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Abstract Under the assumption of prox-regularity and the presence of a tilt stable
local minimum we are able to show that a VU like decomposition gives rise to the
existence of a smooth manifold on which the function in question coincides locally
with a smooth function.
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1 Introduction

The study of substructure of nonsmooth functions has led to an enrichment of fun-
damental theory of nonsmooth functions [19–21,24–26,32]. Fundamental to this
substructure is the presence of manifolds along which the restriction of the nons-
mooth function exhibits some kind of smoothness. In the case of “partially smooth
function” [25] an axiomatic approach is used to describe the local structure that is
observed in a number of important examples [25,26]. In [26] it is shown that the study
of tilt stability can be enhanced for the class of partially smooth functions. In the theory
of the “U-Lagrangian” and the associated “VU decomposition” [24,28] the existence
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156 A. C. Eberhard et al.

of a smooth manifold substructure is proven for some special classes of functions
[28,31]. In the extended theory the presence of so called “fast tracks” is assumed and
these also give rise to similar manifold substructures [29,32]. The U-Lagrangian is
reminiscent of a partial form of “tilt minimisation” [36] and this observation has moti-
vated this study. As fast tracks and related concepts such as “identifiable constraints”
are designed to aid the design of methods for the solution of nonsmooth minimization
problems [18,27,29,31,32,40], it seems appropriate to ask what additional structure
does the existence of a tilt stable local minimum give to the study of the VU decom-
position [24]? This is the subject of the paper. In the following discussion we denote
the extended reals by R∞ := R ∪ {+∞}. If not otherwise stated we will consider a
lower semi-continuous, extended-real-valued function f : Rn → R∞. We denote the
limiting subdifferential of Mordukhovich, Ioffe and Kruger by ∂ f .

Tilt stability was first studied in [36] for the case of f being both “prox-regular” at x̄
for z̄ ∈ ∂ f (x̄) and “subdifferentially continuous” at (x̄, z̄), in the sense of Rockafellar
and Poliquin [35]. In [36] a characterisation of tilt stability is made in terms of certain
second order sufficient optimality conditions. Such optimality conditions have been
studied in [10,11,15,36]. In [11,13] it is shown that second order information provided
by the coderivative is closely related to another second order condition framed in terms
of the “limiting subhessian” [13,14,34]. Thesemaybe thought of as the robust\limiting
version of symmetric matrices associated with a lower, supporting Taylor expansion
with a first order component z and second order component Q (a symmetric matrix).
The limiting pairs (z̄, Q̄) are contained in the so called “subjet” [5] and the second
order components Q̄ associated with a given z̄ ∈ ∂ f (x̄) are contained in the limiting
subhessian ∂2 f (x̄, z̄), [10,23,34]. These have been extensively studied and possess a
robust calculus similar to that which exists for the limiting subdifferential [9,23]. One
can view the “best curvature” approximation in the direction h for the function f at
(x̄, z̄) to be q(∂2 f (x̄, z̄))(h) := sup{〈Qh, h〉 | Q ∈ ∂2 f (x̄, z̄)}, where we denote by
〈u, h〉 the usual Euclidean inner product of two vectors u, h ∈ R

n .
To complete our discussion we consider the VU decomposition [24]. When rel-

int ∂ f (x̄) �= ∅ we can take z̄ ∈ rel-int ∂ f (x̄) and define V := span {∂ f (x̄)− z̄}
and U := V⊥. The V-space is thought to capture the directions of nonsmoothness
of f at x̄ while the U is thought to capture directions of smoothness. When U2 :=
dom q(∂2 f (x̄, z̄))(·) is a linear subspace that is contained in U , we call U2 the second
order component of U and in Lemma 18 we give quite mild condition under which this
is indeed the case. When U2 = U we say that a fast-track exists at x̄ for z̄ ∈ ∂ f (x̄).

In this paper we investigate whether the existence of a tilt stable local minimum
provides extra information regarding the existence of a smooth manifold within which
a smooth function interpolates the values of the f . We are able to show the following
positive results. Recall that we say f is quadratically minorised when there exists a
quadratic function q (x) := α − R

2 ‖x − x̄‖2 such that q ≤ f (globally). All balls
BX

ε (0) := {x ∈ X | ‖x‖ ≤ ε} are closed.
Theorem 1 Consider f : R

n → R∞ is a proper lower semi-continuous func-
tion, quadratically minorised, and prox-regular at x̄ for 0 ∈ ∂ f (x̄). Suppose in
addition f admits a nontrivial subspace U2 := dom

(
∂2 f (x̄, 0)

)
(·) and that f

has a tilt stable local minimum at x̄ . Then U2 ⊆ U , V2 := (U2)⊥ and for
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On partial smoothness, tilt stability and the VU-decomposition 157

g (w) := [co h] (w), placing h(w) := f (x̄ + w) + δ
BU2

ε (0)⊕BV2
ε (0) (w) we have

{v (u)} = argminv′∈V2∩Bε(0) f
(
x̄ + u + v′

) : U2 → V2 and there exists a δ > 0
such that we have g (u + v (u)) = f (x̄ + u + v (u)) and ∇ug (u + v (u)) existing as
Lipschitz function for u ∈ BU2

δ (0).

That is,M :=
{
u + v(u) | u ∈ BU2

ε (0)
}
is a manifold on which the restriction toM

of function g coincides with a smooth C1,1 function of u ∈ U [tilt stability ensures
local uniqueness of the function v(·)]. Assuming a littlemorewe obtain the smoothness
of v and in addition the smoothness of the manifold.

Theorem 2 Consider f : R
n → R∞, a proper lower semi-continuous function,

quadratically minorised and prox-regular at x̄ for 0 ∈ ∂ f (x̄). Let g (w) := [co h] (w)

for h(w) := f (x̄ + w) + δBU
ε (0)⊕BV

ε (0) (w). Suppose in addition that U2 = U
is a linear subspace (i.e. U admits a fast track), f has a tilt stable local min-
imum at x̄ for 0 ∈ rel-int ∂ f (x̄) and ∂∞ f (x̄ + u + v (u)) = {0} for v (u) ∈
argminv′∈V∩Bε(0)

{
g

(
u + v′

)} : U → V , u ∈ BU
ε (0). Then there exists a ε > 0

such that the function in (1) is C1,1
(
BU

ε (0)
)
smooth:

u �→ g (u + v (u)) = f (x̄ + u + v (u))

where ∇wg (u + v (u)) = (eU ,∇v (u))T ∂g (u + v (u)) (1)

(eU is the identity operator on U). Moreover, suppose we have a δ > 0 (with δ ≤ ε)
such that for all zV ∈ Bδ (0) ∩ V ⊆ ∂V f (x̄) and u ∈ Bε (0) ∩ U we have

{v (u)} = argminv∈V∩Bε(0) { f (x̄ + u + v)− 〈zV , v〉} . (2)

Then M := {
u + v (u) | u ∈ BU

ε (0)
}
is a C1-smooth manifold on which u �→

f (x̄ + u + v (u)) is C1,1
(
BU

δ (0)
)
smooth and u �→ v (u) is continuously differ-

entiable.

We are also able to produce a lower Taylor approximation for f that holds locally
at all points insideM, see Corollary 54. These results differ from those present in the
literature in that we impose common structural assumptions on f found elsewhere in
the literature on stability of local minima [7,36], rather than imposing very special
structural properties, as is the approach of [18,28,29,40]. Moreover, we do not assume
the a-priori existence of any kind of smoothness of the underlying manifold, as is
done in the axiomatic approach in [26], but let smoothness arise from a graded set
of assumptions which progressively enforce greater smoothness. In this way the roles
of these respective assumptions are clarified. Finally we note that it is natural in this
context to study C1,1 smoothness rather than the C2 smoothness used in other works
such as [26,27,32].

2 Preliminaries

The following basic concepts are used repeatedly throughout the paper.
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158 A. C. Eberhard et al.

Definition 3 Suppose f : Rn → R∞ is a lower semi-continuous function.

1. Denote by ∂p f (x̄) the proximal subdifferential, which consists of all vectors z
satisfying f (x) ≥ f (x̄)+ 〈z, x − x̄〉 − r

2‖x − x̄‖2 in some neighbourhood of x̄ ,
for some r ≥ 0, where ‖ · ‖ denotes the Euclidean norm. Denote by Sp( f ) the
points in the domain of f at which ∂p f (x) �= ∅.

2. The limiting subdifferential [33,38] at x is given by

∂ f (x) = lim sup
x ′→ f x

∂p f (x
′) := {z | ∃zv ∈ ∂p f (xv), xv → f x , with zv → z},

where x ′ → f x means that x ′ → x and f (x ′)→ f (x).
3. The singular limiting subdifferential is given by

∂∞ f (x) = lim sup
x ′→ f x

∞ ∂p f (x
′)

:= {z | ∃zv ∈ ∂p f (xv), xv → f x , with λv ↓ 0 and λvzv → z}.

2.1 The VU decomposition

Denote the convex hull of a set C ⊆ R
n by coC . The convex hull of a function f :

R
n → R∞ is denoted by co f and corresponds to the proper lower-semi-continuous

function whose epigraph is given by co epi f . In this section we will use a slightly
weaker notion of the VU decomposition. When rel-intco ∂ f (x̄) �= ∅ we can take
z̄ ∈ rel-intco ∂ f (x̄) and define V := span {co ∂ f (x̄)− z̄} and U := V⊥.

Under the VU decomposition [24] for a given z̄ ∈ rel-intco ∂ f (x̄) we have, by
definition,

z̄ + Bε (0) ∩ V ⊆ co ∂ f (x̄) for some ε > 0. (3)

One can then decompose z̄ = z̄U + z̄V so that when w = u + v ∈ U ⊕ V we
have 〈z̄, w〉 = 〈z̄U , u〉 + 〈z̄V , v〉. Indeed we may decompose into the direct sum
x = xU+xV ∈ U⊕V and use the following norm for this decomposition ‖x − x̄‖2 :=
‖xU − x̄U‖2+‖xV − x̄V‖2 .As all norms are equivalent we will at times prefer to use
{BU

ε (x̄U ) ⊕ BV
ε (x̄V )}ε>0 which more directly reflects the direct sum U ⊕ V , where

each B(·)
ε (·) is a closed ball of radius ε > 0, in their respective space.

Denote the projection onto the subspacesU andV by PU (·) and PV (·), respectively.
Denote by f |U the restriction of f to the subspace U , ∂V f (x̄) := PV (∂ f (x̄)) and
∂U f (x̄) := PU (∂ f (x̄)). Let δC (x) denote the indicator function of a set C , δC (x) = 0
iff x ∈ C and +∞ otherwise. Let f ∗ denote the convex conjugate of a function f .

Remark 4 The condition (3) implies one can takeV := span {co ∂ f (x̄)− z̄} = affine-
hull [co ∂ f (x̄)] − z̄ which is independent of the choice of z̄ ∈ co ∂ f (x̄). Moreover,
as was observed in [32, Lemma 2.4] we have z̄U = Paffine - hullco ∂ f (x̄) (0) (see part 2
below).

Proposition 5 Suppose f : R
n → R∞ is a proper lower semi-continuous function

with (3) holding.
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On partial smoothness, tilt stability and the VU-decomposition 159

1. We have
U =

{
u | −δ∗∂ f (x̄)(−u) = δ∗∂ f (x̄)(u)

}
. (4)

2. We have
∂ f (x̄) = {z̄U } ⊕ ∂V f (x̄) . (5)

3. Suppose there exists ε > 0 such that for all zV ∈ Bε (z̄V ) ∩ V ⊆ ∂V f (x̄) there is
a common

v (u) ∈ argminv∈V∩Bε(0) { f (x̄ + u + v)− 〈zV , v〉} ∩ int Bε(0)

for all u ∈ Bε (0) ∩ U . Then we have

cone [∂V f (x̄ + u + v (u))− z̄V ] ⊇ V. (6)

4. If we impose the addition assumption that f is (Clarke) regular at x̄ , z̄ ∈ ∂ f (x̄)
and ∂∞ f (x̄) ∩ V = {0}. Then the function

HU (·) := f (x̄ + ·) : U → R∞

is strictly differentiable at 0 and single valued with ∂HU (0) = {z̄U } and HU (as a
function defined onU) is continuous with HU and−HU (Clarke) regular functions
at 0 (in the sense of [38]).

Proof (1) If u ∈ U then by construction we have

− δ∗∂ f (x̄)(−u) = −δ∗co ∂ f (x̄)(−u) = δ∗co ∂ f (x̄)(u) = δ∗∂ f (x̄)(u) = 〈u, z̄〉 (7)

giving the containment of U in the right hand side of (4). For u satisfying (7)
then 〈z − z̄, u〉 = 0 for all z ∈ co ∂ f (x̄). That is, u ⊥ [co ∂ f (x̄) − z̄] and hence
u ⊥ V = U⊥ verifying u ∈ U .

(2) Since ∂ f (x̄) ⊆ z̄ + V = z̄U + V always have ∂ f (x̄) = {z̄U } ⊕ ∂V f (x̄) .

(3) When v (u) ∈ argminv∈V∩Bε(0) { f (x̄ + u + v)− 〈zV , v〉} for all u ∈ Bε (0) ∩ U
and zV ∈ Bε (z̄V ) ∩ V we have, due to the necessary optimality conditions, that

zV ∈ ∂V f (x̄ + u + v (u))

and hence Bε (z̄V ) ∩ V ⊆ ∂V f (x̄ + u + v (u)) giving (6).
(4) For h (·) := f (x̄ + ·) define H = h + δU so h (u) = H (u) when u ∈ U . Then

as ∂∞ f (x̄) ∩ V = {0}, by [38, Corollary 10.9] we have

∂H (0) ⊆ ∂ f (x̄)+ NU (0) = ∂ f (x̄)+ V.

Then restricting to U we have PU∂H (0) ⊆ ∂U f (x̄). Then for u ∈ U we have
δ∗∂H(0)(u) = δ∗PU ∂H(0)(u) ≤ δ∗∂ f (x̄)(u) and so

−δ∗∂ f (x̄)(−u) ≤ −d̂ H(0)(−u) ≤ d̂ H(0)(u) ≤ δ∗∂ f (x̄)(u).
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160 A. C. Eberhard et al.

As f is regular at x̄ we have ∂∞ f (x̄) = 0+(∂ f (x̄)) where the later corresponds
to the recession directions of the convex set ∂ f (x̄) (see [38, Theorem 8.49]). Then
we have 0+(∂ f (x̄)) ⊆ V . [Take u ∈ 0+(∂ f (x̄)) and z ∈ rel-int ∂ f (x̄). Then by
[37, Theorem 6.1] we have z + u ∈ rel-int ∂ f (x̄) and hence u ∈ V .] Thus for
u ∈ U ⊆ (0+(∂ f (x̄)))◦ we have

d̂ H(0)(u) := lim sup
x→0,t↓0

inf
u′→u

1

t
( f (x + tu′)− f (x)) = δ∗∂H(0)(u) = δ∗PU ∂H(0)(u),

see [38,Definition 8.16, Exercise 8.23]. It follows that−d̂ H(0)(−u) = d̂ H(0)(u)

for all u ∈ U . Restriction of H to the subspace U , (denoted this function by HU )
we have ∂∞HU (0) ⊆ ∂∞ f (x̄) ∩ U = {0} then by [38, Theorem 9.18] we have
∂HU (0) a singleton with HU continuous at 0 and HU and−HU (Clarke) regular.
As z̄U ∈ ∂HU (0) we have ∂HU (0) = {z̄U }, so ∂U f (x̄) = {z̄U }. ��

3 A Primer on Subjets and Subhessians

Wewill have need to discuss second order behaviour in this paper and as a consequence
it will be useful to define a refinement of this decomposition that takes into account
such second order variations. In most treatments of the VU decomposition one finds
that by restricting f to M := {(u, v(u)) | u ∈ U} not only do we find f is smooth
we also find that there is better second order behaviour as well [24]. This is also often
associated with smooth manifold substructures. Let S(n) denote the set of symmetric
n × n matrices (endowed with the Frobenius norm and inner product) for which
〈Q, hhT 〉 = hT Qh. Denote the cone of positive semi-definite matrices by P(n) and
�2 f (x, t, z, u) := 2 f (x+tu)− f (x)−t〈z,u〉

t2
.

Definition 6 Suppose f : Rn → R∞ is a lower semi-continuous function.

1. The function f is said to be twice sub-differentiable (or possess a subjet) at x if
the following set is nonempty;

∂2,− f (x) = {(∇ϕ(x),∇2ϕ(x)) : f − ϕ has a local minimum at x with

ϕ ∈ C2(Rn)}.

The subhessians at (x, z) ∈ graph ∂ f are given by ∂2,− f (x, z) := {Q ∈ S(n) |
(z, Q) ∈ ∂2,− f (x)}.

