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120 S. Moriguchi et al.

1 Introduction

The proximity-scaling approach is a fundamental technique in designing efficient
algorithms for discrete or combinatorial optimization. For a function f : Z

n →
R ∪ {+∞} in integer variables and a positive integer α, called a scaling unit, the α-
scaling of f means the function f α defined by f α(x) = f (αx) (x ∈ Z

n). A proximity
theorem is a result guaranteeing that a (local) minimum of the scaled function f α is
close to a minimizer of the original function f . The scaled function f α is simpler
and hence easier to minimize, whereas the quality of the obtained minimizer of f α as
an approximation to the minimizer of f is guaranteed by a proximity theorem. The
proximity-scaling approach consists in applying this idea for a decreasing sequence of
α, often by halving the scaling unit α. A generic form of a proximity-scaling algorithm
may be described as follows, where K∞ (> 0) denotes the �∞-size of the effective
domain dom f = {x ∈ Z

n | f (x) < +∞} and B(n, α) denotes the proximity bound
in �∞-distance for f α .

Proximity-scaling algorithm
S0: Find an initial vector x with f (x) < +∞, and set α := 2�log2 K∞�.
S1: Find an integer vector y with ‖αy‖∞ ≤ B(n, α) that is a (local) minimizer of

f̃ (y) = f (x + αy), and set x := x + αy.
S2: If α = 1, then stop (x is a minimizer of f ).
S3: Set α := α/2, and go to S1.

The algorithm consists of O(log2 K∞) scaling phases. This approach has been partic-
ularly successful for resource allocation problems [8–10,16] and for convex network
flow problems (under the name of “capacity scaling”) [1,14,15]. Different types of
proximity theorems have also been investigated: proximity between integral and real
optimal solutions [9,31,32], among others. For other types of algorithms of nonlinear
integer optimization, see, e.g., [5].

In discrete convex analysis [22–25], a variety of discrete convex functions are
considered. A separable convex function is a function f : Zn → R∪{+∞} that can be
represented as f (x) = ϕ1(x1)+· · ·+ϕn(xn), where x = (x1, . . . , xn), with univariate
discrete convex functionsϕi : Z → R∪{+∞} satisfyingϕi (t−1)+ϕi (t+1) ≥ 2ϕi (t)
for all t ∈ Z.

A function f : Zn → R ∪ {+∞} is called integrally convex if its local convex
extension f̃ : Rn → R ∪ {+∞} is (globally) convex in the ordinary sense, where
f̃ is defined as the collection of convex extensions of f in each unit hypercube {x ∈
R
n | ai ≤ xi ≤ ai + 1 (i = 1, . . . , n)} with a ∈ Z

n ; see Sect. 2 for precise
statements.

A function f : Z
n → R ∪ {+∞} is called L�-convex if it satisfies one of the

equivalent conditions in Theorem 1.1 below. For x, y ∈ Z
n , x∨ y and x∧ y denote the

vectors of component wise maximum and minimum of x and y, respectively. Discrete
midpoint convexity of f for x, y ∈ Z

n means

f (x) + f (y) ≥ f

(⌈
x + y

2

⌉)
+ f

(⌊
x + y

2

⌋)
, (1.1)
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where �·� and ·� denote the integer vectors obtained by componentwise rounding-
up and rounding-down to the nearest integers, respectively. We use the notation 1 =

(1, 1, . . . , 1) and 1i for the i-th unit vector (0, . . . , 0,
i∨
1, 0, . . . , 0), with the convention

10 = 0.

Theorem 1.1 ([2,4,23]) For f : Zn → R ∪ {+∞} the following conditions, (a) to
(d), are equivalent1:

(a) f is integrally convex and submodular:

f (x) + f (y) ≥ f (x ∨ y) + f (x ∧ y) (x, y ∈ Z
n). (1.2)

(b) f satisfies discrete midpoint convexity (1.1) for all x, y ∈ Z
n.

(c) f satisfies discrete midpoint convexity (1.1) for all x, y ∈ Z
n with

‖x − y‖∞ ≤ 2, and the effective domain has the property: x, y ∈ dom f ⇒
�(x + y)/2� , (x + y)/2� ∈ dom f .

(d) f satisfies translation-submodularity:

f (x)+ f (y) ≥ f ((x−μ1) ∨ y)+ f (x ∧ (y+μ1)) (x, y∈Z
n, 0≤μ∈Z).

(1.3)

A simple example to illustrate the difference between integrally convex and L�-
convex functions can be provided in the case of quadratic functions. Indeed, for an
n × n symmetric matrix Q and a vector p ∈ R

n , the function f (x) = x�Qx + p�x
is integrally convex whenever Q is diagonally dominant with nonnegative diagonal
elements, i.e., qii ≥ ∑

j �=i |qi j | for i = 1, . . . , n [2]. On the other hand, f is L�-
convex if and only if it is diagonally dominant with nonnegative diagonal elements
and qi j ≤ 0 for all i �= j [23, Section 7.3].

A function f : Zn → R ∪ {+∞} is called M�-convex if it satisfies an exchange
property: For any x, y ∈ dom f and any i ∈ supp+(x− y), there exists j ∈ supp−(x−
y) ∪ {0} such that

f (x) + f (y) ≥ f (x − 1i + 1 j ) + f (y + 1i − 1 j ), (1.4)

where, for z ∈ Z
n , supp+(z) = {i | zi > 0} and supp−(z) = { j | z j < 0}. It is known

(and easy to see) that a function is separable convex if and only if it is both L�-convex
and M�-convex.

Integrally convex functions constitute a common framework for discrete convex
functions, including separable convex, L�-convex and M�-convex functions as well as
L�
2-convex and M�

2-convex functions [23], and BS-convex and UJ-convex functions
[3]. The concept of integral convexity is used in formulating discrete fixed point theo-
rems [11,12,35], and designing solution algorithms for discrete systems of nonlinear
equations [17,34]. In game theory the integral concavity of payoff functions guarantees
the existence of a pure strategy equilibrium in finite symmetric games [13].

1
Z-valued functions are treated in [4, Theorem 3], but the proof is valid for R-valued functions.
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122 S. Moriguchi et al.

The scaling operation preserves L�-convexity, that is, if f is L�-convex, then f α is
L�-convex. M�-convexity is subtle in this respect: for an M�-convex function f , f α

remains M�-convex if n ≤ 2, while this is not always the case if n ≥ 3.

Example 1.1 Here is an example to show that M�-convexity is not preserved under
scaling. Let f be the indicator function of the set S = {c1(1, 0,−1) + c2(1, 0, 0) +
c3(0, 1,−1) + c4(0, 1, 0) | ci ∈ {0, 1} (i = 1, 2, 3, 4)} ⊆ Z

3. Then f is an
M�-convex function, but f 2 (= f α with α = 2), being the indicator function of
{(0, 0, 0), (1, 1,−1)}, is not M�-convex. This example is a reformulation of [23,
Note 6.18] for M-convex functions to M�-convex functions.

It is rather surprising that nothing is known about scaling for integrally convex
functions. Example 1.1 does not demonstrate the lack of scaling property of integrally
convex functions, since f 2 above is integrally convex, though not M�-convex.

