min{||A;illoo} = 1. .1
i€[n]

We restrict the domain of x and the range of OPT as follows.

Fact 2.1 Define the bounding box Apox i {x e R”" : x; € [0, m]}. Under
assumption (2.1), we have OPT € [1,n]and {x : x > 0 A Ax < 1} C Apox.

Proof Suppose that i * is the column that achieves the smallest infinite norm || A.; ||
over all columns. Letting x be such that x; = lati = i*andx; = Oati # i*, we claim
that x is a feasible solution for the packing LP (1.1), simply because ||A.j*|lco = 1
according to (2.1). This feasible solution x yields an objective value 17 x = 1, proving
that OPT > 1. On the other hand, for any solution x > 0 satisfying Ax < 1, we
must have x; < m for each i. Therefore, 17x < Zi m < n, proving that
OPT < n.

The inclusion {x : x > 0 A Ax < 1} C Apox is obvious, since the constraints
x > 0and Ax < 1 together imply x; < m for every i € [n]. O

This bounding-box constraint allows us to focus only on searching x in Apex.

Our regularized objective We now introduce the smoothed objective f, (x) that we
minimize over Apox in order to approximately solve packing LP. At a high level, this
objective f,(x) turns each row of the hard, non-smooth LP constraint Ax < 1 into
an exponential penalty function so that we only need to require x € Apgy throughout
the algorithm.

Formally, the packing LP can be written as the following minimization problem by
introducing the Lagrangian variable y € R™:

min { —17x + r$1>a())<{yTAx — IlTy}}. 2.2)

X € Apox

The problem can be now smoothened by introducing a concave regularizer over y > 0.
We take this regularizer to be the generalized entropy H (y) = — ZT:] vjlogy;+y;
over the first orthant y > 0, and minimize the following smoothened objective f,(x)
over x € Apox:

dif_ T T 1T .
fu) & =1x 4+ max(y” Ax — 1 Y+ HO . (2.3)

Above, 1 > 0is some smoothing parameter to be chosen later. By explicitly computing
the maximization over y > 0, f;,(x) can be rewritten as

6 It min;¢(n1{llA:illco} = O then the packing LP is unbounded so we are done. Otherwise, if
min; ¢(n]{l|A;i oo} = v > 0 we scale all entries of A by 1/v, and scale OPT by v.
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314 Z. Allen-Zhu, L. Orecchia

Fact2.2 f,,(x) = u ) j_ eﬂ ((A0;=D _ Ty,

We study the minimization problem on f, (x) over x € Apoy. Intuitively f,(x) cap-
tures the original packing LP (1.1) as follows. Firstly, since we want to maximize 17 x,
the negative term —17 x shows up in S (x). Secondly, if a packing constraint j € [m]
is violated by ¢, that is, (Ax); > 1+ ¢, the exponential penalty in f, (x) introduces a
penalty at least pe®/#; this will be a large penalty if u < O(e/ log(n/e)).

Remark 2.3 Theuse of exponential function atleast traces back to [31]in 1991 (implic-
itly) and to [20] in 1994 (explicitly). The way most previous results minimize f,(x) is
by taking a logarithm g(x) = log (Z (A0 =D/1) explicitly or implicitly argu-
ing that g (x) is Lipschitz smooth (i.e., || V2 f(x)] is bounded), and then taking gradient
descent. ’ Unfortunately, the Lipschitz smoothness parameter of g(x) depends on the
width of the LP, and thus first-order iterative approaches based on directly minimiz-
ing g(x) are mostly width-dependent [7,26,29,31]. One can also reduce the width
parameter of g(x) which yields super linear-time solvers [13,15,27].

In this paper, we directly perform gradient descent and mirror descent on f, (x)—
without taking the logarithm. Note that traditional accelerated gradient methods [28,
29] should not be applied directly to minimize f}, because it is not Lipschitz smooth. 8

Our f,,(x) incurs a regularization error. The next proposition bounds this error
following a similar treatment in [4].

Proposition 2.4 Let yu = m and recall x* is an optimal solution for packing
LP.

5 def

(@ fuw*) < —(1—¢eOPT foru* = (1 — &/2)x* € Apox.
) fu(x) = =1+ &)OPT for every x € Apox.

(¢) If x € Apox satisfies f,(x) < —(1 —0)OPT for some 6 € [0, 1], then mx isa
1-6

T3¢ “approximate solution to the packing LP.

Remark 2.5 Our box constraint x € Apgy is almost redundant for minimizing Su(x):
whenever x > Oand f, (x) < 0, one should automatically have x; < Tail= A H .However,
this constraint shall be used to make sure that our updates are always inside Apox-

Proof of Proposition 2.4 (a) We have 17u* = (1 — ¢/2)OPT by the definition of
OPT. from the feasibility Ax* < 1 in the packing LP, we have Au*—1 < —¢g/2-1,
and can compute f, (u*) as follows:

7 Note that some of the previous results (such as [7,31]) appear to directly minimize ZT:] (A j=D/n
as opposed to its logarithm g(x). However, their per-iteration objective decrease is multiplicative, meaning
it is essentially equivalent to performing a single gradient-descent step on g(x) with additive objective
decrease.

8 The exact same S (x) also appeared in our previous work [4], albeit without this smoothing interpretation

2

and without the constraint x € Apoy. The techniques in [4] only leads to e~ convergence (see Table 1).
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Nearly linear-time packing and covering LP solvers 315

fuu™) = MZE‘%((AM*)"_U — 1Ty
j
—&/2
<uy e —(1—g/2)0PT
j
< pm
= (nm)?

— (1 —¢/2)OPT < —(1 — &)OPT.

(b) Suppose towards contradiction that f,(x) < —(1 + ¢)OPT. Since f,(x) >
—17x, it must satisfy that 17 x > (14-¢)OPT. Suppose that 17 x = (14-v)OPT
for some v > ¢. By the definition of OPT, we must have that Ax < (1 + v)1 is
broken, and therefore there exists some j € [m] satisfying that (Ax); > 1 + v.
In such a case, the objective

v/e
o/i _ _ & T
Fu(x) = et — (1 4 v)OPT = Tosm o) (( - ) ) (1 +v)OPT

> (((%)2)/8 1+ v)) OPT > 0

giving a contradiction to the assumption that f,,(x) < 0.

(c) Note that x satisfies f,(x) < —(1 — §)OPT < 0, and we first show Ax <
(I + &)1. Let us assume that v = max;((Ax); — 1) > 0 because otherwise we
will have Ax < 1. Under this definition, we have Ax < (1 4+ v)1 and therefore
17x < (1 + v)OPT by the definition of OPT. We compute fu(x) as follows.

v 4\ v/¢€
£u(x) > pei — (14 v)OPT = ((7’") ) — (I +v)n

B & nmA\+\ /¢ |
~ 4log(nm/s) <<T) ) — (4o

The above quantity is positive whenever v > ¢, and therefore, to satisfy f,(x) <0

we must have v < g, which is equivalent to Ax < (1 + ¢)1. Next, because

—17x < fu.(x) < —(1 — 8)OPT, we know 17x > (1 — §)OPT. Letting
/ 1

x" = {zx, we both have that x" is feasible (i.e., Ax’ < 1), and x’ has an

objective 17 x’ at least as large as %OPT.
o

Some non-standard smoothness properties The gradient and Hessian of f,,(x) can
be written in the following closed forms:

Fact 2.6 Vf,(x) = AT p(x)—1and V? f,(x) = %ATdiag{p(x)}A, where p(x) «
o1t (AN =)

By staring at these closed forms, we note that f,(x) is not Lipschitz-smooth: for

instance, each Vl.zi fu(x) can go to infinity so the spectral norm of V2 Su(x) is

@ Springer



316 Z. Allen-Zhu, L. Orecchia

unbounded. However, the non-negativity of A guarantees that whenever Vizl. Sux)
is large for some coordinate i, the corresponding entry of the gradient V; f, (x) must
also be large. This still allows us to take a larger step in direction e; than traditionally
allowed by coordinate descent.

The above intuition is formalized in the next lemma, whose proof is by simple
manipulation of Hessian. The first half of the lemma is the same as the traditional coor-
dinate Lipschitz-smoothness property, but holds only conditionally; the second half is
a salient characteristic of this work and requires the non-negativity of A. These smooth-
ness properties will be crucial in applying gradient descent arguments in Sect. 3.3, and
are the main motivation for us to adopt the || - |4 norm for our proposed algorithms.

Lemma 2.7 Let L £ %. Then, for every x > 0, every i € [n], and every A €

[ -t Tk
@ IIVifu )] = 1, then |V fu(x + ) = Vi fu ()] = Ll Aslloo - 1
(b) Vi fu () = 1, then Vi fu(x + i) = (1= L<L 12} v, £, 2).

Proof of Lemma 2.7 Using the fact that V; f;,(x) > —1 for all x, we have:

Vz‘fu(x-l-)»ei)—i-l‘@ ’/A Vi fu(x 4 ve;) ’
0

lo
8TV @) + 1 Vi fu(x +ven) + 1

®

l‘ * (AT diag{p(x + Uei)}A)iidU‘
ulJo (AT p(x + ve;));
[Aiille . @ IlA:illooL

Al = Al
Al 7 M

IN®

Above, @ holds because fo}” g'w)dv = g(A) — g(0) where g(v) = log(V; fu(x +
ve;) + 1); @ holds according to Fact 2.6; @ is because the numerator is j Ai ;Dj

Whi1§ the denominator is ) jAjiP) @ holds because L = /%. This immediately
implies

e_\IA:iJooLlM - Vifulx +Ae) +1 - ”A;,‘JOOLM"
- Vifuo+1

Our assumption on A implies W Al < %, so that we can use the approximation
x<e*—1<12xoverx € [—%, %]. This yields the simpler bound:

_ ”A:i”ooLM| < Vi fulx +2e)) — Vi fu(x) <1 2||A:i||ooL

. Al
4 Vi fux)+1 - 4 1A

(a) Assuming that V; f,,(x) € (-1, 1], we have:

[ Aiilloo L
Vifu(x +2e) = Vi fu(x)| <24 1 M= lAulleo LA
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(b) Assuming V; f,,(x) > 1, we have

[ A:illoo L
Vifux +Ae) = Vi fu(x) — TIXI (Vi fu(x) +1)

1 ||A:i||ooL)L
_Tl [) Vifu(x).

\

v

]

Initialization Iterative methods require a starting point, and we use the following one

Fact 2.8 Ler xSt i ﬁ for each i € [n]. Then, xS®" € Apox and f,, (x518™) <

_1=¢
=

Proof Using the fact that AxS3" — 1 < —¢/2 - 1, we compute f,, (xS¥®") as follows:

1 starty . _
fM(xstart) -1 Zeu((Ax )j=l) _ T ,start
J J
um 1—-¢/2 - 1—¢

= mm?:  n - n

Above, we have used 17 x , where i is the column s.t. ||A.i|lco =
1. O

start -, start _ 1-¢/2
— 1l n

3 Our packing LP solver

Recall traditional (accelerated or not) gradient descent [28,29] or coordinate
descent [6,17,30] should not be applied directly to minimize f,,, because f, is not
Lipschitz-smooth.