2. The limiting subjet of f at x is defined to be: ∂2 f (x) = lim supu→ f x ∂2,− f (u)

and the associated limiting subhessians for z ∈ ∂ f (x) are ∂2 f (x, z) ={
Q ∈ S (n) | (z, Q) ∈ ∂2 f (x)

}
.

3. We define the rank one barrier cone for ∂2 f (x, z) as

b1(∂2 f (x, z)) := {h ∈ R
n | q

(
∂2 f (x, z)

)
(h)

:= sup
{
〈Qh, h〉 | Q ∈ ∂2 f (x, z)

}
<∞}.
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On partial smoothness, tilt stability and the VU-decomposition 161

4. Denoting S2( f ) = {x ∈ dom ( f ) | ∇2 f (x) exists}, then the limiting Hessians at
(x̄, z̄) are given by:

D
2
f (x̄, z̄) = {Q ∈ S(n) | Q = lim

n→∞∇
2 f (xn)

where {xn} ⊆ S2( f ), xn → f x̄ and ∇ f (xn)→ z̄}.
5. Define the second order Dini-directional derivative of f by f ′′_ (x̄, z, h) =

lim inf t↓0,u→h �2 f (x̄, t, z, u).

Define ∂2,+ f (x, z) := −∂2,−(− f )(x,−z) then when Q ∈ ∂2,− f (x, z) ∩
∂2,+ f (x, z) it follows that Q = ∇2 f (x) and z = ∇ f (x). If f ′′_ (x̄, z, h) is finite
then f ′_(x̄, h) := lim inf t↓0 u→h

1
t ( f (x̄ + tu) − f (x̄)) = 〈z, h〉. It must be stressed

that these second order objects may not exist everywhere but as ∂2,− f (x) is non-
empty on a dense subset of its domain [5] when f is lower semi-continuous then at
worst so are the limiting objects. In finite dimensions this concept is closely related to
the proximal subdifferential (as we discuss below). The subhessian is always a closed
convex set of matrices while ∂2 f (x̄, z) may not be convex (just as ∂p f (x̄) is convex
while ∂ f (x̄) often is not).

A function f is para-concave around x̄ when there exists a c > 0 and a ball
Bε (x̄) within which the function x �→ f (x) − c

2 ‖x‖2 is finite concave (conversely
f is para-convex around x̄ iff − f is para-concave around x̄). If a function is para-
concave or para-convex we have (by Alexandrov’s theorem) the set S2( f ) is of full
Lebesgue measure in dom f . A function is C1,1 when ∇ f exists and satisfies a
Lipschitz property. In [13, Lemma 2.1], it is noted that f is locally C1,1 iff f is
simultaneously a locally para-convex and para-concave function. The next observation
was first made in [34, Prposition 4.2] and later used in [23, Proposition 6.1].

Proposition 7 ([23], Proposition 6.1) If f is lower semi-continuous then for z ∈ ∂ f (x̄)
we have

D
2
f (x̄, z)− P(n) ⊆ ∂2 f (x̄, z). (8)

If we assume in addition that f is continuous and a para-concave function around x̄
then equality holds in (8).

A weakened form of para-convexity is prox-regularity.

Definition 8 ([35]) Let the function f : Rn → R∞ be finite at x̄ .

1. The function f is prox-regular at x̄ for z̄ with respect to ε > 0 and r ≥ 0, where
z̄ ∈ ∂ f (x̄), if f is locally lower semi-continuous at x̄ and

f (x ′) ≥ f (x)+ 〈z, x ′ − x〉 − r

2
‖x ′ − x‖2

whenever ‖x ′ − x̄‖ ≤ ε and ‖x− x̄‖ ≤ ε and | f (x)− f (x̄)| ≤ ε with ‖z− z̄‖ ≤ ε

and z ∈ ∂ f (x).
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162 A. C. Eberhard et al.

2. The function f is subdifferentially continuous at x̄ for z̄, where z̄ ∈ ∂ f (x̄), if for
every δ > 0 there exists ε > 0 such that | f (x)− f (x̄)| ≤ δ whenever |x − x̄ | ≤ ε

and |z − z̄| ≤ ε with z ∈ ∂ f (x).

Remark 9 In this paper we adopt the convention that limiting subgradients must exist
at x̄ to invoke this definition. We say that f is prox-regular at x̄ iff it is prox-regular
with respect to each z̄ ∈ ∂ f (x̄) (with respect to some ε > 0 and r ≥ 0).

Remark 10 We shall nowdiscuss awell known alternative characterisation of (z, Q) ∈
∂2,− f (x̄), see [34]. By taking the ϕ ∈ C2(Rn) in Definition 6 and expanding using a
Taylor expansion we may equivalently assert that there exists a δ > 0 for which

f (x) ≥ f (x̄)+〈z, x− x̄〉+ 1

2
(x− x̄)T Q(x− x̄)+o(‖x− x̄‖) for all x ∈ Bδ(x̄), (9)

where o (·) is the usual Landau small order notation. It is clear from (9) that we have
(z, Q) ∈ ∂2,− f (x̄) implies z ∈ ∂p f (x̄) as

f (x) ≥ f (x̄)+ 〈z, x − x̄〉 − r

2
‖x − x̄‖2 for all x ∈ Bδ(x̄)

when r > ‖Q‖F and δ > 0 sufficiently reduced. Moreover z ∈ ∂p f (x̄) implies
(z,−r I ) ∈ ∂2,− f (x̄). From the definition of prox-regularity at x̄ for z̄ (and the choice
of x = x̄) we conclude that we must have z̄ ∈ ∂p f (x̄) and hence ∂2,− f (x̄, z̄) �=
∅. Moreover the definition of prox-regularity implies the limiting subgradients are
actually proximal subgradients locally i.e. within an “ f -attentive neighbourhood of
z̄” [35]. When f is subdifferentially continuous we may drop the f -attentiveness
and claim Bδ(z̄) ∩ ∂ f (x̄) = Bδ(z̄) ∩ ∂p f (x̄) for some sufficiently small δ > 0. The
Example 4.1 of [26] show that this neighbourhood can reduce to a singleton {z̄}. When
we have a tilt stable local minimum at x̄ or z̄ ∈ rel-int ∂ f (x̄) then this situation cannot
occur.

Remark 11 We denote (x ′, z′) →Sp( f ) (x̄, z) to mean x ′ → f x̄ , z′ ∈ ∂p f (x ′) and
z′ → z. As ∂2,− f (x ′, z′) �= ∅ iff z′ ∈ ∂p f

(
x ′

)
it follows via an elementary argument

that
∂2 f (x̄, z̄) = lim sup

(x ′,z′)→Sp ( f )(x̄,z̄)
∂2,− f (x ′, z′).

Denote the recession directions of a convex set C by 0+C . Noting that 〈Q, uvT 〉 =
vT Qu one may see the motivation for the introduction of the rank-1 support in (9).
The rank-1 support is given by q (A) (u, v) := sup

{〈Q, uvT 〉 | Q ∈ A}
for a subset

A ⊆ S (n). We see from (9) that when we have Q ∈ ∂2,− f (x̄, z̄) then Q − P ∈
∂2,− f (x̄, z̄) for any n × n positive semi-definite matrix P ∈ P(n). Thus we always
have −P(n) ⊆ 0+∂2,− f (x̄, z̄) where ∂2,− f (x̄, z̄) ⊆ ∂2 f (x̄, z̄).

Theorem 12 ([14], Theorem 1) Let g : R
n → R∞ be proper (i.e. g(u) �= −∞

anywhere) and dom g �= ∅. For u, v ∈ R
n, define q(u, v) = ∞ if u is not a positive

scalar multiple of v or vice versa, and q(αu, u) = q(u, αu) = αg(u) for any α ≥ 0.
Then q is a rank one support of a set A ⊆ S(n) with −P(n) ⊆ 0+A if and only if
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1. g is positively homogeneous of degree 2.
2. g is lower semicontinuous.
3. g(−u) = g(u) (symmetry).

For the sets A ⊆ S(n) described in Theorem 12 one only needs to consider the
support defined on R

n by q (A) (h) := sup
{〈Q, hhT 〉 | Q ∈ A}

. On reflection it is
clear that all second order directional derivative possess properties 1. and 3. of the
above theorem and those that are topologically well defined possess 2. as well. We
call

A1 := {Q ∈ S(n) | q(A)(h) ≥ 〈Q, hhT 〉, ∀h} (10)

the symmetric rank-1 hull ofA ⊆ S(n). Note that by definition q(A)(h) = q(A1)(h).
When A = A1, we say A is a symmetric rank-1 representer. Note that if Q ∈ A1,
then Q− P ∈ A1 for P ∈ P(n) so always−P(n) ⊆ 0+A. The rank one barrier cone
for a symmetric rank-1 representer is denoted by b1(A) := {h ∈ R

n | q (A) (h) <

∞}. Theorem 12 show that in general the rank-1 support is an even and positively
homogeneous degree 2 function. Moreover these two properties imply the domain of
q(A)(·) is the union of some cone C and its negative i.e.

dom q (A) (·) := b1(A) = C ∪ (−C) . (11)

In the first order case we have δ∗∂p f (x̄)(h) ≤ f ′_(x̄, h). In [14] it was first observed that
we have an analogous identity involving the rank-1 support of the subhessians in that

q
(
∂2,− f (x̄, z)

)
(u) = min{ f ′′_ (x̄, z, u), f ′′_ (x̄, z,−u)}

= f ′′s (x̄, z, u) := lim inf
t→0,u′→u

�2 f (x, t, z, u
′).

Hence if we work with subjets we are in effect dealing with objects dual to the lower,
symmetric, second-order epi-derivative f ′′_ (x̄, z, ·). Many text book examples of these
quantities can be easily constructed. Moreover there exists a robust calculus for the
limiting subjet [9,23]. Furthermore as noted in Example 51 of [11] the qualification
condition for the sum rule for the limiting subjet can hold while for the same problem
the basic qualification condition for the sum rule for the limiting (first order) subdif-
ferential can fail to hold. This demonstrates the value of considering pairs (z, Q).

Example 13 Consider the convex function on R
2 given by f (x, y) = |x − y| . Take

(x, y) = (0, 0) and z = (0, 0) ∈ ∂ f (0, 0) then Q =
(

α γ

γ β

)
∈ ∂2,− f ((0, 0) (0, 0))

iff locally around (0, 0) we have

|x − y| ≥ 1

2

(
x y

)
(

α γ

γ β

) (
x
y

)
+ o

(
‖(x, y)‖2

)

= 1

2

(
αx2 + 2γ xy + βy2

)
+ o

(
‖(x, y)‖2

)
.
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This inequality only bites when x = y in which case

0 ≥ x2

2
(α + 2γ + β)+ o

(
x2

)
or 0 ≥ α

+ 2γ + β + o
(
x2

)

x2
so 0 ≥ α + 2γ + β.

Consequently

∂2,− f ((0, 0) (0, 0)) =
{
Q =

(
α γ

γ β

)
| 0 ≥ α + 2γ + β

}
.

The extreme case is when α + 2γ + β = 0 and two examples of Q attaining this
extremal value are:

Q1 = α

(
1 0
0 − 1

)
and Q2 = α

(
1 − 1
− 1 1

)
.

Also

q
(
∂2,− f ((0, 0) (0, 0))

)
(h1, h2)=

{
0 if h1=h2
+∞ otherwise

}
= f ′′s (0, 0), (0, 0), (h1, h2))

and so b1
(
∂2,− f ((0, 0) (0, 0))

)
={(h1, h2) | h1 = h2} � R

2.

Remark 14 Knowing the rank-1 barrier cone of a rank-1 representer A tells us a lot
about it’s structure. This is no small part to the fact that it consists only of symmetric
matrices. This discussion has been carried out in quite a bit of detail in [9]. From con-
vex analysis we know that the barrier cone (the points at which the support function is
finite valued) is polar to the recession directions. In [9, Lemma 14] it is shown that for
a rank-1 representer (using the Frobenious inner product on S (n)) this corresponds to
(0+A)◦ = P(b1(A)) := {∑i∈F uiuTi | ui ∈ b1(A) for a3 finite index setF}. More-
over in [9, Lemma 24] it is shown that P(b1(A))◦ ∩ P(n) = P(b1(A)⊥). Denoting
U2 := b1(A) and V2 = (U2)⊥ we deduce that P(V2) = (0+A) ∩ P(n). This
explains why q(A)(w) = +∞ when w /∈ U2. Since we always have −P(V2) ⊆
−P(n) ⊆ 0+A it follows that P(V2)− P(V2) ⊆ 0+A. Furthermore we find that for
any w = wU2 +wV2 we then have for S(V2), denoting the symmetric linear mapping
from V2 into V2, that

Aw = AwU2 +AwV2 ⊇ AwU2 + [P(V2)− P(V2)]wV2 = AwU2 + S(V2)wV2 .

3.1 A second order VU decomposition

The result [13], Corollary 6.1 contains a number of observations that characterise the
rank-1 support of the limiting subhessians. We single out the following which is of
particular interest for this paper.
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Proposition 15 ([13], Corollary 6.1) Suppose that f : R
n → R∞ is quadratically

minorised and is prox-regular at x̄ for z̄ ∈ ∂ f (x̄) with respect to ε and r. Then
h �→ q

(
∂2 f (x̄, z̄)

)
(h)+ r‖h‖2 is convex.

Proof For the convenience of the reader we provide a self contained proof of this in
the Appendix A. ��
Corollary 16 Suppose that f is quadratically minorised and is prox-regular at x̄ for
z̄ ∈ ∂ f (x̄) with respect to ε and r. Then b1(∂2 f (x̄, z̄)) is a linear subspace of R

n.

Proof Note that b1(∂2 f (x̄, z̄)) = dom[q (
∂2 f (x̄, z̄)

)
(·)] is convex under the assump-

tion of Proposition 15. Let C be the cone given in (11) then b1(∂2 f (x̄, z̄)) =
co(C∪(−C)) = spanC . As b1(∂2 f (x̄, z̄)) is a symmetric convex cone it is a subspace.

��
Definition 17 Let the function f : Rn → R∞ be finite at x̄ . When b1(∂2 f (x̄, z̄)) is a
linear subspace of R

n and b1(∂2 f (x̄, z̄)) ⊆ U we call U2 := b1(∂2 f (x̄, z̄)) a second
order component of the U-space.

We will now justify this definition via the following results.

Lemma 18 Suppose f : R
n → R∞ is quadratically minorised and is prox-regular

at x̄ for z̄ ∈ ∂ f (x̄) with respect to ε and r. Suppose in addition that z̄ ∈ rel-int ∂ f (x̄).
Then for any β ≥ 0 there is ε′ > 0 (independent of β) and a εβ > 0 (β dependent)
such that we have f (x̄ + u + v) ≥ f (x̄)+ 〈z̄, u + v〉 + β

2 ‖v‖2 − r
2 ‖u‖2 whenever

v ∈ Bεβ (0) and u ∈ Bε′ (0).
Moreover we have

U2 ⊆ U =
{
h | −δ∗∂ f (x̄)(−h) = δ∗∂ f (x̄)(h) = 〈z̄, h〉

}
. (12)

Proof By the prox-regularity of f at x̄ for z̄ ∈ ∂ f (x̄) with respect to ε and r > 0 we
have Bδ(z̄)∩∂ f (x̄) = Bδ(z̄)∩∂p f (x̄) for some sufficiently small δ > 0. Thus z̄ ∈ rel-
int ∂p f (x̄) and there exists a ε′ ≤ min{ε, δ} such that z̄+ ε′B1 (0)∩V ⊆ ∂p f (x̄) and
r > 0 such that for u + v ∈ BU

ε′ (0)× BV
ε′ (0) we have

f (x̄+u+v)≥ f (x̄)+〈z, u+v〉 − r

2

[
‖u‖2+‖v‖2

]
for all z∈ z̄+ε′B1 (0)∩V

≥ f (x̄)+〈z̄V , v〉+〈z̄U , u〉+
(

ε′ − r ‖v‖
2

)
‖v‖ − r

2
‖u‖2 for v∈ε′B1 (0) ∩ V

≥ f (x̄)+ 〈z̄, u + v〉+ β

2
‖v‖2 − r

2
‖u‖2 for all v∈min

{
ε′, 2ε′

2β+r
}
B1 (0)∩V,

(13)

where the last inequality holds due to the fact that ε′ − r‖v‖
2 ≥ β‖v‖. Now choose

εβ = min{ε′, 2ε′
2β+r }.

