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Abstract Packing and covering linear programs (PC-LPs) form an important class
of linear programs (LPs) across computer science, operations research, and optimiza-
tion. Luby andNisan (in: STOC,ACMPress, NewYork, 1993) constructed an iterative
algorithm for approximately solving PC-LPs in nearly linear time, where the time
complexity scales nearly linearly in N , the number of nonzero entries of thematrix, and
polynomially in ε, the (multiplicative) approximation error. Unfortunately, existing
nearly linear-time algorithms (Plotkin et al. in Math Oper Res 20(2):257–301, 1995;
Bartal et al., in: Proceedings 38th annual symposium on foundations of computer sci-
ence, IEEE Computer Society, 1997; Young, in: 42nd annual IEEE symposium on
foundations of computer science (FOCS’01), IEEE Computer Society, 2001; Koufo-
giannakis and Young in Algorithmica 70:494–506, 2013; Young in Nearly linear-time
approximation schemes for mixed packing/covering and facility-location linear pro-
grams, 2014. arXiv:1407.3015; Allen-Zhu and Orecchia, in: SODA, 2015) for solving
PC-LPs require time at least proportional to ε−2. In this paper, we break this long-
standing barrier by designing a packing solver that runs in time ˜O(Nε−1) and covering
LP solver that runs in time ˜O(Nε−1.5). Our packing solver can be extended to run in
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time ˜O(Nε−1) for a class of well-behaved covering programs. In a follow-up work,
Wang et al. (in: ICALP, 2016) showed that all covering LPs can be converted into
well-behaved ones by a reduction that blows up the problem size only logarithmically.

Mathematics Subject Classification 90C05, Linear programming · 90C25, Convex
programming · 65K05, Mathematical programming methods · 49M20, Methods of
relaxation type

1 Introduction

A packing linear program (LP) takes the form max{cT x : Ax ≤ b} where c ∈ R
n≥0,

b ∈ R
m≥0, and A ∈ R

m×n
≥0 . A covering LP can be written as min{bT y : AT y ≥ c},

with the same requirements on A, b, and c. We denote by N the number of non-zero
elements in matrix A. We assume without loss of generality that the two LP programs
are in their standard forms:

Packing LP: max
x∈Rn≥0

{1T x : Ax ≤ 1}, (1.1)

Covering LP: min
y∈Rm≥0

{1T y : AT y ≥ 1}. (1.2)

The two programs are dual to each other, so we denote by OPT ≥ 0 their shared
optimum. We say x is a (1 − ε)-approximation for the packing LP if Ax ≤ 1 and
1T x ≥ (1 − ε)OPT, and y a (1 + ε)-approximation for the covering LP if AT y ≥ 1

and 1T y ≤ (1 + ε)OPT.
In this paper,we studyfirst-order iterativemethods for solving packing and covering

linear programs (PC-LPs) efficiently.1 Of course, it is possible to adopt the Interior
Point or Ellipsoid methods to obtain approximate solvers with a log(1/ε) dependence
on the number of iterations. However, the computational cost of such algorithms is
typically high, as each iteration requires solving a linear system, and thus is not suitable
for large-scale applications.

To address this issue, researchers have developed iterative approximate PC-LP
solvers that achieve a better dependence on the problem size (e.g., nearly linear in
N ) at the cost of having a poly(1/ε) dependence on the approximation parameter ε.
Such iterative solvers have been widely applied in approximation algorithms (e.g.,
MinSetCover [24], MaxSet, MaxDiCut, Max- k- CSP [32], bipartite matching),
probabilistic checkable proofs [32], zero-sum matrix games [29], scheduling [31],
graph embedding [31], flow controls [10,11], auction mechanisms [37], wireless sen-
sor networks [14], and many other areas. In addition, techniques developed in this
line of research have inspired important results on other fundamental algorithmic
problems, such as the design of fast algorithms for multi-commodity flow prob-
lems [9,18,19,25,31] and the equivalence between QIP and PSPACE [21].

1 Luby and Nisan, who originally studied iterative solvers for this class of problems [24], dubbed them
positive LPs. However, the class of LPs with non-negative constraint matrices is slightly larger, including
mixed-packing-and-covering LPs. For this reason, we prefer to stick to the PC-LP terminology.
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Nearly linear-time packing and covering LP solvers 309

Table 1 Comparisons among iterative approximate solvers for packing and covering LPs

Paper Running time Width
independent?

Nearly
linear-time?

[31] O(N × ρ2OPT2 logm
ε2

) No No

[7] O(N × ρOPT logm
ε2

) No No

[26,29] O(N × ρOPT logm
ε ) No No

[13] O(N ×
√
Kn logm

ε ) Yes No

[15,27]: packing LP ˜O(N × (n +
√
n

ε

)

) Yes No

Parallel solvers
[4,8,10,11,24,34,35]

O(N × log2 N log(1/ε)
ε2

) at best Yes Yes

[35] O((md + N ) × log N
ε2

) Yes Almost yes

[10,11] O(nm × log N
ε2

) Yes Almost yes

[36] O(N × log N
ε2

) Yes Yes

[23] O(N + (n + m) × log N
ε2

) Yes Yes

Theorem 3.4 packing LP O(N × log N log ε−1

ε ) Yes Yes

Theorem 5.3
well-behaved covering LP

O(N × log N log ε−1

ε ) Yes Yes

Theorem 6.6 covering LP O(N × log N log ε−1

ε1.5
) Yes Yes

The width ρ ∈ [1/OPT, ∞) is defined as the largest entry of the constraint matrix A. The parameter d is
the maximum number of constraints each variable is in; md may be larger than N

Previous iterative approximate solvers can be divided into two classes, width-
dependent and width-independent solvers (see also Table 1).
Width-dependent solvers 2 Based onmultiplicative weight update ideas (a.k.a. expo-
nentiated gradient updates), researchers have obtained solvers for PC-LPs with a
running time at least N multiplied with ρOPT ∈ [1,∞), where ρ is the width of the
program, i.e., the largest entry of matrix A. For instance, PC-LPs can be solved in

O(
Nρ2OPT2 logm

ε2
)-time [31], or O(

NρOPT logm
ε2

)-time using some more refined anal-
ysis [7]. These algorithms only require “oracle-access” to the matrix A. When A is
given explicitly like in this paper, the running time can be reduced to O(

NρOPT logm
ε

)

by deploying Nesterov’s accelerated gradient method [29], or Nemirovski’s mirror
prox method [26].

2 Most width-dependent solvers study the minmax problem minx≥0,1T x=1 maxy≥0,1T y=1 yT Ax,

whose optimal value equals 1/OPT. Their approximation guarantees are often written in terms of additive
error. We have translated their performances to multiplicative error for a clear comparison.
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310 Z. Allen-Zhu, L. Orecchia

Width-dependent algorithms are not polynomial time but only pseudo-polynomial
time.

Width-independent, but super linear-time solvers Researchers also tried to appro-
priately scale the matrix so as to avoid the width penalty in the above methods. For
instance, Bienstock and Iyengar [13] built on Nesterov’s method [29] and obtained
a running time O(ε−1N

√
Kn logm) where K is the maximum number of non-zeros

per row of A. This is O(ε−1Nn
√
logm) in the worst case. The results of [15,27]

improved this complexity (for packing LP only) to ˜O(ε−1N
√
n), at a cost of enduring

an ˜O(Nn)-time preprocessing stage.

Width-independent, nearly linear-time solversPerhaps themost desirable complex-
ity is a running time that is both independent of the width parameter ρ, and also nearly
linearly scales with N .3 This line of research was initiated by a seminal paper of Luby

and Nisan [24], who gave an algorithm running in O
( N log2 N

ε4

)

time with no depen-
dence on the width ρ. This is also the first nearly linear-time approximate solver for
PC-LPs, and also the first to run in parallel in nearly linear-work and polylogarithmic
depth.

The parallel algorithm of Luby and Nisan was extended by [4,8,10,33,35]. Most

notably, the algorithm of Wang et al. [33] runs in O(
log2 N log(1/ε)

ε2
) iterations, each

costing a matrix-vector multiplication that can be implemented in O(N ) total work.
The ideas of Luby andNisan also led to sequentialwidth-independent, nearly linear-

timePC-LP solvers [10,11,23,35,36].Most notably, the algorithm ofKoufogiannakis
and Young [23] runs in time O

(

N + log N
ε2

× (n + m)
)

.

Despite the amount of work in this area, the O(1/ε2) convergence rate was estab-
lished in 1997 [10,11] and has not been improved since then. On a separate note, Klein
and Young [22] showed that all Dantzig-Wolfe type algorithms have to suffer from a
O(1/ε2) convergence rate. This lack of progress constitutes a significant limitation,
as the ε−2-dependence (also known as the 1/

√
T convergence) on the approximation

parameter ε is particularly poor.

1.1 Our results

PackingLPWepresent an algorithm PacLPSolver that runs inO(
log(nm/ε) log(1/ε)

ε
N )

total time. This gives the first width-independent, and the first nearly linear-time solver
for packing LP with an ε−1 convergence (i.e., an 1/T convergence). In contrast, no
nearly linear-time algorithm has achieved any convergence rate faster than ε−2 before
our work.

Interestingly, the maximum (weighted) bipartite matching is just one instance of
a packing LP. As a consequence, our PacLPSolver algorithm finds an approximate
maximum bipartite matching in time ˜O(mε−1). This new matching algorithm, which
arises purely from convex-optimization arguments, matches the running time of the
best known combinatorial algorithm for maximum weighted bipartite matching [16].

3 Some of these solvers still have apolylog(ρ) dependence. Since each occurrence of log(ρ) can be replaced
with log(nm) after slightly modifying the matrix A, we have done so in Table 1 for a fair comparisons.
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Nearly linear-time packing and covering LP solvers 311

Covering LP A symmetric design of PacLPSolver gives rise to an algorithm
CovLPSolverwb with the same running time O(

log(nm/ε) log(1/ε)
ε

N ), but only solving
well-behaved covering LP instances. At a high level, we say an instance is well-
behaved if the constraint AT y ≥ 1 is “never redundant”: for instance, if the optimal
solution y∗ satisfiesC ·1 ≥ AT y∗ ≥ 1 for some constantC > 1 then the covering LP
is well-behaved. For the general covering LP without well-behavior assumptions, we
propose a different algorithm CovLPSolver that runs in time O(

log(nm/ε) log(1/ε)
ε1.5

N ).
Again, we emphasize that no nearly linear-time covering LP solver can achieve a
convergence rate faster than ε−2 (or equivalently O(1/

√
T )) before our work.

Remark After the first version of this paper appeared on arXiv in 2014, Wang,
Rao and Mahoney [34] showed all covering LPs can be converted into well-behaved
ones, by blowing up the problem size logarithmically. In other words, they obtained
a nearly linear-time covering LP solver with ε−1 convergence by a reduction to
CovLPSolverwb. Nevertheless, our CovLPSolver , being a direct method, may still
be of practical and theoretical interests.

1.2 Main challenge and our approach

Width-independence versus acceleration Previous solvers for PC-LPs are based
on standard techniques in non-smooth optimization. They first implicitly or explicitly
smoothen the objective, often by the entropy regularizer. Then, they minimize the
resulting convex objective either via variations of full-gradient methods, yielding par-
allel algorithms, or via variations of coordinate-gradient methods, yielding sequential
algorithms. Themain challenge in previous work is to show that the width dependence
can sometimes be completely removed for PC-LPs, if the underlying minimization
method is designed cleverly.

Of course, the slower the convergence rate is, the easier it is to design nearly linear-
time solvers. The ε−4-convergence solver of Awerbuch and Khandekar [8] and the
ε−3-convergence solver of [4] are arguably the simplest nearly linear-time solvers at
this point.

In this paper, we achieve the ε−1 convergence that is typical for accelerated gra-
dient descent over smoothened objectives [29], but without paying the width or any
additional super-logarithmic factors. The challenge in this approach is to preserve
the width-independence and the accelerated rate at the same time. We stress here
that our algorithm is not an instance of any known variant of accelerated gradient
descent.4 Moreover, the incorporation of width-independence and Nesterov’s acceler-
ation requires significant effort, as witnessed by the lack of progress on this problem
for the last 15 years.

Our high-level approach Our approach is based on an improved convex formaliza-
tion f (x) of the PC-LP objective, together with our linear-coupling framework for
designing efficient first-order methods [5] for minimizing f (x).

4 This can be verified by observing that our objective fμ(x), to be introduced later, is not globally Lipschitz
smooth, so that one cannot apply accelerated gradient descent directly.
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312 Z. Allen-Zhu, L. Orecchia

The improved formalization shows that our smoothened objective f (x) satisfies
either the classical condition for Lipschitz smoothness or a different condition based
on multiplicative change. This formalization also clarifies why width-independent
algorithms exist in the first place. See Lemma 2.7 and the related discussion for more
details.

The linear-coupling framework in our previous work [5] provides a different inter-
pretation of Nesterov’s acceleration for smooth optimization [28]. In a nutshell, this
linear-coupling framework allows us to construct accelerated algorithms by coupling
the executions of a gradient descent algorithm, yielding iterates {yk} and a mirror
descent step algorithm, with iterates {zk}. The name “linear coupling” stems from the
fact that, at iteration k+1, the gradient of the objective is queried at a point xk+1, which
is a linear combination of gradient andmirror steps, i.e., xk+1 = (1−τ)·zk+(1−τ)·yk .

In this paper, we apply linear coupling in a very non-trivial manner. We design
a gradient and a mirror descent step, each very specific to the underlying PC-LP
problem. We also perform a coupling step xk+1 = (1 − τ) · zk + (1 − τ) · yk , but
need to design a different analysis to preserve width independence. None of these
components has appeared in [5].

Arithmetic precision Throughout this paper, we assume exact arithmetic opera-
tions for presenting the cleanest proofs. If the updates are calculated within precision

1
poly(ε−1,n,m)

, or equivalently when word size O(log(ε−1+n+m)) is used, our results

still hold.5

Roadmap We relax the packing LP in Sect. 2, and provide our packing LP solver in
Sect. 3. We relax the covering LP in Sect. 4, and provide our covering LP solver in
the well-behaved case in Sect. 5. In Sect. 6, we provide our full covering LP solver.

2 Relaxation of the packing linear program

To solve packing LP, we minimize a relaxed version of the original LP, where the hard
constraint Ax ≤ 1 is regularized by entropy and replaced by an exponential penalty
function.

NotationsRecall that the packing LP in its standard form is maxx≥0{1T x : Ax ≤ 1}.
Let us denote by OPT the optimal value of this linear program, and x∗ any optimal
solution. We say that x is a (1 − ε)-approximation for the packing LP if Ax ≤ 1 and
1T x ≥ (1 − ε)OPT.

Throughout this paper, we use the indices i ∈ [n] to denote the columns of A,
and the indices j ∈ [m] to denote the rows of A. We let A:i be the i-th column

5 Due to space limitation, we quickly sketch why logarithmic word size suffices for our algorithms. On one
hand, one can prove in an iteration, if x is calculated with a small additive error 1/poly(1/ε, n,m), then the
objective f (x) may increase only by 1/poly(1/ε, n,m) in that iteration. The proof of this relies on the fact
that (1) one can assume without loss of generality all entries of A are no more than poly(1/ε, n,m) and
(2) our algorithms ensure f (x) < poly(1/ε, n,m) for all iterations with high probability, so even though
we are using the exponential functions, f (x) will not change additively by much. On the other hand, one
can similarly prove that each ∇i f (x) can be calculated within an additive error 1/poly(1/ε, n,m) in each
iteration. They together imply that the total error incurred by arithmetic operations can be made negligible.
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Nearly linear-time packing and covering LP solvers 313

vector of A, and A j : the j-th row vector of A. Given any vector x , we denote by

‖x‖A =
√

∑

i∈[n] x2i · ‖A:i‖∞ the A-norm of x . By simple scaling, we can assume

without loss of generality that 6

min
i∈[n]{‖A:i‖∞} = 1. (2.1)

We restrict the domain of x and the range of OPT as follows.