Our proposed algorithm PacL P Solver starts with some initial vector Xo = Yo =
xStart (see Fact 2.8) and zg = 0, and is divided into 7 iterations. In each iteration k, it
computes a weighted midpoint X; <— t2x_1 + (1 — 7)yr—1 for some parameter 7 €
(0, 1). This step is analogous to that in traditional accelerated coordinate descent [6,
17,30]. We then compute Y; and z; as follows.

We select i € [n] uniformly at random. Let élfl) =(0,...,0, TP(),0,...,0) be
the vector that is only non-zero at coordinate i, where v = V; f,(Xx) € [—1, 00),
and TP(v) is the thresholding function TP (v) & min{v, 1}. We refer to &k(i) as the
truncated gradient. ® Next,

(@) def ; 1 2
¢ = argminge A5 llz =z +

(naké‘,fi) z)} for some parameter oy < 1/n to be chosen later.

— Perform a mirror (descent) step z; < z

9 A similar gradient truncation was developed in our prior work [4], but for a different purpose (to ensure
parallelism) and not applied to coordinate gradient. The truncation idea of this paper also inspired later
works in matrix scaling [2] and in SDP [1].
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Algorithm 1 PacL P Solver (A, xS, ¢)
Input: A € R7;" xS e Ao e € (0,1/30].

. def R 1
Output: x € Apoy. > recall Aoy = {x € R" : x; € [0, m]}
1: MeW,L(—%,r(—ﬁandag(—ﬁ. > parameters
2: T < [3nLlog(l/e)] =0O(n - M). > number of iterations

3: Xo =Y < xstart, zg < 0.
4: fork < 1to T do
50 o <« ﬁ o1

6: Xg < TZf—1+ (1 —T)Yp—1-

7: Randomly select_ i € [n] uniformly at random. )

8:  Define vector & IS’) to be all-zero except at coordinate i, where Slgl? =min{1, V; f,, (X¢)}.

9z <z Cargmingn {31z - ze 115+ neng” )] > See Proposition 3.2
5 def X

10: yp <« y]((l) = Xi + nalkL (ZI(;) —Zk—1).

11: end for

12: return yr.

(i) def

— Perform a gradient (descent) step Y <Y, = Xi + L @

n(ka(Zk - Zk—l)~

This finishes the description of our PacL P Solver.

Remark 3.1 We use the superscript ) on & ,gi), y,((i) and Z,(:) to emphasize that the value
depends on the choice of i. We use generic parameters t, o, 1" in the above description
and their precise values are presented in Algorithm 1.

Our update on Yy is a “gradient descent step” because we shall prove that it strictly
decreases the objective (i.e., f,,(Xk) — fu (y,((’)) > 0). Our update on z; is a “mirror
descent step” because we shall apply standard mirror descent analysis [12] to it. We
explicitly describe how to implement the mirror step (its proof is straightforward by

computing the gradient):

Proposition 3.2 If Apox = {x € R" : x; € [0, ﬁ]} for some constant C > 0,
the minimizer z = argmin ¢ 5 {%HZ — Z—1 113 + (de;, 2)} for any § € R and basis
vector e; can be computed as follows:

7 < Zg—1.

zi < zi — 8/l Ailloo-

Ifzi <0, thenz; <= 0, ifz; > C/||Aiilloo, 2i < C/IlAsilloo-
Return z.

bl s

We also point out that

Lemma 3.3 Each iteration of PacL P Solver can be implemented to run in expected
O(N /n) time. The total expected running time is O (T N /n).

Lemma 3.3 is not hard to prove, but anyways included in “Appendix E.5”. It follows
from standard implementation tricks which compute X, and Yy only implicitly: that is
to express Xy and Y as linear combinations of two less-frequently-updated vectors.
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3.1 Convergence statement

In this section, we focus on proving the following main theorem.

Theorem 3.4 PacL P Solver(A, xS@™ &) outputs some yr satisfying

E[f.(yr)] < —(1 — 35)OPT.

It is straightforward to use Markov’s bound to turn Theorem 3.4 into a probabilistic
one

Corollary 3.5 With probability at least 2/3, the output Y7 = PacL P Solver
(A, xS o) satisfies that Y- 145 is a (1— O(e)) approximate solution to the packing
w N).

LP program. The expected running time is O (

Proof of Corollary 3.5 Since for every x € Apey it satisfies f,,(x) > —(1 + ¢)OPT
according to Proposition 2.4.b, we obtain that f,,(yr) + (1 + ¢)OPT is a random
variable that is non-negative, whose expectation E[ f,,(yr) + (1 + &)OPT] < 4¢
according to Theorem 3.4. By Markov bound, with at least probability 2/3, we obtain
some yr satisfying f,, (yr) < —(1—11e)OPT, which yields a (1— O (¢)) approximate
solution to packing LP according to Proposition 2.4.c. The running time follows from
Lemma 3.3. O

Before we prove prove Theorem 3.4 in subsequent subsections, let us first point out
that our iterates X, Y, zx never leave the bounding box Apey:

Lemma 3.6 We have Xy, Vi, Zrx € Apox forallk =0,1,...,T.

(The proof of Lemma 3.6 is included in “Appendix A.1”, and the main technique
already appeared in randomized coordinate descent [17].)

3.2 Step 1: mirror descent guarantee

Following almost classical analysis of mirror descent (cf. textbook [12]), our update
Z,({’) = argmin, 5 {%Hz —zial4 + (nage®, z)} satisfies

Lemma 3.7 (mirror descent) For every u € Apoy, it satisfies

(@) (@)

(nan&”, zi—y —u) < n?aL - (£, xe — y) + ||Zk l—unA——nz")

2
ully-

Proof Denoting by V,(b) = %Hb — a||124 as a function of b € Apgy parameterized
ata € Apox, we have V;V,(b) = ||A.i|ls - (@i — b;). In the optimization language,
V. (D) is the Bregman divergence of the || - ||%4 regularizer [12]. We derive the following
sequence of inequalities:

<nak§,§'), Zk—1 — u) (naké(i), Zp—1 — Z,i”) + (nak ,E’), Z,(c') )

) . .
< (neng zi1 =2 + (= Vo &), 2 — u)
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® . . 1
= (naké<’>, zi1 —2)) - 21 = 202 + —||Zk71 —ul?

— ull}
s L 1
2oz,%L ((E,fl), Xe — Vi) — 5 % = yk”i) + 51z = ull3

M”A

(@)

1
2 2
<n’oiL- (s(’),xk—yk) + 5z l—unA——nz —ull?.

Above, @ is due to the minimality of z,(j) = argmin,,,  {Vz_, (@) + (naké(i), 2)}
which implies that (VVy, | (2{") +nag”, u — 2z} > 0 for all u € Apox. Equality @

can be checked for every coordinate £ € [n] as follows:
—VeVy @) - @0, —ue) = 1 Ailloo @10 — 20y) - (24 — M@)

1
= || A:illeo (—E(Zk—l,l - Z(l)) + = (w —Z5_1.0)*

(@

@ is by our choice of y; which satisfies that z;_| — Zk = no L(Xy — y(’)) O

In addition, as a simple corollary of Proposition 3.2, we have the following fact

k
_, | < 3]
k=Lil = T4 =
<>
i = Zk—1,i

ak@kl
TAqToo

Ifé(l) > 0, then z( ). < Z_1i andy,({l < Xp.is zfs,” <0, then z;,

@)

Fact38 120 —ze_14] < and|y) —xii| = 7tz

nakL

LIIA lloo

and y,((lz > Xk

3.3 Step 2: gradient descent guarantee

(&)

We call our update y(i) <~ X+ — Wk 7 (Z; " — Zx—1) a gradient descent step, because the

following lemma guarantees f, (y(l)) < fu(Xr), that is, the objective only decreases;
moreover, the objective decreases at least by %(V Su(Xe), Xg — y,E’)).

Lemma 3.9 (gradientdescent) We have f,, (Xk)— fu (y,((i)) > Q(V S (X, Xk—y,((i)) >
0.

This Lemma 3.9, which is characteristic of the PC-LP setting, is strong in the

(@)

followmg sense. Even though the update y, " only depends on the truncated gradient

Ek , the progress we make is a function of the true gradient V; f, (Xi), including
the large component that was discarded. This is possible because the smoothness
guarantee of Lemma 2.7.b allows us to take a long coordinate step even though f;, (x)
is not Lipschitz-smooth.
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Proof of Lemma 3.9 Using Fact 3.8, we write y,({i) = Xy +she; forsomes € {—1, +1}
and step length A € [O We first focus on the case V; f,(X¢) € [—1, 1] so

S;g’,) = Vi fu (Xg).

1
’ LIIA:iIIoc]'

. A
Fu) = fuW) = f00) — fue + she;) = —s /O (Vi fu O + sxe)) dx

o LIAq]
2 s/O (Vi 00 = LlAslloo-5) dx = =V fu() 53 — 202 2
(k)
@ L||A:illoo [ (i)
2 VL) sk — - ® L rixo.y? — x).
Hu 2 LAl 207 IH0%-Yi

Above, @ uses Lemma 2.7.a, @ uses Fact 3.8, and ® uses |§k )| = —sV; f(Xr) (see
also Fact 3.8). Next, we turn to the case of V; f, (Xx) > 1.1In this case, wehaves = —1
and

A
S (X)) — fu(y(’)) = fu(Xe) = fu(Xk — Aej) = /O Vi fu(Xi — xepdyx

@ [ | AsillooL
z/ <1—Tx)vifﬂ(x)dx
0

e (*1 1 @
> EVifﬂ(x)dx = E(Vfu(xk), X =Yg )
0
Above, @ uses Lemma 2.7.b and @ uses x < A < ﬁ Finally, we have
(V fu(Xi), Xe — y,(j)) > 0 because V; f, (X¢) and X ; — yk) have the same sign,
and Xg ¢ = y(') for £ #i.

3.4 Step 3: putting all together

We denote by n,(cl) € R>0 the vector that is only non-zero at coordinate i, and satisfies

n,({l)l = Vi fu(x) — & ) € [0, 00). In other words, the full gradient

V) = B, ..., nV fu(), ..., 0)] = Ei[nn + ng"]

can be (in expectation) decomposed into the a large non-negative component n(')

[0, 00)" and a truncated component & @ e [—1, 17". Recall that 77,(;) did not contribute
to the descent steps (see Line 9 of PacL P Solver). Now, for any u € Apex, We can
use a basic convexity argument and the mirror descent lemma to compute that

ar(fu ) — fru@) < {0V fu(X), Xe — u)
= (e V fu(Xp), Xk — Zi—1) + {0k V fru (k) Zk—1 — 1)
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= (o V [ (%), Xk — Zk—1) + E; [(nakn,(f), Zey — u) + (o zi—y — u)]

l —
= ﬂ(vfu(xk), Yi-1 — Xk)
+E; [(nakn,(f), Zp—1 —u)+ (nakélfi), Zi_1 — u)] 3.1
@ (1-—
2 0% i — )

T Ei[ (”“knlgi): zj_1 — u)+nafL - <§("), X; — y]((i>>

1 | B
+ Mz = ully = 512" — ul} ] (3:2)

Above, @ is because X = 121 + (1 — 7)Yx—1, which implies that (X — Zx_1) =
(1 — ©)(Yg—1 — Xk). @ uses convexity and Lemma 3.7. This above computation is
motivated by [5], and as we shall see below, it allows one to linearly couple gradient
and mirror steps.