This inequality implies that for all β > 0 we have β I ∈ PT
V ∂2,− f (x̄, z̄)PV and

hence when PVh �= 0 (or h /∈ U) we have q (
∂2 f (x̄, z̄)

)
(h) = +∞ and so h /∈ U2.
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Remark 19 This result may hold trivially with both U = U2 = {0}. Consider the
function f : R2 → R given by:

f (x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

max {0, x + y} : for x ≤ 0, y ≥ 0
max {0,−x + y} : for x ≥ 0, y ≥ 0
max {0, x − y} : for x ≤ 0, y ≤ 0
max {0,−x − y} : for x ≥ 0, y ≤ 0

and take x̄ = (0, 0). Then ∂ f (0, 0) ⊇ {(0, 0) , (1, 1) , (− 1, 1) , (1,− 1) , (− 1,− 1)}
and U = {0} with V = R

2. We have f is prox-regular at x̄ = (0, 0) for z̄ =
(0, 0) and quadratically memorised (by the zero quadratic). We have U2 = {0} as
we have Q1 = ±β (1, 1)

(
1
1

)
= ±β

(
1 1
1 1

)
and Q2 = ±β (− 1, 1)

(− 1
1

)
=

±β

(
1 − 1
− 1 1

)
with Q1, Q2 ∈ ∂2 f ((0, 0), (0, 0)) for all β ≥ 0 (approach (0, 0)

along x = y and y = −x for z → 0). Then q
(
∂2 f ((0, 0), (0, 0))

)
(u, w) = +∞ ≥

β max
{
(−u + w)2 , (u + w)2

}
for all (u, w) �= (0, 0) and β ≥ 0.

We note that the examples developed in [30, Examples 2, 3] show that the assump-
tion that z̄ ∈ rel-int ∂ f (x̄) is necessary for Lemma 18 to hold.

We finish by generalizing the notion of “fast track” [24].

Definition 20 We say f possesses a “fast track” at x̄ iff there exists z̄ ∈ ∂ f (x̄) for
which

U2 = b1(∂2 f (x̄, z̄)) = U .

In the next section after we have introduced the localised U-Lagrangian we will
justify this definition further. From Proposition 7 we see that U2 = b1(∂2 f (x̄, z̄))
provides the subspace within which the eigen-vectors of the limiting Hessians remain
bounded.

Lemma 21 Suppose f is quadraticallyminorised and prox-regular at x̄ for z̄ ∈ ∂ f (x̄)
which possesses a nontrivial second order component U2 ⊆ U . Then for all {xk} ⊆
S2( f ), xk → f x̄ with zk → z̄ and all h ∈ U2 there is a uniform bound M > 0 such
that for Qk ∈ ∂2,− f (xk, zk) we have

〈Qk, hh
T 〉 ≤ M‖h‖2 for k sufficiently large. (14)

Proof We have for all Q ∈ ∂2 f (x̄, z̄) and any h ∈ U2 that

〈Q, hhT 〉 ≤ q
(
∂2 f (x̄, z̄)

)
(h) < +∞.

As f is prox-regular, by Proposition 15 q
(
∂2 f (x̄, z̄)

)
(·) + r‖ · ‖2 is convex and

finite valued on U2, a closed subspace and therefore is locally Lipschitz. Thus
q

(
∂2 f (x̄, z̄)

)
(·) is locally Lipschitz continuous onU2.Moreover a compactness argu-

ment allows us to claim it is Lipschitz continuous on the unit ball inside the space U2

and thus obtains a maximum, over the unit ball restricted to the space U2. Hence
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max{h∈U2|‖h‖≤1} q
(
∂2 f (x̄, z̄)

)
(h) ≤ K

for some K > 0. On multiplying by ‖h‖2 for h ∈ U2 and using the positive homo-
geneity of degree 2 of the rank-1 support results in following inequality

〈Q, hhT 〉 ≤ q
(
∂2 f (x̄, z̄)

)
(h) ≤ K ‖h‖2

for all Q ∈ ∂2 f (x̄, z̄) and any h ∈ U2. Take an arbitrary sequence (xk, zk) →Sp( f )

(x̄, z̄) and Qk ∈ ∂2,− f (xk, zk) with Qk → Q ∈ ∂2 f (x̄, z̄) then by taking M = 2K
we have

〈Qk, hh
T 〉 ≤ M ‖h‖2 for k sufficiently large.

Moreover any sequence {xk} ⊆ S2( f ), xk → f x̄ with zk → z̄ has (xk, zk) →Sp( f )

(x̄, z̄). ��

3.2 Some consequences for coderivatives of C1,1 functions

As usual we have denoted the indicator function of a set A by δA(Q) which equals
zero if Q ∈ A and+∞ otherwise. Recall the definition of the rank-1 hullA1 given in
(10). In general for the recession directions 0+A1 ⊇ −P(n). Consequently the convex
support function δ∗A1 (P) := sup

{〈Q, P〉 := tr QP | Q ∈ A1
} = +∞ if P /∈ P(n).

It is noted in [14, Proposition 4] that 0+A1 = −P(n) iff q(A)(h) < +∞ for all h.

Lemma 22 ([12], Lemma 7) For any A ⊆ S(n), then co (A− P(n)) = A1.

For any multi-function F : R
n ⇒ R

m we denote its graph by Graph F :=
{(x, y) | y ∈ F(x)}. The Mordukhovich coderivative is defined as

D∗F(x, y)(w) := {p ∈ R
n | (p,−w) ∈ ∂δGraph F (x, y) := NGraph F (x, y)}

and a second order object D∗ (∂ f ) (x̄, z̄)(h) is obtained by applying this construction
to F (x) = ∂ f (x) for z̄ ∈ ∂ f (x̄). We can combine this observation with [38, Theorem
13.52] that gives a characterisation of the convex hull of the coderivative in terms of
limiting Hessians for a C1,1 function f .

Corollary 23 Suppose f is locally C1,1 around x then theMordukhovich coderivative
satisfies

co D∗(∂ f )(x, z)(h) = co{Ah | A = lim
k
∇2 f (xk) for some xk(∈ S2( f ))

→ x with ∇ f
(
xk

)
→ z}

= co
[
D

2
f (x, z)h

]
=

[
co D

2
f (x, z)

]
h ⊆

[(
D

2
f (x, z)

)1]
h.

(15)
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and
δ∗D∗(∂ f )(x,z)(h) (h) = q

(
∂2 f (x, z)

)
(h) = q

(
D

2
f (x, z)

)
(h) .

Proof The first equality of (15) follows from [38, Theorem 13.52] and the second a

restatement in terms of D
2
f (x, z). The third equality follows from preservation of

convexity under a linearmapping. Clearly co D
2
f (x, z) ⊆ co

[
D

2
f (x, z)− P(n)

]
=

D
2
f (x, z)1 by Lemma 22. Moreover we must have by Proposition 7 and the linearity

of Q �→ 〈Q, hhT 〉 that

q
(
∂2 f (x, z)

)
(h) = q

(
∂2 f (x, z)1

)
(h)

= q
(
D

2
f (x, z)1

)
(h) = q

(
D

2
f (x, z)− P(n)

)
(h)

= sup
{
〈v, h〉 | v ∈ co

[
D

2
f (x, z)h

]}

= sup
{〈v, h〉 | v ∈ co D∗(∂ f )(x, z)(h)

}

= sup
{〈v, h〉 | v ∈ D∗(∂ f )(x, z)(h)

}

= δ∗D∗(∂ f )(x,z)(h) (h) .

��
A central assumption in this paper will be the presence of the following notion of

local minimizer.

Definition 24 ([36]) A point x̄ gives a tilt stable local minimum of a function f :
R
n → R∞ if f (x̄) is finite and there exists an ε > 0 such that the mapping

m f : v �→ argmin‖x−x̄‖≤ε { f (x)− 〈x, v〉} (16)

is single valued and Lipschitz on some neighbourhood of 0 with m f (0) = x̄ .

In [36, Theorem 1.3] a criterion for tilt stability was given in terms of second order
construction based on the coderivative of the subdifferential. Assume the first-order
condition 0 ∈ ∂ f (x̄) holds. In [36] the second order sufficiency condition

∀ ‖h‖ = 1, p ∈ D∗ (∂ f ) (x̄, 0)(h) we have 〈p, h〉 > 0 (17)

is studied and shown to imply a tilt-stable local minimum when f is both subdif-
ferentially continuous and prox-regular at x̄ for z̄ ∈ ∂ f (x̄). We may reinterpreting
the condition (17) for C1,1 functions. Indeed thanks to Corollary 23 condition (17) is
equivalent to the following.

Corollary 25 If f is locally C1,1 around x then condition (17) is equivalent to the
existence of β > 0 such that:

∀Q ∈ D
2
f (x, 0) we have 〈Q, hhT 〉 ≥ β > 0 for all ‖h‖ = 1.
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Proof By a simple convexity argument (17) is equivalent to 〈v, h〉 > 0 for all v ∈
co D∗(∂ f )(x |0)(h) =

[
co D

2
f (x, 0)

]
h from which we have an equivalent condition

that 〈Qh, h〉 > 0 for all Q ∈ co D
2
f (x, 0). But 〈Qh, h〉 = 〈Q, hhT 〉 (the Frobenius

inner product) and linearity in Q gives 〈Qh, h〉 > 0 for all Q ∈ D
2
f (x, 0) as an

equivalent condition. Finally we note that D
2
f (x, 0) is closed and uniformly bounded

due to the local Lipschitzness of the gradient x �→ ∇ f (x) so via a compactness
argument 〈Qh, h〉 ≥ β > 0 for some β > 0. ��
Remark 26 It would be interesting to have a characterisation of subjets for functions
other than those that are C1,1 smooth, in order to compare with their corresponding
second order coderivative. Consider a characterisation of the coderivative for a class
of functions found in [26, Corollary 5.4, Theorem 5.3] (which are not C1,1 functions).
Then we have:

D∗(∂ f )(x̄, 0)(w) =
{∇2

M f (x̄)w + NM(x̄) : for w ∈ TM(x̄)
∅ : for w /∈ TM(x̄).

In this context of [26] (C2-partially smooth functions around a tilt stable local mini-
mum x̄) we haveM := {x̄+u+v(u) | u ∈ U} is aC2 smooth manifold and in fact we
have ∇2

M f (x̄)w = d2

dt2
f (x̄ + tw+ v(tw))|t=0 with TM(x̄) = U2 and NM(x̄) = V2.

These last claims are a consequence of [25, Corollary 2.3] (or [32, Corollary 2.3])
and the application of [24, Theorem 3.9] (or [32, Corollary 2.6]), after noting that a
local convexification g(· − x) of f provides a convex “representative function” for
f relative to M, [26, Defintions 2.10 and 2.11]. How the construction of this convex
representative function is carried out is the subject of the next Sect. 4. It seems possible
that the calculus provided by [9,23] could provide an avenue to calculate ∂2 f (x̄, 0)
for this class of functions and shed some further light on their relationship.

4 The localised U ′-Lagrangian

For the remainder of the paper we will assume z̄ ∈ rel-int ∂ f (x̄) �= ∅ and so V :=
span {∂ f (x̄)− z̄}, U = (V)⊥, as defined in [24,28] and coinciding with the space
defined in Sect. 2.1. When discussing tilt stability we will to assume z̄ = 0 ∈ ∂ f (x̄).
Then we define the localised U ′-Lagrangian, for any subspace U ′ ⊆ U and some
ε > 0, to be the function

Lε
U ′ (u)

:=
{
infv′∈V ′∩Bε(0)

{
f
(
x̄ + u + v′

)− 〈z̄V ′ , v′〉
}

for u ∈ U ′ ∩ Bε (0) := BU ′
ε (0)

+∞ otherwise

where V ′ := U ′⊥. Let

v (u) ∈ argminv′∈V ′∩Bε(0)

{
f
(
x̄ + u + v′

)− 〈z̄V ′ , v′〉
}
. (18)
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This Lagrangian differs from the modification introduced by Hare [20] in that Lε
U ′ (·)

is locally well defined on U ′ due to the introduction of the ball BV ′
ε (0) = V ′ ∩ Bε (0)

over which the infimum is taken. Hare assumes a quadratic minorant to justify a finite
value for a sufficiently large regularization parameter used in the so-called quadratic
sub-Lagrangian. Define for u ∈ U ′ and v (·) : U ′ → BV ′

ε (0) the auxiliary functions

kv (u) := h (u + v (u))− 〈z̄V ′, u + v (u)〉
where h (w) := f (x̄ + w)+ δBU ′

ε (0)⊕BV ′
ε (0) (w) .

Then
Lε
U ′ (u) := inf

v′∈V ′
{
h

(
u + v′

)− 〈z̄V ′ , v′〉
}
.

When v(·) is chosen as in (18) we have Lε
U ′ (u) = kv(u) with both infinite outside

BU ′
ε (0).

Lemma 27 Suppose f : Rn → R∞ is a proper lower semi-continuous function and
assume v(·) is chosen as in (18). The conjugate of kv : U ′ → R∞ with respect to U ′
is given by

k∗v (zU ′) := sup
u∈U ′

{〈u, zU ′ 〉 − kv (u)} = h∗ (zU ′ + z̄V ′) =
(
Lε
U ′

)∗
(zU ′) . (19)

Proof By direct calculation we have

k∗v (zU ′) = sup
u∈U ′

{〈u, zU ′ 〉 − {h (u + v (u))− 〈z̄V ′ , u + v (u)〉}}

= sup
u∈U ′

{
〈u, zU ′ 〉 − min

v′∈V ′
{
h

(
u + v′

)− 〈z̄V ′, u + v′〉}
}

= sup
(u,v′)∈U ′⊕V ′

{〈u + v′, zU ′ + z̄V ′ 〉 − h
(
u + v′

)} = h∗ (zU ′ + z̄V ′)

as 〈zU ′, v′〉 = 0 for all v′ ∈ V ′. Also

k∗v (zU ′) = sup
u∈U ′

{
〈u, zU ′ 〉 − min

v′∈V ′
{
h

(
u + v′

)− 〈z̄V ′ , u + v′〉}
}

= sup
u∈U ′

{〈u, zU ′ 〉 − Lε
U ′ (u)

} = (
Lε
U ′

)∗
(zU ′) .

��
When we assume x̄ gives a tilt stable local minimum of a function f : Rn → R∞

we shall choose the ε > 0 to be consistent with the definition of tilt stability at x̄ for
the neighbourhood

BU ′
ε (x̄U ′)⊕ BV ′

ε (x̄V ′) :=
{
(xU ′ , xV ′) ∈ U ′ ⊕ V ′ | ‖xU ′ − x̄U ′ ‖ ≤ ε

and ‖xV ′ − x̄V ′ ‖ ≤ ε}
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where ε is reduced to contain the above neighbourhood in a larger ball {x ∈ R
n |

‖x − x̄‖ ≤ ε̂} on which tilt stability holds. We will rely on the results of [7]. From
definition 24 we have on BU ′

ε (x̄U ′)⊕ BV ′
ε (x̄V ′) that

f (x) ≥ f
(
m f (v)

)+ 〈x − m f (v) , v〉 (20)

wherem f (·) is as defined in (16). That is, we have a supporting tangent plane to the epi-
graph of f +δBU ′

ε (x̄U ′)⊕BV ′
ε (x̄V ′)

. As the convex hull of any set (including the epigraph
of f +δBU ′

ε (x̄U ′)⊕BV ′
ε (x̄V ′)

) must remain on the same side of any supporting hyperplane
(in this case the hyperplane (x, α) �→ 〈(x, α) − (m f (v) , f (m f (v)), (v,−1)〉 ≤ 0)
we may deduce that (again locally)

co f (x) ≥ f
(
m f (v)

)+ 〈x − m f (v) , v〉.
This observation leads to the following minor rewording of the result from [7]. It
shows that there is a strong convexification process involved with tilt stability.

Proposition 28 ([7], Proposition 2.6) Consider f : R
n → R∞ is a proper lower

semi-continuous function and suppose that x̄ give a tilt stable local minimum of f .
Then for all sufficiently small ε > 0, in terms of the function h (w) := f (x̄ + w) +
δBU ′

ε (0)⊕BV ′
ε (0) (w) we have

argminx∈BU ′
ε (x̄U ′)⊕BV ′

ε (x̄V ′)
[ f (x)− 〈x, z〉]

= argmin(u′,v′)∈U ′⊕V ′
[
co h

(
u′ + v′

)− 〈u′ + v′, z〉]+ x̄

for all z sufficiently close to 0. Consequently 0 is a tilt stable local minimum of co h.