As for proximity theorems, the following facts are known for separable convex,
L�-convex and M�-convex functions. In the following three theorems we assume that
f : Zn → R ∪ {+∞}, α is a positive integer, and xα ∈ dom f . It is noteworthy that
the proximity bound is independent of n for separable convex functions, and coincides
with n(α − 1), which is linear in n, for L�-convex and M�-convex functions.

Theorem 1.2 Suppose that f is a separable convex function. If f (xα) ≤ f (xα +αd)

for all d ∈ {1i ,−1i (1 ≤ i ≤ n)}, then there exists a minimizer x∗ of f with
‖xα − x∗‖∞ ≤ α − 1.

Proof The statement is obviously true if n = 1. Then the statement for general n
follows easily from the fact that x∗ is a minimizer of f (x) = ϕ1(x1) + · · · + ϕn(xn)
if and only if, for each i , x∗

i is a minimizer of ϕi . ��
Theorem 1.3 ([15]; [23, Theorem 7.18]) Suppose that f is an L�-convex function. If
f (xα) ≤ f (xα + αd) for all d ∈ {0, 1}n ∪ {0,−1}n, then there exists a minimizer x∗
of f with ‖xα − x∗‖∞ ≤ n(α − 1).

Theorem 1.4 ([18]; [23, Theorem 6.37]) Suppose that f is anM�-convex function. If
f (xα) ≤ f (xα + αd) for all d ∈ {1i ,−1i (1 ≤ i ≤ n), 1i − 1 j (i �= j)}, then there
exists a minimizer x∗ of f with ‖xα − x∗‖∞ ≤ n(α − 1).

Based on the above results and their variants, efficient algorithms for minimiz-
ing L�-convex and M�-convex functions have been successfully designed with the
proximity-scaling approach [18,20,21,23,30,33]. Proximity theorems are also avail-
able for L�

2-convex and M�
2-convex functions [27] and L-convex functions on graphs

[6,7]. However, no proximity theorem has yet been proved for integrally convex func-
tions.

The new findings of this paper are

• A “box-barrier property” (Theorem 2.6), which allows us to restrict the search for
a global minimum of an integrally convex function;

• Stability of integral convexity under scaling when n = 2 (Theorem 3.2), and an
example to demonstrate its failure when n ≥ 3 (Example 3.1);
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• A proximity theoremwith a superexponential bound [(n+1)!/2n−1](α−1) for all
n (Theorem 5.1), and the impossibility of finding a proximity bound of the form
B(n)(α − 1) where B(n) is linear or smaller than quadratic (Examples 4.4 and
4.5).

As a consequence of our proximity and scaling results, we derive that:

• When n is fixed, an integrally convex function can be minimized in O(log2 K∞)

time by standard proximity-scaling algorithms, where K∞ = max{‖x − y‖∞ |
x, y ∈ dom f } denotes the �∞-size of dom f .

This paper is organized as follows. In Sect. 2 the concept of integrally convex
functions is reviewedwith some newobservations and, in Sect. 3, their scaling property
is clarified. After a preliminary discussion in Sect. 4, a proximity theorem for integrally
convex functions is established in Sect. 5. Algorithmic implications of the proximity-
scaling results are discussed in Sect. 6 and concluding remarks are made in Sect. 7.

2 Integrally convex sets and functions

For x ∈ R
n the integer neighborhood of x is defined as

N (x) = {
z ∈ Z

n | |xi − zi | < 1 (i = 1, . . . , n)
}
.

For a function f : Zn → R∪{+∞} the local convex extension f̃ : Rn → R∪{+∞}
of f is defined as the union of all convex envelopes of f on N (x) as follows:

f̃ (x) = min

⎧⎨
⎩

∑
y∈N (x)

λy f (y) |
∑

y∈N (x)

λy y = x, (λy) ∈ �(x)

⎫⎬
⎭ (x ∈ R

n), (2.1)

where�(x) denotes the set of coefficients for convex combinations indexed by N (x):

�(x) =
⎧⎨
⎩(λy | y ∈ N (x)) |

∑
y∈N (x)

λy = 1, λy ≥ 0 (∀y ∈ N (x))

⎫⎬
⎭ .

If f̃ is convex on R
n , then f is said to be integrally convex [2]. A set S ⊆ Z

n is
said to be integrally convex if the convex hull S of S coincides with the union of
the convex hulls of S ∩ N (x) over x ∈ R

n , i.e., if, for any x ∈ R
n , x ∈ S implies

x ∈ S ∩ N (x). A set S ⊆ Z
n is integrally convex if and only if its indicator function

is an integrally convex function. The effective domain and the set of minimizers of
an integrally convex function are both integrally convex [23, Proposition 3.28]; in
particular, the effective domain and the set of minimizers of an L�- or M�-convex
function are integrally convex.

For n = 2, integrally convex sets are illustrated in Fig. 1 and their structure is
described in the next proposition.
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(a) (b) (c)

Fig. 1 Concept of integrally convex sets. a Integrally convex, b not integrally convex, c not integrally
convex

Proposition 2.1 A set S ⊆ Z
2 is an integrally convex set if and only if it can be

represented as S = {(x1, x2) ∈ Z
2 | pi x1 + qi x2 ≤ ri (i = 1, . . . ,m)} for some

pi , qi ∈ {−1, 0,+1} and ri ∈ Z (i = 1, . . . ,m).

Proof Consider the convex hull S of S, and denote the (shifted) unit square {(x1, x2) ∈
R
2 | ai ≤ xi ≤ ai + 1 (i = 1, 2)} by I (a1, a2), where (a1, a2) ∈ Z

2. Let S be an
integrally convex set. It follows from the definition that S∩ I (a1, a2) = S ∩ I (a1, a2)
for each (a1, a2) ∈ Z

2. Obviously, S ∩ I (a1, a2) can be described by (at most four)
inequalities p′

j x1 + q ′
j x2 ≤ r ′

j ( j = 1, . . . , �′) with p′
j , q

′
j ∈ {−1, 0,+1} and r ′

j ∈ Z

( j = 1, . . . , �′), where �′ = �′(a1, a2) ≤ 4. Since S is the union of sets S∩ I (a1, a2), S
canbe represented as {(x1, x2) ∈ R

2 | pi x1+qi x2 ≤ ri (i = 1, . . . ,m)}bya subfamily
of the inequalities used for all S ∩ I (a1, a2). Then we have S = {(x1, x2) ∈ Z

2 |
pi x1 +qi x2 ≤ ri (i = 1, . . . ,m)}. Conversely, integral convexity of set S represented
in this form for any pi , qi ∈ {−1, 0,+1} and ri ∈ Z is an easy consequence of the
simple shape of the (possibly unbounded) polygon {(x1, x2) ∈ R

2 | pi x1 + qi x2 ≤
ri (i = 1, . . . ,m)}, which has at most eight edges having directions parallel to one of
the vectors (1, 0), (0, 1), (1, 1), (1,−1). ��

We note that in the special case where all inequalities pi x1 + qi x2 ≤ ri (i =
1, . . . ,m) defining S in Proposition 2.1 satisfy the additional property piqi ≤ 0, the
set S is actually an L�-convex set [23, Section 5.5], which is a special type of sublattice
[28].