Intuitively, the first term in the box of (3.2) is the loss introduced by the large
gradient n,(:). This part was truncated so did not contribute to the mirror step. The
second term in the box is the loss introduced by mirror descent on the small gradient
Elf’) in Lemma 3.7.

Now comes an important observation. As shown by Lemma 3.10 below, the perfor-
mance of the gradient step—that is, the objective decrease of f;, (X¢) — fu (y,(('))—is
at least proportional to the total loss incurred in the box. Intuitively, this means that
the progress in the gradient step is so large that it outweighs not only the loss from
mirror descent (as is typical in accelerated gradient analyses [5,29]) but also the loss

term introduced by n,ii).

Lemma 3.10 (gradient descent total guarantee) For every u > 0,

(nsn, ze1 — )+ na? L - (60 x5 — ) < 3naL - (00 — fulyl ).

The proof of Lemma 3.10 is a careful case analysis and several simple applications of

Lemma 3.9. We remark that to properly upper bound (noj n,(:), Zj_1 — u), one needs

to have some good upper bound the coordinates of z;_;. This is exactly the place we
need our redundant constraint which ensures z;_; ; < ﬁ (see Remark 2.5).

Proof of Lemma 3.10 There are three possibilities:

—_If n,((lz = 0, then we must have s,g’l) =V, fu(X) € [—1, 1]. Lemma 3.9 implies
(naxn’, zi—y —u) + n?a2L - (7, % — y)

= oL {9 0. X = ;") < 2L - (fu0) = Fuy")
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- If '71(:3 > 0 and Z,((l)l > 0, then we precisely have Z,(j’)i = Zk—1i — TA, 1= X‘l"ﬁw (see

Proposition 3.2), and accordingly y,(ciz. = Xk.i — m < X,;- In this case,

(nan”, zi—1 —u) + n2aL - (£ % — y\")

+n?afL - (g(’), Xp — y,((’))

@ 1
< nog - Vi fu(X) - A
HAllee)

. .
< nag - Vi fu (%) - + 2L (V fu (%), X — Y

1Az lloo
nouL - (V fu (4. X — &)+ n2ef L - (V £ (0. e — y})

@ .
=< (ZnakL + 2n2a,%L) (fu X)) — fM(y]((”)).

Above, @ follows from the fact that zy_; € Apox and therefore z;_; ; < m
by the definition of Apex, and u > 0; @ follows from the fact that X; and y,({i)
are only different at coordinate i, and E,f’l) =1 < V; fu(X¢) (since 77,(('3 > 0);®
follows from the fact that y,(:) =X — L”:m; and @ uses Lemma 3.9.

- If '7;(:), > 0 and z,(j,),. = 0, then we have

(nawny”, zi—1 — u) + n2eL - (£, ¢ — y)

@ .
< (Vi fu ) - Zko1,) + 2L - (V £ (%), Xk — V)
(noV fu (), Zk—1 — Z,E”) +n?ag L - (V f(Xe), X — y;(f)>

20} L (V fu () Xk — )+ n2ed L - (V £ ), xe — y)

e le

IN®

APaFL - (fu (%) = fu (Y )).

Above, @ is because u > 0, V; f,(X¢) = 77,(:3- +1> 771(:3- and V; f, (Xx) > S;fi,?; @

uses the assumption that Z,((’)l = 0 and the fact that z;_; ¢y = Zl(ci,)é for every ¢ # i;

@ is from our choice of y; which satisfies that z;_| — Z,(f) = no L(X; — y,Ei)); and
@ uses Lemma 3.9.

Combining the three cases, and using the fact that f, (Xx) — £ (y,(j)) > 0, we conclude

that

(nakn,(j), Z—1 —u)+ n*olL - (E(i), X — y/(ci))
< @naL + 40262 L) - (Fu (%) — fuy\"))

<3narL - (fu() — fu(yi).

EST

Above, the last inequality uses our choice of o, which implies noy < nar = ﬁ <
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Plugging Lemma 3.10 back to (3.2), we have

ar (fu ) = fu)) < (¥ fu (i), Xk — u)

1
2 ﬂ(myk D = fu0)

1 1
+ Ei[3naL - (000 = fuy") + 5 lzic = ully = Sz — ul ]

®
< o fu() + (3na L — o) fu(Yi—1)

| i) l o2 _1 2
+E[ =3l 00 + Sz —uld - Slzo- ] 63

Above, @ uses Lemma 3.10; and @ is because we have chosen 7 to satisfy % =3nL.
Next, recall that we have picked oty so that (3nL —1)ay = 3nL-og—1 in Algorithm 1.
Telescoping (3.3) for k = 1, ..., T and choosing u* = (1 — ¢/2)x*, we have

T

= o fu®) < 3£, (Yo) — 3nar L - ELfu(yr)] + 120 — u*|I;
k=1

< —3narL - E[f,(yr)] + OPT.

Here, the second inequality is due to f,,(Yo) = £, (x5®") < 0 from Fact 2.8, and the
fact that

n n n
zo — w15 = lu*l5 =D @) NAillo < Y () [Ailloo < Y _ x} = OPT.
i=1 i=1

Finally, using the fact that Zszl ar = or - Zkr;ol (1 _ 37+L)k _ 3naTL(1 _a-
ﬁ)T), we rearrange and obtain that

Zkk

! TOPT = (1— (1~ ) fuw)

E[fu.(yr)] = L

fu *)+3

+ OPT.

3notTL

We choose T = [3nLlog(1/¢)] so that e L =1-5 L)T < ¢. Combining this
with the fact that f,(u*) < —(1 — &)OPT < 0 (see Proposition 2.4.a), we obtain

E[f,(yr)] < (1 —¢&) fu®) +¢/3-OPT < —(1 — 3¢)OPT.
Therefore, we have finished proving Theorem 3.4. O
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4 Relaxation of the covering linear program

Since PacL P Solver gives only an approximate packing LP solution, we cannot infer
from it a dual covering LP solution. Therefore, we have to work on a relaxed version
of covering LP directly. For input matrix A € RZ;", we rewrite the covering LP

problem (1.2) as follows in order to be notationally close to packing LP:

min{17x : Ax > 1}. 4.1)

x>0

We denote by OPT the optimal value to this LP, and by x* any of its optimal solutions.
We say that x is a (1 4 &)-approximation for the covering LP if Ax > 1 and 17x <
(1+ ¢)OPT.

Again, we use indices i € [n] for the columns of A, and indices j € [m] for the
rows of A. We denote by A.; the i-th column vector of A, and A . the j-th row vector
of A. We assume without loss of generality by simple scaling that '°

min {[|A;:[le0} = 1. 4.2)
Jj€lm]

Proposition 4.1 The normalization (4.2) ensures OPT € [1, m].

Proof Suppose that j* is the row that achieves the smallest infinite norm [|A . ||oo
over all rows j € [m]. Then, for any solution x € R, satisfying (A=, x) > 1, we
must have 17x > 1/|lAj#:|loc = 1 using (4.2). On the other hand, we can construct a
feasible solution x as follows. Initialize x = 0, and then for each row j, let us find the
coordinate 7 that maximizes the value of A;; among all columns i. Then, we increase
x; by 1/A;j = 1/||A}:||co- After we have exhausted all the m rows, we arrive at some

x > 0 satisfying Ax > Taswellas 17x =Y, 1/[Aj:]lc0 < m. O

In our covering LP solvers, we assume that an initial solution, achieving a con-
stant approximation, is available to the algorithm. Such a solution can be obtained
for instance by the covering LP solver from Young [36] with constant € in time
O(NlogN).

Definition 4.2 Let x* be a given 2-approximate solution to the covering problem
def

given and let OPT' = 17x" ¢ [OPT, 20PT]. Without loss of generality, assume
OPT' > 2.

We now introduce the smoothed objective f,(x) we are going to minimize in order
to solve covering LP. Symmetric to the case in the packing solver, this smoothed
objective f,(x) turns each row of the LP constraint Ax > 1 into an exponential
penalty function.

10 1¢ minje(m){llAj:llcc} = O then the covering LP is infeasible so we are done. Otherwise, if
min je,1{llA}:loc} = v > 0 we scale all entries of A by 1/v, and scale OPT by v.
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Definition 4.3 Letting n = we define the smoothed objective f,(x) as

&

4log(nm/e)>
e 1= .

fu(x) 2 N ZTZI e;/,(l (Ax)]) + ]].TX.

Fact44 Vf,(x) = IL—ATp(x) and szu(x) = ﬁATdiag{p(x)}A, where p(x) e
e (1=(A0)))

We present some properties about f, (x). They together imply that the minimum of
fu(x) is around OPT, and if one approximately finds the minimum of £, (x) up to an
additive error O (¢OPT), this corresponds to a (1 + O (¢))-approximate solution to the
covering LP (4.1). The proofs are analogous to Sect. 2, and included in “Appendix B.2”
for completeness’ sake.

Proposition 4.5 (a) f,(u*) < (1 + ¢)OPT for u* & (14 ¢&/2)x*.

®) fu(x) = (1 —&)OPT forevery x > 0.

(c) Forany x > 0 satisfying f,(x) < 20PT, we must have Ax > (1 — ¢)1.

(d) If x = 0 satisfies fu.(x) < (14 8)OPT for some § € [0, 1], then %x is a

%-approximate solution to the covering LP.

5 Our covering LP solver in the well-conditioned case

Recall in packing LPs, since it satisfies 0 < )cl?k < m (see Fact 2.1), we can
minimize f,, over a bounding box Apey. Unfortunately, it no longer satisfies x]° <
m in covering LPs, so one cannot directly turn PacL P Solver into its symmetric
version to solve covering LP.

In this section, we show that this symmetric covering LP solver still solves all well-

behaved covering LP instances. Specifically, we say the covering LP is well-behaved
if:!

Assumption 5.1 There exists some optimal covering LP solution x* satisfying x;* <
9 . o ele . i . f < 9

A= and the initial point x* satisfies XS A=

For instance, well-behaved instances naturally arise from those where the constraints

Ax > 1 are non-redundant. If the optimal covering LP solution x* and the initial point

x4 satisfy 1 < Ax* <9-Tand1 < Ax? < 9.1, then Assumption 5.1 is satisfied.
Well-behaved covering LP problems immediately satisfy the following:

Fact 5.2 Define Apox g {x e R" : x; € [0, ﬁ]} Under Assumption 5.1, we

have u* £ (1 + £/2)x* € Apoyx and xS E (1 + £/2) - x* € Apox. Also, it satisfies
fu (xSt < 30PT.

' The constant 9 in this section can be replaced with any other constant greater than 1.
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Algorithm 2 CovL P Solver"P (A, xS ¢)
Input: A € R7;" xS e ApoL e € (0,1/30].