Wenowstudy the subgradients of theU ′-Lagrangian. In order to simplify statements
we introduce the following modified function:

mh : z �→ argmin(u′,v′)∈U ′⊕V ′
[
co h

(
u′ + v′

)− 〈u′ + v′, z〉]

then we have mh (z) + x̄ = m f (z) for m f (z) := argminx∈BU ′
ε (x̄U ′)⊕BV ′

ε (x̄V ′)
[ f (x)

−〈x, z〉]. The next result shows that under the assumption of tilt stability we have
u := PU ′ [mh (zU ′ + z̄V ′)] iff

zU ′ ∈ ∂co Lε
U ′ (u) (21)

where ∂cog (u) := {
z | g (

u′
)− g (u) ≥ 〈z, u′ − u〉 for all u′} corresponds to the sub-

differential of convex analysis. In passing we note that tilt stability of f at x̄ implies
∂co f (x̄) �= ∅.
Remark 29 When f : Rn → R∞ has a tilt-stable local minimum at x̄ for z̄ sufficiently
small wemust also have g (x) := f (x)−〈z̄, x〉 possessing a tilt stable local minimum
at {x̄} = m f (z̄). In this way we may obtain a unique Lipschitz continuous selection

{mh (zU ′ + z̄V ′)} = argmin(u′,v′)∈U⊕V
[
h

(
u′ + v′

)− 〈v′, z̄V ′ 〉 − 〈u′, zU ′ 〉
]

in a neighbourhood of zU ′ ∈ Bε(z̄U ′) (where z̄U ′ �= 0).
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Proposition 30 Let f : Rn → R∞ be a proper lower semi-continuous function with
f − 〈z̄, ·〉 having a tilt-stable local minimum at x̄ .

1. Then Lε
U ′ (·) is closed, proper convex function that is finite valued for u ∈ BU ′

ε (0).

2. Let u := PU ′ [mh (zU ′ + z̄V ′)] ∈ int BU ′
ε (0) (where zU ′ ∈ U ′) then

Lε
U ′

(
u′

)− Lε
U ′ (u) ≥ 〈zU ′ , u′ − u〉 for u′ ∈ BU ′

ε (0) . (22)

Moreover Lε
U ′ (u) = minv′∈V ′

[
co h

(
u + v′

)− 〈v′, z̄V ′ 〉
]
for which the minimum

is attained at v (u) = PV ′ [mh (zU ′ + z̄V ′)] where v (0) = 0.
3. Conversely suppose (21) holds at any given u ∈ BU ′

ε (0) and let v(u) be
as defined in (18). Then we have u = PU ′ [mh (zU ′ + z̄V ′)] and v (u) =
PV ′ [mh (zU ′ + z̄V ′)] ∈ int BV ′

ε (0) for ‖u‖ sufficiently small.
Proof Consider 1. By Proposition 28 we have

Lε
U ′ (u) = min

v′∈V ′
[
h

(
u + v′

)− 〈v′, z̄V ′ 〉
] = min

v′∈V ′
[
co h

(
u + v′

)− 〈v′, z̄V ′ 〉
]
.

Hence Lε
U ′

(
u′

)
is a “marginal mapping” corresponding to a coercive closed convex

function F(u′, v′) := co h
(
u′ + v′

)−〈v′, z̄V ′ 〉. Applying [37, Theorem 9.2] the result
follows on viewing Lε

U ′
(
u′

)
as the “image of F under the linear mapping A” given

by the projection u′ := A(u′, v′) := PU (u′, v′) onto int BU ′
ε (0).

For the second part we have z = zU ′ + z̄V ′ , where only the U ′ component varies.
The following minimum attained at the unique point mh (zU ′ + z̄V ′) that uniquely
determines the value of u ∈ U ′:

{u + v(u)} := mh (zU ′ + z̄V ′)
= argmin(u′,v′)∈U⊕V

[
h

(
u′ + v′

)− 〈v′, z̄V ′ 〉 − 〈u′, zU ′ 〉
]

and so {u} = argminu′∈BU ′
ε (0)

[
min
v′∈V ′

[
h

(
u′ + v′

)− 〈v′, z̄V ′ 〉
]− 〈u′, zU ′ 〉

]
,

(23)

where u := PU ′ [mh (zU ′ + z̄V ′)] and v (u) := PV ′ [mh (zU ′ + z̄V ′)]. As mh (·)
is a single valued Lipschitz function and co h has a local minimum at 0 then
v (0) = 0 because {0} = argminv′∈V ′

[
co h

(
v′

)− 〈v′, z̄V ′ 〉
]
. Hence by continuity

v(u) ∈ int BU ′
ε for ‖u‖ sufficiently small. The objective value on this minimization

problem equals

min
u′∈BU ′

ε (0)

[
Lε
U ′

(
u′

)− 〈u′, zU ′ 〉
] = Lε

U ′ (u)− 〈u, zU ′ 〉, (24)

giving (22).
For the third part we note that (21) is equivalent to (22) and hence equivalent to the

identity (24), which affirms that the minimizer in the U ′ space is attained at u and thus
the minimizer in the V ′ space in the definition of Lε

U ′ (u) is attained at v(u). This in
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turn can be equivalently written as (23) which affirms that u = PU ′ [mh (zU ′ + z̄V ′)]
and v (u) = PV ′ [mh (zU ′ + z̄V ′)] ∈ BV ′

ε (0). ��

Remark 31 In principle the knowledge ofm f and U should allow one to construct the
function v(·). One can perform a rotation of coordinates and a translation of x̄ to zero
so that we have then f represented as h : U × V → R∞ and correspondingly obtain
mh . Now decompose mh(zU + z̄V ) = mh

U (zU ) + mh
V (zU ) (where we have drop the

reference to z̄V as it’s value is fixed). Then eliminate the variable zU from the system
of equations u = mh

U (zU ) and v = mh
V (zU ) to obtain v(u). This solution is unique

under the assumption of a tilt stable local minimum. Indeed one can interpret v(·) as an
implicit function. This point of view has been used by numerous authors [32, Theorem
2.2], [25, Theorem6.1] andwith regard toC2-smoothmanifolds see [26, Theorem2.6].
This last result indicates that when f is “partially smooth”with respect to aC2-smooth
manifold M then the form of v(·) is accessible via the implicit function theorem.
Moreover there is a local descriptionM = {u+v(u) ≡ (u, v(u)) | u ∈ U∩Bε(0)}. An
interesting example of this sort of approach can be found in [24, Theorem4.3]. Here the
exact penalty function of a convex nonlinear optimisation problem is studiedwhere x̄ is
chosen to be theminimizer. The functionv(·) is characterised as the solution to a system
of equation associated with the active constraints at x̄ for the associated nonlinear
programming problem. A similar analysis may be applied to the illustrative example of
C2 smooth function f restricted to a polyhedral set P := {x ∈ R

n | li (x) ≤ 0 for i ∈
I := {1, . . . ,m}}, where li are affine functions and I (x̄) := {i ∈ I | li (x̄) = 0}
are the active constraints. Assume {∇li (x̄)}i∈I (x̄) are linearly independent. When the
optimal solution x̄ ∈ int P then V = {0} and U = R

n givingM = R
n×{0}, a smooth

manifold. When the active constraints I (x̄) are nonempty then V = lin{∇li (x̄)}i∈I (x̄)}
and U = {d ∈ R

n | 〈∇li (x̄), d〉 = 0 for i ∈ I (x̄)}. Then v(u) is the solution
(or implicit function) associated with the system of equation li (x̄ + (u, v)) = 0 for
i ∈ I (x̄), in the unknowns v ∈ V . The implicit function theorem now furnishes
existence, uniqueness and differentiability. Given this clear connection to implicit
functions it would be interesting to relate these ideas to a more modern theory of
implicit functions [6]. ��

Existence of convex subgradients indicates a hidden convexification.

Lemma 32 Consider h : U ′ → R∞ is a proper lower semi-continuous function. Then

∂coh (u) ⊆ ∂ [co h] (u) .

When ∂coh (u) �= ∅ then co h (u) = h (u) and we have ∂coh (u) = ∂ [co h] (u) ⊆
∂ph (u) �= ∅. If in addition h is differentiable we have ∇h (u) = ∇ (co h) (u).

Proof If zU ′ ∈ ∂coh (u) then

h
(
u′

)− h (u) ≥ 〈zU ′ , u′ − u〉 for all u′ ∈ U ′
hence co h

(
u′

) ≥ h (u)+ 〈zU ′ , u′ − u〉 (25)
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and so for u′ = u we have co h (u) ≥ h (u) ≥ co h (u) giving equality. Thus

co h
(
u′

)− co h (u) ≥ 〈zU , u′ − u〉 for all u′ ∈ U ′. (26)

Hence ∂coh (u) ⊆ ∂ [co h] (u) . When ∂coh (u) �= ∅ then co h (u) = h (u) and (26)
gives (25) as h

(
u′

) ≥ co h
(
u′

)
is always true. In particular (25) implies zU ′ ∈ ∂ph (u)

and when h is actually differentiable at u then ∂coh (u) = ∂ [co h] (u) ⊆ ∂ph (u) =
{∇h (u)} . ��
Remark 33 Assume g (x) := f (x) − 〈z̄, x〉 possessing a tilt stable local minimum
at {x̄} = m f (z̄) (and hence ∂co f (x̄)) �= ∅). In [24, Theorem 3.3] it is observed that
the optimality condition applied to the minimization problem that defines Lε

U ′ (u) =
infv′∈V ′

{
co h

(
u + v′

)− 〈z̄V ′ , v′〉
}
(which attains its minimum at v(u)) gives rise to

∂Lε
U ′ (u) = {zU ′ | zU ′ + z̄V ′ ∈ ∂ co h (u + v (u))} , (27)

assuming (u, v(u)) ∈ int BU ′
ε (0)× int BV ′

ε (0). Applying (5) and Lemma 32 we have

∂Lε
U ′ (0) = {zU ′ | zU ′ + z̄V ′ ∈ ∂ co h (0) = ∂coh (0) = ∂co f (x̄)}

⊆ {zU ′ | zU ′ + z̄V ′ ∈ ∂ f (x̄)} = {z̄U ′ } as U ′ ⊆ U .

Thus ∇Lε
U ′ (0) = z̄U ′ exists (as was first observed in [24, Theorem 3.3] for con-

vex functions). Moreover we also have Lε
U ′ (0) = infv′∈V ′

{
co h

(
v′

)− 〈z̄V ′ , v′〉
} =

co h (0) = f (x̄) because mh (z̄U ′ + z̄V ′) = {0} . Furthermore, due to the inherent
Lipschitz continuity implied by tilt stability (see Proposition 30) we must have for δ

sufficiently small ∂Lε
U ′ (u) �= ∅ for all u ∈ BU ′

δ (0).

Even without the assumption of tilt stability we have the following.

Proposition 34 Consider f : Rn → R∞ is a proper lower semi-continuous function
and

v (u) ∈ argminv′∈V ′∩Bε(0)

{
f
(
x̄ + u + v′

)− 〈z̄V ′ , v′〉
} : BU ′

ε (0)→ V ′.

Then when zU ′ ∈ ∂coLε
U ′ (u) we have for g (w) := co h (w) that

(u, v (u)) ∈ mh (zU ′ + z̄V ′)
= argmin {g (u + v)− 〈zU ′ + z̄V ′ , u + v〉} for all u ∈ BU ′

ε (0) . (28)

Proof As zU ′ ∈ ∂coLε
U ′ (u) we have for any u′ ∈ BU ′

ε (0) that

Lε
U ′

(
u′

) ≥ Lε
U ′ (u)+ 〈zU ′ , u′ − u〉

= inf
v′∈V ′

{
h

(
u + v′

)− 〈z̄V ′ , v′〉
}+ 〈zU ′ , u′ − u〉

= {h (u + v (u))− 〈z̄V ′ , v (u)〉} + 〈zU ′ , u′ − u〉
= h (u + v (u))− 〈zU ′ + z̄V ′, u + v (u)〉 + 〈zU ′ , u′〉.

123



On partial smoothness, tilt stability and the VU-decomposition 175

Hence for all v′ ∈ V ′ we have

h
(
u′ + v′

)− 〈z̄V ′, v′〉 ≥ Lε
U ′

(
u′

)

≥ h (u + v (u))− 〈zU ′ + z̄V ′, u + v (u)〉 + 〈zU ′ , u′〉

or for all
(
u′, v′

) ∈ BU ′
ε (0)⊕ V ′ (using orthogonality of the spaces), we have

h
(
u′ + v′

)− 〈zU ′ + z̄V ′ , u′ + v′〉 ≥ h (u + v (u))− 〈zU ′ + z̄V ′ , u + v (u)〉. (29)

That is (u, v (u)) ∈ mh (zU ′ + z̄V ′) and we may now apply [7, Lemmas 2.4–2.5] to
obtain the result. ��

In the following we repeatedly use the fact that when a function has a supporting
tangent plane to its epigraph one can take the convex closure of the epigraph and the
resultant set will remain entirely to that same side of that tangent hyperplane. This
will be true for partial convexifications as convex combinations cannot violate the
bounding plane.

Proposition 35 Consider f : R
n → R∞ is a proper lower semi-continuous func-

tion and v (u) ∈ argminv′∈V ′∩Bε(0)

{
f
(
x̄ + u + v′

)− 〈z̄V ′, v′〉
}
. Then when zU ′ ∈

∂coLε
U ′ (u) we have

k∗v (z)+ kv (u) = 〈zU ′ , u〉
where kv (u) := h (u + v (u))−〈z̄V ′, u+ v (u)〉 i.e. zU ′ ∈ ∂cokv (u) and in particular
z̄U ′ ∈ ∂cokv (u) = ∂ co kv (u) and kv (u) = co kv (u). Moreover for u ∈ U ′ we have

kv (u) = [co h] (u + v (u))− 〈z̄V ′ , v (u)〉
= h (u + v (u))− 〈z̄V ′ , v (u)〉 = co kv (u) , (30)

so h (u + v (u)) = [co h] (u + v (u)) . (31)

Proof By (29) we have

h
(
u′ + v′

)− 〈zU ′ + z̄V ′ , u′ + v′〉 ≥ h (u + v (u))− 〈zU ′ + z̄V ′ , u + v (u)〉. (32)

So zU ′ + z̄V ′ ∈ ∂coh (u + v (u)) �= ∅ and by Lemma 32 we have co h (u + v (u)) =
h (u + v (u)). Hence

h
(
u′ + v′

)− 〈zU ′ + z̄V ′, u′ + v′〉 ≥ [co h]
(
u′ + v′

)− 〈zU ′ + z̄V ′, u′ + v′〉
≥ h (u + v (u))− 〈zU ′ + z̄V ′, u + v (u)〉

On placing v′ = v
(
u′

)
we have h (u + v (u)) = [co h] (u + v (u)) when u′ = u and

otherwise
kv

(
u′

)− 〈zU ′, u′ + v
(
u′

)〉 ≥ kv (u)− 〈zU ′ , u + v (u)〉
or by orthogonality we have for all u′ ∈ U ′ that

kv

(
u′

)− 〈zU ′ , u′〉 ≥ kv (u)− 〈zU ′ , u〉.
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Hence −k∗v (zU ′) ≥ kv (u) − 〈zU ′, u〉 implying 〈zU ′ , u〉 ≥ kv (u) + k∗v (zU ′). The
reverse inequality is supplied by the Fenchel inequality which gives the result zU ′ ∈
∂cokv (u) = ∂ co kv (u) and kv (u) = co kv (u) follows from Lemma 32.

Moreover we have from (32) that

h
(
u′ + v′

) − 〈zU ′ + z̄V ′ , u′ + v′〉 ≥ h (u + v (u))− 〈zU ′ + z̄V ′ , u + v (u)〉
= [co h] (u + v (u))− 〈zU ′ + z̄V ′, u + v (u)〉
≥ co kv (u)− 〈zU ′ , u〉

and hence (using orthogonality)

[co h]
(
u′ + v′

) − 〈zU ′ + z̄V ′ , u′ + v′〉 ≥ kv (u)− 〈zU ′ , u〉
= {[co h] (u + v (u))− 〈z̄V ′ , v (u)〉} − 〈zU ′ , u〉
≥ co kv (u)− 〈zU ′, u〉.

On placing v′ = v
(
u′

)
we have

[co h]
(
u′ + v

(
u′

)) − 〈zU ′ + z̄V ′ , u′ + v
(
u′

)〉
≥ [co h] (u + v (u))− 〈z̄V ′ , v (u)〉 − 〈zU ′ , u〉
≥ kv (u)− 〈zU ′ , u〉 ≥ co kv (u)− 〈zU ′ , u〉.

and u′ = u and using the identities kv (u) = co kv (u) and [co h] (u + v (u)) =
h (u + v (u)) for u ∈ U ′ we have (30). ��

4.1 Subhessians and the localised U ′-Lagrangian

Now that we have some theory of the localised U ′-Lagrangian we may study its
interaction with the notion of subhessian. As we will be applying these results locally
around a tilt stable local minimum we are going to focus on the case when we have
Lε
U (u) = infv∈V {co h (u + v)− 〈z̄V , v〉} and U ′ = U . The following is a small

variant of [24, Corollary 3.5].