Remark 2.1 A subtle point in Proposition 2.1 is explained here. In Proposition 2.1 we
do not mean that the system of inequalities for S describes the convex hull S of S. That
is, it is not claimed that S = {(x1, x2) ∈ R

2 | pi x1 +qi x2 ≤ ri (i = 1, . . . ,m)} holds.
For instance, S = {(0, 0), (1, 0)} is an integrally convex set, which can be represented
as the set of integer points satisfying the four inequalities:−x1 + x2 ≤ 0, x1 − x2 ≤ 1,
x1 + x2 ≤ 1, and −x1 − x2 ≤ 0. These inequalities, however, do not describe the
convex hull S, which is the line segment connecting (0, 0) and (1, 0). Nevertheless, it
is true in general (cf. the proof of Proposition 2.1) that the convex hull of an integrally
convex set can be described by inequalities of the form of p′

i x1 + q ′
i x2 ≤ r ′

i with
p′
i , q

′
i ∈ {−1, 0,+1} and r ′

i ∈ Z (i = 1, . . . ,m′). For S = {(0, 0), (1, 0)} we can
describe S by adding two inequalities x2 ≤ 0 and − x2 ≤ 0 to the original system
of four inequalities. The present form of Proposition 2.1, avoiding the convex hull, is
convenient in the proof of Proposition 3.1.
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Corollary 2.2 If a set S ⊆ Z
2 is integrally convex, then for all points x, y ∈ S, the

set

ICH(x, y) =
{
z ∈ Z

2 | min{xi , yi } ≤ zi ≤ max{xi , yi } (i = 1, 2),

min{x1 − x2, y1 − y2} ≤ z1 − z2 ≤ max{x1 − x2, y1 − y2},
min{x1 + x2, y1 + y2} ≤ z1 + z2 ≤ max{x1 + x2, y1 + y2}

}

is contained in S.

Proof Let S be represented as in Proposition 2.1 and let x, y ∈ S. Thenwe clearly have
max{pi x1 + qi x2, pi y1 + qi y2} ≤ ri (i = 1, . . . ,m). The claim follows by observing
thatmax{pi x1+qi x2, pi y1+qi y2} coincideswith one ofmax{xi , yi }, max{− xi ,− yi }
(i = 1, 2), max{x1−x2, y1− y2}, max{x1+x2, y1+ y2}, max{− x1+x2,− y1+ y2},
max{− x1 − x2,− y1 − y2}, according to the values of pi , qi ∈ {−1, 0,+1}. ��

Note that ICH(x, y) is integrally convex by Proposition 2.1, and that, by the above
corollary, any integrally convex set containing {x, y} must contain ICH(x, y). Thus
ICH(x, y) is the smallest integrally convex set containing {x, y}.

Integral convexity is preserved under the operations of origin shift, permutation of
components, and componentwise (individual) sign inversion. For later reference we
state these facts as a proposition.

Proposition 2.3 Let f : Zn → R ∪ {+∞} be an integrally convex function.

(1) For any z ∈ Z
n, f (z + x) is integrally convex in x.

(2) For any permutation σ of (1, 2, . . . , n), f (xσ(1), xσ(2), . . . , xσ(n)) is integrally
convex in x.

(3) For any s1, s2, . . . , sn ∈ {+1,−1}, f (s1x1, s2x2, . . . , snxn) is integrally convex
in x.

Proof The claims (1) to (3) follow easily from the definition of integrally con-
vex functions and the obvious relations: N (z + x) = {z + y | y ∈ N (x)},
N ((xσ(1), . . . , xσ(n))) = {(yσ(1), . . . , yσ(n)) | y ∈ N (x)}, and N ((s1x1, . . . , snxn)) =
{(s1y1, . . . , sn yn) | y ∈ N (x)}. ��

Integral convexity of a function can be characterized by a local condition under
the assumption that the effective domain is an integrally convex set. The following
theorem is proved in [2] when the effective domain is an integer interval (discrete
rectangle). An alternative proof, which is also valid for the general case, is given in
“Appendix A”.

Theorem 2.4 ([2, Proposition 3.3]) Let f : Zn → R ∪ {+∞} be a function with an
integrally convex effective domain. Then the following properties are equivalent:

(a) f is integrally convex.
(b) For every x, y ∈ dom f with ‖x − y‖∞ = 2 we have
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Fig. 2 Box-barrier property
(◦ ∈ S, • ∈ W )

x̂

SW−
1 W+

1

W+
2

W−
2

f̃

(
x + y

2

)
≤ 1

2
( f (x) + f (y)). (2.2)

Theorem 2.5 ([2, Proposition 3.1]; see also [23, Theorem 3.21]) Let f : Z
n →

R∪ {+∞} be an integrally convex function and x∗ ∈ dom f . Then x∗ is a minimizer
of f if and only if f (x∗) ≤ f (x∗ + d) for all d ∈ {−1, 0,+1}n.

The local characterization of global minima stated in Theorem 2.5 above can be
generalized to the following form; see Fig. 2.

Theorem 2.6 (Box-barrier property) Let f : Z
n → R ∪ {+∞} be an integrally

convex function, and let p ∈ (Z ∪ {−∞})n and q ∈ (Z ∪ {+∞})n, where p ≤ q.
Define

S = {x ∈ Z
n | pi < xi < qi (i = 1, . . . , n)},

W+
i = {x ∈ Z

n | xi = qi , p j ≤ x j ≤ q j ( j �= i)} (i = 1, . . . , n),

W−
i = {x ∈ Z

n | xi = pi , p j ≤ x j ≤ q j ( j �= i)} (i = 1, . . . , n),

and W = ⋃n
i=1(W

+
i ∪W−

i ). Let x̂ ∈ S ∩ dom f . If f (x̂) ≤ f (y) for all y ∈ W, then
f (x̂) ≤ f (z) for all z ∈ Z

n\S.
Proof Let U = ⋃n

i=1{x ∈ R
n | xi ∈ {pi , qi }, p j ≤ x j ≤ q j ( j �= i)}, for which

we have U ∩ Z
n = W . For a point z ∈ Z

n\S, the line segment connecting x̂ and z
intersectsU at a point, say, u ∈ R

n . Then its integral neighborhood N (u) is contained
in W . Since the local convex extension f̃ (u) is a convex combination of the f (y)’s
with y ∈ N (u), and f (y) ≥ f (x̂) for every y ∈ W , we have f̃ (u) ≥ f (x̂). On the
other hand, it follows from integral convexity that f̃ (u) ≤ (1 − λ) f (x̂) + λ f (z) for
some λ with 0 < λ ≤ 1. Hence f (x̂) ≤ f̃ (u) ≤ (1− λ) f (x̂) + λ f (z), and therefore,
f (x̂) ≤ f (z). ��
Theorem 2.5 is a special case of Theorem 2.6 with p = x̂ − 1 and q = x̂ + 1.

Another special case of Theorem 2.6 with p j = −∞ ( j = 1, . . . , n) and q j = +∞
( j �= i) for a particular i takes the following form, which we use in Sect. 5.3.