Fact 2.1 Define the bounding box Δbox
def= {x ∈ R

n : xi ∈ [

0, 1
‖A:i‖∞

]}. Under
assumption (2.1), we have OPT ∈ [1, n] and {x : x ≥ 0 ∧ Ax ≤ 1} ⊆ Δbox.

Proof Suppose that i∗ is the column that achieves the smallest infinite norm ‖A:i‖∞
over all columns. Letting x be such that xi = 1 at i = i∗ and xi = 0 at i �= i∗, we claim
that x is a feasible solution for the packing LP (1.1), simply because ‖A:i∗‖∞ = 1
according to (2.1). This feasible solution x yields an objective value 1T x = 1, proving
that OPT ≥ 1. On the other hand, for any solution x ≥ 0 satisfying Ax ≤ 1, we
must have xi ≤ 1

‖A:i‖∞ for each i . Therefore, 1T x ≤ ∑

i
1

‖A:i‖∞ ≤ n, proving that
OPT ≤ n.

The inclusion {x : x ≥ 0 ∧ Ax ≤ 1} ⊆ Δbox is obvious, since the constraints
x ≥ 0 and Ax ≤ 1 together imply xi ≤ 1

‖A:i‖∞ for every i ∈ [n]. �
This bounding-box constraint allows us to focus only on searching x in Δbox.

Our regularized objective We now introduce the smoothed objective fμ(x) that we
minimize over Δbox in order to approximately solve packing LP. At a high level, this
objective fμ(x) turns each row of the hard, non-smooth LP constraint Ax ≤ 1 into
an exponential penalty function so that we only need to require x ∈ Δbox throughout
the algorithm.

Formally, the packing LP can be written as the following minimization problem by
introducing the Lagrangian variable y ∈ R

m :

min
x∈Δbox

{− 1T x + max
y≥0

{yT Ax − 1T y}}. (2.2)

The problem can be now smoothened by introducing a concave regularizer over y ≥ 0.
We take this regularizer to be the generalized entropy H(y) = −∑m

j=1 y j log y j + y j
over the first orthant y ≥ 0, and minimize the following smoothened objective fμ(x)
over x ∈ Δbox:

fμ(x)
def= −1T x + max

y≥0
{yT Ax − 1T y + μ · H(y) }. (2.3)

Above,μ > 0 is some smoothing parameter to be chosen later. By explicitly computing
the maximization over y ≥ 0, fμ(x) can be rewritten as

6 If mini∈[n]{‖A:i‖∞} = 0 then the packing LP is unbounded so we are done. Otherwise, if
mini∈[n]{‖A:i‖∞} = v > 0 we scale all entries of A by 1/v, and scale OPT by v.
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Fact 2.2 fμ(x) = μ
∑m

j=1 e
1
μ

((Ax) j−1) − 1T x .

We study the minimization problem on fμ(x) over x ∈ Δbox. Intuitively fμ(x) cap-
tures the original packing LP (1.1) as follows. Firstly, since wewant to maximize 1T x ,
the negative term −1T x shows up in fμ(x). Secondly, if a packing constraint j ∈ [m]
is violated by ε, that is, (Ax) j ≥ 1+ ε, the exponential penalty in fμ(x) introduces a
penalty at least μeε/μ; this will be a large penalty if μ ≤ O(ε/ log(n/ε)).

Remark 2.3 Theuseof exponential function at least traces back to [31] in 1991 (implic-
itly) and to [20] in 1994 (explicitly). The way most previous results minimize fμ(x) is
by taking a logarithm g(x) = log

(∑m
j=1 e

((Ax) j−1)/μ
)

, explicitly or implicitly argu-

ing that g(x) is Lipschitz smooth (i.e., ‖∇2 f (x)‖ is bounded), and then taking gradient
descent. 7 Unfortunately, the Lipschitz smoothness parameter of g(x) depends on the
width of the LP, and thus first-order iterative approaches based on directly minimiz-
ing g(x) are mostly width-dependent [7,26,29,31]. One can also reduce the width
parameter of g(x) which yields super linear-time solvers [13,15,27].

In this paper, we directly perform gradient descent and mirror descent on fμ(x)—
without taking the logarithm. Note that traditional accelerated gradient methods [28,
29] should not be applied directly to minimize fμ because it is not Lipschitz smooth. 8

Our fμ(x) incurs a regularization error. The next proposition bounds this error
following a similar treatment in [4].

Proposition 2.4 Let μ = ε
4 log(nm/ε)

and recall x∗ is an optimal solution for packing
LP.

(a) fμ(u∗) ≤ −(1 − ε)OPT for u∗ def= (1 − ε/2)x∗ ∈ Δbox.
(b) fμ(x) ≥ −(1 + ε)OPT for every x ∈ Δbox.
(c) If x ∈ Δbox satisfies fμ(x) ≤ −(1− θ)OPT for some θ ∈ [0, 1], then 1

1+ε
x is a

1−θ
1+ε

-approximate solution to the packing LP.

Remark 2.5 Our box constraint x ∈ Δbox is almost redundant for minimizing fμ(x):
whenever x ≥ 0 and fμ(x) ≤ 0, one should automatically have xi ≤ 1+ε

‖A:i‖∞ . However,
this constraint shall be used to make sure that our updates are always inside Δbox.

Proof of Proposition 2.4 (a) We have 1T u∗ = (1 − ε/2)OPT by the definition of
OPT. from the feasibility Ax∗ ≤ 1 in the packingLP,we have Au∗−1 ≤ −ε/2·1,
and can compute fμ(u∗) as follows:

7 Note that some of the previous results (such as [7,31]) appear to directly minimize
∑m

j=1 e
((Ax) j−1)/μ

as opposed to its logarithm g(x). However, their per-iteration objective decrease is multiplicative, meaning
it is essentially equivalent to performing a single gradient-descent step on g(x) with additive objective
decrease.
8 The exact same fμ(x) also appeared in our previous work [4], albeit without this smoothing interpretation
and without the constraint x ∈ Δbox. The techniques in [4] only leads to ε−2 convergence (see Table 1).
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fμ(u∗) = μ
∑

j

e
1
μ

((Au∗) j−1) − 1T u∗

≤ μ
∑

j

e
−ε/2

μ − (1 − ε/2)OPT

≤ μm

(nm)2
− (1 − ε/2)OPT ≤ −(1 − ε)OPT.

(b) Suppose towards contradiction that fμ(x) < −(1 + ε)OPT. Since fμ(x) >

−1T x , it must satisfy that 1T x > (1+ε)OPT. Suppose that 1T x = (1+v)OPT
for some v > ε. By the definition of OPT, we must have that Ax < (1 + v)1 is
broken, and therefore there exists some j ∈ [m] satisfying that (Ax) j ≥ 1 + v.
In such a case, the objective

fμ(x) ≥ μev/μ − (1 + v)OPT = ε

4 log(nm/ε)

(

(nm

ε

)4
)v/ε

− (1 + v)OPT

≥
(

(

(nm

ε

)2
)v/ε

− (1 + v)

)

OPT > 0

giving a contradiction to the assumption that fμ(x) < 0.
(c) Note that x satisfies fμ(x) ≤ −(1 − δ)OPT ≤ 0, and we first show Ax ≤

(1 + ε)1. Let us assume that v = max j ((Ax) j − 1) ≥ 0 because otherwise we
will have Ax ≤ 1. Under this definition, we have Ax ≤ (1 + v)1 and therefore
1T x ≤ (1 + v)OPT by the definition of OPT. We compute fμ(x) as follows.

fμ(x) ≥ μe
v
μ − (1 + v)OPT ≥ μ

(

(nm

ε

)4
)v/ε

− (1 + v)n

= ε

4 log(nm/ε)

(

(nm

ε

)4
)v/ε

− (1 + v)n.

The above quantity is positivewhenever v ≥ ε, and therefore, to satisfy fμ(x) ≤ 0
we must have v ≤ ε, which is equivalent to Ax ≤ (1 + ε)1. Next, because
−1T x ≤ fμ(x) ≤ −(1 − δ)OPT, we know 1T x ≥ (1 − δ)OPT. Letting
x ′ = 1

1+ε
x , we both have that x ′ is feasible (i.e., Ax ′ ≤ 1), and x ′ has an

objective 1T x ′ at least as large as 1−δ
1+ε

OPT.
�

Some non-standard smoothness properties The gradient and Hessian of fμ(x) can
be written in the following closed forms:

Fact 2.6 ∇ fμ(x) = AT p(x)−1 and∇2 fμ(x) = 1
μ
AT diag{p(x)}A, where p j (x)

def=
e

1
μ

((Ax) j−1).

By staring at these closed forms, we note that fμ(x) is not Lipschitz-smooth: for
instance, each ∇2

i i fμ(x) can go to infinity so the spectral norm of ∇2 fμ(x) is
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316 Z. Allen-Zhu, L. Orecchia

unbounded. However, the non-negativity of A guarantees that whenever ∇2
i i fμ(x)

is large for some coordinate i , the corresponding entry of the gradient ∇i fμ(x) must
also be large. This still allows us to take a larger step in direction ei than traditionally
allowed by coordinate descent.

The above intuition is formalized in the next lemma, whose proof is by simple
manipulation of Hessian. The first half of the lemma is the same as the traditional coor-
dinate Lipschitz-smoothness property, but holds only conditionally; the second half is
a salient characteristic of thiswork and requires the non-negativity of A. These smooth-
ness properties will be crucial in applying gradient descent arguments in Sect. 3.3, and
are the main motivation for us to adopt the ‖ · ‖A norm for our proposed algorithms.

Lemma 2.7 Let L
def= 4

μ
. Then, for every x ≥ 0, every i ∈ [n], and every λ ∈

[− 1
L‖A:i‖∞ , 1

L‖A:i‖∞
]

:

(a) If |∇i fμ(x)| ≤ 1, then
∣

∣∇i fμ(x + λei ) − ∇i fμ(x)
∣

∣ ≤ L‖A:i‖∞ · |λ|.
(b) If ∇i fμ(x) ≥ 1, then ∇i fμ(x + λei ) ≥

(

1 − ‖A:i‖∞L
2 |λ|

)

∇i fμ(x).

Proof of Lemma 2.7 Using the fact that ∇i fμ(x) > −1 for all x, we have:

∣

∣

∣ log
∇i fμ(x + λei ) + 1

∇i fμ(x) + 1

∣

∣

∣

①=
∣

∣

∣

∫ λ

0

∇2
i i fμ(x + νei )

∇i fμ(x + νei ) + 1
dν

∣

∣

∣

②= 1

μ

∣

∣

∣

∫ λ

0

(AT diag{p(x + νei )}A)i i

(AT p(x + νei ))i
dν

∣

∣

∣

③≤ ‖A:i‖∞
μ

|λ| ④= ‖A:i‖∞L

4
|λ|.

Above, ① holds because
∫ λ

0 g′(ν)dν = g(λ) − g(0) where g(ν) = log(∇i fμ(x +
νei ) + 1); ② holds according to Fact 2.6; ③ is because the numerator is

∑

j A
2
j,i p j

while the denominator is
∑

j A j,i p j ; ④ holds because L = 4
μ
. This immediately

implies

e− ‖A:i ‖∞L
4 |λ| ≤ ∇i fμ(x + λei ) + 1

∇i fμ(x) + 1
≤ e

‖A:i ‖∞L
4 |λ|.

Our assumption on λ implies ‖A:i‖∞L
4 |λ| ≤ 1

4 , so that we can use the approximation
x ≤ ex − 1 ≤ 1.2x over x ∈ [− 1

4 ,
1
4 ]. This yields the simpler bound:

−‖A:i‖∞L

4
|λ| ≤ ∇i fμ(x + λei ) − ∇i fμ(x)

∇i fμ(x) + 1
≤ 1.2

‖A:i‖∞L

4
|λ|.

(a) Assuming that ∇i fμ(x) ∈ (−1, 1], we have:
∣

∣

∣∇i fμ(x + λei ) − ∇i fμ(x)
∣

∣

∣ ≤ 2.4 · ‖A:i‖∞L

4
|λ| ≤ ‖A:i‖∞L|λ|.
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(b) Assuming ∇i fμ(x) ≥ 1, we have

∇i fμ(x + λei ) ≥ ∇i fμ(x) − ‖A:i‖∞L

4
|λ| (∇i fμ(x) + 1

)

≥
(

1 − ‖A:i‖∞L

2
|λ|
)

∇i fμ(x).

�
Initialization Iterative methods require a starting point, and we use the following one

Fact 2.8 Let xstarti
def= 1−ε/2

n‖A:i‖∞ for each i ∈ [n]. Then, xstart ∈ Δbox and fμ(xstart) ≤
− 1−ε

n .

Proof Using the fact that Axstart − 1 ≤ −ε/2 · 1, we compute fμ(xstart) as follows:

fμ(xstart) = μ
∑

j

e
1
μ

((Axstart) j−1) − 1T xstart ≤ μ
∑

j

e
−ε/2

μ − 1 − ε/2

n

≤ μm

(nm)2
− 1 − ε/2

n
≤ −1 − ε

n
.

Above, we have used 1T xstart ≥ xstarti = 1−ε/2
n , where i is the column s.t. ‖A:i‖∞ =

1. �

3 Our packing LP solver

Recall traditional (accelerated or not) gradient descent [28,29] or coordinate
descent [6,17,30] should not be applied directly to minimize fμ, because fμ is not
Lipschitz-smooth.

Our proposed algorithm PacLPSolver starts with some initial vector x0 = y0 =
xstart (see Fact 2.8) and z0 = 0, and is divided into T iterations. In each iteration k, it
computes a weighted midpoint xk ← τzk−1 + (1 − τ)yk−1 for some parameter τ ∈
(0, 1). This step is analogous to that in traditional accelerated coordinate descent [6,
17,30]. We then compute yk and zk as follows.

We select i ∈ [n] uniformly at random. Let ξ
(i)
k = (0, . . . , 0,Tp(v), 0, . . . , 0) be

the vector that is only non-zero at coordinate i , where v = ∇i fμ(xk) ∈ [−1,∞),

and T
p(v) is the thresholding function T

p(v)
def= min{v, 1}. We refer to ξ

(i)
k as the

truncated gradient. 9 Next,

– Perform a mirror (descent) step zk ← z(i)
k

def= argminz∈Δbox

{ 1
2‖z − zk−1‖2A +

〈nαkξ
(i)
k , z〉} for some parameter αk � 1/n to be chosen later.

9 A similar gradient truncation was developed in our prior work [4], but for a different purpose (to ensure
parallelism) and not applied to coordinate gradient. The truncation idea of this paper also inspired later
works in matrix scaling [2] and in SDP [1].
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Algorithm 1 PacLPSolver(A, xstart, ε)

Input: A ∈ R
m×n
≥0 , xstart ∈ Δbox, ε ∈ (0, 1/30].

Output: x ∈ Δbox . � recall Δbox
def= {x ∈ R

n : xi ∈ [0, 1
‖A:i ‖∞

]}
1: μ ← ε

4 log(nm/ε)
, L ← 4

μ , τ ← 1
3·nL and α0 ← 1

nL . � parameters

2: T ← �3nL log(1/ε)� = O(n · log(nm/ε)·log(1/ε)
ε ). � number of iterations

3: x0 = y0 ← xstart, z0 ← 0.
4: for k ← 1 to T do
5: αk ← 1

1−τ
αk−1

6: xk ← τzk−1 + (1 − τ)yk−1.
7: Randomly select i ∈ [n] uniformly at random.

8: Define vector ξ
(i)
k to be all-zero except at coordinate i , where ξ

(i)
k,i = min{1,∇i fμ(xk )}.

9: zk ← z(i)
k

def= argminz∈Δbox

{ 1
2 ‖z − zk−1‖2A + 〈nαkξ

(i)
k , z〉}. � See Proposition 3.2

10: yk ← y(i)
k

def= xk + 1
nαk L

(z(i)
k − zk−1).

11: end for
12: return yT .

– Perform a gradient (descent) step yk ← y(i)
k

def= xk + 1
nαk L

(z(i)
k − zk−1).

This finishes the description of our PacLPSolver .