Lemma 36 Suppose f : R
n → R∞ is quadratically minorised and is prox-

regular at x̄ for z̄ ∈ ∂ f (x̄) with respect to ε and r. Suppose in addition that
f − 〈z̄, ·〉 possesses a tilt stable local minimum at x̄ , where z̄ ∈ rel-int ∂ f (x̄),
U ′ = U , v (u) ∈ argminv∈V∩Bε(0) [ f (x̄ + u + v)− 〈z̄V , v〉] and Lε

U (u) =
infv∈V {co h (u + v)− 〈z̄V , v〉}. Then we have v (u) = o (‖u‖) in the following sense:

∀ε′′ > 0, ∃δ > 0 : ‖u‖ ≤ δ �⇒ ‖v (u)‖ ≤ ε′′ ‖u‖ .

Proof As noted in Remark 33 we have ∇Lε
U (0) = z̄U existing where Lε

U (u) =
infv∈V {co h (u + v)− 〈z̄V , v〉} is a convex function finite locally around u = 0.
Consequently we have for u ∈ BU

ε (0) we have

Lε
U (u) = Lε

U (0)+ 〈∇Lε
U (0) , u〉 + o (‖u‖) = f (x̄)+ 〈z̄U , u〉 + o (‖u‖) .
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Invoking (13) in the proof of Lemma 18we have an ε′ > 0 such that for u ∈ Bε′ (0)∩U

f (x̄ + u + v) ≥ f (x̄)+ 〈z̄V , v〉 + 〈z̄U , u〉
+

(
ε′ − r ‖v‖

2

)
‖v‖ − r

2
‖u‖2 for all v ∈ ε′B1 (0) ∩ V .

When we choose v ∈ Bmin{ε′,ε′/r} (0) we have

f (x̄ + u + v) ≥ f (x̄)+ 〈z̄U + z̄V , u + v〉 + ε′

2
‖v‖ − r

2
‖u‖2 .

As v(·) is Lipschitz continuous with v(0) = 0 there exists δ′ > 0 such that ‖u‖ < δ′
implies v(u) ∈ Bmin{ε′,ε′/r} (0). Then we have

f (x̄)+ 〈z̄U , u〉 + o (‖u‖)
= Lε

U (u) = f (x̄ + u + v (u))− 〈z̄V , v (u)〉
≥ f (x̄)+ 〈z̄, u + v (u)〉 − 〈z̄V , v (u)〉 + ε′

2
‖v (u)‖ − r

2
‖u‖2

= (x̄)+ 〈z̄U , u〉 + ε′

2
‖v (u)‖ − r

2
‖u‖2 .

Hence

2

ε′
[
o (‖u‖)+ r

2
‖u‖2

]
≥ ‖v (u)‖

and given any ε′′ > 0 we choose δ > 0 with δ ≤ δ′ such that ‖u‖ ≤ δ implies
2
ε′ [ o(‖u‖)‖u‖ + r

2 ‖u‖] ≤ min{ε′′, ε′/r, ε′}. ��

Wemaynow further justify our definition of “fast track” at x̄ . In [19] and otherworks
“fast tracks” are specified as a subspace on which both u �→ Lε

U (u) and u �→ v (u)

are twice continuously differentiable. In particular Lε
U (·) admits a Taylor expansion.

Proposition 37 Suppose f : R
n → R∞ is quadratically minorised and is

prox-regular at x̄ for z̄ ∈ ∂ f (x̄) with respect to ε and r. Suppose in addi-
tion that f − 〈z̄, ·〉 possesses a tilt stable local minimum at x̄ , z̄ + Bε (0) ∩
V ⊆ ∂ f (x̄), U ′ = U , Lε

U (u) = infv∈V {co h (u + v)− 〈z̄V , v〉} and {v (u)} =
argminv∈V∩Bε(0) [ f (x̄ + u + v)− 〈z̄V , v〉] for u ∈ BU

ε (0). Then for z̄U = ∇Lε
U (0)

we have

(
Lε
U
)′′
_ (0, z̄U , w) = (co h)′′_ (0+ v (0) , (z̄U , z̄V ) , w)

= f ′′_ (x̄, (z̄U , z̄V ) , w) for all w ∈ U .
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Proof Consider the second order quotient

2

t2
[
Lε
U (0+ tu)− Lε

U (0)− t〈z̄U , u〉]

= 2

t2
[ f (x̄ + tu + v (tu))− f (x̄)− 〈z̄U + z̄V , tu + v (tu)〉]

= 2

t2

[
f

(
x̄ + t

[
u + v (tu)

t

])
− f (x̄)− t〈z̄U + z̄V , u + v (tu)

t
〉
]

.

Apply Lemma 36, for an arbitrary δ > 0 by taking ε′′ = δ
‖u‖ and obtaining the

existence of γ > 0 such that for ‖tu‖ ≤ t[δ+‖w‖] ≤ γ we have ‖v(tu)‖ ≤ ε′′‖tu‖.
This implies for all δ > 0 that when t[δ + ‖w‖] ≤ γ and u ∈ Bδ(w) we have
‖v(tu)‖

t ≤ δ and so v(tu)
t ∈ Bδ (0). Thus for t < η := γ

δ+‖w‖ we have

inf
u∈Bδ(w)∩U

2

t2
[
Lε
U (0+ tu)− Lε

U (0)− t〈z̄U , u〉]

≥ inf
u∈Bδ(w)∩U

inf
v∈Bδ(0)∩V

2

t2
[ f (x̄ + t [u + v])− f (x̄)− t〈z̄U + z̄V , u + v〉]

≥ inf
h∈Bδ(w,0)

2

t2
[ f (x̄ + th)− f (x̄)− t〈z̄U + z̄V , h〉]

and so

lim inf
t↓0 inf

u∈Bδ(w)∩U
2

t2
[
Lε
U (0+ tu)− Lε

U (0)− t〈z̄U , u〉]

≥ lim inf
t↓0 inf

h∈Bδ(w,0)

2

t2
[ f (x̄ + th)− f (x̄)− t〈z̄U + z̄V , h〉] .

Taking the infimum over δ > 0 gives
(
Lε
U
)′′
_ (0, z̄U , w) ≥ f ′′_ (x̄, (z̄U , z̄V ) , w) =

(co h)′′_ (0+ v (0), (z̄U , z̄V ), w) (because f (x̄ + ·) and co h (·) agree locally). Con-
versely consider

inf
u∈Bδ(w)∩U

inf
v∈V∩Bδ(0)

2

t2
[co h (0+ t [u + v])− co h (0)− t〈z̄U + z̄V , u + v〉]

≥ inf
u∈Bδ(w)∩U

inf
v∈V

2

t2
[co h (0+ [tu + v])− co h (0)− 〈z̄U + z̄V , tu + v〉]

= inf
u∈Bδ(w)∩U

[
2

t2

[
inf
v∈V

{co h (tu + v)− 〈z̄V , v〉}
]
− Lε

U (0)− t〈z̄U , u〉
]

= inf
u∈Bδ(w)∩U

2

t2
[
Lε
U (0+ tu)− Lε

U (0)− t〈z̄U , u〉]

and on taking a limit infimum as t ↓ 0 and then an infimum over δ > 0 gives
(co h)′′_ (0+ v (0), (z̄U , z̄V ), w) ≥ (

Lε
U
)′′
_ (0, z̄U , w) and thus equality. ��
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Denote ∂
2,−
U ′ (co h) (x, z) = PT

U ′∂
2,− (co h) (x, z) PU ′ .

Corollary 38 Posit the assumption of Proposition 37. Then we have

dom
(
Lε
U
)′′
_ (0, z̄U , ·) ⊆ dom f ′′_ (x̄, (z̄U , z̄V ) , ·)

and ∂
2,−
U (co h) (x̄, z̄) ⊆ ∂2,−Lε

U (0, z̄U ).

Proof As dom (co h) ⊆ U we have dom
(
Lε
U
)′′
_ (0, z̄U , ·) ⊆ U and hence by

Proposition 37 we have dom
(
Lε
U
)′′
_ (0, z̄U , ·) ⊆ dom f ′′_ (x̄, (z̄U , z̄V ) , ·) =

dom (co h)′′_ (0, (z̄U , z̄V ) , ·). Now take Q ∈ ∂2,− (co h) (x̄, z̄) and so we have
〈Qu, u〉 ≤ (co h)′′_ (0, (z̄U , z̄V ) , u) for all u ∈ dom (co h)′′_ (0, (z̄U , z̄V ) , ·). Hence
for all u ∈ dom

(
Lε
U
)′′
_ (0, z̄U , ·) ⊆ dom (co h)′′_ (0, (z̄U , z̄V ) , ·) ∩ U we have

〈[
PT
U QPU

]
u, u

〉
= 〈QPUu, PUu〉 ≤ (co h)′′_ (0, (z̄U , z̄V ) , u) = (

Lε
U
)′′
_ (0, z̄U , u)

and so PT
U QPU ∈ ∂2,−Lε

U (0, z̄U ). That is ∂
2,−
U (co h) (x̄, z̄) = PT

U ∂2,− (co h) (x̄, z̄)
PU ⊆ ∂2,−Lε

U (0, z̄U ) . ��
If we assume more (which is very similar to the “Partial Smoothness” of [26]) we

obtain the followingwhich can be viewed as a less stringent version of the second order
expansions studied in [24, Theorem 3.9], [30, Equation (7)] and [32, Theorem 2.6].
This result suggests that the role of assumptions like that of Proposition 5 part 3, which
are also a consequence of the definition of partial smoothness (via the continuity of
the w �→ ∂ f (w) at x relative toM) could be to build a bridge to the identity U = U2

(see the discussion in Remark 40 below).

Corollary 39 Posit the assumption of Proposition 37 and assume the assumption of
Proposition 5 part 3 i.e. suppose we have ε > 0 such that for all zV ∈ Bε (z̄V )∩ V ⊆
∂V f (x̄) there is a common

v (u) ∈ argminv∈V∩Bε(0) { f (x̄ + u + v)− 〈zV , v〉} ∩ int Bε(0) (33)

for all u ∈ BU
ε (0). In addition suppose there exists ε > 0 such that for all u ∈ BU

ε (0)
we have u �→ ∇Lε

U (u) := zU (u) existing, and is a continuous function. Then

(
Lε
U
)′′
_ (u, zU , w) = (co h)′′_ (u + v (u) , (zU , z̄V ) , w) for all w ∈ U .

Proof All the assumption of Proposition 37 are local in nature except for the assump-
tion that z̄ + Bε (0) ∩ V ⊆ ∂ f (x̄). Discounting this assumption for now we note that
we can perturb x̄ (to x̄ + u + v (u)) and z̄ (to (zU , z̄V ) ∈ ∂ (co h) (u + v (u))) within
a sufficiently small neighbourhood u ∈ BU

ε (0) and still have the assumption of prox-
regularity, tilt stability (around a different minimizer of our tilted function) and still use
the same selection function v (·). Regarding this outstanding assumption the optimal-
ity conditions associated with (33) imply z̄V + Bε (0)∩V ⊆ ∂V f (x̄ + u + v (u)). As
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we have ∇Lε
U (u) = zU (u) existing from (27) that ∂ co h(u+ v (u))− (zU (u), z̄V ) ⊆

{0} ⊕ V and so ∂ co h(u + v (u)) = {zU (u)} ⊕ ∂V co h(u + v (u)) = {zU (u)} ⊕
∂V f (x̄ + u + v (u)) . Hence

(zU (u), z̄V )+ {0} ⊕ BV
ε (0) ⊆ ∂ co h(u + v (u)) = ∂ f (x̄ + u + v (u)).

This furnishes the final assumption that is required to invoke Proposition 37 at points
near to (x̄, z̄). ��

Remark 40 We omit the details here, as they are not central to this paper, but one may
invoke [13, Corollary 3.3] to deduce from Corollary 39 that

q
(
∂2Lε

U (0, z̄U )
)

(w) = q
(
∂2 (co h|U ) (0, z̄)

)
(w) for all w ∈ U .

It follows that U ⊇ dom q
(
∂2Lε

U (0, z̄U )
)
(·) = dom q(∂2 (co h|U ) (0, z̄)) (·) ∩ U =

U2 ∩ U . Then the imposition of the equality U = U2 (our definition of a fast track)
implies ∂2Lε

U (0, z̄U ) = ∂2 (co h|U ) (0, z̄) = ∂2 ( f |U ) (x̄, z̄). Itwould be enlightening
to have a result that establishes this identity without a-priori assuming U = U2 but
having this as a consequence.

Recall that for a convex function (co h)∗ its subjet is nonempty at every point at
which it is subdifferentiable. Moreover (co h)∗ is finite on co(dom f − x). We will
study its restriction (co h)∗ |U ′ to U ′ ≡ (U ′)∗ (or more precisely to U ′  (Rn/V ′)∗,
where the later is a “canonical isomorphism of two linear spaces”, one being the dual
of a factorisation of the whole space with a subspace V ′ (see, pages 2–5 of [22])). The
following result will be required later in the paper.

Lemma 41 Suppose f : R
n → R∞ is a proper lower semi-continuous function

possessing a tilt stable local minimum at x̄ . Suppose in addition that z̄ = 0 ∈ rel-
int ∂ f (x̄), zU ′ ∈ U ′ ⊆ U ,

v (u) ∈ argminv′∈V ′∩Bε(0) f
(
x̄ + u + v′

)

and u := PU ′
[
m f (zU ′ + z̄V ′)

]
.

1. Then zU ′ + 0V ∈ ∂ (co h) (u + v (u)) = ∂coh (u + v (u)) and consequently zU ′ ∈
∂Lε

U ′ (u) = ∂kv (u) .

2. Suppose ((u + v (u)) , Q) ∈ ∂2,− (co h)∗ (zU ′ + 0V ′) then PT
U ′QPU ′ ∈ ∂2,−

(co h)∗ |U ′ (zU ′) = ∂2,−k∗v (zU ′) . Consequently when ∇2k∗v (zU ′) exists

∂
2,−
U ′ (co h)∗ (u + v (u) , zU ′ + 0V ′)
:= PT

U ′∂
2,− (co h)∗ (zU ′ + 0V ′) PU ′ = ∇2k∗v (zU ′)− P(U ′). (34)
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Proof Note that as z̄ = 0 by (19) we have k∗v (zU ′) = h∗ (zU ′ + 0V ′) =
(co h)∗ (zU ′ + 0V ′). Invoking Proposition 35 we have kv (u) := h (u + v (u)) =
co h (u + v (u)), and by Lemma 27 we then have

kv (u)+ k∗v (zU ′) = 〈zU ′ , u〉 = co h (u + v (u))+ h∗ (zU ′ + 0V ′)

and hence zU ′ + 0V ′ ∈ ∂(co h) (u + v (u)) = ∂coh (u + v (u)). Taking into account
Remark 33 we have for all u ∈ U ′ ∩ Bε (0) that

zU ′ + 0V ′ ∈ ∂ co h (u + v (u)) ⇐⇒ zU ′ ∈ ∂Lε
U ′ (u) = ∂kv (u) .

For the second part we have from the definition of ((u + v (u)) , Q) ∈ ∂2,− (co h)∗
(zU ′ + 0V ′) locally around zU ′ + 0V ′ that

(co h)∗ (y) ≥ (co h)∗ (zU ′ + 0V ′)+ 〈u + v (u) , zU ′ + 0V ′ 〉
+ 1

2
〈Q (y − (zU ′ + 0V ′)) , (y − (zU ′

+ 0V ′))〉 + o
(
‖y − (zU ′ + 0V ′)‖2

)
.

Restricting to U ′ we have the following locally around zU ′

(co h)∗ |U ′ (yU ′) ≥ (co h)∗ |U ′ (zU ′)+ 〈u, zU ′ 〉
+ 1

2
〈QPU ′ (yU ′ − zU ′) , PU ′ (yU ′ − zU ′)〉

+ o
(
‖PU ′ (yU ′ − zU ′)‖2

)

= (co h)∗ |U ′ (zU ′)+ 〈u, zU ′ 〉
+ 1

2
〈
(
PT
U ′QPU ′

)
(yU ′ − zU ′) , (yU ′ − zU ′)〉 + o

(
‖yU ′ − zU ′ ‖2

)

and by (19) we have k∗v (zU ′) = (co h)∗ (zU ′ + 0V ′) = (co h)∗ |U ′ (zU ′) . Hence

PT
U ′QPU ′ ∈ ∂2,− (co h)∗ |U ′ (zU ′) = ∂2,−k∗v (zU ′) .

When ∇2k∗v (zU ′) exists we have ∂2,−k∗v (zU ′) = ∇2k∗v (zU ′)− P(U) giving (34). ��
In the followingwe shall at times use the alternate notation zU ′ +zV ′ = (zU ′, zV ′) to

contain the notational burden of the former. The proof of the next proposition follows
a similar line of argument as in [34, Proposition 3.1].