Corollary 2.7 (Hyperplane-barrier property). Let f : Zn → R ∪ {+∞} be an inte-
grally convex function. Let x̂ ∈ dom f , q ∈ Z, and let i be an integer with 1 ≤ i ≤ n.
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Scaling, proximity, and optimization of integrally convex… 127

If x̂i < q and f (x̂) ≤ f (y) for all y ∈ Z
n with yi = q, then f (x̂) ≤ f (z) for all

z ∈ Z
n with zi ≥ q.

We denote the sets of nonnegative integers and positive integers by Z+ and Z++,
respectively. For α ∈ Zwe write αZ for {αx | x ∈ Z}. For vectors a, b ∈ R

n with a ≤
b, [a, b]R denotes the interval between a and b, i.e., [a, b]R = {x ∈ R

n | a ≤ x ≤ b},
and [a, b]Z the integer interval between a and b, i.e., [a, b]Z = {x ∈ Z

n | a ≤ x ≤ b}.

3 The scaling operation for integrally convex functions

In this sectionwe consider the scaling operation for integrally convex functions. Recall
that, for f : Zn → R ∪ {+∞} and α ∈ Z++, the α-scaling of f is defined to be the
function f α : Zn → R ∪ {+∞} given by f α(x) = f (αx) (x ∈ Z

n).
When n = 2, integral convexity is preserved under scaling. We first deal with

integrally convex sets.

Proposition 3.1 Let S ⊆ Z
2 be an integrally convex set and α ∈ Z++. Then Sα =

{x ∈ Z
2 | αx ∈ S} is an integrally convex set.

Proof By Proposition 2.1 we can assume that S is represented as S = {(x1, x2) ∈
Z
2 | pi x1 + qi x2 ≤ ri (i = 1, . . . ,m)} for some pi , qi ∈ {−1, 0,+1} and ri ∈ Z

(i = 1, . . . ,m). Since (y1, y2) ∈ Sα if and only if (αy1, αy2) ∈ S, we have

Sα = {(y1, y2) ∈ Z
2 | α(pi y1 + qi y2) ≤ ri (i = 1, . . . ,m)}

= {(y1, y2) ∈ Z
2 | pi y1 + qi y2 ≤ r ′

i (i = 1, . . . ,m)},

where r ′
i = ri/α� (i = 1, . . . ,m). By Proposition 2.1 this implies integral convexity

of Sα . ��
Next we turn to integrally convex functions.

Theorem 3.2 Let f : Z2 → R ∪ {+∞} be an integrally convex function and α ∈
Z++. Then the scaled function f α is integrally convex.

Proof The effective domain dom f α = (dom f ∩ (αZ)2)/α is an integrally convex
set by Proposition 3.1. By Theorem 2.4 and Proposition 2.3, we only have to check
condition (2.2) for f α with x = (0, 0) and y = (2, 0), (2, 2), (2, 1). That is, it suffices
to show

f (0, 0) + f (2α, 0) ≥ 2 f (α, 0), (3.1)

f (0, 0) + f (2α, 2α) ≥ 2 f (α, α), (3.2)

f (0, 0) + f (2α, α) ≥ f (α, α) + f (α, 0). (3.3)

The first two inequalities, (3.1) and (3.2), follow easily from integral convexity of f ,
whereas (3.3) is a special case of the basic parallelogram inequality (3.4) below with
a = b = α. ��
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Proposition 3.3 (Basic parallelogram inequality). For an integrally convex function
f : Z2 → R ∪ {+∞} we have

f (0, 0) + f (a + b, a) ≥ f (a, a) + f (b, 0) (a, b ∈ Z+). (3.4)

Proof We may assume a, b ≥ 1 and {(0, 0), (a + b, a)} ⊆ dom f , since otherwise
the inequality (3.4) is trivially true. Since dom f is integrally convex, Corollary 2.2
implies that k(1, 1) + l(1, 0) ∈ dom f for all (k, l) with 0 ≤ k ≤ a and 0 ≤ l ≤ b.
We use the notation fx (z) = f (x + z). For each x ∈ dom f we have

fx (0, 0) + fx (2, 1) ≥ fx (1, 1) + fx (1, 0)

by integral convexity of f . By adding these inequalities for x = k(1, 1)+ l(1, 0) with
0 ≤ k ≤ a − 1 and 0 ≤ l ≤ b− 1, we obtain (3.4). Note that all the terms involved in
these inequalities are finite, since k(1, 1) + l(1, 0) ∈ dom f for all k and l. ��

If n ≥ 3, f α is not always integrally convex. This is demonstrated by the following
example.

Example 3.1 Consider the integrally convex function f : Z3 → R ∪ {+∞} defined
on dom f = [(0, 0, 0), (4, 2, 2)]Z by

x2 f (x1, x2, 0)
2 3 1 1 1 3
1 1 0 0 0 0
0 0 0 0 0 3

0 1 2 3 4 x1

x2 f (x1, x2, 1)
2 2 1 0 0 0
1 1 0 0 0 0
0 0 0 0 0 0

0 1 2 3 4 x1

x2 f (x1, x2, 2)
2 3 2 1 0 0
1 2 1 0 0 0
0 3 0 0 0 3

0 1 2 3 4 x1

For the scaling with α = 2, we have a failure of integral convexity. Indeed, for
x = (0, 0, 0) and y = (2, 1, 1) we have

f̃ α

(
x + y

2

)
= min

{
1

2
f α(1, 1, 1) + 1

2
f α(1, 0, 0),

1

2
f α(1, 1, 0) + 1

2
f α(1, 0, 1)

}

= 1

2
min { f (2, 2, 2) + f (2, 0, 0), f (2, 2, 0) + f (2, 0, 2)}

= 1

2
min {1 + 0, 1 + 0} = 1

2

> 0 = 1

2
( f (0, 0, 0) + f (4, 2, 2)) = 1

2
( f α(x) + f α(y)),

which shows the failure of (2.2) in Theorem 2.4. The set S = argmin f =
{x | f (x) = 0} is an integrally convex set, and Sα = {x | αx ∈ S} =
{(0, 0, 0), (1, 0, 0), (1, 0, 1), (2, 1, 1)} is not an integrally convex set.

In view of the fact that the class of L�-convex functions is stable under scaling,
while this is not true for the superclass of integrally convex functions, we are naturally
led to the question of finding an intermediate class of functions that is stable under
scaling. See Sect. 7 for this issue.
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4 Preliminary discussion on proximity theorems

Let f : Zn → R ∪ {+∞} and α ∈ Z++. We say that xα ∈ dom f is an α-local
minimizer of f (or α-local minimal for f ) if f (xα) ≤ f (xα + αd) for all d ∈
{−1, 0,+1}n . In general terms a proximity theorem states that for α ∈ Z++ there
exists an integer B(n, α) ∈ Z+ such that if xα is an α-local minimizer of f , then there
exists a minimizer x∗ of f satisfying ‖xα − x∗‖∞ ≤ B(n, α), where B(n, α) is called
the proximity distance.