Remark 3.1 We use the superscript (i) on ξ
(i)
k , y(i)

k and z(i)
k to emphasize that the value

depends on the choice of i .We use generic parameters τ, αk , T in the above description
and their precise values are presented in Algorithm 1.

Our update on yk is a “gradient descent step” because we shall prove that it strictly
decreases the objective (i.e., fμ(xk) − fμ(y(i)

k ) ≥ 0). Our update on zk is a “mirror
descent step” because we shall apply standard mirror descent analysis [12] to it. We
explicitly describe how to implement the mirror step (its proof is straightforward by
computing the gradient):

Proposition 3.2 If Δbox = {x ∈ R
n : xi ∈ [0, C

‖A:i‖∞
]} for some constant C > 0,

the minimizer z = argminz∈Δbox

{ 1
2‖z − zk−1‖2A + 〈δei , z〉

}

for any δ ∈ R and basis
vector ei can be computed as follows:

1. z ← zk−1.
2. zi ← zi − δ/‖A:i‖∞.
3. If zi < 0, then zi ← 0; if zi > C/‖A:i‖∞, zi ← C/‖A:i‖∞.
4. Return z.

We also point out that

Lemma 3.3 Each iteration of PacLPSolver can be implemented to run in expected
O(N/n) time. The total expected running time is O(T N/n).

Lemma 3.3 is not hard to prove, but anyways included in “Appendix E.5”. It follows
from standard implementation tricks which compute xk and yk only implicitly: that is
to express xk and yk as linear combinations of two less-frequently-updated vectors.
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3.1 Convergence statement

In this section, we focus on proving the following main theorem.

Theorem 3.4 PacLPSolver(A, xstart, ε) outputs some yT satisfying

E[ fμ(yT )] ≤ −(1 − 3ε)OPT.

It is straightforward to use Markov’s bound to turn Theorem 3.4 into a probabilistic
one

Corollary 3.5 With probability at least 2/3, the output yT = PacLPSolver
(A, xstart, ε) satisfies that yT

1+ε
is a (1−O(ε)) approximate solution to the packing

LP program. The expected running time is O(
log(nm/ε) log(1/ε)

ε
N ).

Proof of Corollary 3.5 Since for every x ∈ Δbox it satisfies fμ(x) ≥ −(1 + ε)OPT
according to Proposition 2.4.b, we obtain that fμ(yT ) + (1 + ε)OPT is a random
variable that is non-negative, whose expectation E[ fμ(yT ) + (1 + ε)OPT] ≤ 4ε
according to Theorem 3.4. By Markov bound, with at least probability 2/3, we obtain
some yT satisfying fμ(yT ) ≤ −(1−11ε)OPT, which yields a (1−O(ε)) approximate
solution to packing LP according to Proposition 2.4.c. The running time follows from
Lemma 3.3. �

Before we prove prove Theorem 3.4 in subsequent subsections, let us first point out
that our iterates xk, yk, zk never leave the bounding box Δbox:

Lemma 3.6 We have xk, yk, zk ∈ Δbox for all k = 0, 1, . . . , T .

(The proof of Lemma 3.6 is included in “Appendix A.1”, and the main technique
already appeared in randomized coordinate descent [17].)

3.2 Step 1: mirror descent guarantee

Following almost classical analysis of mirror descent (cf. textbook [12]), our update
z(i)
k = argminz∈Δbox

{ 1
2‖z − zk−1‖2A + 〈nαkξ

(i)
k , z〉} satisfies

Lemma 3.7 (mirror descent) For every u ∈ Δbox, it satisfies

〈

nαkξ
(i)
k , zk−1 − u

〉 ≤ n2α2
k L · 〈ξ (i)

k , xk − y(i)
k

〉+ 1

2
‖zk−1 − u‖2A − 1

2
‖z(i)

k − u‖2A.

Proof Denoting by Va(b) = 1
2‖b − a‖2A as a function of b ∈ Δbox parameterized

at a ∈ Δbox, we have ∇i Va(b) = ‖A:i‖∞ · (ai − bi ). In the optimization language,
Va(b) is the Bregman divergence of the ‖·‖2A regularizer [12].We derive the following
sequence of inequalities:

〈

nαkξ
(i)
k , zk−1 − u

〉 = 〈nαkξ
(i)
k , zk−1 − z(i)

k

〉+ 〈nαkξ
(i)
k , z(i)

k − u
〉

①≤ 〈nαkξ
(i)
k , zk−1 − z(i)

k

〉+ 〈− ∇Vzk−1(z
(i)
k ), z(i)

k − u
〉
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②= 〈nαkξ
(i)
k , zk−1 − z(i)

k

〉− 1

2
‖zk−1 − z(i)

k ‖2A + 1

2
‖zk−1 − u‖2A

− 1

2
‖z(i)

k − u‖2A
③= n2α2

k L

(

〈

ξ
(i)
k , xk − yk

〉− L

2
‖xk − yk‖2A

)

+ 1

2
‖zk−1 − u‖2A

− 1

2
‖z(i)

k − u‖2A
≤ n2α2

k L · 〈ξ (i)
k , xk − yk

〉+ 1

2
‖zk−1 − u‖2A − 1

2
‖z(i)

k − u‖2A.

Above, ① is due to the minimality of z(i)
k = argminz∈Δbox

{

Vzk−1(z) + 〈nαkξ
(i)
k , z

〉}

,

which implies that
〈∇Vzk−1(z

(i)
k ) + nαξ

(i)
k , u − z(i)

k

〉 ≥ 0 for all u ∈ Δbox. Equality ②
can be checked for every coordinate � ∈ [n] as follows:

−∇�Vzk−1(z
(i)
k ) · (z(i)

k,� − u�) = ‖A:i‖∞(zk−1,� − z(i)
k,�) · (z(i)

k,� − u�)

= ‖A:i‖∞
(

−1

2
(zk−1,� − z(i)

k,�)
2 + 1

2
(u� − zk−1,�)

2

−1

2
(z(i)

k,� − u�)
2
)

.

③ is by our choice of yk which satisfies that zk−1 − z(i)
k = nαk L(xk − y(i)

k ). �
In addition, as a simple corollary of Proposition 3.2, we have the following fact

Fact 3.8 |z(i)
k,i−zk−1,i | ≤ nαk |ξ (i)

k,i |
‖A:i‖∞ and |y(i)

k,i−xk,i | = 1
nαk L

|z(i)
k,i−zk−1,i | ≤ |ξ (k)

k,i |
L‖A:i‖∞ ≤

1
L‖A:i‖∞ . If ξ (i)

k,i ≥ 0, then z(i)
k,i ≤ zk−1,i and y

(i)
k,i ≤ xk,i ; if ξ

(i)
k,i ≤ 0, then z(i)

k,i ≥ zk−1,i

and y(i)
k,i ≥ xk,i .

3.3 Step 2: gradient descent guarantee

We call our update y(i)
k ← xk + 1

nαk L
(z(i)

k −zk−1) a gradient descent step, because the

following lemma guarantees fμ(y(i)
k ) ≤ fμ(xk), that is, the objective only decreases;

moreover, the objective decreases at least by 1
2 〈∇ fμ(xk), xk − y(i)

k 〉.
Lemma 3.9 (gradient descent)Wehave fμ(xk)− fμ(y(i)

k ) ≥ 1
2 〈∇ fμ(xk), xk−y(i)

k 〉 ≥
0.

This Lemma 3.9, which is characteristic of the PC-LP setting, is strong in the
following sense. Even though the update y(i)

k only depends on the truncated gradient

ξ
(i)
k , the progress we make is a function of the true gradient ∇i fμ(xk), including
the large component that was discarded. This is possible because the smoothness
guarantee of Lemma 2.7.b allows us to take a long coordinate step even though fμ(x)
is not Lipschitz-smooth.
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Proof of Lemma 3.9 Using Fact 3.8, we write y(i)
k = xk +sλei for some s ∈ {−1,+1}

and step length λ ∈ [0, 1
L‖A:i‖∞

]

. We first focus on the case ∇i fμ(xk) ∈ [−1, 1] so
ξ

(i)
k,i = ∇i fμ(xk).

fμ(xk) − fμ(y(i)
k ) = fμ(xk) − fμ(xk + sλei ) = −s

∫ λ

0

(∇i fμ(xk + sχei )
)

dχ

①≥ s
∫ λ

0

(−∇i fμ(xk) − L‖A:i‖∞ · sχ) dχ = −∇i fμ(xk) · sλ − L‖A:i‖∞
2

· λ2

②≥ −∇i fμ(xk) · sλ − L‖A:i‖∞
2

· λ · |ξ (k)
k,i |

L‖A:i‖∞
③= −1

2
〈∇ fμ(xk), y

(i)
k − xk〉.

Above, ① uses Lemma 2.7.a, ② uses Fact 3.8, and ③ uses |ξ (k)
k,i | = −s∇i fμ(xk) (see

also Fact 3.8). Next, we turn to the case of∇i fμ(xk) > 1. In this case, we have s = −1
and

fμ(xk) − fμ(y(i)
k ) = fμ(xk) − fμ(xk − λei ) =

∫ λ

0
∇i fμ(xk − χei )dχ

①≥
∫ λ

0

(

1 − ‖A:i‖∞L

2
χ

)

∇i fμ(x)dχ

②≥
∫ λ

0

1

2
∇i fμ(x)dχ = 1

2
〈∇ fμ(xk), xk − y(i)

k 〉.

Above, ① uses Lemma 2.7.b and ② uses χ ≤ λ ≤ 1
L‖A:i‖∞ . Finally, we have

〈∇ fμ(xk), xk − y(i)
k 〉 ≥ 0 because ∇i fμ(xk) and xk,i − y(i)

k,i have the same sign,

and xk,� = y(i)
k,� for � �= i .

3.4 Step 3: putting all together

We denote by η
(i)
k ∈ R

n≥0 the vector that is only non-zero at coordinate i , and satisfies

η
(i)
k,i = ∇i fμ(xk) − ξ

(i)
k,i ∈ [0,∞). In other words, the full gradient

∇ fμ(xk) = Ei [(0, . . . , n∇i fμ(xk), . . . , 0)] = Ei [nη
(i)
k + nξ

(i)
k ]

can be (in expectation) decomposed into the a large non-negative component η
(i)
k ∈

[0,∞)n and a truncated component ξ (i)
k ∈ [−1, 1]n . Recall that η(i)

k did not contribute
to the descent steps (see Line 9 of PacLPSolver ). Now, for any u ∈ Δbox, we can
use a basic convexity argument and the mirror descent lemma to compute that

αk( fμ(xk) − fμ(u)) ≤ 〈αk∇ fμ(xk), xk − u
〉

= 〈αk∇ fμ(xk), xk − zk−1
〉+ 〈αk∇ fμ(xk), zk−1 − u

〉
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= 〈αk∇ fμ(xk), xk − zk−1
〉+ Ei

[

〈

nαkη
(i)
k , zk−1 − u

〉+ 〈nαkξ
(i)
k , zk−1 − u

〉

]

①= (1 − τ)αk

τ

〈∇ fμ(xk), yk−1 − xk
〉

+ Ei

[

〈

nαkη
(i)
k , zk−1 − u

〉+ 〈nαkξ
(i)
k , zk−1 − u

〉

]

(3.1)

②≤ (1 − τ)αk

τ
( fμ(yk−1) − fμ(xk))

+ Ei

[

〈

nαkη
(i)
k , zk−1 − u

〉+ n2α2
k L · 〈ξ (i)

k , xk − y(i)
k

〉

+ 1

2
‖zk−1 − u‖2A − 1

2
‖z(i)

k − u‖2A
]

(3.2)

Above, ① is because xk = τzk−1 + (1 − τ)yk−1, which implies that τ(xk − zk−1) =
(1 − τ)(yk−1 − xk). ② uses convexity and Lemma 3.7. This above computation is
motivated by [5], and as we shall see below, it allows one to linearly couple gradient
and mirror steps.

Intuitively, the first term in the box of (3.2) is the loss introduced by the large
gradient η

(i)
k . This part was truncated so did not contribute to the mirror step. The

second term in the box is the loss introduced by mirror descent on the small gradient
ξ

(i)
k in Lemma 3.7.
Now comes an important observation. As shown by Lemma 3.10 below, the perfor-

mance of the gradient step—that is, the objective decrease of fμ(xk) − fμ(y(i)
k )—is

at least proportional to the total loss incurred in the box. Intuitively, this means that
the progress in the gradient step is so large that it outweighs not only the loss from
mirror descent (as is typical in accelerated gradient analyses [5,29]) but also the loss
term introduced by η

(i)
k .

Lemma 3.10 (gradient descent total guarantee) For every u ≥ 0,

〈

nαkη
(i)
k , zk−1 − u

〉+ n2α2
k L · 〈ξ (i)

k , xk − y(i)
k

〉 ≤ 3nαk L · ( fμ(xk) − fμ(y(i)
k )).

The proof of Lemma 3.10 is a careful case analysis and several simple applications of
Lemma 3.9. We remark that to properly upper bound 〈nαkη

(i)
k , zk−1 − u〉, one needs

to have some good upper bound the coordinates of zk−1. This is exactly the place we
need our redundant constraint which ensures zk−1,i ≤ 1

‖A:i‖∞ (see Remark 2.5).

Proof of Lemma 3.10 There are three possibilities:

– If η
(i)
k,i = 0, then we must have ξ

(i)
k,i = ∇i fμ(xk) ∈ [−1, 1]. Lemma 3.9 implies

〈

nαkη
(i)
k , zk−1 − u

〉+ n2α2
k L · 〈ξ (i)

k , xk − y(i)
k

〉

= n2α2
k L · 〈∇ fμ(xk), xk − y(i)

k

〉 ≤ 2n2α2
k L · ( fμ(xk) − fμ(y(i)

k ))
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– If η
(i)
k,i > 0 and z(i)

k,i > 0, then we precisely have z(i)
k,i = zk−1,i − nαk‖A:i‖∞ (see

Proposition 3.2), and accordingly y(i)
k,i = xk,i − 1

L‖A:i‖∞ < xk,i . In this case,

〈

nαkη
(i)
k , zk−1 − u

〉+ n2α2
k L · 〈ξ (i)

k , xk − y(i)
k

〉

①≤ nαk · ∇i fμ(xk) · 1

‖A:i‖∞
+ n2α2

k L · 〈ξ (i)
k , xk − y(i)

k

〉

②
< nαk · ∇i fμ(xk) · 1

‖A:i‖∞
+ n2α2

k L · 〈∇ fμ(xk), xk − y(i)
k

〉

③= nαk L · 〈∇ fμ(xk), xk − y(i)
k

〉+ n2α2
k L · 〈∇ fμ(xk), xk − y(i)

k

〉

④≤ (2nαk L + 2n2α2
k L
) · ( fμ(xk) − fμ(y(i)

k )).

Above, ① follows from the fact that zk−1 ∈ Δbox and therefore zk−1,i ≤ 1
‖A:i‖∞

by the definition of Δbox, and u ≥ 0; ② follows from the fact that xk and y(i)
k

are only different at coordinate i , and ξ
(i)
k,i = 1 < ∇i fμ(xk) (since η

(i)
k,i > 0); ③

follows from the fact that y(i)
k = xk − ei

L‖A:i‖∞ ; and ④ uses Lemma 3.9.

– If η
(i)
k,i > 0 and z(i)

k,i = 0, then we have

〈

nαkη
(i)
k , zk−1 − u

〉+ n2α2
k L · 〈ξ (i)

k , xk − y(i)
k

〉

①≤ (nαk∇i fμ(xk) · zk−1,i
)+ n2α2

k L · 〈∇ fμ(xk), xk − y(i)
k

〉

②= 〈nαk∇ fμ(xk), zk−1 − z(i)
k

〉+ n2α2
k L · 〈∇ fμ(xk), xk − y(i)

k

〉

③= n2α2
k L · 〈∇ fμ(xk), xk − y(i)

k

〉+ n2α2
k L · 〈∇ fμ(xk), xk − y(i)

k

〉

④≤ 4n2α2
k L · ( fμ(xk) − fμ(y(i)

k )).