Proposition 42 Suppose f : R
n → R∞ is a proper lower semi-continuous function

and suppose that x̄ is a tilt stable local minimum of f . In addition suppose z̄ =
0 ∈ rel-int ∂ f (x̄), U ′ ⊆ U and v (u) ∈ argminv′∈V ′∩Bε(0) f

(
x̄ + u + v′

)
with u :=

PU ′ [m (zU ′ + z̄V ′)] or zU ′ ∈ ∂Lε
U ′ (u) = ∂kv (u). Suppose k∗v : U ′ → R∞ is a
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C1,1 (Bε (0)) function for some ε > 0 with ∇2k∗v (zU ′) existing as a positive definite
form. Then for u := ∇k∗v (zU ′) we have

Q = ∇2k∗v (zU ′) �⇒ Q−1 ∈ ∂
2,−
U ′ (co h) (u + v (u) , zU ′ + 0V ′) .

Proof When u := PU ′ [m (zU ′ + z̄V ′)] or zU ′ ∈ ∂Lε
U ′ (u) = ∂kv (u) (see Proposition

30) we have zU ′ +0V ′ ∈ ∂ (co h) (u + v (u)). We show that

(
Q−1 0
0 0

)
is a subhessian

of co h at (u, v(u)) for zU ′ + 0V ′ ∈ ∂(co h) (u + v (u)) and hence deduce that (by
definition) Q−1 ∈ ∂

2,−
U ′ (co h) (u + v (u) , zU ′ + 0V ′). Expanding k∗v via a second

order Taylor expansion around zU ′ we have for all yU ′ − zU ′ ∈ Bε (0) a function
δ (ε) → 0 as ε → 0 with

(co h)∗ (yU ′ + 0V ′)
= k∗v (yU ′)

= k∗v (zU ′)+ 〈yU ′ − zU ′, u〉 + 1

2
〈Q (yU ′ − zU ′) , (yU ′ − zU ′)〉

+ o
(
‖(yU ′ − zU ′)‖2

)

≤ (co h)∗ ((zU ′ , 0V ′))+ 〈yU ′ − zU ′ + 0V ′ , u + v (u)〉
+ 1

2
〈
(
Q 0
0 0

)
((yU ′ , 0V ′)− (zU ′ , 0)) , ((yU ′ , 0V ′)− (zU ′, 0V ′))〉

+ 1

2
δ (ε) ‖((yU ′ , 0V ′)− (zU ′, 0V ′))‖2

Then as co h (u + v (u)) = 〈zU ′ , u〉 − (co h)∗ ((zU ′ , 0V ′)) and 〈Q (yU ′ − zU ′) ,

(yU ′ − zU ′)〉 ≥ α ‖yU ′ − zU ′ ‖2 we have

co h
(
u′ + v

(
u′

))

= sup
(yU ′ ,yV ′)

{〈(yU ′ , yV ′) ,
(
u′, v

(
u′

))〉 − (co h)∗ (yU ′ + yV ′)
}

≥ sup
yU ′

{〈(yU ′ , 0V ′) ,
(
u′, v

(
u′

))〉 − (co h)∗ (yU ′ + 0V ′)
}

≥ co h (u + v (u))+ 〈zU ′ , u′ − u〉 + sup
yU ′−zU ′ ∈Bε(0)

{
〈yU ′ − zU ′, u′ − u〉

−1

2

(
1+ α−1δ (ε)

)
〈Q (yU ′ − zU ′) , (yU ′ − zU ′)〉

}

and when u′ −u ∈ (
1+ α−1δ (ε)

)
ε
∥∥Q−1

∥∥−1 B1 (0) we have the supremum attained
at

yU ′ − zU ′ =
(
1+ α−1δ (ε)

)−1
Q−1

(
u′ − u

) ∈ Bε (0) .
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Hence when
(
u′, v′

) ∈ Bγ (ε) (0), for γ (ε) := (
1+ α−1δ (ε)

)
ε
∥
∥Q−1

∥
∥−1, we have

co h
(
u′ + v′

) ≥ co h
(
u′ + v

(
u′

)) ≥ co h (u + v (u))

+〈(zU ′ + 0V ′) ,
(
u′, v′

)− (u, v (u))〉
+ 1

2

〈(
Q−1 0
0 0

) (
u′, v′

)− (u, v (u)) ,
(
u′, v′

)− (u, v (u))

〉

−β (ε)
∥∥(
u′, v′

)− (u, v (u))
∥∥2

where β (ε) =
[
1− (

1+ α−1δ (ε)
)−1] ∥∥Q−1

∥∥→ 0 as ε → 0. That is

(
Q−1 0
0 0

)
∈ ∂2,−(co h) (u + v (u) , zU ′ + 0V ′) ,

from which the result follows. ��

5 The main result

The main tools we use to establish our results are the convexification that tilt stable
localminimumenable us to utilise [7], the correspondence between tilt stability and the
strong metric regularity of the locally restricted inverse of the subdifferential and the
connection conjugacy has to inversion of subdifferentials of convex functions [1,7].
These tools and the coderivative characterisation (17) of tilt stability (being applicable
to convex functions) allows a chain of implications to be forged. The differentiability
properties we seek may be deduced via strong metric regularity or alternatively via
the results of [2] after invoking the Mordukhovich coderivative criteria for the Aubin
property for the associated subdifferential.

Once again we will consider subspaces U ′ ⊆ U . We now show that tilt stability is
inherited by kv .

Proposition 43 Consider f : Rn → R∞ is a proper lower semi-continuous function
and v (u) ∈ argminv′∈V∩Bε(0) f

(
x̄ + u + v′

)
. Suppose that f has a tilt stable local

minimum at x̄ for 0 ∈ ∂ f (x̄) then v (·) : U ′ → V ′ is uniquely defined and the
associated function kv (·) : U ′ → R∞ has a tilt stable local minimum at 0.

Proof In this case we have (z̄U ′, z̄V ′) = (0, 0). By tilt stability we have m (·) a
single valued Lipschitz functions and hence v (·) is unique. From Proposition 30 and

{u} = PU ′ [m (zU ′)] we have zU ′ ∈ ∂co

[
Lε
U ′ + δBU ′

ε (0)

]
(u) and from Propositions 34

and 28 that

{(u, v (u))} = m (zU ′ + z̄V ′) = argmin(u′,v′)
{
g

(
u′ + v′

)− 〈zU ′, u′ + v′〉}

= argmin(u′,v′)
{
h

(
u′ + v′

)− 〈zU ′, u′ + v′〉}

and so {u} = argminu′∈U ′
{[
h

(
u′ + v

(
u′

))− 〈0, u′ + v
(
u′

)〉]− 〈zU ′ , u′〉
}

= argminu′∈U ′
{
kv

(
u′

)− 〈zU ′ , u′〉
}
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implying {u} = PU ′ [m (zU ′ + 0)] ⊆ argminu′∈U ′
{
kv

(
u′

)− 〈zU ′ , u′〉
} = {u}. Hence

argminu′∈U ′
{
kv

(
u′

)− 〈zU ′ , u′〉
} = PU ′ [m (zU ′)]

is clearly a single valued, locally Lipschitz function of zU ′ ∈ BU ′
ε (0) ⊆ U ′. ��

Remark 44 Clearly Proposition 43 implies kv (·) : U2 → R∞ has a tilt stable local
minimum at 0 relative to U2 ⊆ U .

The following will help connect the positive definiteness of the densely defined
Hessians of the convexification h with the associated uniform local strong convexity
of f . This earlier results [11, Theorem 24, Corollary 39] may be compared with
Theorem 3.3 of [7] in that it links “stable strong local minimizers of f at x̄” to tilt
stability. We say fz := f − 〈z, ·〉 has a strict local minimum order two at x ′ relative
to Bδ(x̄) " x ′ when fz(x) ≥ fz

(
x ′

)+ β
∥∥x − x ′

∥∥2 for all x ∈ Bδ(x̄). It is a classical
fact that this is characterised by the condition ( fz)′′_ (x, 0, h) > 0 for all ‖h‖ = 1, see
[39, Theorem 2.2].

The following result gives conditions on f , in finite dimensions, such that the
coderivative in the second order sufficiency condition (17) is uniformly bounded away
from zero by a constant β > 0. Then indeed (17) is equivalent to this strengthened
condition. This follows from a uniform bound on the associated quadratic minorant
associated with the strong stable local minimum. This phenomena was also observed
in [3, Theorem 5.36] in the case of infinite dimensions for a class of optimisation
problems. As we already know this is true for C1,1 functions (see Corollary 25) and as
we know that application of the infimal convolution to prox-regular functions produces
aC1,1 function, there is a clear path to connect these results. Indeed this is the approach
used in [10,11].

Theorem 45 ([11], Theorem 34 part 1.) Suppose f : R
n → R∞ is lower-

semicontinuous, prox-bounded (i.e. minorised by a quadratic) and 0 ∈ ∂p f (x̄).
Suppose in addition there exists δ > 0 and β > 0 such that for all (x, z) ∈

Bδ(x̄, 0)∩Graph ∂p f the function f − 〈z, ·〉 has a strict local minimum order two at
x in the sense that there exists γ > 0 (depending on x, y) such that for each x ′ ∈ Bγ (x)
we have

f (x ′)− 〈z, x ′〉 ≥ f (x)− 〈z, x〉 + β‖x − x ′‖2. (35)

Then we have for all ‖w‖ = 1 and 0 �= p ∈ D∗(∂p f )(x̄, 0)(w) that 〈w, p〉 ≥ β >

0.

The following may also be found in [16, Theorem 3.5–3.6].

Corollary 46 Suppose f : Rn → R a is lower semi-continuous, prox-bounded and f
is both prox-regular at x̄ with respect to 0 ∈ ∂p f (x̄) and subdifferentially continuous
there. Then the following are equivalent:

1. For all ‖w‖ = 1 and p ∈ D∗(∂p f )(x̄, 0)(w) we have 〈w, p〉 > 0.
2. There exists β > 0 such that for all ‖w‖ = 1 and p ∈ D∗(∂p f )(x̄, 0)(w) we have
〈w, p〉 ≥ β > 0.
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Proof We only need show 1 implies 2. By [36, Theorem 1.3] we have 1 implying a
tilt stable local minimum at x̄ . Now apply [7, Theorem 3.3] to deduce the existence
of a δ > 0 such that for all (x, z) ∈ Bδ(x̄, 0) ∩ Graph ∂p f we have x a strict local
minimizer order two of the function f − 〈z, ·〉 in the sense that (35) holds for some
uniform value β > 0 for all x ′ ∈ Bγ (x). Now apply Theorem 45 to obtain 2. ��

Another condition equivalent to all of those in [36, Theorem 1.3] is the following

f ′′s (x, z, u) > 0 for all (x, z) ∈ Bδ(x̄, 0) ∩ Graph ∂p f, (36)

which is motivated by the classical observation that f ′′ (x, z, u) > 0 implies f −〈z, ·〉
has a strict local minimum order 2 at x (see [39, Theorem 2.2]). We will show that
a stronger version gives an equivalent characterisation in Corollary 25 below. The
following construction is also standard. Denote

D̂∗
(
∂p f

)
(x, z)(w) = {v ∈ R

n | (v,−w) ∈ N̂Graph ∂p f (x, z)},

where N̂Graph ∂p f (x, z) =
(
lim supt↓0

Graph ∂p f−(x,p)
t

)◦
is the contingent normal

cone. Then we have D∗
(
∂p f

)
(x̄, 0)(w) = g-lim sup(x,z)→Sp ( f )(x̄,0) D̂

∗ (
∂p f

)
(x, z)

(w) (the graphical limit supremum [38, page 327]).

Corollary 47 Suppose f : R
n → R∞ a is lower semi-continuous, prox-bounded

and f is both prox-regular at x̄ with respect to 0 ∈ ∂p f (x̄) and subdifferentially
continuous there. Then the following are equivalent:

1. For all ‖w‖ = 1 and p ∈ D∗(∂p f )(x̄, 0)(w) we have 〈w, p〉 > 0.
2. There exists β > 0 such that for all ‖w‖ = 1 we have f ′′s (x, z, w) ≥ β > 0 for

all (x, z) ∈ Bδ(x̄, 0) ∩ Graph ∂p f , for some δ > 0.

Moreover the β in part 2 may be taken as that in Corollary 46 part 2.

Proof (1. �⇒ 2.) By Corollary 46 we have 1 equivalent to condition 2 of Corollary
46 (for some fixed β > 0). Now define G := f − β ′

2 ‖ ·−x̄‖2 (for 0 < β ′ < β). Apply
the sum rule for the limiting subgradient and that for the coderivatives [38, Theorem
10.41] to deduce that 0 ∈ ∂G(x̄) = ∂ f (x̄) − β ′ × 0 and also D∗(∂G)(x̄, 0)(w) ⊆
D∗(∂ f )(x̄, 0)(w) − β ′w. Then for any v ∈ D∗(∂G)(x̄, 0)(w) we have 〈v,w〉 =
〈p, w〉 − β ′‖w‖2 > 0. Now apply Theorem 3.3 of [7] to deduce there exists a strict
local minimum order two for Gz := G − 〈z, ·〉 at each (x, z) ∈ Bδ(x̄, 0)∩Graph ∂G
for some δ > 0. Noting that ∂G and ∂pG locally coincide around (x̄, 0), after possibly
reducing δ > 0, we apply (see [39, Theorem 2.2]) to deduce that (Gz)

′′(x, 0, w) =
f ′′(x, z, w)− β ′‖w‖2 > 0 for all β ′ < β. This implies 2.
(2. �⇒ 1.) Let (x, z) ∈ Bδ(x̄, 0)∩Graph ∂p f . We use the fact that f ′′s (x, z, w) >

β ′ > 0 for all 0 < β ′ < β and ‖w‖ = 1 implies

fz := f − 〈z, ·〉 − β ′

2
‖ · −x‖2
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186 A. C. Eberhard et al.

has x as a strict local minimum order 2 at x . We may now apply [10, Theorem 67] to
deduce that for all y ∈ D̂∗(∂p fz)(x, 0)(w) we have 〈w, y〉 ≥ 0. By direct calculation
from definitions one may show that D̂∗(∂p fz)(x, 0)(w) = D̂∗(∂p f )(x, z)(w)− β ′w
and hence 〈p, w〉 ≥ β ′‖w‖2 for all p ∈ D̂∗(∂p f )(x, z)(w). Taking the graphical limit
supremum [38, identity 8(18)] of D̂∗(∂p f )(x, z)(·) as (x, z) →Sp( f ) (x̄, 0) gives 1. ��

One of the properties that follows from [36, Theorem 1.3] is that the Aubin Property
(or pseudo-Lipschitz property) holds for the mapping z �→ Bδ(x̄) ∩ (∂ f )−1(z). The
Aubin property is related to differentiability via the following result.

Theorem 48 ([2], Theorem 5.3) Suppose H is a Hilbert space and f : H �→ R∞
is lower semi-continuous, prox-regular, and subdifferentially continuous at x̄ ∈
intdom ∂ f for some v̄ ∈ ∂ f (x̄). In addition, suppose ∂ f is pseudo-Lipschitz (i.e.
possess the Aubin property) at a Lipschitz rate L around x̄ for v̄. Then there exists
ε > 0 such that ∂ f (x) = {∇ f (x)} for all x ∈ Bε(x̄) with x �→ ∇ f (x) Lipschitz at
the rate L.

Corollary 49 Under the assumption of Proposition 43 we have z �→ ∂k∗v (z) a single
valued Lipschitz continuous mapping in some neighbourhood of 0.

Proof We invokeTheorems 45 and 48.As (co kv)
∗ = k∗v and being a convex function it

is prox-regular and subdifferentially continuous so (∂p co kv)
−1 = (∂ co kv)

−1 = ∂k∗v
is single valued and Lipschitz continuous by Theorem 48, noting that the tilt stability
supplies the Aubin property for (∂ co kv)

−1 via [36, Theorem 1.3] . ��
We include the following for completeness. We wish to apply this in conjunction

with Alexandrov’s theorem and this is valid due to the equivalence of the existence of a
Taylor expansion and twice differentiability in the extended sense (see [38, Corollary
13.42, Theorem 13.51]).