Before presenting a proximity theorem for integrally convex functions in Sect. 5,
we establish in this section lower bounds for the proximity distance. We also present
a proximity theorem for n = 2, as the proof is fairly simple in this particular case,
though the proof method does not extend to general n ≥ 3.

4.1 Lower bounds for the proximity distance

The following examples provide us with lower bounds for the proximity distance. The
first three demonstrate the tightness of the bounds for separable convex functions,
L�-convex and M�-convex functions given in Theorems 1.2, 1.3 and 1.4, respectively.

Example 4.1 (Separable convex function) Let ϕ(t) = max(−t, (α − 1)(t − α)) for
t ∈ Z and define f (x) = ϕ(x1) + · · · + ϕ(xn), which is separable convex. This
function has a unique minimizer at x∗ = (α − 1, . . . , α − 1), whereas xα = 0 is
α-local minimal and ‖xα − x∗‖∞ = α − 1. This shows the tightness of the bound
α − 1 given in Theorem 1.2.

Example 4.2 (L�-convex function) Consider X ⊆ Z
n defined by

X = {
x ∈ Z

n | 0 ≤ xi − xi+1 ≤ α − 1 (i = 1, . . . , n − 1), 0 ≤ xn ≤ α − 1
}

=
{
x ∈ Z

n | x =
n∑

i=1

μi1{1,2,...,i}, 0 ≤ μi ≤ α − 1 (i = 1, . . . , n)

}
,

where 1{1,2,...,i} = (

i︷ ︸︸ ︷
1, 1, . . . , 1, 0, 0, . . . , 0). The function f defined by f (x) = −x1

on dom f = X is an L�-convex function and has a unique minimizer at x∗ = (n(α −
1), (n−1)(α−1), . . . , 2(α−1), α−1). On the other hand, xα = 0 is α-local minimal,
since X ∩ {−α, 0, α}n = {0}. We have ‖xα − x∗‖∞ = n(α − 1), which shows the
tightness of the bound n(α−1) given in Theorem 1.3. This example is a reformulation
of [26, Remark 2.3] for L-convex functions to L�-convex functions.

Example 4.3 (M�-convex function) Consider X ⊆ Z
n defined by

X = {x ∈ Z
n | 0 ≤ x1 + x2 + · · · + xn ≤α − 1,−(α − 1) ≤ xi ≤ 0 (i = 2, . . . , n)}

= {x ∈ Z
n | x = (μ1 + μ2 + · · · + μn,−μ2,−μ3, . . . ,−μn),

0 ≤ μi ≤ α − 1 (i = 1, . . . , n)}.

123



130 S. Moriguchi et al.

The function f defined by f (x) = −x1 on dom f = X is an M�-convex function and
has a unique minimizer at x∗ = (n(α − 1),− (α − 1),− (α − 1), . . . ,− (α − 1)). On
the other hand, xα = 0 is α-local minimal, since X ∩ {−α, 0, α}n = {0}. We have
‖xα − x∗‖∞ = n(α − 1), which shows the tightness of the bound n(α − 1) given
in Theorem 1.4. This example is a reformulation of [26, Remark 2.8] for M-convex
functions to M�-convex functions.

For integrally convex functions with n ≥ 3, the bound n(α − 1) is no longer valid.
This is demonstrated by the following examples.

Example 4.4 Consider an integrally convex function f : Z3 → R ∪ {+∞} defined
on dom f = [(0, 0, 0), (4, 2, 2)]Z by

x2 f (x1, x2, 0)
2 5 1 0 0 4
1 2 − 1 − 2 0 3
0 0 −1 0 1 6

0 1 2 3 4 x1

x2 f (x1, x2, 1)
2 4 1 − 2 − 3 −1
1 2 − 1 − 2 − 3 −1
0 2 − 1 − 2 0 5

0 1 2 3 4 x1

x2 f (x1, x2, 2)
2 6 3 0 − 3 − 4
1 6 1 − 2 − 3 1
0 6 2 0 3 6

0 1 2 3 4 x1

and let α = 2. For xα = (0, 0, 0) we have f (xα) = 0 and f (xα) ≤ f (xα +
2d) for d = (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1). Hence
xα = (0, 0, 0) is α-local minimal. A unique (global) minimizer of f is located at
x∗ = (4, 2, 2) with f (x∗) = − 4 and ‖xα − x∗‖∞ = 4. The �∞-distance between xα

and x∗ is strictly larger than n(α − 1) = 3. We remark that the scaled function f α is
not integrally convex.

The following example demonstrates a quadratic lower bound in n for the proximity
distance for integrally convex functions.

Example 4.5 For a positive integer m ≥ 1, we consider two bipartite graphs G1 and
G2 on vertex bipartition ({0+, 1+, . . . ,m+}, {0−, 1−, . . . ,m−}); see Fig. 3. The edge
sets of G1 and G2 are defined respectively as E1 = {(0+, 0−)} ∪ {(i+, j−) | i, j =
1, . . . ,m} and E2 = {(0+, j−) | j = 1, . . . ,m} ∪ {(i+, 0−) | i = 1, . . . ,m}. Let
V+ = {1+, . . . ,m+}, V− = {1−, . . . ,m−}, and n = 2m + 2. Consider X1, X2 ⊆ Z

n

defined by

Fig. 3 Example for O(n2)
lower bound for proximity
distance (m = 3)

G1

0+

1+

2+

3+

0−

1−

2−

3−

G2

0+

1+

2+

3+

0−

1−

2−

3−
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X1 =
⎧⎨
⎩

m∑
i=1

m∑
j=1

λi j (1i+−1 j−) + λ0(10+−10−)

∣∣∣∣∣
λi j ∈ [0, α − 1]Z (i, j = 1, . . . ,m)

λ0 ∈ [0,m2(α − 1)]Z

⎫⎬
⎭ ,

X2 =
⎧⎨
⎩

m∑
i=1

μi (1i+−10−) +
m∑
j=1

ν j (10+−1 j−)

∣∣∣∣∣
μi ∈ [0,m(α − 1)]Z (i = 1, . . . ,m)

ν j ∈ [0,m(α − 1)]Z ( j = 1, . . . ,m)

⎫⎬
⎭ ,

where X1 and X2 represent the sets of boundaries of flows in G1 and G2, respectively.
We define functions f1, f2 : Zn → R ∪ {+∞} with dom f1 = X1 and dom f2 = X2
by

f1(x) =
{
x(V−) (x ∈ X1),

+∞ (x /∈ X1),
f2(x) =

{
x(V−) (x ∈ X2),

+∞ (x /∈ X2)
(x ∈ Z

n),

where x(U ) = ∑
u∈U xu for any setU of vertices. Both f1 and f2 are M-convex, and

hence f = f1 + f2 is an M2-convex function, which is integrally convex (see [23,
Section 8.3.1]). We have dom f = dom f1 ∩ dom f2 = X1 ∩ X2 and f is linear on
dom f . As is easily verified, f has a unique minimizer at x∗ defined by

x∗
u =

⎧⎪⎪⎨
⎪⎪⎩

m(α − 1) (u ∈ V+),

−m(α − 1) (u ∈ V−),

m2(α − 1) (u = 0+),

−m2(α − 1) (u = 0−),

which corresponds to λ0 = m2(α − 1), λi j = α − 1, μi = ν j = m(α − 1) (i, j =
1, . . . ,m). We mention that the function f here is constructed in [26, Remark 2.19]
for a slightly different purpose (i.e., for M2-proximity theorem).