Above, ① is because u ≥ 0, ∇i fμ(xk) = η
(i)
k,i + 1 > η

(i)
k,i and ∇i fμ(xk) > ξ

(i)
k,i ; ②

uses the assumption that z(i)
k,i = 0 and the fact that zk−1,� = z(i)

k,� for every � �= i ;

③ is from our choice of yk which satisfies that zk−1 −z(i)
k = nαk L(xk −y(i)

k ); and
④ uses Lemma 3.9.

Combining the three cases, and using the fact that fμ(xk)− fμ(y(i)
k ) ≥ 0, we conclude

that

〈

nαkη
(i)
k , zk−1 − u

〉+ n2α2
k L · 〈ξ (i)

k , xk − y(i)
k

〉

≤ (2nαk L + 4n2α2
k L) · ( fμ(xk) − fμ(y(i)

k ))

≤ 3nαk L · ( fμ(xk) − fμ(y(i)
k )).

Above, the last inequality uses our choice of αk , which implies nαk ≤ nαT = 1
εL ≤ 1

4 .
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Plugging Lemma 3.10 back to (3.2), we have

αk( fμ(xk) − fμ(u)) ≤ 〈αk∇ fμ(xk), xk − u
〉

①≤ (1 − τ)αk

τ
( fμ(yk−1) − fμ(xk))

+ Ei

[

3nαk L · ( fμ(xk) − fμ(y(i)
k )) + 1

2
‖zk−1 − u‖2A − 1

2
‖zk − u‖2A

]

②≤ αk fμ(xk) + (3nαk L − αk
)

fμ(yk−1)

+ Ei

[

− 3nαk L · fμ(y(i)
k ) + 1

2
‖zk−1 − u‖2A − 1

2
‖zk − u‖2A

]

. (3.3)

Above, ① uses Lemma 3.10; and ② is because we have chosen τ to satisfy 1
τ

= 3nL .
Next, recall thatwe have pickedαk so that (3nL−1)αk = 3nL ·αk−1 inAlgorithm1.

Telescoping (3.3) for k = 1, . . . , T and choosing u∗ = (1 − ε/2)x∗, we have

−
T
∑

k=1

αk fμ(u∗) ≤ 3 fμ(y0) − 3nαT L · E[ fμ(yT )] + ‖z0 − u∗‖2A

≤ −3nαT L · E[ fμ(yT )] + OPT.

Here, the second inequality is due to fμ(y0) = fμ(xstart) ≤ 0 from Fact 2.8, and the
fact that

‖z0 − u∗‖2A = ‖u∗‖2A =
n
∑

i=1

(u∗
i )

2 · ‖A:i‖∞ ≤
n
∑

i=1

(x∗
i )2 · ‖A:i‖∞ ≤

n
∑

i=1

x∗
i = OPT.

Finally, using the fact that
∑T

k=1 αk = αT ·∑T−1
k=0

(

1− 1
3nL

)k = 3nαT L
(

1− (1−
1

3nL )T
)

, we rearrange and obtain that

E[ fμ(yT )] ≤
∑

k αk

3nαT L
fμ(u∗) + 1

3nαT L
OPT = (1 − (1 − 1

3nL

)T )
fμ(u∗)

+ 1

3nαT L
OPT.

We choose T = �3nL log(1/ε)� so that 1
nαT L

= (1 − 1
3nL )T ≤ ε. Combining this

with the fact that fμ(u∗) ≤ −(1 − ε)OPT < 0 (see Proposition 2.4.a), we obtain

E[ fμ(yT )] ≤ (1 − ε) fμ(u∗) + ε/3 · OPT < −(1 − 3ε)OPT.

Therefore, we have finished proving Theorem 3.4. �

123



Nearly linear-time packing and covering LP solvers 325

4 Relaxation of the covering linear program

Since PacLPSolver gives only an approximate packing LP solution, we cannot infer
from it a dual covering LP solution. Therefore, we have to work on a relaxed version
of covering LP directly. For input matrix A ∈ R

m×n
≥0 , we rewrite the covering LP

problem (1.2) as follows in order to be notationally close to packing LP:

min
x≥0

{1T x : Ax ≥ 1}. (4.1)

We denote byOPT the optimal value to this LP, and by x∗ any of its optimal solutions.
We say that x is a (1 + ε)-approximation for the covering LP if Ax ≥ 1 and 1T x ≤
(1 + ε)OPT.

Again, we use indices i ∈ [n] for the columns of A, and indices j ∈ [m] for the
rows of A. We denote by A:i the i-th column vector of A, and A j : the j-th row vector
of A. We assume without loss of generality by simple scaling that 10

min
j∈[m]{‖A j :‖∞} = 1. (4.2)

Proposition 4.1 The normalization (4.2) ensures OPT ∈ [1,m].
Proof Suppose that j∗ is the row that achieves the smallest infinite norm ‖A j :‖∞
over all rows j ∈ [m]. Then, for any solution x ∈ R

n≥0 satisfying 〈A j∗:, x〉 ≥ 1, we
must have 1T x ≥ 1/‖A j∗:‖∞ = 1 using (4.2). On the other hand, we can construct a
feasible solution x as follows. Initialize x = 0, and then for each row j , let us find the
coordinate i that maximizes the value of Ai j among all columns i . Then, we increase
xi by 1/Ai j = 1/‖A j :‖∞. After we have exhausted all the m rows, we arrive at some
x ≥ 0 satisfying Ax ≥ 1 as well as 1T x =∑ j 1/‖A j :‖∞ ≤ m. �

In our covering LP solvers, we assume that an initial solution, achieving a con-
stant approximation, is available to the algorithm. Such a solution can be obtained
for instance by the covering LP solver from Young [36] with constant ε in time
O(N log N ).

Definition 4.2 Let x� be a given 2-approximate solution to the covering problem

given and let OPT′ def= 1T x� ∈ [OPT, 2OPT]. Without loss of generality, assume
OPT′ ≥ 2.

We now introduce the smoothed objective fμ(x)we are going to minimize in order
to solve covering LP. Symmetric to the case in the packing solver, this smoothed
objective fμ(x) turns each row of the LP constraint Ax ≥ 1 into an exponential
penalty function.

10 If min j∈[m]{‖A j :‖∞} = 0 then the covering LP is infeasible so we are done. Otherwise, if
min j∈[m]{‖A j :‖∞} = v > 0 we scale all entries of A by 1/v, and scale OPT by v.
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Definition 4.3 Letting μ
def= ε

4 log(nm/ε)
, we define the smoothed objective fμ(x) as

fμ(x)
def= μ

∑m
j=1 e

1
μ

(1−(Ax) j ) + 1T x .

Fact 4.4 ∇ fμ(x) = 1− AT p(x) and∇2 fμ(x) = 1
μ
AT diag{p(x)}A, where p j (x)

def=
e

1
μ

(1−(Ax) j ).

We present some properties about fμ(x). They together imply that the minimum of
fμ(x) is aroundOPT, and if one approximately finds the minimum of fμ(x) up to an
additive error O(εOPT), this corresponds to a (1+O(ε))-approximate solution to the
covering LP (4.1). The proofs are analogous to Sect. 2, and included in “AppendixB.2”
for completeness’ sake.

Proposition 4.5 (a) fμ(u∗) ≤ (1 + ε)OPT for u∗ def= (1 + ε/2)x∗.
(b) fμ(x) ≥ (1 − ε)OPT for every x ≥ 0.
(c) For any x ≥ 0 satisfying fμ(x) ≤ 2OPT, we must have Ax ≥ (1 − ε)1.
(d) If x ≥ 0 satisfies fμ(x) ≤ (1 + δ)OPT for some δ ∈ [0, 1], then 1

1−ε
x is a

1+δ
1−ε

-approximate solution to the covering LP.

5 Our covering LP solver in the well-conditioned case

Recall in packing LPs, since it satisfies 0 ≤ x∗
i ≤ 1

‖A:i‖∞ (see Fact 2.1), we can
minimize fμ over a bounding box Δbox. Unfortunately, it no longer satisfies x∗

i ≤
1

‖A:i‖∞ in covering LPs, so one cannot directly turn PacLPSolver into its symmetric
version to solve covering LP.

In this section, we show that this symmetric covering LP solver still solves all well-
behaved covering LP instances. Specifically, we say the covering LP is well-behaved
if:11

Assumption 5.1 There exists some optimal covering LP solution x∗ satisfying x∗
i ≤

9
‖A:i‖∞ ; and the initial point x� satisfies x�

i ≤ 9
‖A:i‖∞ .

For instance, well-behaved instances naturally arise from those where the constraints
Ax ≥ 1 are non-redundant. If the optimal covering LP solution x∗ and the initial point
x� satisfy 1 ≤ Ax∗ ≤ 9 · 1 and 1 ≤ Ax� ≤ 9 · 1, then Assumption 5.1 is satisfied.

Well-behaved covering LP problems immediately satisfy the following:

Fact 5.2 Define Δbox
def= {x ∈ R

n : xi ∈ [0, 10
‖A:i‖∞

]}. Under Assumption 5.1, we

have u∗ def= (1 + ε/2)x∗ ∈ Δbox and xstart
def= (1 + ε/2) · x� ∈ Δbox. Also, it satisfies

fμ(xstart) ≤ 3OPT.

11 The constant 9 in this section can be replaced with any other constant greater than 1.
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Algorithm 2 CovLPSolverwb(A, xstart, ε)

Input: A ∈ R
m×n
≥0 , xstart ∈ Δbox, ε ∈ (0, 1/30].

Output: x ∈ Δbox . � recall Δbox
def= {x ∈ R

n : xi ∈ [0, 10
‖A:i ‖∞

]}
1: μ ← ε

4 log(nm/ε)
, L ← 4

μ , τ ← 1
21·nL and α0 ← 1

nL . � parameters

2: T ← �21nL log(1/ε)� = O(n · log(nm/ε)·log(1/ε)
ε ). � number of iterations

3: x0 = y0 ← xstart, z0 ← 0.
4: for k ← 1 to T do
5: αk ← 1

1−τ
αk−1

6: xk ← τzk−1 + (1 − τ)yk−1.
7: Randomly select i ∈ [n] uniformly at random.

8: Define vector ξ
(i)
k be all-zero except at coordinate i , where ξ

(i)
k,i = max{−1,∇i fμ(xk ))}.

9: zk ← z(i)
k

def= argminz∈Δbox

{ 1
2 ‖z − zk−1‖2A + 〈nαkξ

(i)
k , z〉}. � See Proposition 3.2

10: yk ← y(i)
k

def= xk + 1
nαk L

(z(i)
k − zk−1).

11: end for
12: return yT .

Proof The claims u∗, xstart ∈ Δbox are trivial after noticing ε ≤ 1/30. Using the fact
that Axstart − 1 ≥ (1 + ε/2)Ax� − 1 ≥ ε/2 · 1, we compute fμ(xstart) as follows:

fμ(xstart) = μ
∑

j

e
1
μ

(1−(Axstart) j ) + 1T xstart ≤ μ
∑

j

e
−ε/2

μ + 2OPT

≤ μm

(nm)2
+ 2OPT < 3OPT.

�

WenowdescribeCovLPSolverwb (which is a symmetric variant of PacLPSolver )
that solves well-behaved covering LP problems, see Algorithm 2. It starts with
the initial vector x0 = y0 = xstart and z0 = 0. Then, CovLPSolverwb is
divided into T iterations. In each iteration k, it computes a weighted midpoint
xk ← τzk−1 + (1 − τ)yk−1 for some parameter τ ∈ (0, 1), and then proceeds to
compute yk and zk as follows.

We select i ∈ [n] uniformly at random. Let ξ (i)
k = (0, . . . , 0,−T

p(v), 0, . . . , 0) be
the vector that is only non-zero at coordinate i , where v = −∇i fμ(xk) ∈ [−1,∞),

and recall Tp(v)
def= min{v, 1}. We refer to ξ

(i)
k as the truncated gradient. Next,

– Perform a mirror (descent) step zk ← z(i)
k

def= argminz∈Δbox

{ 1
2‖z − zk−1‖2A +

〈nαkξ
(i)
k , z〉} for some parameter αk � 1/n to be chosen later.

– Perform a gradient (descent) step yk ← y(i)
k

def= xk + 1
nαk L

(z(i)
k − zk−1).

This finishes the description of CovLPSolverwb. It is not surprising to deduce the
following theorem similar to Theorem 3.4. We include its proof in “Appendix C.3”
for completeness.
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Theorem 5.3 Under thewell-behavior assumption5.1 in the coveringLPproblem,
CovLPSolverwb(A, xstart, ε) outputs some yT satisfying

E[ fμ(yT )] ≤ (1 + 4.6ε)OPT.

Again, using the same proof as Corollary 3.5, one can apply Markov’s bound to
turn Theorem 5.3 into a probabilistic statement:

Corollary 5.4 Under the well-behavior assumption 5.1 in the covering LP prob-
lem, with probability at least 2/3, yT = CovLPSolverwb(A, xstart, ε) satisfies
that yT

1−ε
is a (1+O(ε)) approximate solution to covering LP. The expected running

time is

O

(

log(nm/ε) log(1/ε)

ε
N

)

.

Removing the well-behavior assumption In subsequent work, after the conference
presentation of this paper, Wang, Mahoney and Rao [34] showed the following theo-
rem.

Theorem 5.5 ([34]) Any covering LP with constraint matrix A ∈ R
m×n
≥0 of sparsity

N can be converted into an equivalent but well-behaved covering LP with matrix
˜A ∈ R

m×n·O(log(mn/ε)) and sparsity N · O(log(mn/ε)). The conversion takes time
N · O(log(mn/ε)).

As a result, we can apply our covering solver CovLPSolverwb to this modi-
fied LP and apply our Theorem 5.3 to solve any covering LP in expected time

O(
log2(nm/ε) log(1/ε)

ε
N ).

6 Our covering LP solver in the general case

In this section, we remove the well-behavior assumption and propose a different algo-
rithm CovLPSolver to solve all covering LP instances. This algorithm introduces a
factor 1/

√
ε loss in the running time, but is a direct covering LP solver without using

any reduction.
The main difference to PacLPSolver and CovLPSolverwb is that, this time we

abandon the box constraint and study the minimization of fμ(x) over a simplex

x ∈ Δsimplex
def= {x ∈ R

n : xi ≥ 0 ∧ 1T x ≤ 2OPT′}.

Again, this constraint 1T x ≤ 2OPT′ is redundant just like the old Δbox constraint
for packing LP (recall Remark 2.5); however, it shall be used to make sure that our
updates are always inside Δsimplex. It is a simple fact that

Fact 6.1 u∗ def= (1 + ε/2)x∗ ∈ Δsimplex.

Recall that the initial vector x� is defined in Definition 4.2, and OPT′ is a crude
approximation to OPT, satisfying OPT′ def= 1T x� ∈ [OPT, 2OPT]. We choose dif-
ferent starting vector xstart from Sect. 5:
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Algorithm 3 CovLPSolver(A, xstart, ε)

Input: A ∈ R
m×n
≥0 , xstart ∈ Δsimplex, ε ∈ (0, 1/30].

Output: x ∈ Δsimplex .

1: μ ← ε
4 log(nm/ε)

, β ← √
ε, τ ← μβ

12n . � parameters

2: T ← � 1
τ log(1/ε)� = O(

log(nm/ε) log(1/ε)
ε1.5

n). � number of iterations

3: α0 ← (1 − τ)T ε
12nβ and γ ← ε

6β . � so that αT = ε
12nβ and γ = 2αT n

4: x0 = y0 = z0 ← xstart.
5: for k ← 1 to T do
6: αk ← 1

1−τ
αk−1.

7: xk ← τzk−1 + (1 − τ)yk−1.
8: Randomly select i uniformly at random from [n].
9: Define vector ξ

(i)
k to be all-zero except at coordinate i , where ξ

(i)
k,i = max{−β, ∇i fμ(xk )}.