. def A 10
Output: x € Apey. > recall Aoy = {x € R" : x; € [0, ”A;iHoo]}
1: MeW,Le%,reﬁandaoeﬁ. > parameters
2: T < [21nLlog(1/e)] = O(n - M). > number of iterations

3: Xo =Yoo < )CStart, Zy <« 0.
4: fork < 1to T do
50 o <« ﬁ o1

6: Xg < TZ)—1+ (1 —1)Yp—1-

7:  Randomly select i € [n] uniformly at random.

8:  Define vector & ]Sl) be all-zero except at coordinate i, where & lil? =max{—1, V; f (X))}

9z « z](ci) def argminzeAbox {%HZ -2 IIi + (nocké(i), z)}. > See Proposition 3.2
5 def X

10: yi <—y]((l) = Xi + notlkL(Zl(;) —Zk_1).

11: end for

12: return yr.

Proof The claims u*, xS € Apoy are trivial after noticing & < 1/30. Using the fact

that AxS®™ — 1 > (1 4+ ¢/2)Ax* —1 > £/2 - 1, we compute fu (xS1aty as follows:

11 tarty —&/2
TS S LT (RN UC I SR
j J

um

< +20PT < 30PT.
(nm)?

]

We now describe CovL P Solver™? (whichis a symmetric variantof PacL P Solver)
that solves well-behaved covering LP problems, see Algorithm 2. It starts with
the initial vector Xo = Yo = x@% and zy = 0. Then, CovLPSolver™? is
divided into T iterations. In each iteration k, it computes a weighted midpoint
Xy < TZx—1 + (1 — 7)y)—1 for some parameter T € (0, 1), and then proceeds to
compute Y and z; as follows.

We select i € [n] uniformly at random. Let S;Sl) =(0,...,0,=TP(v),0,...,0) be
the vector that is only non-zero at coordinate i, where v = —V, f,,(X¢) € [—1, 00),
and recall TP (v) o min{v, 1}. We refer to E,fi) as the truncated gradient. Next,

’((z) o argmingc 5 {%Hz -zl +
(nakék(’) z)} for some parameter oy < 1/n to be chosen later.

— Perform a gradient (descent) step Yy < y,(j) g X + nalkL (Z,((i) —Zk—1).

— Perform a mirror (descent) step 2 <« z

This finishes the description of CovL P Sol ver. It is not surprising to deduce the
following theorem similar to Theorem 3.4. We include its proof in “Appendix C.3”
for completeness.
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Theorem 5.3 Under the well-behavior assumption 5.1 in the covering LP problem,
CovL PSolver"°(A, xS ¢) outputs some yr satisfying

E[f.(yr)] < (1 +4.66)OPT.

Again, using the same proof as Corollary 3.5, one can apply Markov’s bound to
turn Theorem 5.3 into a probabilistic statement:

Corollary 5.4 Under the well-behavior assumption 5.1 in the covering LP prob-
lem, with probability at least 2/3, yr = CovL PSolver"P (A, xS ¢) satisfies
that % is a (14 O (¢)) approximate solution to covering LP. The expected running
time is

&

0 (log(nm/s) log(1/¢) N) .

Removing the well-behavior assumption In subsequent work, after the conference
presentation of this paper, Wang, Mahoney and Rao [34] showed the following theo-
rem.

Xn

Theorem 5.5 ([34]) Any covering LP with constraint matrix A € RZ§" of sparsity
N can be converted into an equivalent but well-behaved covering LP with matrix
A e R 0logmn/&) gnd sparsity N - O (log(mn/¢)). The conversion takes time
N - O(log(mn/e)).

As a result, we can apply our covering solver CovL P Solver™? to this modi-

fied LP and apply our Theorem 5.3 to solve any covering LP in expected time
log?(nm/g) log(1/¢)
O(=—F—""=N).

6 Our covering LP solver in the general case

In this section, we remove the well-behavior assumption and propose a different algo-
rithm CovL P Solver to solve all covering LP instances. This algorithm introduces a
factor 1//¢ loss in the running time, but is a direct covering LP solver without using
any reduction.

The main difference to PacL P Solver and CovL P Solver™P is that, this time we
abandon the box constraint and study the minimization of f,,(x) over a simplex

X € Asimplex £ fxeR" :x; >0 A 17x < 20PT'}.

Again, this constraint 17x < 20PT’ is redundant just like the old Apoy constraint
for packing LP (recall Remark 2.5); however, it shall be used to make sure that our
updates are always inside Agjmplex- It is a simple fact that

def

Fact 6-1 M* = (l + 8/2))6* S Asimp|ex.
Recall that the initial vector x¥ is defined in Definition 4.2, and OPT’ is a crude

approximation to OPT, satisfying OPT' £ 17x? e [OPT, 20PT]. We choose dif-
ferent starting vector xS from Sect. 5:
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Algorithm 3 CovL P Solver(A, xS, g)

Input: A € RZG™, %18 € Agimpiex, & € (0, 1/30].
Output: x € Agimplex-

1: uem,ﬁ&ﬁ,re%. > parameters
2: T « [% log(1/¢)] = O(Wm/;lwm. > number of iterations
3: aoe(l—t)Tﬁandye&. >sothata72ﬁandy:2arn

4: Xg =Y =20 < LStart,

5:fork < 1to T do

6: o <« l%r“kfl'

7 Xp < 1Zg—1 + (1 — T)Yk—1.

8:  Randomly select i uniformly at random from [n].
9

Define vector S,Ei) to be all-zero except at coordinate i, where Slgi:? = max{—B, V; fu (Xp)}.

i) def . i .
10:  zg < Z](:) = AgMinze g1 {Vge_ @+ {0+ V)nak%‘,f’), 2} » See Proposition 6.4
11: i V; fu(x) < —p then
12: Denote by 7 the permutation that satisfies Az (1) ; <+ < Ag(n),i-
e Ariii P ) < 1
13: Pick j* € [m] such that { ZJ<J* m(j)i - Pr(pXe) < 1+P > j* € [m] always exists, see
j<j* Ax(iyi  Pr(hHy) = 1+ 8
6.1
. (i) def _ _ __ub
14: Vi < Vi _Xk+8~elwhere¢3—m.
15:  else 5 def
16: Vi < y,i’) = Xg.
17:  endif
18: end for
19: return yr.
Proposition 6.2 Letting xS@ & (1+4¢/2).x% 4 (L Ly we have xS ¢ Ag
P . 8 = PERRREEY) simplex

and f,(x3@") < 40PT.

Proof Using AxS@" — 1 > (1 + ¢/2)Ax* — 1 > ¢/2 - 1, we compute f, (xS%@") as
follows:

L— tarty . —£/2
fﬂ(xstart) =/LZ€M(1 (AxStart) ) 4+ 1T ystart < Mze % +20PT +1
J J
um

< + 30PT < 40PT.
(nm)?

Also, we have 17xS®" < (1 + £/2)OPT' + 1 < 20PT’. (Recall OPT' > 2 in

Definition 4.2.) O
Our proposed algorithm CovL P Solver starts with the initial vector Xo = Yo =
2o = x%@" and is divided into T iterations. In each iteration k, as usual, it computes

a weighted midpoint X < 7Z;_1 + (1 — 7)Yx—1 for some parameter T € (0, 1), and
then computes Yy and z; as follows.

We select i € [r] uniformly at random, and let E,il) =(0,...,0,T°v),0,...,0)
be the vector that is only non-zero at coordinate i, where v = V; f,,(X¢) € (—o0, 1]and

TC(v) o max{— B, v} is the new thresholding function for some parameter g o JE.
Then,
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(i) def

— Perform a mirror (descent) step 2y < z;° = argminzeAsimplex {Vzk,1 () + (1 +

y)nakélgi), z)} for some positive parameters y < 1 and oy < 1/n, where

Ve(y) = X0 yilog 3 4+ xi — i

is the so-called Bregman divergence of the generalized entropy function (c.f. [12]).
- If V; f,(xx) < —B, perform a gradient (descent) step Yy < y,((’) & Xk + de; for
some § > 0. In practice, one can line-search over §, but we choose an explicit §
as follows.
— Denote by 7 the permutation that satisfies Az (1),; < -+ < Az(m),i
i An(iyi s Pr(pOk) < 148

. Such j* exists
Z./S,/’* An(j)i - Pe(p*) =1+ B J

— Pick j* € [m] s.t. {

because

Yt A Pr(h X)) = 2T Aji - piO) = 1= Vi fu() > 1+ B.
6.1)

~ Sets = 10—
2Az(j%,i

This finishes the description of our CovL P Solver.

Remark 6.3 We use the superscript ) on é,gi) , y,((i) and Z,((i) to emphasize that the value
depends on the choice of i. We have used generic parameters 7, ox, T in the above
description and their precise values are presented in Algorithm 3.

Our update on yy is a “gradient descent step” because we shall prove that it strictly
decreases the objective (i.e., f, (Xk) — fu (y](:)) > 0). Our update on z; is a “mirror
descent step” because we shall apply standard mirror descent analysis [12] to it. We
explicitly describe how to implement this mirror step: (proved in “Appendix D.4”)
Proposition 6.4 [fz;_| € Asimplex andZx—1 > 0, the minimizer z = argmin_ Asimplox
{Vzk—l (z) + (be;, 2) } for any scalar § € R and basis vector e; can be computed as
follows:

1. 7z <2z

2. z; <z -e b )
3. If177 > 20PT/, 7 « 2(135’; z
4. Return z.

We also point out that

Lemma 6.5 Each iteration of CovL P Solver can be implemented to run in expected
O (N /n) time. The total expected running time is O(T N /n).

The proof of Lemma 6.5 is analogous to its packing counterpart, and included in
Sect. F.6.
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6.1 Main proof ideas and ingredients

In CovL PSolver, we pick arandom coordinate i € [n] at each iteration, and decom-
pose V; f(Xx) = & +n, where € (—o0, 0] is the (negative) large gradient component
and & € [—+/¢, 1] is the truncated gradient component. In other words, we truncate
the gradient V; f(X;) at a negative threshold —8 = —./e, rather than at —1 as in
CovL P Solver"P.

The reason for this new threshold —./¢ can be understood as follows. In
PacL PSolver (and symmetrically in CovL P Solver"?), we used Lemma 3.10 to
show that our gradient descent step Yy decreases the objective by an amount that both
includes the & and n components. Unfortunately, for covering LP, this decrease amount
is only proportional to 7 but not to £ (compare Lemma 3.10 with Lemma 6.14 later).
This forces us to treat the small gradient £ separately using mirror descent, but not
gradient descent.

If & werein[—1, 1], classical theory of mirror descent [12] (or multiplicative weight
update [7]) would imply that the mirror step Z; converges at a rate o< ¢~ 2. This is too
slow. Instead, since truncated & into a smaller interval [—./g, 1], using a negative-
width technique (see Sect. 6.5), we improve this mirror-descent convergence rate from
e 2toe 1,

On the other hand, due to this truncation at —./¢ instead of —1, our gradient step
on yy also converges slower, at a rate 1/¢! instead of 1/¢. This is why g = /¢ is
the best truncation threshold, as it balances gradient and mirror descent.