Let xα = 0. Obviously, 0 ∈ dom f . Moreover, xα = 0 is α-local minimal, since
dom f ∩ {−α, 0, α}n = {0}, as shown below. Since ‖x∗ − xα‖∞ = m2(α − 1) =
(n − 2)2(α − 1)/4, we obtain a quadratic lower bound (n − 2)2(α − 1)/4 for the
proximity distance for integrally convex functions.

The proof of dom f ∩ {−α, 0, α}n = {0} goes as follows. Let x ∈ X1 ∩ X2 ∩
{−α, 0, α}n . We have x0+ ∈ {0, α} and x0− ∈ {0,−α}. We consider four cases to
conclude that x = 0.
(i) Case of x0+ = x0− = 0: The structure of X2 forces x = 0.
(ii) Case of x0+ = α, x0− = 0: The structure of X2 forces xi+ = 0 for i = 1, . . . ,m

and

x j− =
{−α ( j = j0),
0 ( j �= j0)

for some j0 (1 ≤ j0 ≤ m), but this is impossible by the structure of X1.
(iii) Case of x0+ = 0, x0− = −α: The proof is similar to that of (ii) above.
(iv) Case of x0+ = α, x0− = −α: The structure of X2 forces

xi+ =
{

α (i = i0),
0 (i �= i0),

x j− =
{−α ( j = j0),
0 ( j �= j0)
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for some i0 (1 ≤ i0 ≤ m) and j0 (1 ≤ j0 ≤ m), but this is impossible by the
structure of X1.

We have seen that the proximity theorem with the linear bound n(α − 1) does
not hold for all integrally convex functions. Then a natural question arises: can we
establish a proximity theorem at all by enlarging the proximity bound? This question
is answered in the affirmative in Sect. 5.

4.2 A proximity theorem for integrally convex functions with n = 2

In the case of n = 2 the proximity bound n(α − 1) = 2(α − 1) is valid for integrally
convex functions.2

Theorem 4.1 Let f : Z2 → R ∪ {+∞} be an integrally convex function, α ∈ Z++,
and xα ∈ dom f . If f (xα) ≤ f (xα + αd) for all d ∈ {−1, 0,+1}2, then there exists
a minimizer x∗ ∈ Z

2 of f with ‖xα − x∗‖∞ ≤ 2(α − 1).

Proof We may assume α ≥ 2 and xα = 0 by Proposition 2.3 (1). Define

C = {(x1, x2) ∈ Z
2 | 0 ≤ x2 ≤ x1},

S = {(x1, x2) ∈ Z
2 | 0 ≤ x2 ≤ x1 ≤ 2(α − 1)}.

Let μ be the minimum of f (x1, x2) over (x1, x2) ∈ S and let (x̂1, x̂2) be a point in S
with f (x̂1, x̂2) = μ. Then

f (x1, x2) ≥ μ ((x1, x2) ∈ S). (4.1)

We will show that

f (2α − 1, k) ≥ μ (0 ≤ k ≤ 2α − 1). (4.2)

Then, by Corollary 2.7 (hyperplane-barrier property), it follows that f (z1, z2) ≥ μ

for all (z1, z2) ∈ C , that is, there is no (z1, z2) ∈ C\S with f (z1, z2) < μ. This proves
the claim of the theorem, since Z2 can be covered by eight sectors similar to C and
Proposition 2.3 holds.

The basic parallelogram inequality (3.4) with a = k and b = 2α − 1 − k yields

f (0, 0) + f (2α − 1, k) ≥ f (k, k) + f (2α − 1 − k, 0). (4.3)

Case 1 0 ≤ k ≤ α − 1. Since 2α − 1 − k ≥ α, by convexity of f (t, 0) in t , we have

1

2α − 1 − k
[ f (2α − 1 − k, 0) − f (0, 0)] ≥ 1

α
[ f (α, 0) − f (0, 0)] ≥ 0.

2 Recall that n = 3 in Example 4.4.
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On the other hand, f (k, k) ≥ μ by (4.1). Then it follows from (4.3) that

f (2α − 1, k) ≥ f (k, k) + [ f (2α − 1 − k, 0) − f (0, 0)] ≥ μ.

Case 2 α ≤ k ≤ 2α − 1. Since k ≥ α, by convexity of f (t, t) in t , we have

1

k
[ f (k, k) − f (0, 0)] ≥ 1

α
[ f (α, α) − f (0, 0)] ≥ 0.

On the other hand, f (2α − 1 − k, 0) ≥ μ by (4.1). Then it follows from (4.3) that

f (2α − 1, k) ≥ f (2α − 1 − k, 0) + [ f (k, k) − f (0, 0)] ≥ μ.

We have thus shown (4.2), completing the proof of Theorem 4.1. ��

5 A proximity theorem for integrally convex functions

In this section we establish a proximity theorem for integrally convex functions in an
arbitrary number of variables.

5.1 Main result

Theorem 5.1 Let f : Zn → R ∪ {+∞} be an integrally convex function, α ∈ Z++,
and xα ∈ dom f .

(1) If

f (xα) ≤ f (xα + αd) (∀ d ∈ {−1, 0,+1}n), (5.1)

then argmin f �= ∅ and there exists x∗ ∈ argmin f with

‖xα − x∗‖∞ ≤ βn(α − 1), (5.2)

where βn is defined by

β1 = 1, β2 = 2; βn = n + 1

2
βn−1 + 1 (n = 3, 4, . . .). (5.3)

(2) The coefficient βn of the proximity bound satisfies

βn ≤ (n + 1)!
2n−1 (n = 3, 4, . . .). (5.4)
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The numerical values of βn and its bounds are as follows:

n 2 3 4 5 6 7
Value by (5.3) 2 5 13.5 41.5 146.25 586
Bound by (5.4) − 6 15 45 157.5 630

(5.5)

Remark 5.1 The bound (5.2) can be strengthened to ‖xα − x∗‖∞ ≤ βn(α − 1)�, but
‖xα − x∗‖∞ ≤ βn�(α − 1) may not be correct (our proof does not justify this).

To prove Theorem 5.1 (1) we first note that the theorem follows from its special
case where xα = 0 and f is defined on a bounded set in the nonnegative orthant Zn+.
That is, the proof of Theorem 5.1 (1) is reduced to proving the following proposition.
We use the notation N = {1, 2, . . . , n} and 1A for the characteristic vector of A ⊆ N .

Proposition 5.2 Let α ∈ Z++ and f : Zn → R ∪ {+∞} be an integrally convex
function such that dom f is a bounded subset of Zn+ containing the origin 0. If

f (0) ≤ f (α1A) (∀A ⊆ N ), (5.6)

then there exists x∗ ∈ argmin f with

‖x∗‖∞ ≤ βn(α − 1), (5.7)

where βn is defined by (5.3).