Lemma 50 Suppose f : Rn → R∞ is a locally finite convex function at Bε(x) which
is twice differentiable at x̄ ∈ Bε(x) with z̄ := ∇ f (x̄) and Q := ∇2 f (x̄) positive
definite. Then we have

z̄ :=∇ f (x̄) and Q :=∇2 f (x̄) ⇐⇒ x̄=∇ f ∗(z̄) and Q−1=∇2 f ∗(z̄). (37)

Proof In [17] it is shown that when g is convex with g(0) = 0, ∇g(0) = 0 and twice
differentiable x = 0 in the sense that the following Taylor expansion exists: g(y) =
1
2 (Qy)T y + o(‖y‖2). Then we have the corresponding Taylor expansion: g∗(x) =
1
2 (Q

−1x)T x+o(‖x‖2).Wemay apply [38, Corollary 13.42] to claim these expansions
are equivalent to the existence of a Hessian for both functions (twice differentiability
in the extended sense) where 0 = ∇g(0), Q = ∇2g(0) and 0 = ∇g∗(0), Q−1 =
∇2g∗(0). Nowapply this to the function g(y) := f (y+∇ f (x̄))−〈∇ f (x̄), y+∇ f (x̄)〉
noting that g∗(z) = f ∗(z+∇ f (x̄))−〈x̄, z〉.We have∇2g(0) = ∇2 f (x̄),∇g∗(0) = 0
implies f ∗(∇ f (x̄)) = x̄ and ∇2g∗(0) = Q−1 = ∇ f ∗(∇ f (x̄)), demonstrating the
forward implication ( �⇒ ) in (37). To obtain the reverse implication we apply the
proven result to the convex function f ∗ using the bi-conjugate formula f ∗∗ = f . ��
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On partial smoothness, tilt stability and the VU-decomposition 187

Our main goal is to demonstrate that the restriction of f to the set M :={(
u, v (u)) | u ∈ U2

)}
coincides with aC1,1 smooth function of u ∈ U . Consequently

we will be focusing on the case when U2 is a linear subspace and so take U ′ ≡ U2

in our previous results. The next result demonstrates when there is a symmetry with
respect to conjugation in the tilt stability property for the auxiliary function kv .

Theorem 51 Consider f : R
n → R∞ is a proper lower semi-continuous

function, which is a prox-regular function at x̄ for 0 ∈ ∂ f (x̄) with a nontriv-
ial subspace U2 = b1

(
∂2 f (x̄, 0)

) ⊆ U . Denote V2 = (U2)⊥, let v (u) ∈
argminv′∈V2∩Bε(0) f

(
x̄ + u + v′

) : U2 → V2 and kv (u) := h (u + v (u)) : U2 →
R∞. Suppose also that f has a tilt stable local minimum at x̄ for 0 ∈ ∂ f (x̄) then for
p �= 0 we have

∀q ∈ D∗
(∇k∗v

)
(0, 0) (p) we have 〈p, q〉 > 0 (38)

and hence k∗v has a tilt stable local minimum at 0 ∈ ∂k∗v (0) .

Proof On application of Propositions 43 and 28 we have co kv (·) : U2 → R∞
possessing a tilt stable local minimum at 0. As co kv (·) is convex it is prox-regular
at 0 for 0 ∈ ∂ co kv (0) and subdifferentially continuous at 0 [38, Proposition 13.32].
Hence we may apply [36, Theorem 1.3] to obtain the equivalent condition for tilt
stability. For all q �= 0

〈p, q〉 > 0 for all p ∈ D∗ (∂ [co kv]) (0, 0) (q) . (39)

Now apply Corollary 46 to deduce the existence of β > 0 such that 〈p, q〉 ≥ β > 0
for all (p, q) taken in (39) with ‖q‖ = 1.

For this choice of v(·)we have kv = Lε
U2 . FromProposition 5 part 2, Remark 33 and

Lemma 32 we see that ∇kv(0) = {0} = ∇ co kv(0). Then whenever xk ∈ S2(co kv)

with xk → 0 (as we always have zk = ∇ co kv(xk) → 0 = ∇ co kv(0)) it follows
from Corollary 47 that we have

(co kv)
′′
s

(
xk,∇ co kv

(
xk

)
, h

)
= 〈∇2 co kv(x

k)h, h〉 > 0 for all h ∈ U2 (40)

for k sufficiently large. ByAlexandrov’s theorem this positive definiteness of Hessians
must hold on a dense subset of some neighbourhood of zero. By the choice of v(·) we
have kv(u) = Lε

U2(u) and hence we may assert that ∂coLε
U2(u) = ∂ co kv(u) �= ∅ in

some neighbourhood of the origin in U2.
Since [co kv]∗ = k∗v and ∇k∗v = [∂ co kv]−1 we may apply [38, identity 8(19)] to

deduce that for ‖q‖ = 1 we have

−q ∈ D∗
(
[∂ co kv]

−1) (0, 0) (−p) = D∗
(∇k∗v

)
(0, 0) (−p) .

Hence we can claim that for q �= 0, after a sign change, that 〈p, q〉 = 〈−p,−q〉 ≥
β > 0. We need to rule out the possibility that 0 ∈ D∗

(∇k∗v
)
(0, 0) (p) for some
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188 A. C. Eberhard et al.

p �= 0. To this end we may use the fact that k∗v is C1,1 (and convex) and apply [38,
Theorem 13.52] to obtain the following characterisation of the convex hull of the
coderivative in terms of limiting Hessians. Denote S2(k∗v ) := {x | ∇2k∗v (x) exists}
then

co D∗(∇k∗v )(0, 0)(p) = co

{
Ap | A = lim

k
∇2k∗v (zk) for some zk(∈ S2(k

∗
v ))→ 0

}
.

Now suppose 0 ∈ D∗
(∇k∗v

)
(0, 0) (p) then there exists Ai = limk ∇2k∗v (zki ) for

zki → 0 such that 0 = q := ∑m
i=1 λi Ai p ∈ co D∗

(∇k∗v
)
(0, 0) (p). As p �= 0

we must then have 〈p, q〉 = pT (
∑m

i=1 λi Ai )p = 0 where B := ∑m
i=1 λi Ai is a

symmetric positive semi-definite matrix. The inverse (Ai
k)
−1 exists (relative to U2)

due to (40). Now apply the duality formula for Hessians Lemma 50 to deduce that
when xki := ∇k∗v (zki ) then Ai

k = ∇2k∗v (zki ) iff (Ai
k)
−1 = ∇2(co kv)(xki ).

We now apply Lemma 21 to deduce that the limiting subhessians of h(w) :=
f (x̄ +w) satisfy (14). We will want to apply this bound to the limiting subhessians of
co h at xki +v(xki ). To this end we demonstrate that�2h

(
xki + v(xki ),

(
zki , 0

)
, t, w

) ≥
�2 (co h)

(
xki + v(xki ),

(
zki , 0

)
, t, w

)
for all t ∈ R and any w. This follows from

Lemma 32, Proposition 35 in that
(
zki , 0

) ∈ ∂ co h
(
xki + v(xki )

) = ∂h
(
xki + v(xki )

)
,

co h
(
xki + v(xki )

) = h
(
xki + v(xki )

)
and co h (u + v) ≤ h (u + v) for all (u, v) ∈

U2 × V2. On taking the a limit infimum for t → 0 and w → u ∈ U2 we obtain

q
(
∂2,− (co h)

(
xki + v(xki ),

(
zki , 0

)))
(u) = (co h)′′s

(
xki + v(xki ),

(
zki , 0

)
, u

)

≤ h′′
(
xki + v(xki ),

(
zki , 0

)
, u

)
= q

(
∂2,−h

(
xki + v(xki ),

(
zki , 0

)))
(u) .

Hence the bound in (14) involving the constant M > 0 applies to any Qk ∈
∂2,− (co h)

(
xki + v(xki ),

(
zki , 0

))
for k large.

As Ai
k = ∇2k∗v (zki ) by Proposition 42 we have (Ai

k)
−1 = (∇2

U2h
∗(zki + 0V2))−1 ∈

∂
2,−
U2 (co h) (xki + v(xki )) and on restricting to the U2 space and using (19), (14) and

(31) we get for all p ∈ U2 that

〈Ai
k, pp

T 〉 = 〈∇2k∗v (zki ), pp
T 〉 = 〈∇2

U2h
∗(zki + 0V ), ppT 〉

=
〈[

(Ai
k)
−1]−1 , ppT

〉
≥ 1

M
.

Thus {Ai
k} are uniformly positive definite. By [17] we have (Ai

k)
−1 = ∇2(co kv)(xki )

existing at xki and hence

(Ai
k)
−1u = ∇2(co kv)(x

k
i )u ∈ D∗(∇ co kv)(x

k
i , z

k
i )(u) for all u ∈ U2.

Then, for u �= 0, by Theorem 45 we have 〈∇2(co kv)(xki )u, u〉 ≥ β
2 > 0 for k large

implying
{
(Ai

k)
−1} remain uniformly positive definite on U2. Hence

{
Ai
k

}
remain
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On partial smoothness, tilt stability and the VU-decomposition 189

uniformly bounded within a neighbourhood of the origin within U2. Thus on taking
the limit we get Ai = limk Ai

k is positive definite and hence B := ∑m
i=1 λi Ai is

actually positive definite, a contradiction.
As k∗v is convex and finite at 0, it is prox-regular and subdifferentially continuous

at 0 for 0 ∈ ∂k∗v (0) by [38, Proposition 13.32]. Another application of [36, Theorem
1.3] allows us to deduce that k∗v has a tilt stable local minimum at 0 ∈ ∇k∗v (0) . ��

We may either use the strong metric regularity property to obtain the existence
of a smooth manifold or utilizes the Mordukhovich criteria for the Aubin property
[38] and the results of [2] on single valuedness of the subdifferential satisfying a
pseudo-Lipschitz property, namely:

Proof of Theorem 1 using strong metric regularity
Note first that U2 ⊆ U corresponds to (12) for z̄ = 0. Let {v (u)} =

argminv′∈V2∩Bε(0) f
(
x̄ + u + v′

)
. We apply either [36, Theorem 1.3] or [7, Theo-

rem 3.3] that asserts that as k∗v is prox-regular and subdifferentially continuous at 0
for 0 ∈ ∂k∗v (0) then ∂k∗v is strongly metric regular at (0, 0) . That is there exists ε > 0
such that

Bε (0) ∩ (
∂k∗v

)−1
(u)

is single valued and locally Lipschitz for u ∈ U2 sufficiently close to 0. But as(
∂k∗v

)−1 = ∂k∗∗v = ∂ [co kv] is a closed convex valued mapping (and hence has

connected images) we must have the existence of δ > 0 such that for u ∈ BU2

δ (0) we
have ∂ [co kv] (·) a singleton locally Lipschitz mapping (giving differentiability). As
{v (u)} = argminv′∈V2∩Bε(0)

{
h

(
u + v′

)− 〈z̄V2 , v′〉} : U2 ∩ Bε (0) → V2 we have

kv(u) = Lε
U2(u) for u ∈ int BU2

ε (0). Hence ∇ co Lε
U2(u) ∈ ∂coLε

U2(u) �= ∅ and by

Corollary 35 we have on U2 that h (u + v (u)) = [co h] (u + v (u)) and hence

∂ [co kv] (u) = ∂ [co h] (u + v (u)) = ∂g (u + v (u))

is single valued implying ∇ug (u + v (u)) exists where g (·) := [co h] (·) . ��
Corollary 52 Under the assumptions of Theorem 1 we have ∇Lε

U2(u) existing as a

Lipschitz function locally on BU
ε (0).

Proof Applying Corollary 35 again we can assert that under our current assumptions
that locally we have co kv = kv = Lε

U2 and hence ∇kv(u) = ∇Lε
U2(u) exists as a

Lipschitz function locally on BU
ε (0). ��

Proof of Theorem 1 using the single valuedness of the subdifferential satisfying a
pseudo-Lipschitz property.

We show that D∗(∂[co kv])(0, 0)(0) = {0}. To this end we use (38). Indeed this
implies that q �= 0 for any p �= 0 for all q ∈ D∗(∇k∗v )(0, 0)(0)(p). Applying the
result [38, identity 8(19)] on inverse functions and coderivativeswe have q = 0 implies
p = 0 for all p ∈ D∗(∂[co kv])(0, 0)(q). Hencewe have D∗(∂[co kv])(0, 0)(0) = {0}.
Now apply the Mordukhovich criteria for the Aubin property [38, Theorem 9.40] to

123



190 A. C. Eberhard et al.

deduce that ∂[co kv] has the Aubin property at 0 for 0 ∈ ∂[co kv](0). Now apply
Theorem 48 to deduce that u �→ ∇[co kv](u) exists a single valued Lipschitz mapping
in some ball BU2

δ (0) in the space U2. We now finish the proof as before in the first
version. ��

If we assume more, essentially what is needed to move towards partial smoothness
we get a C1,1 smooth manifold.

Proof of Theorem 2 First note that when we have (2) holding using f then we must
have (2) holding using g := co h. Thus by Proposition 5 part 3 have (6) holding using g
(via the convexification argument). As g (w) := [co h] (w) for w ∈ Bε (0) is a convex
functionwe have g a regular in Bε (0).Moreover as g (u + v (u)) = f (x̄ + u + v (u))

(and g (w) ≤ f (x̄ + w) for allw ) we have the regular subdifferential of g (at u+v(u))
contained in that of f (at x̄ + u + v(u)). As g is regular the singular subdifferential
coincides with the recession directions of the regular subdifferential [38, Corollary
8.11] and so are contained in the recession direction of the regular subdifferential of
f . We are thus able to write down the following inclusion

∂∞g (u + v (u)) ⊆ ∂∞ f (x̄ + u + v (u)) = {0} .

By the tilt stability we have v a locally Lipschitz single valued mapping. Thus by the
basic chain rule of subdifferential calculus we have

{∇ug (u + v (u))} = (eU ⊕ ∂v (u))T ∂g (u ⊕ v (u))

is a single valued Lipschitz mapping. Under the additional assumption we have via
Proposition 5 part that, cone [∂Vg (u + v (u))] ⊇ V for u ∈ Bε (0)∩U . As ∂v (u) ⊆ V
it cannot be multi-valued and still have (eU ⊕ ∂v (u))T ∂g (u ⊕ v (u)) single valued.
This implies the limiting subdifferential ∂v (u) is locally single valued and hence
∇v (u) exists locally. The upper-semi-continuity of the subdifferential and the single-
valuedness implies u �→ ∇v(u) is a continuous mapping. ��

The following example demonstrates the fact that even if ∂wg (u + v (u)) is multi-
valued we still have (eU ,∇v (u))T ∂wg (u + v (u)) single valued.

Example 53 If f : R2 → R is given by f = max{ f1, f2}where f1 = w2
1+(w2−1)2

and f2 = w2, then ∂wg (u + v (u)) is multi valued but (eU , ∂v (u))T ∂wg (u + v (u))

is single valued.

Using the notation in the Theorem, we put w̄ = 0, find that ∂ f (0) =
{α

(
0, 1−√5

)
+ (1 − α) (0, 1) | 0 ≤ α ≤ 1} so we have U = {α (1, 0) | α ∈ R}

and V = {α (0, 1) | α ∈ R}. With ε < 1/2 then

v (u) = 3

2
−
√
9− 4u2

2
, g (u + v (u)) = f (x̄ + u + v (u)) = 3

2
−
√
9− 4u2

2
.
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It follows that ∇v (u) = 2u√
9−4u2 and (eU , ∂v (u))T =

(
1, 2u√

9−4u2
)T

. Now we con-

sider ∂wg (u + v (u)) = ∂w f (u + v (u)). At u + v (u), from f1 we know

t1 =
(
2u, 1−

√
9− 4u2

)
= ∇w f1 (u + v (u))

and from f2 we know
t2 = (0, 1) = ∇w f2 (u + v (u)) .

Thus
∂w f (u + v (u)) = {αt1 + (1− α)t2 | 0 ≤ α ≤ 1},

that is, ∂wg (u + v (u)) is multi valued. However, for all such α, we have

(eU , ∂v (u))T (αt1+(1−α)t2) = 2αu+
(
1− α

√
9− 4u2

) 2u√
9− 4u2

= 2u√
9− 4u2

.

Therefore (eU , ∂v (u))T ∂wg (u + v (u)) is single valued.
We may now demonstrate that we have arrived at a weakening of the second order

expansions studied in [24, Theorem 3.9], [30, Equation (7)] and [32, Theorem 2.6].

Corollary 54 Under the assumption of Theorem 2 we have the following local lower
Taylor estimate holding: there exists δ > 0 such that for all u ∈ Bδ(0) ∩ U we have
for all u′ + v′ ∈ Bδ(u + v(u))

f (x̄ + u′ + v′) ≥ f (x̄ + u + v(u))+ 〈zU (u)+ z̄V , u′ + v′ − (u + v(u)〉
+1

2
(u′ − u)T Q(u′ − u)+ o(‖u′ − u‖2),

for all Q ∈ ∂2,−Lε
U (u, zU (u)), where zU (u) := ∇Lε

U (u).