Another ingredient behind our proof is a new distance bound that is uncommon
in first-order analysis. Recall that, given convex function g(x), traditional analysis
applies convexity argument g(x) — g(x*) < (Vg(x), x — x*) to bound the objective
distance to optimum. If g(x) = e is univariate, x = —1, and x* = —100, this
bound becomes e~ ! ~ ¢! — 7100 < ¢=1.99 which is very loose. In our analysis,
we replace this convexity argument with a more benign bound, specifically designed
for covering LP (see Lemma 6.10).

6.2 Convergence statement

The main convergence theorem of this section is as follows:

Theorem 6.6 CovL PSolver(A, xS@™ &) outputs some yr satisfying

E[fu(yr)] = (1 +9¢)OPT.

Again, using the same proof as Corollary 3.5, one can apply Markov’s bound to turn
Theorem 5.3 into a probabilistic statement:

Corollary 6.7 With probability at least 2/3, yr = CovLPSolver(A, xS ¢)
satisfies that 1yTT€ is a (1+ O (¢e)) approximate solution to the covering LP program.
10g(nm/s])510g(1/8) N).

- a5

The expected running time is O (

@ Springer



332 Z. Allen-Zhu, L. Orecchia

Before delving into the proof of Theorem 6.6, we make the following observations:

Fact 6.8 For every k € {0,1,...,T}, it satisfies Xg, Yr = 0, zx > 0, and z €
Asimplex‘

Proof Since the xS satisfies 17 x5 < 20PT’ by Proposition 6.2, we have
zo = xSt ¢ Asimplex- Also, the mirror descent step (see Proposition 6.4) ensures
Zy,; > 0 for all rounds k and coordinates i, as well as Zx € Agimplex for all rounds k.
However, we X; and y; may not necessarily lie inside Agimplex, but will always stay
non-negative. O

We prove Theorem 6.6 in the subsequent subsections.

6.3 Step 1: distance adjustment
Using convexity, one can obtain
Jui) = fu@) =V fu(Xk), Xk —u) foreveryu € Asimplex- (6.2)

Note that inequality (6.2) can be very loose for exponential functions. For instance, if
fu(x) were as simple as e*, then the convexity inequality el —e* < e? . (b —a) says

— when b =2 and a = —10, we have €2 — ¢~ 10 < 12¢2;
— when b = 2 and a = —100, we have ¢2 — e~100 < 102¢2.

Although =1 ~ ¢~10, the two upper bounds are off from each other by a factor of
10.

In this section, we strengthen (6.2) in the special case of u = u* £ (1 +¢&/2)x*.
For analysis purpose, let A be the adjusted matrix of A described as follows.
Definition 6.9 (adjusted matrix A) For each row Jj € [m],if (Au*); < 2then we keep
itand let Xj; o A .. Otherwise,—that s, if (Au*)j > 2—we define Kj; o (A+*)j “Aj
to be the same j-throw A ., but scaled down by a factor of (A+*)i' It is clear from this
definition that '

Aji = A forall (i,j)eln]x[m] and (141 < Au* <21.
Lemma 6.10 (distance adjustment)

Ful) = fu®) < (1= AT pOu), xi — u*) + (AT poy) — AT p(xx), u*) + sOPT
= (Vfu(0), X = ") + (AT p(xi) — AT pOxy), u*) + sOPT

At high level, ignoring the negligible term ¢OPT, Lemma 6.10 strengthens the

classical bound due to the extra term of (AT p(xx) — AT p(x¢), u*). This extra term is

always non-positive since A < A coordinate-wise, but may be very negative in certain
cases.
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Proof of Lemma 6.10

m
1 . 1 *y .
FuX0) — ful®) = “Z (e;(l—(Axk)]) _ on(1-(Au ),)) + % — )

j=1

1 Aoy .

IN©®

-

7
1

J

(=A%) ((Au®)j — (Ax);) + (1, % — u*) + eOPT

IN®
Ms

.
I
—_

P - (Au®); — (Ax);) + (1, ¢ — u*) + eOPT

Il
Ms

.
I
—

I
Ms

P ) - ((Au™)j — (Axi) ) + (1, Xg — ™)

~.

.MS X

pixe0) - ((Au*); — (Au*);) + eOPT
1

J
= (—AT pOxe), i — u*) + (1, % — u*) + (AT poxx) — AT p(xi), u*) + ¢OPT.

Above, @ is because if (Au*); # (Zu*) ; for some j, then it must satisfy that

~ 1 *Y . L1 (Au™);
(Au*); = 2, and therefore —en 1= (=AU 4 —1/k @ uses the

convexity inequality of e — e? < e’ . (b — a;, and the fact that ume~!/* <« ¢OPT.

6.4 Step 2: gradient truncation

For analysis purpose, let us separate the indices i € [r] into large and small ones.

Definition 6.11 We make the following definitions.

Let By = {i €[n] : Vifu(Xx) < —p}and [n]\ By be the set of large and small

indices.

— Let & € [—p, 1]" be the truncated gradient so that & ; = T°(V; f,,(xx)) for
eachi € [n].

— Let nx € (—o0, 0]" be the large gradient so that V f,, (X¢) = & + ni. It is clear

that

nki=0 forevery i ¢ B, and nk,i:(l—i—,B)—(ATp(Xk))i for every i€B.

Let ;. € (—o0, 00)" be the adjusted large gradient so that

Nxi=0 forevery i ¢ B, and 'ﬁk,iz(l—i-ﬂ)—(ng(xk))i for every i € B.
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We denote by n(l) o, . 0, Nk.i» 0, ..., 0), the vector that is zero at all coordinates
other than i, and 31m11arly$ @ =@©,...,%.,,...,0)and 77']((’) =(,...,%ki>---,0).

We emphasize that 1y # i, 7y # i and £ # &
The following key lemma is very analogous to (3.1) in the packing LP analysis.

Lemma 6.12 (distance upper bound)

Fu) = fulw) = B2 (i) = £ 000) + B[ 6 2y — ) |
—i—Ei[(nn,E’), —u*)] + ¢OPT.

Note that if one uses r},(j) instead of ﬁf), then Lemma 6.12 becomes trivial to prove

just like (3.1). The reason we can have the stronger term ﬁ,(f) is precisely due to the
distance adjustment Lemma 6.10.

Proof of Lemma 6.12 We derive the following sequence of inequalities:

(fu) = fu(u®™)) — eOPT

£V Fux0). X — ) + (AT pOxe) — AT p(xe). )
= (V) Xk — Zi—1) 4+ (V (), Zk—1 — u*) + (AT p(xx) — AT p(xp), u*)
@ (1-1)

(V) Yi—1 = Xe) +(V fu(X), Zk—1 — u™)
+ (AT pox) — AT p(xi), u*)

1—
$d-0 FuWr=1) = Fu ) + (V fu(Xe), Zk—1 — u®)

<ATP(Xk) — AT p(xy), u*)
_ -

(fu(Yk D = fu®0)) + &k + ne, Ze—1 —u”)

+<ATP(Xk)—A pOXe), u*)
@ -

(fu(Yk D = fu®X0) + (e, Ze—1 —u®)

+ <ATP(Xk) — AT p(xe) — mie, u™)
(1 —1)

(fuWr=1) = fuX0) + (ks Ze—1 — u™) + (—1k, u™)

. | * o
:( - ).(fu(Yk—l)—fu(Xk))+E,~[(n§k et — )+ (—nii u )].

Above, @ isdue to Lemma 6.10. @ is because Xy = tZ;—1+ (1 —7)Yi—1, whichimplies
that T(Xx — Zx—1) = (1 — T)(Yk—1 — Xt). @ is by the convexity of f,,(-). @ is because
(MK, Zk—1) < 0, since nx < 0 while z;_; > 0. ® needs some careful justification: for
every i ¢ By, we have (A7 p(xi) — AT p(x))i — mei < 0 — 0 = —7ji ;3 for every
i € By, we have
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AT px) — AT pxa))i — (1 + B)— (AT p(xp)):)
—(A+B) = (AT px))i) = —Tiis

AT poxx) — AT poxa))i — .

where the two equalities follow from the definitions of 7y ; and % ;.

6.5 Step 3: mirror descent guarantee

Our update Z(l) = aIgmmzeAs.mmex {Vzk . (Z)+((1+y)nozk5k , z)} is, by its definition,
a mirror descent step [12]. We begin by explaining an attempt that is too weak for
obtaining the ¢ !> convergence rate.

Using the classical theory, it is not hard to repeat the proof of Lemma 3.7—although
changing the distance function from || - ||124 to V. (y)—and obtain that, as long as & ;
is in [—1, +1] for each coordinate i, for every u € Agimplex-

Eifou(ne®, zio1 —u)] < Vo, (w) — Ei[VZI((,-) (u)] + O(a2n)OPT.

This inequality only yields a slower £ 2 convergence rate, and 1 is also know as the

width parameter from the multiplicative-weight-update language [7].

In our lemma below, we make use of the fact & ; is in [—8, +1] € [—1, +1]. In
essence, this allows us to replace the O (akn) factor with a better O(ak Bn) factor. We
call it the negative-width technique.'> Formally,

Lemma 6.13 (mirror descent) Denoting by y < 2arn, we have

* *

u
) = Ei[ Vo (5 - y)] + 120PT - you B,

Ei[ox(ng., zi1 —u*)] < Vo, (—e

The proof is somewhat technical and included in “Appendix D.4”.

6.6 Step 4: gradient descent guarantee

We show our gradient step never increases the objective for all choices of i. In addition,
it decreases the objective by an amount proportional to the adjusted large gradient ﬁ,((l).

Lemma 6.14 (gradient descent) For every i € [n], we have

@ fux) = fuyy)) = 0, and
®) fu) — fuy?) = 22 (70 u).

12 Thjs negative width technique is related to [ 7, Definition 3.2], where the authors analyze the multiplicative
weight update method in a special case when the oracle returns loss values only in [—£, +p], for some £ < p.
This technique is also a sub-case of a more general theory of mirror descent, known as the local-norm
convergence, that we have summarized in a separate and later paper [3].
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The proof of Lemma 6.14 is quite technical and can be found in “Appendix D.4”.

Athigh level, one would hope to prove that the gradient step decreases the objective
by an amount proportional to the large gradient n,i'), rather than the adjusted large
gradient ’77,({’) . If that were true, the entire proof structure of our covering LP convergence
would become much closer to that of packing LP, and there would be absolutely no need
for the introduction of the distance adjustment in Sect. 6.3, as well as the definitions
of A and 7.

Unfortunately, if one replaces 77 with 5 in the above lemma, the inequality is false.
The reason behind it is very similar to what we have summarized in Sect. 6.3, and
related to the fact that the exponential penalty function is not Lipschitz smooth.

6.7 Step 5: putting all together

Combining Lemma 6.12, Lemma 6.13, and Lemma 6.14, we obtain that

ak(fu () — fu(®)) — axeOPT

) |
< O i) — fun) + B o, 201 — ]

+E; [ak<nﬁ,ii), —u*)]

* *

(1—1)a u u
< fk(fu(ykfl) — Ju (X)) + VZk—l(l T J/) - E"[Vz}(")(l + y)]
12 i
+ 120PT - yay B + E; [%(fu(xk) - fu(y,(j)))]

Remark 6.15 Above, the quantity “120PT - yagB” is the loss term introduced by
the mirror descent. Unlike the packing LP case—see (3.2)—this loss term is not
dominated by the gradient step. (If one could do so, this would give CovL P Solver
an ¢! convergence rate.)