10: zk ← z(i)
k

def= argminz∈Δsimplex

{

Vzk−1 (z) + 〈(1 + γ )nαkξ
(i)
k , z〉}. � See Proposition 6.4

11: if ∇i fμ(xk ) < −β then
12: Denote by π the permutation that satisfies Aπ(1),i ≤ · · · ≤ Aπ(m),i .

13: Pick j∗ ∈ [m] such that

{∑

j< j∗ Aπ( j),i · pπ( j)(xk ) < 1 + β
∑

j≤ j∗ Aπ( j),i · pπ( j)(xk ) ≥ 1 + β
� j∗ ∈ [m] always exists, see

(6.1)

14: yk ← y(i)
k

def= xk + δ · ei where δ = μβ
2Aπ( j∗),i

.

15: else
16: yk ← y(i)

k
def= xk .

17: end if
18: end for
19: return yT .

Proposition 6.2 Letting xstart
def= (1+ε/2)·x�+( 1n , . . . , 1

n ), we have xstart ∈ Δsimplex

and fμ(xstart) ≤ 4OPT.

Proof Using Axstart − 1 ≥ (1 + ε/2)Ax� − 1 ≥ ε/2 · 1, we compute fμ(xstart) as
follows:

fμ(xstart) = μ
∑

j

e
1
μ

(1−(Axstart) j ) + 1T xstart ≤ μ
∑

j

e
−ε/2

μ + 2OPT + 1

≤ μm

(nm)2
+ 3OPT < 4OPT.

Also, we have 1T xstart ≤ (1 + ε/2)OPT′ + 1 ≤ 2OPT′. (Recall OPT′ ≥ 2 in
Definition 4.2.) �

Our proposed algorithm CovLPSolver starts with the initial vector x0 = y0 =
z0 = xstart and is divided into T iterations. In each iteration k, as usual, it computes
a weighted midpoint xk ← τzk−1 + (1 − τ)yk−1 for some parameter τ ∈ (0, 1), and
then computes yk and zk as follows.

We select i ∈ [n] uniformly at random, and let ξ
(i)
k = (0, . . . , 0,Tc(v), 0, . . . , 0)

be the vector that is only non-zero at coordinate i , where v = ∇i fμ(xk) ∈ (−∞, 1] and
T
c(v)

def= max{−β, v} is the new thresholding function for some parameter β
def= √

ε.
Then,
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– Perform a mirror (descent) step zk ← z(i)
k

def= argminz∈Δsimplex

{

Vzk−1(z) + 〈(1 +
γ )nαkξ

(i)
k , z〉} for some positive parameters γ � 1 and αk � 1/n, where

Vx (y)
def= ∑n

i=1 yi log
yi
xi

+ xi − yi

is the so-called Bregman divergence of the generalized entropy function (c.f. [12]).

– If ∇i fμ(xk) < −β, perform a gradient (descent) step yk ← y(i)
k

def= xk + δei for
some δ > 0. In practice, one can line-search over δ, but we choose an explicit δ

as follows.
– Denote by π the permutation that satisfies Aπ(1),i ≤ · · · ≤ Aπ(m),i

– Pick j∗ ∈ [m] s.t.

{∑

j< j∗ Aπ( j),i · pπ( j)(xk) < 1 + β
∑

j≤ j∗ Aπ( j),i · pπ( j)(xk) ≥ 1 + β
. Such j∗ exists

because

∑m
j=1 Aπ( j),i · pπ( j)(xk) =∑m

j=1 A ji · p j (xk) = 1 − ∇i fμ(xk) ≥ 1 + β.

(6.1)
– Set δ = μβ

2Aπ( j∗),i
.

This finishes the description of our CovLPSolver .

Remark 6.3 We use the superscript (i) on ξ
(i)
k , y(i)

k and z(i)
k to emphasize that the value

depends on the choice of i . We have used generic parameters τ, αk, T in the above
description and their precise values are presented in Algorithm 3.

Our update on yk is a “gradient descent step” because we shall prove that it strictly
decreases the objective (i.e., fμ(xk) − fμ(y(i)

k ) ≥ 0). Our update on zk is a “mirror
descent step” because we shall apply standard mirror descent analysis [12] to it. We
explicitly describe how to implement this mirror step: (proved in “Appendix D.4”)

Proposition 6.4 If zk−1 ∈ Δsimplex and zk−1 > 0, theminimizer z = argminz∈Δsimplex
{

Vzk−1(z) + 〈δei , z〉
}

for any scalar δ ∈ R and basis vector ei can be computed as
follows:

1. z ← zk−1.
2. zi ← zi · e−δ .
3. If 1T z > 2OPT′, z ← 2OPT′

1T z
z.

4. Return z.

We also point out that

Lemma 6.5 Each iteration of CovLPSolver can be implemented to run in expected
O(N/n) time. The total expected running time is O(T N/n).

The proof of Lemma 6.5 is analogous to its packing counterpart, and included in
Sect. F.6.
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6.1 Main proof ideas and ingredients

In CovLPSolver , we pick a random coordinate i ∈ [n] at each iteration, and decom-
pose∇i f (xk) = ξ +η, where η ∈ (−∞, 0] is the (negative) large gradient component
and ξ ∈ [−√

ε, 1] is the truncated gradient component. In other words, we truncate
the gradient ∇i f (xk) at a negative threshold −β = −√

ε, rather than at −1 as in
CovLPSolverwb.

The reason for this new threshold −√
ε can be understood as follows. In

PacLPSolver (and symmetrically in CovLPSolverwb), we used Lemma 3.10 to
show that our gradient descent step yk decreases the objective by an amount that both
includes the ξ and η components. Unfortunately, for covering LP, this decrease amount
is only proportional to η but not to ξ (compare Lemma 3.10 with Lemma 6.14 later).
This forces us to treat the small gradient ξ separately using mirror descent, but not
gradient descent.

If ξ were in [−1, 1], classical theory ofmirror descent [12] (ormultiplicativeweight
update [7]) would imply that the mirror step zk converges at a rate ∝ ε−2. This is too
slow. Instead, since truncated ξ into a smaller interval [−√

ε, 1], using a negative-
width technique (see Sect. 6.5), we improve this mirror-descent convergence rate from
ε−2 to ε−1.5.

On the other hand, due to this truncation at −√
ε instead of −1, our gradient step

on yk also converges slower, at a rate 1/ε1.5 instead of 1/ε. This is why β = √
ε is

the best truncation threshold, as it balances gradient and mirror descent.
Another ingredient behind our proof is a new distance bound that is uncommon

in first-order analysis. Recall that, given convex function g(x), traditional analysis
applies convexity argument g(x) − g(x∗) ≤ 〈∇g(x), x − x∗〉 to bound the objective
distance to optimum. If g(x) = e−x is univariate, x = −1, and x∗ = −100, this
bound becomes e−1 ≈ e−1 − e−100 ≤ e−1 · 99, which is very loose. In our analysis,
we replace this convexity argument with a more benign bound, specifically designed
for covering LP (see Lemma 6.10).

6.2 Convergence statement

The main convergence theorem of this section is as follows:

Theorem 6.6 CovLPSolver(A, xstart, ε) outputs some yT satisfying

E[ fμ(yT )] ≤ (1 + 9ε)OPT.

Again, using the same proof as Corollary 3.5, one can apply Markov’s bound to turn
Theorem 5.3 into a probabilistic statement:

Corollary 6.7 With probability at least 2/3, yT = CovLPSolver(A, xstart, ε)
satisfies that yT

1−ε
is a (1+O(ε)) approximate solution to the covering LP program.

The expected running time is O(
log(nm/ε) log(1/ε)

ε1.5
N ).
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Before delving into the proof of Theorem 6.6, we make the following observations:

Fact 6.8 For every k ∈ {0, 1, . . . , T }, it satisfies xk, yk ≥ 0, zk > 0, and zk ∈
Δsimplex.

Proof Since the xstart satisfies 1T xstart ≤ 2OPT′ by Proposition 6.2, we have
z0 = xstart ∈ Δsimplex. Also, the mirror descent step (see Proposition 6.4) ensures
zk,i > 0 for all rounds k and coordinates i , as well as zk ∈ Δsimplex for all rounds k.
However, we xk and yk may not necessarily lie inside Δsimplex, but will always stay
non-negative. �
We prove Theorem 6.6 in the subsequent subsections.

6.3 Step 1: distance adjustment

Using convexity, one can obtain

fμ(xk) − fμ(u) ≤ 〈∇ fμ(xk), xk − u〉 for every u ∈ Δsimplex. (6.2)

Note that inequality (6.2) can be very loose for exponential functions. For instance, if
fμ(x) were as simple as ex , then the convexity inequality eb − ea ≤ eb · (b − a) says

– when b = 2 and a = −10, we have e2 − e−10 ≤ 12e2;
– when b = 2 and a = −100, we have e2 − e−100 ≤ 102e2.

Although e−100 ≈ e−10, the two upper bounds are off from each other by a factor of
10.

In this section, we strengthen (6.2) in the special case of u = u∗ def= (1 + ε/2)x∗.
For analysis purpose, let ˜A be the adjusted matrix of A described as follows.

Definition 6.9 (adjusted matrix ˜A) For each row j ∈ [m], if (Au∗) j ≤ 2 then we keep

it and let ˜A j :
def= A j :. Otherwise,—that is, if (Au∗) j > 2—we define ˜A j :

def= 2
(Au∗) j ·A j :

to be the same j-th row A j :, but scaled down by a factor of 2
(Au∗) j . It is clear from this

definition that

A ji ≥ ˜A ji for all (i, j) ∈ [n] × [m] and (1 + ε)1 ≤ ˜Au∗ ≤ 21.

Lemma 6.10 (distance adjustment)

fμ(xk) − fμ(u∗) ≤ 〈1 − AT p(xk), xk − u∗〉 + 〈˜AT p(xk) − AT p(xk), u∗〉 + εOPT

= 〈∇ fμ(xk), xk − u∗〉 + 〈˜AT p(xk) − AT p(xk), u∗〉 + εOPT

At high level, ignoring the negligible term εOPT, Lemma 6.10 strengthens the
classical bound due to the extra term of 〈˜AT p(xk) − AT p(xk), u∗〉. This extra term is
always non-positive since ˜A ≤ A coordinate-wise, but may be very negative in certain
cases.
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Proof of Lemma 6.10

fμ(xk) − fμ(u∗) = μ

m
∑

j=1

(

e
1
μ

(1−(Axk) j ) − e
1
μ

(1−(Au∗) j )
)

+ 〈1, xk − u∗〉

①≤ μ

m
∑

j=1

(

e
1
μ

(1−(Axk) j ) − e
1
μ

(1−(˜Au∗) j )
)

+ 〈1, xk − u∗〉 + μ · m · e−1/μ

②≤
m
∑

j=1

e
1
μ

(1−(Axk) j ) · ((˜Au∗) j − (Axk) j
)+ 〈1, xk − u∗〉 + εOPT

=
m
∑

j=1

p j (xk) · ((˜Au∗) j − (Axk) j
)+ 〈1, xk − u∗〉 + εOPT

=
m
∑

j=1

p j (xk) · ((Au∗) j − (Axk) j
)+ 〈1, xk − u∗〉

+
m
∑

j=1

p j (xk) · ((˜Au∗) j − (Au∗) j
)+ εOPT

= 〈−AT p(xk), xk − u∗〉 + 〈1, xk − u∗〉 + 〈˜AT p(xk) − AT p(xk), u∗〉 + εOPT.

Above, ① is because if (Au∗) j �= (˜Au∗) j for some j , then it must satisfy that

(˜Au∗) j = 2, and therefore −e
1
μ

(1−(Au∗) j ) ≤ −e
1
μ

(1−(˜Au∗) j ) + e−1/μ. ② uses the
convexity inequality of eb − ea ≤ eb · (b − a), and the fact that μme−1/μ � εOPT.

6.4 Step 2: gradient truncation

For analysis purpose, let us separate the indices i ∈ [n] into large and small ones.

Definition 6.11 We make the following definitions.

– Let Bk
def= {i ∈ [n] : ∇i fμ(xk) < −β} and [n] \ Bk be the set of large and small

indices.
– Let ξk ∈ [−β, 1]n be the truncated gradient so that ξk,i = T

c(∇i fμ(xk)) for
each i ∈ [n].

– Let ηk ∈ (−∞, 0]n be the large gradient so that ∇ fμ(xk) = ξk + ηk . It is clear
that

ηk,i = 0 for every i /∈ B, and ηk,i =(1+β)−(AT p(xk))i for every i ∈ B.

– Let η̃k ∈ (−∞,∞)n be the adjusted large gradient so that

η̃k,i =0 for every i /∈ B, and η̃k,i =(1+β)−(˜AT p(xk))i for every i ∈ B.
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We denote by η
(i)
k = (0, . . . , 0, ηk,i , 0, . . . , 0), the vector that is zero at all coordinates

other than i , and similarly ξ
(i)
k = (0, . . . , ξk,i , . . . , 0) and η̃

(i)
k = (0, . . . , η̃k,i , . . . , 0).

We emphasize that η(i)
k �= ηk , η̃

(i)
k �= η̃k , and ξ

(i)
k �= ξk .

The following key lemma is very analogous to (3.1) in the packing LP analysis.

Lemma 6.12 (distance upper bound)

fμ(xk) − fμ(u∗) ≤ (1−τ)
τ

( fμ(yk−1) − fμ(xk)) + Ei

[

〈nξ
(i)
k , zk−1 − u∗〉

]

+Ei

[

〈nη̃
(i)
k ,−u∗〉

]

+ εOPT.

Note that if one uses η
(i)
k instead of η̃

(i)
k , then Lemma 6.12 becomes trivial to prove

just like (3.1). The reason we can have the stronger term η̃
(i)
k is precisely due to the

distance adjustment Lemma 6.10.

Proof of Lemma 6.12 We derive the following sequence of inequalities:

(

fμ(xk) − fμ(u∗)
)− εOPT

①≤ 〈∇ fμ(xk), xk − u∗〉 + 〈˜AT p(xk) − AT p(xk), u∗〉
= 〈∇ fμ(xk), xk − zk−1〉 + 〈∇ fμ(xk), zk−1 − u∗〉 + 〈˜AT p(xk) − AT p(xk), u∗〉
②= (1 − τ)

τ
〈∇ fμ(xk), yk−1 − xk〉 + 〈∇ fμ(xk), zk−1 − u∗〉

+ 〈˜AT p(xk) − AT p(xk), u∗〉
③≤ (1 − τ)

τ
( fμ(yk−1) − fμ(xk)) + 〈∇ fμ(xk), zk−1 − u∗〉

+ 〈˜AT p(xk) − AT p(xk), u∗〉
= (1 − τ)

τ
( fμ(yk−1) − fμ(xk)) + 〈ξk + ηk, zk−1 − u∗〉

+ 〈˜AT p(xk) − AT p(xk), u∗〉
④≤ (1 − τ)

τ
( fμ(yk−1) − fμ(xk)) + 〈ξk, zk−1 − u∗〉

+ 〈˜AT p(xk) − AT p(xk) − ηk, u
∗〉

⑤≤ (1 − τ)

τ
( fμ(yk−1) − fμ(xk)) + 〈ξk, zk−1 − u∗〉 + 〈−η̃k, u

∗〉

= (1 − τ)

τ
( fμ(yk−1) − fμ(xk)) + Ei

[

〈nξ
(i)
k , zk−1 − u∗〉 + 〈−nη̃

(i)
k , u∗〉

]

.

Above,① is due toLemma6.10.② is because xk = τzk−1+(1−τ)yk−1, which implies
that τ(xk − zk−1) = (1− τ)(yk−1 − xk). ③ is by the convexity of fμ(·). ④ is because
〈ηk, zk−1〉 ≤ 0, since ηk ≤ 0 while zk−1 ≥ 0. ⑤ needs some careful justification: for
every i /∈ Bk , we have (˜AT p(xk) − AT p(xk))i − ηk,i ≤ 0 − 0 = −η̃k,i ; for every
i ∈ Bk , we have
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(˜AT p(xk) − AT p(xk))i −ηk,i = (˜AT p(xk) − AT p(xk))i − ((1 + β)−(AT p(xk))i
)

= −((1 + β) − (˜AT p(xk))i
) = −η̃k,i ,

where the two equalities follow from the definitions of ηk,i and η̃k,i .