Suppose that Proposition 5.2 has been established. Then Theorem 5.1 (1) can be
derived from Proposition 5.2 in three steps:

1. We may assume xα = 0 by Proposition 2.3 (1).
2. We may further assume that dom f is bounded. Let M be a sufficiently large

integer, say, M ≥ βn(α − 1) + 1, and fM be the restriction of f to the integer
interval [−M1, M1]Z, where 1 = (1, 1, . . . , 1). Then xα = 0 is α-local minimal
for fM . If the special case of Theorem 5.1 with xα = 0 and bounded dom f is
true, then there exists x∗ ∈ argmin fM satisfying ‖x∗‖∞ ≤ βn(α − 1). Since
x∗ ∈ argmin fM we have fM (x∗) ≤ fM (x∗ + d) (∀ d ∈ {−1, 0,+1}n), which
implies f (x∗) ≤ f (x∗ + d) (∀ d ∈ {−1, 0,+1}n). Then Theorem 2.5 shows that
x∗ ∈ argmin f .

3. We consider 2n orthants separately. For each s = (s1, s2, . . . , sn) ∈ {+1,−1}n we
consider the function fs(x) = f (sx) on Z

n+, where sx = (s1x1, s2x2, . . . , snxn).
Noting that dom fs is a bounded subset of Zn+, we apply Proposition 5.2 to fs to
obtain x∗

s with ‖x∗
s ‖∞ ≤ βn(α − 1). From among 2n such x∗

s , take the one with
the function value f (sx∗

s ) minimum. Then x∗ = sx∗
s is a minimizer of f , and

satisfies ‖x∗‖∞ ≤ βn(α − 1).

5.2 Tools for the proof: f -minimality

In this section we introduce some technical tools that we use in the proof of Proposi-
tion 5.2.
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For A ( �= ∅) ⊆ N , we consider a set of integer vectors

BA = {1A + 1i , 1A − 1i | i ∈ A} ∪ {1A + 1i | i ∈ N\A} ∪ {1A}, (5.8)

and the cones of their nonnegative integer and real combinations

CA =
⎧⎨
⎩

∑
i∈A

μ+
i (1A + 1i ) +

∑
i∈A

μ−
i (1A − 1i )

+
∑

i∈N\A
μ◦
i (1A + 1i ) + λ1A | μ+

i , μ−
i , μ◦

i , λ ∈ Z+

⎫⎬
⎭ , (5.9)

C̃A =
⎧⎨
⎩

∑
i∈A

μ+
i (1A + 1i ) +

∑
i∈A

μ−
i (1A − 1i )

+
∑

i∈N\A
μ◦
i (1A + 1i ) + λ1A | μ+

i , μ−
i , μ◦

i , λ ∈ R+

⎫⎬
⎭ , (5.10)

where CA is often referred to as the integer cone generated by BA. We first note the
following fact, which provides us with a clearer geometric view, though it is not used
in the proof of Proposition 5.2.

Proposition 5.3 BA is a Hilbert basis of the convex cone C̃A generated by BA. That
is, CA = C̃A ∩ Z

n.

Proof The proof is given in “Appendix B”. ��
For two nonnegative integer vectors x, y ∈ Z

n+, we write y � f x if y ≤ x and
f (y) ≤ f (x). Note that y � f x if and only if (y, f (y)) ≤ (x, f (x)) in R

n × (R ∪
{+∞}). We say that x ∈ Z

n+ is f -minimal if x ∈ dom f and there exists no y ∈ Z
n+

such that y � f x and y �= x . That is,3 x is f -minimal if and only if it is the unique
minimizer of the function f restricted to the integer interval [0, x]Z.

The goal of this section is to establish the following connection between f -
minimality and the integer cone CA based at α1A.

Proposition 5.4 Assume α-local minimality (5.6). If y ∈ Z
n+ is f -minimal, then y /∈

α1A + CA for any A( �= ∅) ⊆ N.

Our proof of this proposition is based on several lemmas.

Lemma 5.5 Assume α-local minimality (5.6). For any A ( �= ∅) ⊆ N and λ ∈ Z+ we
have (α − 1)1A � f (α − 1)1A + λ1A.

3 x is f -minimal if and only if argmin f[0,x] = {x} for the function f[0,x](y) ={
f (y) (y ∈ [0, x]Z),

+∞ (y ∈ Z
n\[0, x]Z).
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Proof First note that (α−1)1A ≤ (α−1)1A+λ1A for allλ ∈ Z+. By integral convexity
of f , g(λ) = f (λ1A) is a discrete convex function in λ ∈ Z+, and therefore,

g(α − 1) ≤ α − 1

α
g(α) + 1

α
g(0).

On the other hand, g(0) ≤ g(α) by the assumed α-local minimality (5.6). Hence we
have g(α − 1) ≤ g(α). Since g(0) < +∞, by discrete convexity of g, this implies
g(α − 1) ≤ g((α − 1)+λ) for all λ ∈ Z+, i.e., f ((α − 1)1A) ≤ f ((α − 1)1A +λ1A)

for all λ ∈ Z+. ��
Lemma 5.6 Let x ∈ dom f , A ( �= ∅) ⊆ N, and assume x � f x + 1A. Then for any
i ∈ N, δ ∈ {+1, 0,−1}, and λ ∈ Z+ we have x +1A + δ1i � f (x +1A + δ1i )+λ1A.

Proof First note that x + 1A + δ1i ≤ (x + 1A + δ1i ) + λ1A. We only need to show
f (x +1A + δ1i ) ≤ f ((x +1A + δ1i )+λ1A)when f ((x +1A + δ1i )+λ1A) < +∞.
By integral convexity of f we have

1

λ + 1
f ((x + 1A + δ1i ) + λ1A) + λ

λ + 1
f (x)

≥ f̃

(
x + 1A + δ

λ + 1
1i

)

= 1

λ + 1
f (x + 1A + δ1i ) + λ

λ + 1
f (x + 1A) ,

whereas f (x + 1A) ≥ f (x) by the assumption. Hence f ((x + 1A + δ1i ) + λ1A) ≥
f (x + 1A + δ1i ). ��
Lemma 5.7 Let x ∈ dom f , A ( �= ∅) ⊆ N, and assume x � f x + 1A. For any
λ ∈ Z+, μ+

i , μ−
i ∈ Z+ (i ∈ A), and μ◦

i ∈ Z+ (i ∈ N\A), the point

y = x + 1A +
∑
i∈A

μ+
i (1A + 1i ) +

∑
i∈A

μ−
i (1A − 1i ) +

∑
i∈N\A

μ◦
i (1A + 1i ) + λ1A

(5.11)

is not f -minimal.

Proof By the definition of an f -minimal point, we assume y ∈ dom f ; since otherwise
we are done. Define

μ =
∑
i∈A

(
μ+
i + μ−

i

) +
∑

i∈N\A
μ◦
i , (5.12)

which serves, in our proof, as an index to measure the distance between x and y. If
μ ≤ 1, then y is not f -minimal by Lemma 5.6. Suppose that μ ≥ 2. In the following
we construct a vector x ′ such that x ′ ∈ dom f , x ′ � f x ′ + 1A, y is represented as
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(5.11) with x ′ in place of x , and the index μ′ for that representation is strictly smaller
than μ.