The quantity “oy (nélgl), Zx—1 — u*)” is the loss introduced by the (adjusted) large
gradient 77, and is dominated by our gradient step progress owing to Lemma 6.14. This
is similar to the packing LP case—see Lemma 3.10.

From here, let us use the special choice of T = % We obtain that

— ag(fu(u®) + cOPT)
< 12y BOPT + (l_rﬂfu(ym) + Vz (%)
[ o v ]
Using the choice oy = % and telescoping the above inequality fork = 1,..., T,

we have
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T T
~(2 ) (il + £OPT) = (3 ax) - 12yBOPT + =2 £,.(y0)
k=1 k=1

u*

+ Vzo(m) - aT—TE[fu(YT)]-

T
We compute that 3/ o = a7 - 4o (1 — DF = ey - 20200 < 97 and recall
that y = 2arn. Therefore, we rearrange and get

“{E[fuwr)] < "‘TT(mu*) +£OPT) + “7T . 12yBOPT + %fu (Yo)

u
+ Vzo(m),

= E[fu(yr)] < fu@*) + eOPT + 24a7nBOPT + (1 — 07 f,.(yo)

T u*
Va7 6.3)

From this point, we need to use our special choice of the initial point Xg = Yo =
zy = xSt (see Proposition 6.2), which implies that f,,(yo) < 4OPT and 17 x8ta" <
40PT. We also have

u* u* "ot ut tart ut
— )=V ) = ] lo 4 +xs art _ "1t
) = Ve ;Hy Flapt T T Ty

D & ®
< Y ujlog(u; - n) +40PT < (2log(nm) +4) - OPT.

i=1

Above, inequality @ follows because x*@™" > 1/n for all i € [n] according to the
definition in Proposition 6.2; inequality @ follows because each u} < (1+¢/2)x} <
(14 ¢/2)OPT < (1 + &/2)m and ]lTul’.‘ = (1 + £/2)OPT, as well as the fact that &
is sufficiently small.

Finally, we choose 8 = /¢, T = [%log(l/e)l, and o such that oy = ﬁ
Substituting into (6.3) all of these parameters, along with the aforementioned inequal-
ities f,,(Yo) < 4OPT and VZO(%) < (2log(nm) + 4) - OPT, as well as f,, (u*) <
(1 4+ &)OPT from Proposition 4.5.a, we obtain that

E[fu(yr)] < (14 ¢)OPT + eOPT + 2¢0PT + &f,.(Yo)
wup/12n
e/12np

< (14 9¢)OPT.

+

(2log(nm) + 4)OPT

This finishes the proof of Theorem 6.6. O
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Appendix
A.1 Proof of Lemma 3.6

Lemma 3.6 We have Xy, Yk, Zx € Apox forallk =0,1,...,T.

Proof This is true at the beginning as Xg = Yo = x5 € Apox (see Fact 2.8) and
zyp = 0 € Apox. In fact, it suffices for us to show that forevery k > 1,y; = Zf:o y,f Z
for some scalars y,f satisfying Zl ykl =1and ykl > (0 foreach! =0, ..., k. If this is
true, we can prove the lemma by induction: at each iteration k > 1,

l. Xg = t2%—1 + (I — T)yr—1 must be in Apox because Yr_1 and Zx_; are and
7 € [0, 1],

2. Zj isin Apox by the definition that z; = argmin, . Abox {---},and

3. Yg is also in Apy because Y = Zé(:o y,le is a convex combination of the z;’s
and Apex 1S convex.

For the rest of the proof, we show that y; = Zf:o y,f z; for every k > 1 with coeffi-
cients 13

(I -0y, 1=0,... k-2
i 1 1 1 _ i
Ve = (nlak_lL _nakL)+T(l_nak_]L)v l=k—-1;
naiL’ l=k.
This is true at the base case k = 1 because y; = X1 + —MIIL(Zl -2y =
ﬁh +(1- ﬁ)zo. For the general k > 2, we have
Vi = X + (Zk — Zk—1)
nay L
=1Zk—1+ (1 = OYk—1 + (Zk — Zk—1)
nay L
k—2 1 1
=tz 1+ (1 — Lz —— 7 Zi — Zj_
Z—1+ (1 —1) ;yk_llJrnak—lLkl +nakL(k k—1)
= kf(l vz )+ 1 ) P ! z
- o Y14 nag—1L  nogL nag_1L k=l
Zy.
nay L k

Therefore, we obtain y; = Zf:o y,ﬁ z; as desired.

13 We wish to point out that this proof coincides with a lemma from the accelerated coordinate descent
theory of Fercoq and Richtdrik [17]. Their paper is about optimizing an objective function that is Lipschitz
smooth, and thus irrelevant to our work.
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It is now easy to check that under our definition of o (which satisfies oy > o1
and oy > g = ﬁ, we must have y,f > 0 for all k and /. Also,

Z Z(l—t) + 1 Py e ! -
Ve = Vi1 nay_1L nakL nog_1L noy L

1 1 1 1
= - 1— — 1-—
( 2 ( nak_1L> + ( <nozk_1L nakL> T < nOlk_lL)>

1
=1.
noy L

B.2 Proof of Proposition 4.5

Proposition 4.5 (a) f,,(u*) < (1 + £)OPT for u* &
() fu(x) = (1 —&)OPT forevery x > 0.

(c) Forany x > 0 satisfying f,,(x) < 20PT, we must have Ax > (1 — ¢)1.

(d) If x = 0 satisfies f(x) < (1 + 8)OPT for some § € [0, 1], then ﬁx is a

}+8 -approximate solution to the covering LP.

1+ ¢e/2)x*.

Proof (a) We have 17u* = (1 4+ £/2)OPT by the definition of OPT. Also, from the
feasibility constraint Ax* > 1 in the covering LP, we have Au™ — 1 > ¢/2 - 1,
and can compute f, (u*) as follows:

*Y . —&/2
fuu™) =p Zeﬁ(l—(Au D4 1Ty* < m ZeT + (1 +¢/2)0OPT
i J
< pum
(nm)?

(b) Suppose towards contradiction that £, (x) < (1—¢&)OPT. Since f,,(x) < OPT <

m, we must have that for every j € [m], it satisfies that ei (1=(4x))) < fux)/n <
m /. This further implies (Ax); > 1 — ¢ by the definition of w. In other words,
Ax > (1—¢)1. By the definition of OPT, we must then have 17 x > (1—¢)OPT,
finishing the proof that f,,(x) > 17x > (1 — ¢)OPT, giving a contradiction.

(c) Toshow Ax > (1 — &)1, we can assume that v = max (1 — (Ax);) > ¢ because
otherwise we are done. Under this definition, we have

+ (1 +&/2)OPT < (1 + ¢)OPT.

Ju(x) = peir = /«L((%)él)v/}3 > m(%f > 20PT,

contradicting to our assumption that f,,(x) < 20PT. Therefore, we must have
v < eg,thatis, Ax > (1 —¢)1.

(d) For any x satisfying f,,(x) < (1 +6)OPT < 20PT, owing to Proposition 4.5c,
we first have that x is approximately feasible, i.e., Ax > (1 — ¢)1. Next, because
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17x < fu(x) < (1 + 6)OPT, we know that x yields an objective 17x <
(1 +6)OPT. Letting x" = Lx we both have that x’ is feasible (i.e., Ax’ > 1),

and x’ has an objective ]lTx at most F2OPT.
O

C.3 Missing proofs for Sect. 5

In this section we prove Theorem 5.3. Because the proof structure is almost identical to
that of Theorem 3.4, we spend most of the discussions only pointing out the difference
rather than repeating the proofs. The following three lemmas are completely identical
to the ones in the packing LP case, so we restate them below:

Lemma C.1 (cf.Lemma 3.3) Each iteration of CovL P Solver"? can be implemented
to run in expected O (N /n) time.

Lemma C.2 (cf. Lemma 3.6) We have X, Vi, Z € Apox forallk =0,1,...,T.

Lemma C.3 (cf. Lemma 3.7) For every u € Apoy, it satisfies <nakéél), Zi_1 — u) <
2L - (" i —yO) + Slzee —uld - 312 — ull

For the gradient descent guarantee of Sect. 3.3, one can first note that Lemma 2.7

remains true: this can be verified by replacing V; f, (x)+1inits proof with 1-V; f,, (x).

For this reason, Lemma 3.9 (which is built on Lemma 2.7) also remains true. We state
it below:

Lemma C.4 (cf. Lemma 3.9) We have f, (X)) — fu(y\)) = 1V £, (60, xe —yL”) =
0.

Putting all together Denote by n,(j) e R” Zo the vector that is only non-zero at coor-

dinate i, and satisfies n = Vi fu(Xx) — é @ ¢ (—00, 0]. In other words, the full
gradient

V) = B[O, ..., nVi fu (), ..., 0] = Ei[nn\” + ngl]

can be (in expectation) decomposed 1nt0 the a large but non-positive component r;( D

(—00, 0]" and a small component ék € [—1, 17". Similar as Sect. 3.4, for any u €
Apox, We can use a basic convexity argument and the mirror descent lemma to compute
that

e (fu ) — fru @) < {0V fru(X), Xe — u)
= (o V (X)), Xk — Zi—1) + {0k V [ (%K), Zk—1 — u)

= (o V fuuX), Xk — Zi—1) + E; [(ﬂakn;(f), Zj—1 —u)+ <n0£k$k s Zk—1 — u)]
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1 —
L ﬂ(vfu(xk)s Vi1 — Xk)

+ E; [(nakn,(f), Zio1 — u) + (noyg” zp—y — u)] (C.1)
@ (I — 7)oy
< —(fu(Yk D = fuX)

+ E,’[ (mxkn,?), Zi—1 — M) +n OélzL <§'(Z) y](<1)>

1 i
¥ 3z~ — 51z~ ul}] (€2)

Above, @ is because X; = 121 + (1 — t)Yx—1, which implies that T (Xy — Zx_1) =
(1 —=7)(Yr—1 — Xx)- @ uses convexity and Lemma C.3. We can establish the following
lemma to upper bound the boxed term in (C.2). Its proof is in the same spirit to that
of Lemma 3.10, and is the only place that we require all vectors to reside in Apey.

Lemma C.5 (cf. Lemma 3.10) For every u € Apox,
(noun’, zioy — u) + n*afL - (67, xi — ) < 21na L - (fu(xe) — fu(yL).