6.5 Step 3: mirror descent guarantee

Our updatez(i)
k

def= argminz∈Δsimplex

{

Vzk−1(z)+〈(1+γ )nαkξ
(i)
k , z〉} is, by its definition,

a mirror descent step [12]. We begin by explaining an attempt that is too weak for
obtaining the ε−1.5 convergence rate.

Using the classical theory, it is not hard to repeat the proof of Lemma 3.7—although
changing the distance function from ‖ · ‖2A to Vx (y)—and obtain that, as long as ξk,i
is in [−1,+1] for each coordinate i , for every u ∈ Δsimplex,

Ei
[

αk
〈

nξ
(i)
k , zk−1 − u

〉] ≤ Vzk−1(u) − Ei

[

Vz(i)
k

(u)
]

+ O(α2
k n)OPT.

This inequality only yields a slower ε−2 convergence rate, and ±1 is also know as the
width parameter from the multiplicative-weight-update language [7].

In our lemma below, we make use of the fact ξk,i is in [−β,+1] ⊆ [−1,+1]. In
essence, this allows us to replace the O(α2

k n) factor with a better O(α2
kβn) factor. We

call it the negative-width technique.12 Formally,

Lemma 6.13 (mirror descent) Denoting by γ
def= 2αT n, we have

Ei
[

αk
〈

nξ
(i)
k , zk−1 − u∗〉] ≤ Vzk−1

( u∗

1 + γ

)− Ei

[

Vz(i)
k

( u∗

1 + γ

)

]

+ 12OPT · γαkβ.

The proof is somewhat technical and included in “Appendix D.4”.

6.6 Step 4: gradient descent guarantee

We show our gradient step never increases the objective for all choices of i . In addition,
it decreases the objective by an amount proportional to the adjusted large gradient η̃(i)

k .

Lemma 6.14 (gradient descent) For every i ∈ [n], we have
(a) fμ(xk) − fμ(y(i)

k ) ≥ 0, and

(b) fμ(xk) − fμ(y(i)
k ) ≥ μβ

12 · 〈−η̃
(i)
k , u∗〉.

12 This negativewidth technique is related to [7,Definition 3.2],where the authors analyze themultiplicative
weight updatemethod in a special casewhen the oracle returns loss values only in [−�, +ρ], for some � � ρ.
This technique is also a sub-case of a more general theory of mirror descent, known as the local-norm
convergence, that we have summarized in a separate and later paper [3].
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The proof of Lemma 6.14 is quite technical and can be found in “Appendix D.4”.
At high level, one would hope to prove that the gradient step decreases the objective

by an amount proportional to the large gradient η
(i)
k , rather than the adjusted large

gradient η̃(i)
k . If thatwere true, the entire proof structure of our coveringLPconvergence

would becomemuch closer to that of packingLP, and therewould be absolutely noneed
for the introduction of the distance adjustment in Sect. 6.3, as well as the definitions
of ˜A and η̃.

Unfortunately, if one replaces η̃ with η in the above lemma, the inequality is false.
The reason behind it is very similar to what we have summarized in Sect. 6.3, and
related to the fact that the exponential penalty function is not Lipschitz smooth.

6.7 Step 5: putting all together

Combining Lemma 6.12, Lemma 6.13, and Lemma 6.14, we obtain that

αk
(

fμ(xk) − fμ(u∗)
)− αkεOPT

≤ (1 − τ)αk

τ
( fμ(yk−1) − fμ(xk)) + Ei

[

αk〈nξ
(i)
k , zk−1 − u∗〉

]

+ Ei

[

αk〈nη̃
(i)
k ,−u∗〉

]

≤ (1 − τ)αk

τ
( fμ(yk−1) − fμ(xk)) + Vzk−1

( u∗

1 + γ

)− Ei

[

Vz(i)
k

( u∗

1 + γ

)

]

+ 12OPT · γαkβ + Ei

[12αkn

μβ

(

fμ(xk) − fμ(y(i)
k )
)

]

Remark 6.15 Above, the quantity “12OPT · γαkβ” is the loss term introduced by
the mirror descent. Unlike the packing LP case—see (3.2)—this loss term is not
dominated by the gradient step. (If one could do so, this would give CovLPSolver
an ε−1 convergence rate.)

The quantity “αk〈nξ
(i)
k , zk−1 − u∗〉” is the loss introduced by the (adjusted) large

gradient η̃, and is dominated by our gradient step progress owing to Lemma 6.14. This
is similar to the packing LP case—see Lemma 3.10.

From here, let us use the special choice of τ = μβ
12n . We obtain that

− αk
(

fμ(u∗) + εOPT
)

≤ 12γαkβOPT + (1 − τ)αk

τ
fμ(yk−1) + Vzk−1

( u∗

1 + γ

)

− Ei

[αk

τ
fμ(y(i)

k ) + Vz(i)
k

( u∗

1 + γ

)

]

.

Using the choice αk = αk−1
1−τ

and telescoping the above inequality for k = 1, . . . , T ,
we have
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−(
T
∑

k=1

αk
)(

fμ(u∗) + εOPT
) ≤ (

T
∑

k=1

αk
) · 12γβOPT + α0

τ
fμ(y0)

+ Vz0
( u∗

1 + γ

)− αT

τ
E
[

fμ(yT )
]

.

We compute that
∑T

k=1 αk = αT ·∑T−1
k=0 (1 − τ)k = αT · 1−(1−τ)T

τ
< αT

τ
, and recall

that γ = 2αT n. Therefore, we rearrange and get

αT

τ
E
[

fμ(yT )
] ≤ αT

τ

(

fμ(u∗) + εOPT
)+ αT

τ
· 12γβOPT + α0

τ
fμ(y0)

+ Vz0
( u∗

1 + γ

)

,

�⇒ E
[

fμ(yT )
] ≤ fμ(u∗) + εOPT + 24αT nβOPT + (1 − τ)T fμ(y0)

+ τ

αT
Vz0
( u∗

1 + γ

)

. (6.3)

From this point, we need to use our special choice of the initial point x0 = y0 =
z0 = xstart (see Proposition 6.2), which implies that fμ(y0) ≤ 4OPT and 1T xstart ≤
4OPT. We also have

Vz0
( u∗

1 + γ

) = Vxstart
( u∗

1 + γ

) =
n
∑

i=1

u∗
i

1 + γ
log

u∗
i

(1 + γ )xstarti

+ xstarti − u∗
i

1 + γ

①≤
n
∑

i=1

u∗
i log(u

∗
i · n) + 4OPT

②≤ (2 log(nm) + 4) · OPT.

Above, inequality ① follows because xstarti ≥ 1/n for all i ∈ [n] according to the
definition in Proposition 6.2; inequality ② follows because each u∗

i ≤ (1+ ε/2)x∗
i ≤

(1 + ε/2)OPT ≤ (1 + ε/2)m and 1T u∗
i = (1 + ε/2)OPT, as well as the fact that ε

is sufficiently small.
Finally, we choose β = √

ε, T = � 1
τ
log(1/ε)�, and α0 such that αT = ε

12nβ .
Substituting into (6.3) all of these parameters, along with the aforementioned inequal-
ities fμ(y0) ≤ 4OPT and Vz0

( u∗
1+γ

) ≤ (2 log(nm) + 4) · OPT, as well as fμ(u∗) ≤
(1 + ε)OPT from Proposition 4.5.a, we obtain that

E
[

fμ(yT )
] ≤ (1 + ε)OPT + εOPT + 2εOPT + ε fμ(y0)

+μβ/12n

ε/12nβ
(2 log(nm) + 4)OPT

≤ (1 + 9ε)OPT.

This finishes the proof of Theorem 6.6. �
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Appendix

A.1 Proof of Lemma 3.6

Lemma 3.6 We have xk, yk, zk ∈ Δbox for all k = 0, 1, . . . , T .

Proof This is true at the beginning as x0 = y0 = xstart ∈ Δbox (see Fact 2.8) and
z0 = 0 ∈ Δbox. In fact, it suffices for us to show that for every k ≥ 1, yk =∑k

l=0 γ l
kzl

for some scalars γ l
k satisfying

∑

l γ
l
k = 1 and γ l

k ≥ 0 for each l = 0, . . . , k. If this is
true, we can prove the lemma by induction: at each iteration k ≥ 1,

1. xk = τzk−1 + (1 − τ)yk−1 must be in Δbox because yk−1 and zk−1 are and
τ ∈ [0, 1],

2. zk is in Δbox by the definition that zk = argminz∈Δbox
{· · · }, and

3. yk is also in Δbox because yk = ∑k
l=0 γ l

kzl is a convex combination of the zl ’s
and Δbox is convex.

For the rest of the proof, we show that yk = ∑k
l=0 γ l

kzl for every k ≥ 1 with coeffi-
cients 13

γ l
k =

⎧

⎪

⎨

⎪

⎩

(1 − τ)γ l
k−1, l = 0, . . . , k − 2;

( 1
nαk−1L

− 1
nαk L

)+ τ
(

1 − 1
nαk−1L

)

, l = k − 1;
1

nαk L
, l = k.

This is true at the base case k = 1 because y1 = x1 + 1
nα1L

(z1 − z0) =
1

nα1L
z1 + (1 − 1

nα1L

)

z0. For the general k ≥ 2, we have

yk = xk + 1

nαk L
(zk − zk−1)

= τzk−1 + (1 − τ)yk−1 + 1

nαk L
(zk − zk−1)

= τzk−1 + (1 − τ)

(

k−2
∑

l=0

γ l
k−1zl + 1

nαk−1L
zk−1

)

+ 1

nαk L
(zk − zk−1)

=
(

k−2
∑

l=0

(1 − τ)γ l
k−1zl

)

+
((

1

nαk−1L
− 1

nαk L

)

+ τ

(

1 − 1

nαk−1L

))

zk−1

+ 1

nαk L
zk .

Therefore, we obtain yk =∑k
l=0 γ l

kzl as desired.

13 We wish to point out that this proof coincides with a lemma from the accelerated coordinate descent
theory of Fercoq and Richtárik [17]. Their paper is about optimizing an objective function that is Lipschitz
smooth, and thus irrelevant to our work.
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It is now easy to check that under our definition of αk (which satisfies αk ≥ αk−1
and αk ≥ α0 = 1

nL , we must have γ l
k ≥ 0 for all k and l. Also,

∑

l

γ l
k =

k−2
∑

l=0

(1 − τ)γ l
k−1 +

((

1

nαk−1L
− 1

nαk L

)

+ τ

(

1 − 1

nαk−1L

))

+ 1

nαk L

= (1 − τ)

(

1 − 1

nαk−1L

)

+
((

1

nαk−1L
− 1

nαk L

)

+ τ

(

1 − 1

nαk−1L

))

+ 1

nαk L
= 1.

�

B.2 Proof of Proposition 4.5

Proposition 4.5 (a) fμ(u∗) ≤ (1 + ε)OPT for u∗ def= (1 + ε/2)x∗.
(b) fμ(x) ≥ (1 − ε)OPT for every x ≥ 0.
(c) For any x ≥ 0 satisfying fμ(x) ≤ 2OPT, we must have Ax ≥ (1 − ε)1.
(d) If x ≥ 0 satisfies fμ(x) ≤ (1 + δ)OPT for some δ ∈ [0, 1], then 1

1−ε
x is a

1+δ
1−ε

-approximate solution to the covering LP.

Proof (a) We have 1T u∗ = (1 + ε/2)OPT by the definition of OPT. Also, from the
feasibility constraint Ax∗ ≥ 1 in the covering LP, we have Au∗ − 1 ≥ ε/2 · 1,
and can compute fμ(u∗) as follows:

fμ(u∗) = μ
∑

j

e
1
μ

(1−(Au∗) j ) + 1T u∗ ≤ μ
∑

j

e
−ε/2

μ + (1 + ε/2)OPT

≤ μm

(nm)2
+ (1 + ε/2)OPT ≤ (1 + ε)OPT.

(b) Suppose towards contradiction that fμ(x) < (1−ε)OPT. Since fμ(x) < OPT ≤
m, wemust have that for every j ∈ [m], it satisfies that e 1

μ
(1−(Ax) j ) ≤ fμ(x)/μ ≤

m/μ. This further implies (Ax) j ≥ 1 − ε by the definition of μ. In other words,
Ax ≥ (1−ε)1. By the definition ofOPT, wemust then have1T x ≥ (1−ε)OPT,
finishing the proof that fμ(x) ≥ 1T x ≥ (1 − ε)OPT, giving a contradiction.

(c) To show Ax ≥ (1− ε)1, we can assume that v = max j (1− (Ax) j ) > ε because
otherwise we are done. Under this definition, we have

fμ(x) ≥ μe
v
μ = μ

(

( nm
ε

)4
)v/ε ≥ ε

4 log(nm/ε)
( nm

ε
)4 � 2OPT,

contradicting to our assumption that fμ(x) ≤ 2OPT. Therefore, we must have
v ≤ ε, that is, Ax ≥ (1 − ε)1.

(d) For any x satisfying fμ(x) ≤ (1 + θ)OPT ≤ 2OPT, owing to Proposition 4.5c,
we first have that x is approximately feasible, i.e., Ax ≥ (1− ε)1. Next, because
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1T x ≤ fμ(x) ≤ (1 + θ)OPT, we know that x yields an objective 1T x ≤
(1+ θ)OPT. Letting x ′ = 1

1−ε
x , we both have that x ′ is feasible (i.e., Ax ′ ≥ 1),

and x ′ has an objective 1T x ′ at most 1+δ
1−ε

OPT.
�

C.3 Missing proofs for Sect. 5

In this sectionwe prove Theorem 5.3. Because the proof structure is almost identical to
that of Theorem 3.4, we spend most of the discussions only pointing out the difference
rather than repeating the proofs. The following three lemmas are completely identical
to the ones in the packing LP case, so we restate them below:

Lemma C.1 (cf. Lemma3.3)Each iteration ofCovLPSolverwb can be implemented
to run in expected O(N/n) time.

Lemma C.2 (cf. Lemma 3.6) We have xk, yk, zk ∈ Δbox for all k = 0, 1, . . . , T .

Lemma C.3 (cf. Lemma 3.7) For every u ∈ Δbox, it satisfies
〈

nαkξ
(i)
k , zk−1 − u

〉 ≤
n2α2

k L · 〈ξ (i)
k , xk − y(i)

k

〉+ 1
2‖zk−1 − u‖2A − 1

2‖z(i)
k − u‖2A.

For the gradient descent guarantee of Sect. 3.3, one can first note that Lemma 2.7
remains true: this can be verifiedby replacing∇i fμ(x)+1 in its proofwith 1−∇i fμ(x).
For this reason, Lemma 3.9 (which is built on Lemma 2.7) also remains true. We state
it below:

Lemma C.4 (cf. Lemma 3.9)We have fμ(xk)− fμ(y(i)
k ) ≥ 1

2 〈∇ fμ(xk), xk −y(i)
k 〉 ≥

0.