Proof We apply Corollary 39 taking note of the observation in remark 29 to obtain
the following chain of inequalities. As Q ∈ ∂2,−Lε

U (u, zU (u)) we have

f (x̄ + u′ + v′)− 〈z̄V , v′〉 ≥ f (x̄ + u′ + v(u′))− 〈z̄V , v(u′)〉 = Lε
U (u′)

≥ Lε
U (u)+ 〈∇Lε

U (u), u′ − u〉
+ 1

2
(u′ − u)T Q(u′ − u)+ o(‖u′ − u‖2)

= f (x̄ + u + v(u))− 〈z̄V , v(u)〉
+ 〈zU (u), u′ − u〉 + 1

2
(u′ − u)T Q(u′ − u)

+ o(‖u′ − u‖2),

where we have used Corollary 52 to deduce that ∇Lε
U (u) = zU (u) exists locally as a

Lipschitz continuous function. The result now follows using the orthogonality of the
U and V . ��
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Remark 55 The function f described in Theorem 2 is quite closely related to the
partial smooth class introduced by Lewis [25,26]. Lewis calls f partially smooth at x̄
relative to a manifold M iff

1. We have f |M is smooth around x̄ ;
2. for all points inM close to x̄ we have f is regular and has a subgradient;
3. we have f_′(x̄, h) > − f_′(x̄,−h) for all nonzero h ∈ NM(x̄) and
4. the subgradient mapping w �→ ∂ f (w) is continuous at x̄ relative toM.

It is not difficult to see that {0}×V = NM(x̄) (for x̄ as in Theorem2) and so 3 of [26,
Definition 3.2] is known to hold. Thus clearly we have 1 and 3 holding for the function
f in Theorem 2. As functions that are prox-regular at a point (x, 0) ∈ Graph ∂ f are
not necessarily regular at x then 2 is not immediately obvious, although a subgradient
must exist. Fortunately the “convex representative” given by g(x̄+·), where g := co h,
is regular thanks to convexity. This implies that the restriction of f to the manifold
is indeed regular. This leaves the issue of whether w �→ ∂g(w) is continuous at 0
(relative to M). As 0 ∈ int ∂Vg (u + v (u)) for u ∈ Bε (0) ∩ U this problem may be
reduced to investigating whether u �→ int ∂Vg (u + v (u)) is lower semi-continuous
at 0. This is not self evident due to the possibility of a increase in the dimension of
the affine hull of ∂ f (·) at x̄ . So the question as to whether g is partially smooth is still
open. The solution to this issue may lie in the underlying assumption that U = U2 in
Theorem2 (see the discussion inRemark 40). On balance the authorswould conjecture
that the functions we described in Theorem 2 are most likelihood partially smooth,
despite failing to engineer a proof.

We would like to finish this section with some remarks regarding the related work
in [26]. Because of the gap we still currently have in providing a bridge to the concept
of partial smoothness we can’t make direct comparisons with the results of [26].
Moreover in [26] the authors deal with C2-smooth manifolds while the natural notion
of smoothness for this work is of type C1,1. It would be interesting to see to what
degree the very strong results of [26] carry over to this context. That is, a study of tilt
stability of partially smooth functions under pinned by a C1,1-smooth manifold. This
may be another avenue to close the gap that still exists.

6 Appendix A

The prove Proposition 15 we need the following results regarding the variation limits
of rank-1 supports.

Proposition 56 ([13], Corollary 3.3) Let {A(v)}v∈W be a family of non-empty rank-1
representers (i.e.A(v) ⊆ S (n) and−P (n) ⊆ 0+A(v) for all v) and W a neighbour-
hood of w. Suppose that lim supv→w A(v) = A(w). Then

lim sup
v→w

inf
u→h

q (A(v)) (u) = q (A(w)) (h) (41)

Recall that (x ′, z′)→Sp( f ) (x̄, z) means x ′ → f x̄ , z′ ∈ ∂p f (x ′) and z′ → z.
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Corollary 57 Let f : R
n → R∞ be proper and lower semicontinuous with h ∈

b1(∂2 f (x̄, z̄)). Then

q
(
∂2 f (x̄, z̄)

)
(h) = lim sup

(x ′,z′)→Sp ( f )(x̄,z̄)
inf
u→h

q
(
∂2,− f (x ′, z′)

)
(u). (42)

Proof Use Proposition 56 and Remark 11. ��
Denote the infimal convolution of f by fλ(x) := infu∈Rn

(
f (u)+ 1

2λ‖x − u‖2).
Recall that fλ (x) − 1

2λ ‖x‖2 = − (
f + λ

2‖ · ‖2
)∗

(λx) and this fλ is always para-
concave. Recall that in [13, Lemma 2.1], it is observed that f is locally C1,1 iff
f is simultaneously a locally para-convex and para-concave function. Recall [38,
Proposition 4.15] that states that the limit infimum of a collection of convex sets is
also convex and that the upper epi-limit of a family of functions has an epi-graph that
is the limit infimum of the family of epi-graphs. Consequently the epi-limit supremum
of a family of convex functions give rise to convex function.

Proof (of Proposition 15) Begin by assuming f is locally para-convex. Let c
2 > 0

be the modulus of para-convexity of f on Bδ(x̄), x ∈ Bδ(x̄) with z ∈ ∂ f (x) and
∂2,− f (x, z) �= ∅. Let Ct (x) = {h | x + th ∈ Bδ(x̄)} then we have

h �→
(
2

t2

)
( f (x + th)− f (x)− t〈z, h〉)+ c

t2

(
‖x + th‖2 − ‖x‖2 − t〈2x, h〉

)

convex on Ct (x) since x �→ f (x) + c
2‖x‖2 is convex on Bδ(x̄). Next note that for

every K > 0 there exists a t̄ > 0 such that for 0 < t < t̄ we have BK (0) ⊆ Ct (x).
Once again restricting f to Bδ(x̄) we get a family

{h �→ �2 f (x, t, z, h)+ c

t2

(
‖x + th‖2 − ‖x‖2 − t〈2x, h〉

)
}t<t̄ (43)

of convex functions with domains containing Ct (x) (for each t) and whose convexity
(on their common domain of convexity) will be preserved under an upper epi-limit as
t ↓ 0. Thus, using the fact that c

t2
(‖x + th‖2 − ‖x‖2 − t〈2x, h〉) converges uniformly

on bounded sets to c‖h‖2, we have the second order circ derivative (introduced in [23])
given by:

f ↑↑(x, z, h)+ c‖h‖2 := lim sup
(x ′,z′)→Sp (x,z),t↓0

inf
u′→h

(�2 f (x
′, t, z′, u′)

+ c

t2

(
‖x + th‖2 − ‖x‖2 − t〈2x, h〉

)
)

which is convex on BK (0), for every K > 0, being obtained by taking an epi-
limit supremum of a family of convex functions given in (43). We then have
h �→ f ↑↑(x, z, h) + c‖h‖2 convex (with f ↑↑(x, z, ·) having a modulus of para-
convexity of c).
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From [4], Proposition 4.1 particularized to C1,1 functions f we have that there
exists a η ∈ [x, y] such that

f (y) ∈ f (x)+ 〈∇ f (x), y − x〉 + 1

2
〈D2

f (η), (y − x)(y − x)T 〉. (44)

Using (44), Proposition 7 and the variational result corollary 56, we have when the
limit is finite (for z̄ := ∇ f (x̄))

f ↑↑(x̄, z̄, h)

:= lim sup
(x ′,z′)→Sp (x̄,z̄), t↓0

inf
u′→h

�2 f (x
′, t, z′, u′)

≤ lim sup
x ′→x̄, t↓0

inf
u′→h

�2 f (x
′, t,∇ f (x ′), u′) ≤ lim sup

η→x̄
inf
u′→h

q
(
D

2
f (η)

)
(u′)

≤ q
(
D

2
f (x̄)− P(n)

)
(h) ≤ q

(
∂2 f (x̄, z̄)

)
(h) ≤ f ↑↑(x̄, z̄, h),

where the last inequality follows from [23, Proposition 6.5].
Now assuming f is quadratically minorised and is prox-regular at x̄ for p̄ ∈ ∂ f (x̄)

with respect to ε and r. Let g(x) := f (x+ x̄)−〈z̄, x+ x̄〉. Then 0 ∈ ∂g(0) and we now
consider the infimal convolution gλ(x) which is para-convex locally with a modulus
c := λr

2(λ−r) , prox-regular at 0 (see [35, Theorem 5.2]). We may now use the first

part of the proof to deduce that g↑↑λ (0, 0, ·) is para-convex with modulus c = 2λr
(λ−r)

and g↑↑λ (0, 0, h) = q
(
∂2gλ(0, 0)

)
(h) since gλ is C1,1 (being both para-convex and

para-concave). Using Corollary 56 and [8, Proposition 4.8 part 2.] we obtain

lim sup
λ→∞

inf
h′→h

g↑↑λ (0, 0, h′) = q

(
lim sup
λ→∞

∂2gλ(0, 0)

)
(h) = q

(
∂2g(0, 0)

)
(h).

Thus q
(
∂2g(0, 0)

)
(h)+r‖h‖2 = lim supλ→∞ infh′→h

(
g↑↑λ (0, 0, h′)+ λr

(λ−r)‖h‖2
)

is convex, being the variational upper limit of convex functions. One can easily verify
that ∂2g(0, 0) = ∂2 f (x̄, z̄) and g↑↑(0, 0, h) = f ↑↑(x̄, z̄, h). ��
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2. Bačák, M., Borwein, J.M., Eberhard, A., Mordukhovich, B.S.: Infimal convolutions and Lipschitzian
properties of subdifferentials for prox-regular functions in Hilbert spaces. J. Convex Anal. 17(3–4),
737–763 (2010)

3. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer Series in Oper-
ations Research. Springer, New York (2000)

4. Cominetti, R., Correa, R.: A generalized second-order derivative in nonsmooth optimization. SIAM J.
Control Optim. 28(4), 789–809 (1990)

5. Crandall, M.G., Ishii, H., Lions, P.-L.: User’s guide to viscosity solutions of second order partial
differential equations. Bull. Am. Math. Soc. (N.S.) 27(1), 1–67 (1992)

123



On partial smoothness, tilt stability and the VU-decomposition 195

6. Dontchev, A.L., Rockafellar, R.T.: Implicit Functions and SolutionMappings. Springer Series in Oper-
ations Research and Financial Engineering, A view from variational analysis, 2nd edn. Springer, New
York (2014)

7. Drusvyatskiy, D., Lewis, A.S.: Tilt stability, uniform quadratic growth, and strong metric regularity of
the subdifferential. SIAM J. Optim. 23(1), 256–267 (2013)

8. Eberhard, A., Sivakumaran, R., Wenczel, R.: On the variational behaviour of the subhessians of the
Lasry-Lions envelope. J. Convex Anal. 13(3–4), 647–685 (2006)

9. Eberhard, A., Wenczel, R.: On the calculus of limiting subhessians. Set Valued Anal. 15(4), 377–424
(2007)

10. Eberhard, A., Wenczel, R.: Some sufficient optimality conditions in nonsmooth analysis. SIAM J.
Optim. 20(1), 251–296 (2009)

11. Eberhard, A., Wenczel, R.: A study of tilt-stable optimality and sufficient conditions. Nonlinear Anal.
75(3), 1260–1281 (2012)

12. Eberhard, A.C., Pearce, C.E.M.: A sufficient optimality condition for nonregular problems via a non-
linear Lagrangian. Numer. Algebra Control Optim. 2(2), 301–331 (2012)

13. Eberhard, A.: Prox-regularity and subjets. In: Optimization and Related Topics (Ballarat/Melbourne,
1999), vol. 47 of Appl. Optim., pp. 237–313. Kluwer Acad. Publ., Dordrecht (2001)

14. Eberhard, A., Nyblom, M., Ralph, D.: Applying generalised convexity notions to jets. In: Generalized
Convexity, Generalized Monotonicity: Recent Results (Luminy, 1996), vol. 27 of Nonconvex Optim.
Appl., pp. 111–157. Kluwer Acad. Publ., Dordrecht (1998)

15. Eberhard, A.C., Mordukhovich, B.S.: First-order and second-order optimality conditions for nons-
mooth constrained problems via convolution smoothing. Optimization 60(1–2), 253–275 (2011)

16. Mordukhovich, B.S., Nghai, T.T.A.: Second-order characterizations of tilt stability with applications
to nonlinear programming. Math. Program Ser. A 149, 83–104 (2015)

17. Gorni, G.: Conjugation and second-order properties of convex functions. J. Math. Anal. Appl. 158(2),
293–315 (1991)

18. Hare, W.: Numerical analysis of VU-decomposition, U -gradient, and U -Hessian approximations.
SIAM J. Optim. 24(4), 1890–1913 (2014)

19. Hare, W.L.: Functions and sets of smooth substructure: relationships and examples. Comput. Optim.
Appl. 33(2–3), 249–270 (2006)

20. Hare, W.L., Poliquin, R.A.: The quadratic sub-Lagrangian of a prox-regular function. In: Proceedings
of the Third World Congress of Nonlinear Analysts, Part 2 (Catania, 2000), vol. 47, pp. 1117–1128
(2001)

21. Hare, W.L., Poliquin, R.A.: Prox-regularity and stability of the proximal mapping. J. Convex Anal.
14(3), 589–606 (2007)

22. Holmes, R.B.: Geometric Functional Analysis and Its Applications. Graduate Texts in Mathematics,
vol. 24. Springer, New York (1975)

23. Ioffe, A.D., Penot, J.-P.: Limiting sub-Hessians, limiting subjets and their calculus. Trans. Am. Math.
Soc. 349(2), 789–807 (1997)

24. Lemaréchal, C., Oustry, F., Sagastizábal, C.: TheU -Lagrangian of a convex function. Trans. Am.Math.
Soc. 352(2), 711–729 (2000)

25. Lewis, A.S.: Active sets, nonsmoothness, and sensitivity. SIAM J. Optim 13(3), 702–725 (2002)
26. Lewis, A.S., Zhang, S.: Partial smoothness, tilt stability, and generalized Hessians. SIAM J. Optim.

23(1), 74–94 (2013)
27. Mifflin, R., Sagastizábal, C.: Proximal points are on the fast track. J. Convex Anal 9(2), 563–579

(2002). Special issue on optimization (Montpellier, 2000)
28. Mifflin, R., Sagastizábal, C.: Primal-dual gradient structured functions: second-order results; links to

epi-derivatives and partly smooth functions. SIAM J. Optim. 13(4), 1174–1194 (2003)
29. Mifflin, R., Sagastizábal, C.:VU -smoothness and proximal point results for some nonconvex functions.

Optim. Methods Softw. 19(5), 463–478 (2004)
30. Mifflin, R., Sagastizábal, C.: On the relation between U -Hessians and second-order epi-derivatives.

Eur. J. Oper. Res. 157(1), 28–38 (2004)
31. Mifflin, R., Sagastizábal, C.: A mathcalVU -algorithm for convex minimization. Math. Program.

104(2–3, Ser. B), 583–608 (2005)
32. Miller, S.A., Malick, J.: Newton methods for nonsmooth convex minimization: connections among

mathcalU -Lagrangian, Riemannian Newton and SQP methods. Math. Program. 104(2–3, Ser. B),
609–633 (2005)

123



196 A. C. Eberhard et al.

33. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation. I, volume 330 of
Grundlehren derMathematischenWissenschaften (Fundamental Principles ofMathematical Sciences).
Springer, Berlin (2006)

34. Penot, J.-P.: Sub-Hessians, super-Hessians and conjugation. Nonlinear Anal. 23(6), 689–702 (1994)
35. Poliquin, R.A., Rockafellar, R.T.: Prox-regular functions in variational analysis. Trans. Am.Math. Soc.

348(5), 1805–1838 (1996)
36. Poliquin, R.A., Rockafellar, R.T.: Tilt stability of a local minimum. SIAM J. Optim. 8(2), 287–299

(1998). (electronic),
37. Rockafellar, R.T.: Convex Analysis. Princeton Mathematical Series, vol. 28. Princeton University

Press, Princeton (1970)
38. Rockafellar, R.T.,Wets, R.J.-B.: Variational Analysis, volume 317 ofGrundlehren derMathematischen

Wissenschaften (Fundamental Principles of Mathematical Sciences). Springer, Berlin (1998)
39. Studniarski, M.: Necessary and sufficient conditions for isolated local minima of nonsmooth functions.

SIAM J. Control Optim. 24(5), 1044–1049 (1986)
40. Wright, S.J.: Identifiable surfaces in constrained optimization. SIAM J. Control Optim. 31(4), 1063–

1079 (1993)

123


	On partial smoothness, tilt stability  and the mathcalVU-decomposition
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 The mathcalVU decomposition

	3 A Primer on Subjets and Subhessians
	3.1 A second order mathcalVU decomposition 
	3.2 Some consequences for coderivatives of C1,1 functions

	4 The localised mathcalU-Lagrangian
	4.1 Subhessians and the localised mathcalU-Lagrangian

	5 The main result
	6 Appendix A
	References