Proof of Lemma C.5 Now there are three possibilities:

- If n(’) = 0, then we must have $(') Vi fu(Xx) € [—1, 1]. Lemma C.4 implies

(nan”, zi—r —u) + n2aL - (£ % — yi)

= 20} L (V £ ). X — i) < 20202 L - () — fu(y(")

- If n(') < 0 and Z(') < ”A (thus Z ) is not on the boundary of Apey), then we

precisely have Z,({) = Zk—1,i + HA ” , and accordingly y,(f) = Xk,i + LHA To =

Xk.i- In this case,

(noun’. zi—y — u)+ n*af L - (£, xi —Vl(:)>

L)

o) —10
<nag - Vi fu(Xe) - ||A I
o0

@ i
< noy - Vi f (%) - +n2a2L - (V fu (%), X — Y

|A:illoo
—yD) 4 n2g2 _y®
10nax L - (V fu(%), Xk — V) + naf L - (V fu(x), Xe — V")

@
< (20nax L + 2n2a,%L) (fu(Xe) — fu(y(l)

Above, @ follows from the fact that z;_;, u € Apox and therefore zx—1; > 0
and u; < 7w A ” by the definition of Apex, and u > 0; @ follows from the fact

that Xy and y(’) are only different at coordinate i, and é(’) —1 > V; fu(Xc)
(since 17 < 0); @ follows from the fact that yk = X; + LHA = ; and @ uses
Lemma C 4.
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~ Ifp) <0andz{) = ﬁ, then we have

(nakn,(j), Zi—1 — u) + nza,%L . (ééi), X — y,(f))

@ . . .
< (naxn’, ziet — 200+ 2@ L - (V £, i — Y

® . .

< (e V £, ), k1 — 2) + n2aR L - (V £, 00, X — Y
5 . 4
Z 02l L (V£ ), % — Y)Y+ n2af L (V£ (0, % — y )

@ .
< 422 - (fu(e) — fu(yi).

Above, @ is because u; < % = Z,((l)l and r;,((lz < 0, together with V; f, (Xx) <
S,:’l) and X ; < y,((lz, @uses V; f,(Xk) = 17,((’2 —-1< r],((': and Z,(f)l > Zp_1; @is
from our choice of y; which satisfies that z;_1 — Z,(j) = noy L(X; — y,(j)); and @
uses Lemma C.4.

Combining the three cases, and using the fact that f, (Xx) — f (y,(f)) > 0, we conclude
that

(nauny”, ziy — u) + n?ef L - (5", % — y;)
< Q0nax L + 4n%alL) - (fu (%) — fu(yP))
<2lna L - (fu() — fu(yi).

Above, the last inequality uses our choice of ok, which implies noy < nar = i <

A=

Plugging Lemma C.5 back to (C.2), we have

ar(fu(X) = fu@) < (e V fu(X), Xk — u)

l —_
2 UZ D% eyl = fux)

T
+E;|21nai L — (@) 1 iz — Lo 2
i kL (fuX) = fu (i) + Sz —ully = 511z — ully
@
< o fu(X) + (21naxL — o) fu(Ye—1)
; 1 1
+E| —2tne L ) + Sz —ully = Slze—ul} ] (©3)
Above, @ uses Lemma C.5; and @ is because we have chosen 7 to satisfy % =21nL.
Next, recall that we have picked oy so that 2InL — 1)ay = 21nL - o1 in

CovL P Solver"P. Telescoping (C.3) for k = 1,...,T and choosing u* = (1 +
£/2)x*, we have
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T
= fuu*) < 21 £(yo) — 2lnarL
k=1

ELf.(yr)] + 120 — u*|4 < —21narL - E[f,(yr)] + 750PT.

Here, the second inequality is due to f,(Yo) = fu (xSta'ty < 30PT from Fact 5.2,
and the fact that

lzo — u*13 = lu*|% = Z( D7 NAilloe < (14£/2) Z(X) “NAilloo
i=1

<101 + £/2)? Zx;“ < 120PT.
i=1

Finally, using the fact that 3"7_ oy = a7 - Y10 (1 = 517)" = 21narL(1 —
(1— ﬁ)T), we rearrange and obtain that

Zk Ok * 75 *
fu(yT)] = fu u”) + 21nO[TLOPT ( —(1- m) )fu(u )
75
+ 21mXTLOF’T.

)T

We choose T = [21nLlog(1/¢e)] so that —— i L =(1-— 21”L < ¢. Combining this
with the fact that f,, (u*) < (1 +¢)OPT (see Proposition 4.5a), we obtain

E[f.(yr)] < (1 4+ &)OPT + 3.6¢ - OPT < (1 4 4.65)OPT.

Therefore, we have finished proving Theorem 5.3. O

D.4 Missing proofs for Sect. 6

Proposition 6.4 [fz;_1 € Asimplex and Zx—1 > 0, the minimizer z = argmin_ Asimplox

{Vzk—l (2) + (de;, z)} for any scalar § € R and basis vector e; can be computed as
follows:

1. z < Zp_1.

2. 2, < 7 )

3. If17z > ZOPT/ 7 « 2O0PT
177

4. Return z.

Proof Let us denote by z the returned value of the described procedure, and g (u) o
Vzi_ () + (3¢, u). Since Agimplex is a convex body and g(-) is convex, to show

z = argmin, Asimp|ex{g(”)}’ it suffices for us to prove that for every u € Agimplex-
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(Vg(2), u—z) = 0. Since the gradient V g (z) can be written explicitly, this is equivalent
to

S(uj —zi) + Y _y_; log “(ug —z¢) 2 0.

2
Zk—1,¢

If the re-scaling in step 3 is not executed, then we have zy = z;_1 ¢ for every £ # i,
and z; = Zx—1; - e%; thus, the left-hand side is zero so the above inequality is true
for every u € Agjmplex-

Otherwise, we have 17z = 20PT’ and there exists some constant Z > 1 such that,
2¢ = Zk—1¢/Z forevery £ #i,and z; = Zx—1; - e~%/Z.In such a case, the left-hand
side equals to

(Ui —2i) - (8= 8) + Yf_y —log Z - (ug — z0).

It is clear at this moment that since log Z > 0 and 17u < 20PT' = 17z, the above
quantity is always non-negative, finishing the proof. O

Lemma 6.13 Denoting by y < 2arn, we have

* *

Ei[oulng”, zi 1 — )] < Vg, (—— )—E,-[VZI({,->(1':_—V)]+120PT~yak,3.

Proof Define w(x) - > i xilog(x;) — x; and accordingly, Vi(y) = w(y) —
(Vw(x), y—x)—w(x) =), yilog )yc—i + x; — y;. We first compute using the classical
analysis of mirror descent step as follows:

yor(ng, zi_1) + ang” , zx—y — u*)

= (1 + afng”, 2" - + (4 gz —2)

1+>

u .
2 (vu@ ) - vue). 2’ —m>+(1+3/)04k(” Oz -2

—( ( - ) —w(z )—(v (Zk—1) wo_, >>
= w1+y W (Zg—1 w k_1,1+y 1
- u* B (l) (l) u* B (l)
(w(1+y) w(z, ') — (Vw(z ), ey 2! >)
(w(Zk D —w@) = (Vw1 zir — Z}({i)))

+(1+)/)Olk<n]§),zk 1—21(())

= Vo (775) — Voo (T

*

u u*

1+y

)+ (1 + J/)Olk(nély), Zj—1 — ) Vi 1(Z(’)) i
D.1)
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Above, @ is because Z,(f)

= argmin ey A Va2 + (14 y)axng”, z)}, which
is equivalent to saying

Vi € Asimplexs (Va1 (@) + (1 + p)agng” u — 21y > 0
= Vu € Asimplexs (V@) — Vw(@zi—1) + (1 + y)augng?  u — 2"y > 0.

In particular we have ]lT”—*y = ]lT(HfM 20PT < 20PT’ and therefore

T +y € Asimplex- Substituting u = =T +y into the above inequality we get @.
Next, we upper bound the term in the box:

A+ g ziei — 20y = vy @)
(i)
) z;)
<A+ y)agnéii - (Zr—1,i — Z(')) - (Z](cl)l log e 1[ -+ Zp—1,i — Z]((l,)l)
— 1,1
@) 2
@ |Zk = Zj—1, il
< (I+ y)axnée - Zk-14 — 2\ ) — —
2 max{zk v Zk—1,i}
® IZk —zp_1,i]?
<A +py)agn€p; - (Zr—1,i — 0)) _ kL T
4z 1,
® 5 ) ,®
S A4+ py)zZe—ri - (agnde,i)” <22Zk_1,; - (xnd i) < Zr—1,i - youn|&,il
®
< Zk—1,i - yoxngg; +22x_1; - yoxnp = yox(n ,5)7 Zg—1) +2Zp—1,i - yagnp.

(D.2)

Above, @ uses the facts (i) a log?—, +b—a>0foranya,b > 0, (ii) Zx—1,; — Z,(c')

and & ; have the same sign, and (iii) é(ig, = 0 for every i’ # i; @ uses the inequality

2
2:&;—%. ® uses the fact that

Z,(Ci)i < ZZk_Li.M @ uses Cauchy-Shwarz: ab — b2/4 < a%. ® uses 1+ y)2 <2.®
uses |&,i| < 1and y = 2arn > 204n. @ uses &; > —p.
Next, we combine (D.1) and (D.2) to conclude that

that for every a, b > 0, we have alog% +b—a>

* *

) — Vzl(j) (

u

Olk( E,f'), Zf—1 — U > = Vzk,l(m

2751, - .
1+y)+ k—1,i * YoknB

Taking expectation on both sides with respect to i, and using the property that
17z;,_; < 30PT’ < 60PT, we obtain that

14 This is because, our parameter choices ensure that (1 + y)agn < 1/28, which further means —(1 +

y)aknéliig < 1/2. As aresult, we must have Z]((ij. <Zp_1,- 05

< 2zj_1,; (see the explicit definition of
the mirror step at Proposition 6.4).
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* *

u
e

u
1+y

E; [ak(n k(i), Zj—1 — u*)] < VZ,H( )] + 120PT - yoy B.

14

Lemma 6.14 For every i € [n], we have

(a) fu®e) = fulyy) = 0.and

(B) fux) — fuy) = 28 (=70, u).

Proof of Lemma 6.14 part (a) Since if i ¢ By is not a large index we have y,gi) = Xy
and the claim is trivial, we focus on i € By in the remaining proof. Recall that

y,((i) = Xy + Se; for some § > 0 defined in Algorithm 3, so we have

8

) B
Fu )= fa v = f Vbt eldT= f ({44 POk + 7€) = 1)d.

=0

Itis clear that (A.;, p(Xx + Te;)) decreases as t increases, and therefore it suffices to
prove that (A.;, p(Xx + 6e;)) > 1.

Suppose that the rows of A.; are sorted (for the simplicity of notation) by the
increasing order of A; ;. Now, by the definition of the algorithm (recall (6.1)), there
exists some j* € [m] satisfying that

Z Aj’,‘ ~pj(Xk) <148 and Z Aj,i -pj(Xk) >1+8.

Jj<Jj* J<j*
Next, by our choice of § which satisfies § = 5 Xj’i - = % for every j < j*, we have

for every j < j*:

A b

pi +8e) = pix) e i = pixi) e P2 = pix) - (1— B2,

and as a result,

(A, pOu+8€) = > Aji-pj(X+0e) > (1= B/2) Y Aji pj(x)
J<i* J=J*

=1 =p/0+p) =1
O

Proof of Lemma 6.14 part (b) Owing to part (a), for every coordinate i such that
ki > 0, we automatically have Su i) — fu (y,((’)) > 0 so the lemma is obvious.
Therefore, let us focus only on coordinates i such that 7jx ; < 0; these are necessarily
large indices i € B. Recall from Definition 6.11 that 7x; = (1 + B) — (XTp(Xk))i,
so we have

S A piO%) — (14 B) > 0.