Putting all together Denote by η
(i)
k ∈ R

n≤0 the vector that is only non-zero at coor-

dinate i , and satisfies η
(i)
k,i = ∇i fμ(xk) − ξ

(i)
k,i ∈ (−∞, 0]. In other words, the full

gradient

∇ fμ(xk) = Ei [(0, . . . , n∇i fμ(xk), . . . , 0)] = Ei [nη
(i)
k + nξ

(i)
k ]

can be (in expectation) decomposed into the a large but non-positive component η(i)
k ∈

(−∞, 0]n and a small component ξ
(i)
k ∈ [−1, 1]n . Similar as Sect. 3.4, for any u ∈

Δbox, we can use a basic convexity argument and themirror descent lemma to compute
that

αk( fμ(xk) − fμ(u)) ≤ 〈αk∇ fμ(xk), xk − u
〉

= 〈αk∇ fμ(xk), xk − zk−1
〉+ 〈αk∇ fμ(xk), zk−1 − u

〉

= 〈αk∇ fμ(xk), xk − zk−1
〉+ Ei

[

〈

nαkη
(i)
k , zk−1 − u

〉+ 〈nαkξ
(i)
k , zk−1 − u

〉

]
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①= (1 − τ)αk

τ

〈∇ fμ(xk), yk−1 − xk
〉

+ Ei

[

〈

nαkη
(i)
k , zk−1 − u

〉+ 〈nαkξ
(i)
k , zk−1 − u

〉

]

(C.1)

②≤ (1 − τ)αk

τ
( fμ(yk−1) − fμ(xk))

+ Ei

[

〈

nαkη
(i)
k , zk−1 − u

〉+ n2α2
k L · 〈ξ (i)

k , xk − y(i)
k

〉

+ 1

2
‖zk−1 − u‖2A − 1

2
‖z(i)

k − u‖2A
]

(C.2)

Above, ① is because xk = τzk−1 + (1 − τ)yk−1, which implies that τ(xk − zk−1) =
(1− τ)(yk−1 −xk). ② uses convexity and Lemma C.3. We can establish the following
lemma to upper bound the boxed term in (C.2). Its proof is in the same spirit to that
of Lemma 3.10, and is the only place that we require all vectors to reside in Δbox.

Lemma C.5 (cf. Lemma 3.10) For every u ∈ Δbox,

〈

nαkη
(i)
k , zk−1 − u

〉+ n2α2
k L · 〈ξ (i)

k , xk − y(i)
k

〉 ≤ 21nαk L · ( fμ(xk) − fμ(y(i)
k )).

Proof of Lemma C.5 Now there are three possibilities:

– If η
(i)
k,i = 0, then we must have ξ

(i)
k,i = ∇i fμ(xk) ∈ [−1, 1]. Lemma C.4 implies

〈

nαkη
(i)
k , zk−1 − u

〉+ n2α2
k L · 〈ξ (i)

k , xk − y(i)
k

〉

= n2α2
k L · 〈∇ fμ(xk), xk − y(i)

k

〉 ≤ 2n2α2
k L · ( fμ(xk) − fμ(y(i)

k ))

– If η
(i)
k,i < 0 and z(i)

k,i < 10
‖A:i‖∞ (thus z(i)

k is not on the boundary of Δbox), then we

precisely have z(i)
k,i = zk−1,i + nαk‖A:i‖∞ , and accordingly y(i)

k,i = xk,i + 1
L‖A:i‖∞ >

xk,i . In this case,

〈

nαkη
(i)
k , zk−1 − u

〉+ n2α2
k L · 〈ξ (i)

k , xk − y(i)
k

〉

①≤ nαk · ∇i fμ(xk) · −10

‖A:i‖∞
+ n2α2

k L · 〈ξ (i)
k , xk − y(i)

k

〉

②
< nαk · ∇i fμ(xk) · −10

‖A:i‖∞
+ n2α2

k L · 〈∇ fμ(xk), xk − y(i)
k

〉

③= 10nαk L · 〈∇ fμ(xk), xk − y(i)
k

〉+ n2α2
k L · 〈∇ fμ(xk), xk − y(i)

k

〉

④≤ (20nαk L + 2n2α2
k L
) · ( fμ(xk) − fμ(y(i)

k )).

Above, ① follows from the fact that zk−1, u ∈ Δbox and therefore zk−1,i ≥ 0
and ui ≤ 10

‖A:i‖∞ by the definition of Δbox, and u ≥ 0; ② follows from the fact

that xk and y(i)
k are only different at coordinate i , and ξ

(i)
k,i = −1 > ∇i fμ(xk)

(since η
(i)
k,i < 0); ③ follows from the fact that y(i)

k = xk + ei
L‖A:i‖∞ ; and ④ uses

Lemma C.4.
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– If η
(i)
k,i < 0 and z(i)

k,i = 10
‖A:i‖∞ , then we have

〈

nαkη
(i)
k , zk−1 − u

〉+ n2α2
k L · 〈ξ (i)

k , xk − y(i)
k

〉

①≤ 〈nαkη
(i)
k , zk−1 − z(i)

k

〉+ n2α2
k L · 〈∇ fμ(xk), xk − y(i)

k

〉

②≤ 〈nαk∇ fμ(xk), zk−1 − z(i)
k

〉+ n2α2
k L · 〈∇ fμ(xk), xk − y(i)

k

〉

③= n2α2
k L · 〈∇ fμ(xk), xk − y(i)

k

〉+ n2α2
k L · 〈∇ fμ(xk), xk − y(i)

k

〉

④≤ 4n2α2
k L · ( fμ(xk) − fμ(y(i)

k )).

Above, ① is because ui ≤ 10
‖A:i‖∞ = z(i)

k,i and η
(i)
k,i < 0, together with ∇i fμ(xk) <

ξ
(i)
k,i and xk,i ≤ y(i)

k,i ; ② uses ∇i fμ(xk) = η
(i)
k,i − 1 < η

(i)
k,i and z(i)

k,i ≥ zk−1,i ; ③ is

from our choice of yk which satisfies that zk−1 − z(i)
k = nαk L(xk − y(i)

k ); and ④
uses Lemma C.4.

Combining the three cases, and using the fact that fμ(xk)− fμ(y(i)
k ) ≥ 0, we conclude

that

〈

nαkη
(i)
k , zk−1 − u

〉+ n2α2
k L · 〈ξ (i)

k , xk − y(i)
k

〉

≤ (20nαk L + 4n2α2
k L) · ( fμ(xk) − fμ(y(i)

k ))

≤ 21nαk L · ( fμ(xk) − fμ(y(i)
k )).

Above, the last inequality uses our choice of αk , which implies nαk ≤ nαT = 1
εL ≤ 1

4 .

Plugging Lemma C.5 back to (C.2), we have

αk( fμ(xk) − fμ(u)) ≤ 〈αk∇ fμ(xk), xk − u
〉

①≤ (1 − τ)αk

τ
( fμ(yk−1) − fμ(xk))

+ Ei

[

21nαk L · ( fμ(xk) − fμ(y(i)
k )) + 1

2
‖zk−1 − u‖2A − 1

2
‖zk − u‖2A

]

②≤ αk fμ(xk) + (21nαk L − αk
)

fμ(yk−1)

+ Ei

[

− 21nαk L · fμ(y(i)
k ) + 1

2
‖zk−1 − u‖2A − 1

2
‖zk − u‖2A

]

. (C.3)

Above, ① uses Lemma C.5; and ② is because we have chosen τ to satisfy 1
τ

= 21nL .
Next, recall that we have picked αk so that (21nL − 1)αk = 21nL · αk−1 in

CovLPSolverwb. Telescoping (C.3) for k = 1, . . . , T and choosing u∗ = (1 +
ε/2)x∗, we have
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−
T
∑

k=1

αk fμ(u∗) ≤ 21 fμ(y0) − 21nαT L

·E[ fμ(yT )] + ‖z0 − u∗‖2A ≤ −21nαT L · E[ fμ(yT )] + 75OPT.

Here, the second inequality is due to fμ(y0) = fμ(xstart) ≤ 3OPT from Fact 5.2,
and the fact that

‖z0 − u∗‖2A = ‖u∗‖2A =
n
∑

i=1

(u∗
i )

2 · ‖A:i‖∞ ≤ (1 + ε/2)2
n
∑

i=1

(x∗
i )2 · ‖A:i‖∞

≤ 10(1 + ε/2)2
n
∑

i=1

x∗
i < 12OPT.

Finally, using the fact that
∑T

k=1 αk = αT ·∑T−1
k=0

(

1 − 1
21nL

)k = 21nαT L
(

1 −
(1 − 1

21nL )T
)

, we rearrange and obtain that

E[ fμ(yT )] ≤
∑

k αk

21nαT L
fμ(u∗) + 75

21nαT L
OPT = (1 − (1 − 1

21nL
)T
)

fμ(u∗)

+ 75

21nαT L
OPT.

We choose T = �21nL log(1/ε)� so that 1
nαT L

= (1 − 1
21nL )T ≤ ε. Combining this

with the fact that fμ(u∗) ≤ (1 + ε)OPT (see Proposition 4.5a), we obtain

E[ fμ(yT )] ≤ (1 + ε)OPT + 3.6ε · OPT < (1 + 4.6ε)OPT.

Therefore, we have finished proving Theorem 5.3. �

D.4 Missing proofs for Sect. 6

Proposition 6.4 If zk−1 ∈ Δsimplex and zk−1 > 0, theminimizer z = argminz∈Δsimplex
{

Vzk−1(z) + 〈δei , z〉
}

for any scalar δ ∈ R and basis vector ei can be computed as
follows:

1. z ← zk−1.
2. zi ← zi · e−δ .
3. If 1T z > 2OPT′, z ← 2OPT′

1T z
z.

4. Return z.

Proof Let us denote by z the returned value of the described procedure, and g(u)
def=

Vzk−1(u) + 〈δei , u〉. Since Δsimplex is a convex body and g(·) is convex, to show
z = argminz∈Δsimplex

{g(u)}, it suffices for us to prove that for every u ∈ Δsimplex,
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〈∇g(z), u−z〉 ≥ 0. Since the gradient∇g(z) can bewritten explicitly, this is equivalent
to

δ(ui − zi ) +∑n
�=1 log

z�
zk−1,�

· (u� − z�) ≥ 0.

If the re-scaling in step 3 is not executed, then we have z� = zk−1,� for every � �= i ,
and zi = zk−1,i · e−δ; thus, the left-hand side is zero so the above inequality is true
for every u ∈ Δsimplex.

Otherwise, we have 1T z = 2OPT′ and there exists some constant Z > 1 such that,
z� = zk−1,�/Z for every � �= i , and zi = zk−1,i · e−δ/Z . In such a case, the left-hand
side equals to

(ui − zi ) · (δ − δ) +∑n
�=1 − log Z · (u� − z�).

It is clear at this moment that since log Z > 0 and 1T u ≤ 2OPT′ = 1T z, the above
quantity is always non-negative, finishing the proof. �

Lemma 6.13 Denoting by γ
def= 2αT n, we have

Ei
[

αk
〈

nξ
(i)
k , zk−1 − u∗〉] ≤ Vzk−1

( u∗

1 + γ

)− Ei

[

Vz(i)
k

( u∗

1 + γ

)

]

+ 12OPT · γαkβ.

Proof Define w(x)
def= ∑

i xi log(xi ) − xi and accordingly, Vx (y) = w(y) −
〈∇w(x), y− x〉−w(x) =∑i yi log

yi
xi

+ xi − yi . We first compute using the classical
analysis of mirror descent step as follows:

γαk
〈

nξ
(i)
k , zk−1

〉+ αk
〈

nξ
(i)
k , zk−1 − u∗〉

= (1 + γ )αk

〈

nξ
(i)
k , z(i)

k − u∗

1 + γ

〉

+ (1 + γ )αk
〈

nξ
(i)
k , zk−1 − z(i)

k

〉

①≤
〈

∇w(zk−1) − ∇w(z(i)
k ), z(i)

k − u∗

1 + γ

〉

+ (1 + γ )αk
〈

nξ
(i)
k , zk−1 − z(i)

k

〉

=
(

w
( u∗

1 + γ

)− w(zk−1) −
〈

∇w(zk−1),
u∗

1 + γ
− zk−1

〉

)

−
(

w
( u∗

1 + γ

)− w(z(i)
k ) −

〈

∇w(z(i)
k ),

u∗

1 + γ
− z(i)

k

〉

)

+
(

w(zk−1) − w(z(i)
k ) − 〈∇w(zk−1), zk−1 − z(i)

k

〉

)

+ (1 + γ )αk
〈

nξ
(i)
k , zk−1 − z(i)

k

〉

= Vzk−1

( u∗

1 + γ

)− Vz(i)
k

( u∗

1 + γ

)+ (1 + γ )αk
〈

nξ
(i)
k , zk−1 − z(i)

k

〉− Vzk−1(z
(i)
k ) .

(D.1)
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Above, ① is because z(i)
k = argminz∈Δsimplex

{

Vzk−1(z) + 〈(1+ γ )αknξ
(i)
k , z〉}, which

is equivalent to saying

∀u ∈ Δsimplex, 〈∇Vzk−1(z
(i)
k ) + (1 + γ )αknξ

(i)
k , u − z(i)

k 〉 ≥ 0

⇐⇒ ∀u ∈ Δsimplex, 〈∇w(z(i)
k ) − ∇w(zk−1) + (1 + γ )αknξ

(i)
k , u − z(i)

k 〉 ≥ 0.

In particular, we have 1T u∗
1+γ

= 1T (1+ε/2)x∗
1+γ

< 2OPT ≤ 2OPT′ and therefore
u∗
1+γ

∈ Δsimplex. Substituting u = u∗
1+γ

into the above inequality we get ①.
Next, we upper bound the term in the box:

(1 + γ )αk〈nξ
(i)
k , zk−1 − z(i)

k 〉 − Vzk−1(z
(i)
k )

①≤ (1 + γ )αknξk,i · (zk−1,i − z(i)
k,i ) −

(

z(i)
k,i log

z(i)
k,i

zk−1,i
+ zk−1,i − z(i)

k,i

)

②≤ (1 + γ )αknξk,i · (zk−1,i − z(i)
k,i ) − |z(i)

k,i − zk−1,i |2
2max{z(i)

k,i , zk−1,i }
③≤ (1 + γ )αknξk,i · (zk−1,i − z(i)

k,i ) − |z(i)
k,i − zk−1,i |2
4zk−1,i

④≤ (1 + γ )2zk−1,i · (αknξk,i )
2 ⑤≤ 2zk−1,i · (αknξk,i )

2 ⑥≤ zk−1,i · γαkn|ξk,i |
⑦≤ zk−1,i · γαknξk,i + 2zk−1,i · γαknβ = γαk〈nξ

(i)
k , zk−1〉 + 2zk−1,i · γαknβ.

(D.2)

Above, ① uses the facts (i) a log a
b + b − a ≥ 0 for any a, b > 0, (ii) zk−1,i − z(i)

k

and ξk,i have the same sign, and (iii) ξ
(i)
k,i ′ = 0 for every i ′ �= i ; ② uses the inequality

that for every a, b > 0, we have a log a
b + b − a ≥ (a−b)2

2max{a,b} . ③ uses the fact that

z(i)
k,i ≤ 2zk−1,i .14 ④ uses Cauchy-Shwarz: ab − b2/4 ≤ a2. ⑤ uses (1 + γ )2 < 2. ⑥
uses |ξk,i | ≤ 1 and γ = 2αT n ≥ 2αkn. ⑦ uses ξk,i ≥ −β.

Next, we combine (D.1) and (D.2) to conclude that

αk
〈

nξ
(i)
k , zk−1 − u∗〉 ≤ Vzk−1

( u∗

1 + γ

)− Vz(i)
k

( u∗

1 + γ

)+ 2zk−1,i · γαknβ.

Taking expectation on both sides with respect to i , and using the property that
1T zk−1 ≤ 3OPT′ ≤ 6OPT, we obtain that

14 This is because, our parameter choices ensure that (1 + γ )αkn < 1/2β, which further means −(1 +
γ )αknξ

(i)
k,i ≤ 1/2. As a result, we must have z(i)

k,i ≤ zk−1,i · e0.5 < 2zk−1,i (see the explicit definition of
the mirror step at Proposition 6.4).
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Ei
[

αk
〈

nξ
(i)
k , zk−1 − u∗〉] ≤ Vzk−1

( u∗

1 + γ

)− Ei

[

Vz(i)
k

( u∗

1 + γ

)

]

+ 12OPT · γαkβ.

�
Lemma 6.14 For every i ∈ [n], we have
(a) fμ(xk) − fμ(y(i)

k ) ≥ 0, and

(b) fμ(xk) − fμ(y(i)
k ) ≥ μβ

12 · 〈−η̃
(i)
k , u∗〉.

Proof of Lemma 6.14 part (a) Since if i /∈ Bk is not a large index we have y(i)
k = xk

and the claim is trivial, we focus on i ∈ Bk in the remaining proof. Recall that
y(i)
k = xk + δei for some δ > 0 defined in Algorithm 3, so we have

fμ(xk)− fμ(y(i)
k )=

∫ δ

τ=0
〈−∇ fμ(xk+τei ), ei 〉dτ =

∫ δ

τ=0

(〈A:i , p(xk + τei )〉 − 1
)

dτ.

It is clear that 〈A:i , p(xk + τei )〉 decreases as τ increases, and therefore it suffices to
prove that 〈A:i , p(xk + δei )〉 ≥ 1.

Suppose that the rows of A:i are sorted (for the simplicity of notation) by the
increasing order of A j,i . Now, by the definition of the algorithm (recall (6.1)), there
exists some j∗ ∈ [m] satisfying that

∑

j< j∗
A j,i · p j (xk) < 1 + β and

∑

j≤ j∗
A j,i · p j (xk) ≥ 1 + β.

Next, by our choice of δ which satisfies δ = μβ
2A j∗,i

≤ μβ
2A j,i

for every j ≤ j∗, we have
for every j ≤ j∗:

p j (xk + δei ) = p j (xk) · e− A j,i δ
μ ≥ p j (xk) · e−β/2 ≥ p j (xk) · (1 − β/2),

and as a result,

〈A:i , p(xk + δei ) ≥
∑

j≤ j∗
A j,i · p j (xk + δei ) ≥ (1 − β/2)

∑

j≤ j∗
A j,i · p j (xk)

≥ (1 − β/2)(1 + β) ≥ 1.

�
Proof of Lemma 6.14 part (b) Owing to part (a), for every coordinate i such that
η̃k,i ≥ 0, we automatically have fμ(xk) − fμ(y(i)

k ) ≥ 0 so the lemma is obvious.
Therefore, let us focus only on coordinates i such that η̃k,i < 0; these are necessarily
large indices i ∈ B. Recall from Definition 6.11 that η̃k,i = (1 + β) − (˜AT p(xk))i ,
so we have

∑m
j=1
˜A j,i · p j (xk) − (1 + β) > 0.
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For the simplicity of description, suppose again that each i-th column is sorted in
non-decreasing order, that is, A1,i ≤ · · · ≤ Am,i . The definition of j∗ can be simplified
as

∑

j< j∗ A j,i · p j (xk) < 1 + β and
∑

j≤ j∗ A j,i · p j (xk) ≥ 1 + β.

Let j � ∈ [m] be the row such that
∑

j< j�
˜A j,i · p j (xk) < 1 + β and

∑

j≤ j�
˜A j,i · p j (xk) ≥ 1 + β.

Note that such a j � must exist because
∑m

j=1
˜A j,i · p j > 1 + β. It is clear that

j � ≥ j∗, owing to the definition that ˜A ji ≤ A ji for all i ∈ [n], j ∈ [m]. Defining
δ� = μβ

2A j�,i
≤ δ, the objective decrease is lower bounded as

fμ(xk)− fμ(y(i)
k )=

∫ δ

τ=0
〈−∇ fμ(xk+τei ), ei 〉dτ =

∫ δ

τ=0

(〈A:i , p(xk + τei )〉 − 1
)

dτ

≥
∫ δ�

τ=0

(〈A:i , p(xk + τei )〉 − 1
)

dτ

=
∫ δ�

τ=0

⎛

⎝−1 +
∑

j≤ j�

A j,i · p j (xk + τei )

⎞

⎠ dτ

︸ ︷︷ ︸

I

+
∑

j> j�

∫ δ�

τ=0
A j,i · p j (xk + τei )dτ

︸ ︷︷ ︸

I ′

where the inequality is because δ� ≤ δ and 〈A:i , p(xk + τei )〉 ≥ 1 for all τ ≤ δ (see
the proof of part (a)).
Part I To lower bound I , we use the monotonicity of p j (·) and obtain that

I =
∫ δ�

τ=0

⎛

⎝−1 +
∑

j≤ j�

A j,i · p j (xk + τei )

⎞

⎠ dτ ≥ δ�

·
⎛

⎝−1 +
∑

j≤ j�

A j,i · p j (xk + δ�ei )

⎞

⎠ .

However, our choice of δ� = μβ
2A j�,i

≤ μβ
2A j,i

for all j ≤ j � ensures that

∑

j≤ j�

A j,i · p j (xk + δ�ei ) ≥
∑

j≤ j�

A j,i · p j (xk) · e
−A j,i ·δ�

μ

≥
∑

j≤ j�

A j,i · p j (xk) · (1 − β/2).
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Therefore, we obtain that

I ≥ δ�

⎛

⎝−1 + (1 − β/2)
∑

j≤ j�

A j,i · p j (xk)

⎞

⎠ ≥ δ�

3

⎛

⎝−1 +
∑

j≤ j�

A j,i · p j (xk)

⎞

⎠ ,

where the inequality is because
( 2
3 − β

2

)∑

j≤ j� A j,i · p j (xk) ≥ 4−3β
6 · (1 + β) ≥ 2

3

whenever β ≤ 1
3 (or equivalently, whenever ε ≤ 1/9).

Now, suppose that
∑

j≤ j�
˜A j,i · p j (xk) − (1 + β) = b · ˜A j�,i · p j� (xk) for some

b ∈ [0, 1]. Note that we can do so by the very definition of j �. Then, we must have

−1 +
∑

j≤ j�

A j,i · p j (xk) ≥ −1 +
∑

j< j�

˜A j,i · p j (xk) + A j�,i · p j� (xk)

= −1 + (1 + β) − (1 − b)˜A j�,i · p j� (xk) + A j�,i · p j� (xk)

≥ β + b · A j�,i · p j� (xk).

Therefore, we conclude that

I ≥ δ�

3

⎛

⎝−1 +
∑

j≤ j�

A j,i · p j (xk)

⎞

⎠ >
δ�

3
· b · A j�,i · p j� (xk)

= μβ

6˜A j�,i
· b · ˜A j�,i · p j� (xk)

= μβ

6˜A j�,i
·
⎛

⎝−(1 + β) +
∑

j≤ j�

˜A j,i · p j (xk)

⎞

⎠

≥ μβ

12
· u∗

i ·
⎛

⎝−(1 + β) +
∑

j≤ j�

˜A j,i · p j (xk)

⎞

⎠ .

Above, the last inequality is because u∗
i ·˜A j�,i ≤ 〈˜A j�:, u∗〉 ≤ 2 by our definition of ˜A.

Part I ′ To lower bound I ′, consider every j > j � and the integral

∫ δ�

τ=0
A j,i · p j (xk + τei )dτ.

Note that whenever τ ≤ μβ
2A j,i

≤ μβ
2A j�,i

= δ�, we have that p j (xk + τei ) ≥
p j (xk) · e−β/2 ≥ 1

2 p j (xk). Therefore,

∫ δ�

τ=0
A j,i · p j (xk+τei )dτ ≥

∫ μβ
2A j,i

τ=0
A j,i · p j (xk + τei )dτ ≥ μβ

2A j,i
· A j,i · 1

2
p j (xk).
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This implies a lower bound on I ′:

I ′ ≥
∑

j> j�

μβ

4A j,i
· A j,i · p j (xk) ≥ μβ

8
·
∑

j> j�

u∗
i · ˜A j,i · p j (xk),

where again in the last inequality we have used u∗
i · ˜A j�,i ≤ 〈˜A j�:, u∗〉 ≤ 2 by our

definition of ˜A.
Together Combining the lower bounds on I and I ′, we obtain

fμ(xk) − fμ(y(i)
k ) ≥ I + I ′ ≥ μβ

12
· u∗

i ·
⎛

⎝−(1 + β) +
m
∑

j=1

˜A j,i · p j (xk)

⎞

⎠

= μβ

12
· 〈−η̃

(i)
k , u∗〉.

�

E.5 Proof of Lemma 3.3: Efficient Implementation of PacLPSolver

In this section, we illustrate how to implement each iteration of PacLPSolver to run
in an expected O(N/n) time. We maintain the following quantities

zk ∈ R
n≥0, azk ∈ R

m≥0, y′
k ∈ R

n, ay′
k ∈ R

m, Bk,1, Bk,2 ∈ R+

throughout the algorithm, so as to ensure the following invariants are always satisfied

Azk = azk, (E.1)

yk = Bk,1 · zk + Bk,2 · y′
k, Ay′

k = ay′
k . (E.2)

It is clear that when k = 0, letting azk = Az0, y′
k = y0, ay′

k = Ay0, Bk,1 = 0, and
Bk,2 = 1, we can ensure that all the invariants are satisfied initially. We denote ‖A:i‖0
the number of nonzeros elements in vector A:i . In each iteration k = 1, 2, . . . , T :

– The step xk = τzk−1 + (1 − τ)yk−1 does not need to be implemented.

– The value ∇i f (xk) requires the knowledge of p j (xk) = e
1
μ

((Axk) j−1) for each j
such that Ai j �= 0. Accordingly, for each j , we need to know the value

(Axk) j = τ(Azk−1) j + (1 − τ)(Ayk−1) j

= (τ + (1 − τ)Bk−1,1
)

azk−1, j + (1 − τ)Bk−1,2ay′
k−1, j .

This can be computed in O(1) time for each j , and O(‖A:i‖0) time in total.
– Recall the step zk ← argminz∈Δbox

{ 1
2‖z − zk−1‖2A +〈nαkξ

(i)
k , z〉} can be written

as zk = zk−1 + δei for some δ ∈ R that can be computed in O(1) time (see
Proposition 3.2). Observe also zk = zk−1+δei yields yk = τzk−1+(1−τ)yk−1+
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δei
nαk L

due to Line 6 and Line 10 of Algorithm 1. Therefore, we perform two explicit
updates on zk and azk as

zk ← zk−1 + δei , azk ← azk−1 + δA:i

and two implicit updates on yk as

Bk,1 = τ + (1 − τ)Bk−1,1, Bk,2 = (1 − τ)Bk−1,2,

y′
k ← y′

k−1 + δei ·
(

− Bk,1
Bk,2

+ 1
nαk L

1
Bk,2

)

,ay′
k ← ay′

k−1 + δA:i ·
(

− Bk,1
Bk,2

+ 1
nαk L

1
Bk,2

)

It is not hard to verify that after these updates, Ay′
k = ay′

k and we have

Bk,1 · zk + Bk,2 · y′
k = Bk,1 · (zk−1 + δei

)

+ Bk,2 ·
(

y′
k−1 + δei ·

(

− Bk,1

Bk,2
+ 1

nαk L

1

Bk,2

))

= Bk,1 · zk−1 + Bk,2 ·
(

y′
k−1 + δei ·

(

1

nαk L

1

Bk,2

))

= Bk,1 · zk−1 + Bk,2 · y′
k−1 + δei

nαk L

= (τ + (1 − τ)Bk−1,1
) · zk−1 + ((1 − τ)Bk−1,2

) · y′
k−1 + δei

nαk L

= τzk−1 + (1 − τ)yk−1 + δei
nαk L

= yk,

so the invariant yk = Bk,1 · zk + Bk,2 · y′
k also holds. In sum, after performing

updates on Azk and ay′
k in time O(‖A:i‖0), we can ensure that the invariants in

(E.1) and (E.2) are satisfied at iteration k.

In sum, we only need O(‖A:i‖0) time to perform the updates in PacLPSolver for
an iteration k if the coordinate i is selected. Therefore, each iteration of PacLPSolver
can be implemented to run in an expected O(Ei [‖A:i‖0]) = O(N/n) time.

F.6 Proof of Lemma 6.5: Efficient Implementation of CovLPSolver

In this section we illustrate how to implement each iteration of CovLPSolver to run
in an expected O(N/n) time. We maintain the following quantities

z′
k ∈ R

n+, szk ∈ R+, sumzk ∈ R+, az′
k ∈ R

m≥0, y′
k ∈ R

n,

ay′
k ∈ R

m, Bk,1, Bk,2 ∈ R+

throughout the algorithm, so as to maintain the following invariants

zk = z′
k/szk, sumzk = 1T z′

k, Azk = az′
k/szk, (F.1)

yk = Bk,1 · z′
k + Bk,2 · y′

k, Ayk = ay′
k . (F.2)
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It is clear that when k = 0, letting z′
k = z0, szk = 1, sumzk = 1T z0, az′

k = Az0,
y′
k = y0, ay′

k = Ay0, Bk,1 = 0, and Bk,2 = 1, we can ensure that all the invariants
are satisfied initially.

We denote by ‖A:i‖0 the number of nonzero elements in vector A:i . In each iteration
k = 1, 2, . . . , T :

– The step xk = τzk−1 + (1 − τ)yk−1 does not need to be implemented.

– The value p j (xk) = e
1
μ

(1−(Axk) j ) for each j only requires the knowledge of

(Axk) j = τ(Azk−1) j + (1 − τ)(Ayk−1) j

= (τ + (1 − τ)Bk−1,1
)
az′

k−1, j

szk−1
+ (1 − τ)Bk−1,2ay′

k−1, j .

This can be computed in O(1) time.
– The value ∇i f (xk) requires the knowledge of p j (xk) for each j ∈ [m] such that

Ai j �= 0. Since we have ‖A:i‖0 such j’s, we can compute ∇i f (xk) in O(‖A:i‖0)
time.

– Letting δ = (1 + γ )nαkξ
(i)
k,i , recall that the mirror step zk ← argminz∈Δsimplex

{

Vzk−1(z) + 〈δei , z〉
}

has a very simple form (see Proposition 6.4): first multiply
the i-th coordinate of zk−1 by e−δ and then, if the sum of all coordinates have
exceeded 2OPT′, scale everything down so as to sum up to 2OPT′. This can be
implemented as follows: setting δ1 = z′

k−1,i (e
−δ − 1),

z′
k ← z′

k−1 + δ1ei ,az′
k ← az′

k−1 + δ1A:i ,
sumzk ← sumzk−1 + δ1, szk ← szk · max

{

1, sumzk
szk−1·2OPT′

}

.

These updates can be implemented to run in O(‖A:i‖0) time, and they together
ensure that the invariants in (F.1) are satisfied at iteration k.

– Recall that the gradient step is of the form yk ← xk +δ2 ·ei for some value δ2 ≥ 0.
This value δ2 can be computed in O(‖A:i‖0) time, since each p j (xk) can be com-
puted in O(1) time, andwe can sort the rows of each column of A by preprocessing.

Since yk = xk + δ2 · ei = τzk−1 + (1 − τ)yk−1 + δ2ei , we can implement this
update by letting

Bk,1 = τ
szk−1

+ (1 − τ)Bk−1,1, Bk,2 = (1 − τ)Bk−1,2

y′
k ← y′

k−1 + ei ·
(

− Bk,1δ1
Bk,2

+ δ2
Bk,2

)

,ay′
k ← ay′

k−1 + A:i ·
(

− Bk,1δ1
Bk,2

+ δ2
Bk,2

)

It is not hard to verify that after these updates, ay′
k = Ay′

k and we have

Bk,1 · z′
k + Bk,2 · y′

k = Bk,1 · (z′
k−1 + δ1ei

)

+ Bk,2 ·
(

y′
k−1 + ei ·

(

− Bk,1δ1

Bk,2
+ δ2

Bk,2

))

= Bk,1 · z′
k−1 + Bk,2 · (y′

k−1 + δ2ei/Bk,2
)
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= Bk,1 · z′
k−1 + Bk,2 · y′

k−1 + δ2ei

= ( τ

szk−1
+ (1 − τ)Bk−1,1

) · z′
k−1 + ((1 − τ)Bk−1,2

) · y′
k−1 + δ2ei

= τzk−1 + (1 − τ)yk−1 + δ2ei = yk,

so that the invariant yk = Bk,1 ·z′
k + Bk,2 ·y′

k is also satisfied. In sum, after running
time O(‖A:i‖0), we can ensure that the invariants in (F.2) are satisfied at iteration
k.

In sum, we only need O(‖A:i‖0) time to perform the updates in CovLPSolver for
an iteration k if the coordinate i is selected. Therefore, each iteration ofCovLPSolver
can be implemented to run in an expected O(Ei [‖A:i‖0]) = O(N/n) time.
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