@ Springer



Nearly linear-time packing and covering LP solvers 347

For the simplicity of description, suppose again that each i-th column is sorted in

non-decreasing order, thatis, Ay ; < --- < A, ;. The definition of j* can be simplified
as

Yj<jrAjipj) <1+ B and Y, . Aji-pj(x) =148
Let jb € [m] be the row such that
X< Aji-pjx) <1+ and Xi<p Aji-pix) = 1+ B

Note that such a j” must exist because Z;'?:] ;\Jj,l- - pj > 1+ B.Itis clear that
jb > j*, owing to the definition that Zj,- < Aj;foralli € [n], j € [m]. Defining

8 = % < §, the objective decrease is lower bounded as
Joii

8

. 5
fu(Xk)—fu(yl(f))=f_o(—vfu(xk+fei), ei)dt=/ (A, pOXk + 7€) — 1)dT

= =0

Sb
> / (A, pO + 7)) — 1)de

8b
= / -1+ Z Aji-piXe+1e) | dt
=0 J<it

I

8)
+ Z / ()Aj’i - pj (X + te;)dt

=it

I

where the inequality is because 8" < § and (A, p(X + 7€;)) > 1 forall T < § (see
the proof of part (a)).

Part I To lower bound I, we use the monotonicity of p;(-) and obtain that

ab
1:/ —1+ZAJ",'-pJ'(Xk+‘L'ej) drzﬁb
=0 b
J=J

-1+ Z Aji-pjO +8"e)

i<i’

However, our choice of 8 = 5 Xﬁ ; < 2’2’?_ - for all j < j” ensures that
P
Z Aji-pi +8%¢;) > Z Aji-pixe)-em
j<j® J<J’
> Aji-pi) - (1= B/2).
J=J°
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Therefore, we obtain that

§ b
I28 =1+ =B/ ) A pjw) | = 5 [ =14+ D Ajipix0 |,

i<i® i<i®

where the inequality is because (% — g) Yi<p Aji PiXe) = 4_(3& -(14+8) = %

whenever 8 < % (or equivalently, whenever ¢ < 1/9).
Now, suppose that ijjb Aji-piX) —(L+B)=>b-Ap ;- pp(Xk) for some
b € [0, 1]. Note that we can do so by the very definition of j b Then, we must have

1+ D A pi ) = =1+ Y A pi) + Ap e pp (%)
i<y’ j<i®
=—1+U0+B—U=b)Ap ;- ppX)+Ap ;- ppX)
=B+b-Ap ;- ppXe).

Therefore, we conclude that

8 8°
P2 (=1 D0 Aji i) | > 5 b Ap e pp (%)
JsJ’
up =
= 6~jb‘i -b- Ajb,i . pjb (Xk)
" ~
=~ |-+ + D A pjx)
6Ajbi . _:h
! J=J
=~ p+ Y B
—_ 12 1 Js J

i<i’

Above, the last inequality is because u;“ A i = (Z oo u*) < 2 by our definition of A.
Part I’ To lower bound /', consider every j > j” and the integral

s
f Aj,i 'pj(Xk—i-‘L'e,')d‘L’.
T

Note that whenever v < 2%,,- < 3 Xﬁl = &, we have that p;(x + Te;) >
pi(xX) e P2 > %pj(Xk). Therefore,
g zi\‘fj up 1
Aji-pj(Xe+te)dr > Aji-pj(Xe + te€;)dt > “Aji =P (%)
= =0 ZAj’i 2
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This implies a lower bound on I’:

up
I’>Z4A p](xk>>— D our- A i),
J>J’ i=j°
where again in the last inequality we have used u A (A v, u*) < 2 by our

~ Jo i =
definition of A.
Together Combining the lower bounds on I and I’, we obtain

\/

Fu ) = ) _1+1/_“’3 b [~ + YA pixe)

mB . ~i
=2 i),

E.5 Proof of Lemma 3.3: Efficient Implementation of PacL P Solver

In this section, we illustrate how to implement each iteration of PacL P Solver to run
in an expected O (N /n) time. We maintain the following quantities

Zy € R>0, azy € R>0, y]/c e R, ay}c e R™, Bi.1, Bko € Ry
throughout the algorithm, so as to ensure the following invariants are always satisfied

Az, = azy, (E.1)
Vi = Bi1-Zk + Bro Y, Ay = ayy. (E.2)

It is clear that when k = 0, letting az; = Az, y, = Yo, ay; = AYo, Br,1 = 0, and
Bi.» = 1, we can ensure that all the invariants are satisfied initially. We denote || A ;|0
the number of nonzeros elements in vector A.;. In each iterationk = 1,2, ..., T:

— The step Xy = tZ)—1 4+ (1 — T)Yyr—1 does not need to be implemented.

— The value V; f (Xi) requires the knowledge of p;(Xy) = eﬂ((Axk)f D for each Jj

such that A;; # 0. Accordingly, for each j, we need to know the value

(AXp)j = 1(AZx—1); + (1 — 1) (Ayr—1);
= (t+ (I —1)Bk_1,1)azx—1,; + (1 — T)Bi—128Y)_1 ;-

This can be computed in O (1) time for each j, and O(||A.;|p) time in total.
— Recall the step z; < argmin 5 Sz =z 13 + (nozkélfl), z)} can be written
as zy = Zy_1 + de; for some § € R that can be computed in O(1) time (see

Proposition 3.2). Observe also z; = zx_1+4e; yieldsyy = 721+ (1 —7)yx—1+
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nie" T due to Line 6 and Line 10 of Algorithm 1. Therefore, we perform two explicit
k

updates on z; and az; as

Zr < Zp—1 +0e;, azy < azy_; +35A;
and two implicit updates on Yy as

Bii=t+ (0 —=1)Br-1,1,Bko =0 —1)Br_1,2,
Br.1 1 1 . Br.1 1 1
Vi < Vo + 00 (<5 + kg ) V< avi +0da - (— 52 + )

It is not hard to verify that after these updates, Ay, = ay, and we have

Bi1-Zk + Beo Yy = Bii - (zi—1 + de;)
+B ase (Bt L]
k2 | Vit l Bro  noyL By

11
—Bii-zi i+ Bio- V. . Se- —_—
k1 - Zk—1 k.2 (yk—l ! <nakL Bk,Z))

=Bi1-Zk—1 +Br2 Y + oei
’ ’ noy L
(e (1= DBiory) - zecr + (1= D Ber2) -yo g + 2
’ ’ nay L

36,’
=121+ A = D)Ye—1 + —— = Vi,
nay L

so the invariant Yy = By1 - Zx + Br2 - y,’( also holds. In sum, after performing
updates on Az and ay}c in time O(||A.i|lo), we can ensure that the invariants in
(E.1) and (E.2) are satisfied at iteration k.

In sum, we only need O (]| A.;|p) time to perform the updates in PacL P Solver for
an iteration k if the coordinate i is selected. Therefore, each iteration of PacL P Solver
can be implemented to run in an expected O (E;[||A.i]lo]) = O(N/n) time.

F.6 Proof of Lemma 6.5: Efficient Implementation of CovL P Solver

In this section we illustrate how to implement each iteration of CovL P Solver to run
in an expected O (N /n) time. We maintain the following quantities

/ / /
7z, eRY, sz eRy, sumzg e Ry, az; eRY), vy, eR,
ay, € R™, By, Brae Ry

throughout the algorithm, so as to maintain the following invariants
2 = 2, /52, sumz; =17z}, Az, = az,/sz;, (El)

Yk = Br1 -2, + Bra - Yy, Ay = ay;. (F2)
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It is clear that when k = 0, letting Z|, = 2o, szx = 1, sumz; = 172, az} = Az,
Y, = Yo, ay, = Ayo, Bx,1 = 0, and By = 1, we can ensure that all the invariants
are satisfied initially.

We denote by || A.; || the number of nonzero elements in vector A.;. In each iteration
k=1,2,...,T:

— The step Xy = t2;—1 + (1 — 7)Yr—1 does not need to be implemented.

La—(Axp);

— The value p;(X;) = e* ) for each Jj only requires the knowledge of

(AXp)j = 1(AZr-1)j + (1 = T)(AYk-1);

/

az_y; /
=(t4+ (1 —1)Bk-1,1) ~ + (I = ©)Bi—128Y;_ ;-

This can be computed in O (1) time.

— The value V; f(X¢) requires the knowledge of p;(Xi) for each j € [m] such that
A;j # 0. Since we have ||A.;i]|o such j’s, we can compute V; f(X) in O(||A.;llo)
time. o

l

— Letting § = (1 + y)no&, ;, recall that the mirror step z; <« argmin, Asimplex

{Vzk—l (z) + (de;, z)} has a very simple form (see Proposition 6.4): first multiply
the i-th coordinate of z;_; by e~% and then, if the sum of all coordinates have
exceeded 20PT/, scale everything down so as to sum up to 20PT’. This can be
implemented as follows: setting §; = Z;ﬁl’i(e_‘S —1),

Z;{ < Z;c—l + d1¢€;, azj{ < az}ﬁl + 814,
. sumzy

SuUmzy < sumzy;_i + 81, SZy < SZ; - max {1, 520, 20PT }
These updates can be implemented to run in O(]|A.;||p) time, and they together
ensure that the invariants in (F.1) are satisfied at iteration k.

— Recall that the gradient step is of the form y; <— X 4 &7 - ; for some value §, > 0.

This value &, can be computed in O (]| A.; ||o) time, since each p; (Xi) can be com-
putedin O (1) time, and we can sort the rows of each column of A by preprocessing.

Since Yy = Xg + 82 - € = tZ)—1 + (1 — T)Yr—1 + 52€;, we can implement this
update by letting

Bii=g—+0—1)Bi_1,1,Br2=(0—1)Br_12

SZj—1
/ / ) Bi.161 8 / / . Br.161 8
Vi < Vi i (_ By + B, ) Wk < & + A (- By + By

It is not hard to verify that after these updates, ay;, = Ay, and we have

Bi1-Zy+ Bko Y, = B (ZL_I -I-3lei)

Bi.161 82
o (B )
=t /%) /%)

= B - Zj_ + Bra - (Vi1 + 82€i/By.2)
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=Bi1-Z_; + Bro - Y + e

T , /
(SZk (A =DBe11) e + (A= 1) Bio12) - Yiy + 826
-1

=721+ (1 —1T)Yr—1 + 28 =Yy,

so that the invariant y; = By1-Z; + By 2 Y, is also satisfied. In sum, after running
time O(||A.i]lo), we can ensure that the invariants in (F.2) are satisfied at iteration
k.

In sum, we only need O (|| A;||p) time to perform the updates in CovL P Solver for

an iteration k if the coordinate i is selected. Therefore, each iteration of CovL P Solver
can be implemented to run in an expected O (E;[||A.i|lo]) = O(N/n) time.
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