Define β = μ + λ + 1 and

A+ = {
i ∈ A | μ+

i ≥ 1
}
,

A− = {
i ∈ A | μ−

i ≥ 1
}
,

A= = {
i ∈ A | μ+

i = μ−
i = 0

}
,

A◦ = {
i ∈ N\A | μ◦

i ≥ 1
}
,

where we may assume, without loss of generality, that A+ ∩ A− = ∅. Then (5.11) can
be rewritten as

y = x +
∑
i∈A+

μ+
i 1i −

∑
i∈A−

μ−
i 1i +

∑
i∈A◦

μ◦
i 1i + β1A,

which shows

(y − x)i =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

β + μ+
i (i ∈ A+),

β − μ−
i (i ∈ A−),

β (i ∈ A=),

μ◦
i (i ∈ A◦),

0 (otherwise).

Consider the point

z = β − 1

β
x + 1

β
y,

which is not contained in Z
n since z = x + (y − x)/β and 1 ≤ max

(
maxi∈A+ μ+

i ,

maxi∈A− μ−
i ,maxi∈A◦ μ◦

i

) ≤ β − 1 with A+ ∪ A− ∪ A◦ �= ∅. Since f is integrally
convex and x, y ∈ dom f , we have f̃ (z) ≤ ((β − 1)/β) f (x) + (1/β) f (y) < +∞.
On the other hand, since

(z − x)i =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 + (μ+
i /β) (i ∈ A+),

1 − (μ−
i /β) (i ∈ A−),

1 (i ∈ A=),

μ◦
i /β (i ∈ A◦),

0 (otherwise),

the integral neighborhood N (z) of z consists of all points x ′ that can be represented
as

x ′ = x + 1A + 1A+∩D − 1A−∩D + 1A◦∩D (5.13)

for a subset D of A+ ∪ A− ∪ A◦. Since f̃ (z) < +∞ and z /∈ Z
n , we must have

|N (z) ∩ dom f | ≥ 2, which implies that there exists a nonempty D for which x ′ ∈
dom f . Take such D that is minimal with respect to set inclusion.
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We claim that x ′ � f x ′ + 1A. Obviously we have x ′ ≤ x ′ + 1A. To show f (x ′) ≤
f (x ′ + 1A), we may assume x ′ + 1A ∈ dom f . Then we have the following chain of
inequalities:

f (x) + f
(
x ′ + 1A

)
= f (x) + f

(
x + 21A + 1A+∩D − 1A−∩D + 1A◦∩D

)

≥ 2 f̃

(
x + 1A + 1

2
1A+∩D − 1

2
1A−∩D + 1

2
1A◦∩D

)
[by integral convexity of f ]

= f (x + 1A) + f
(
x + 1A + 1A+∩D − 1A−∩D + 1A◦∩D

) [by minimality of D]
= f (x + 1A) + f

(
x ′) [by (5.13)]

≥ f (x) + f
(
x ′) [by x � f x + 1A]

which shows f (x ′ + 1A) ≥ f (x ′). Therefore, x ′ � f x ′ + 1A is true.
We finally consider the index (5.12) associated with x ′, which we denote by μ′.

The substitution of (5.13) into (5.11) yields

y = x + 1A +
∑
i∈A+

μ+
i (1A + 1i ) +

∑
i∈A−

μ−
i (1A − 1i ) +

∑
i∈A◦

μ◦
i (1A + 1i ) + λ1A

= x ′ + 1A +
⎛
⎝ ∑

i∈A+\D
μ+
i (1A + 1i ) +

∑
i∈A+∩D

(μ+
i − 1)(1A + 1i )

⎞
⎠

+
⎛
⎝ ∑

i∈A−\D
μ−
i (1A − 1i ) +

∑
i∈A−∩D

(μ−
i − 1)(1A − 1i )

⎞
⎠

+
⎛
⎝ ∑

i∈A◦\D
μ◦
i (1A + 1i ) +

∑
i∈A◦∩D

(μ◦
i − 1)(1A + 1i )

⎞
⎠ + (λ + |D| − 1)1A.

(5.14)

This shows μ′ = μ − |D| ≤ μ − 1.
The above procedure finds x ′ ∈ dom f such that x ′ � f x ′ + 1A and μ′ ≤ μ − 1,

when given x ∈ dom f such that x � f x + 1A and μ ≥ 2. By repeated application of
this procedure we can eventually arrive at x ′′ ∈ dom f such that x ′′ � f x ′′ + 1A and
μ′′ ≤ 1. Then y is not f -minimal by Lemma 5.6 for x ′′. ��

Lemma 5.8 If (α1A + CA) ∩ (dom f ) �= ∅, then α1A ∈ dom f .

Proof To prove by contradiction, take y ∈ (α1A+CA)∩(dom f ) that is minimal with
respect to the vector ordering (componentwise ordering) and assume that y �= α1A.
The vector y can be represented as

y = α1A +
∑
i∈A

μ+
i (1A + 1i ) +

∑
i∈A

μ−
i (1A − 1i ) +

∑
i∈N\A

μ◦
i (1A + 1i ) + λ1A
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with some μ+
i , μ−

i ∈ Z+ (i ∈ A), μ◦
i ∈ Z+ (i ∈ N\A), and λ ∈ Z+, where

β = α +
∑
i∈A+

μ+
i +

∑
i∈A−

μ−
i +

∑
i∈A◦

μ◦
i + λ

is strictly larger than α since y �= α1A. Define

A+ = {
i ∈ A | μ+

i ≥ 1
}
,

A− = {
i ∈ A | μ−

i ≥ 1
}
,

A= = {
i ∈ A | μ+

i = μ−
i = 0

}
,

A◦ = {
i ∈ N\A | μ◦

i ≥ 1
}
,

where we may assume, without loss of generality, that A+ ∩ A− = ∅ and A− �= A.
We have

yi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

β + μ+
i (i ∈ A+),

β − μ−
i (i ∈ A−),

β (i ∈ A=),

μ◦
i (i ∈ A◦),

0 (otherwise).

Consider the point

z = β − 1

β
y + 1

β
0.

Since f is integrally convex and y, 0 ∈ dom f , we have f̃ (z) ≤ ((β − 1)/β) f (y) +
(1/β) f (0) < +∞. Note that

zi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(β − 1) + μ+
i − μ+

i /β (i ∈ A+),

(β − 1) − μ−
i + μ−

i /β (i ∈ A−),

(β − 1) (i ∈ A=),

μ◦
i − μ◦

i /β (i ∈ A◦),
0 (otherwise).

If A+ ∪ A− ∪ A◦ = ∅, we are done with a contradiction. Indeed, we then have
z = (α + λ − 1)1A and y = (α + λ)1A, and hence z ≤ y, z �= y, and z ∈ dom f by
f (z) = f̃ (z) < +∞. In the following we assume A+ ∪ A− ∪ A◦ �= ∅, which implies
z /∈ Z

n .
The integral neighborhood N (z) of z consists of all points y′ that can be represented

as
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y′ = (β − 1)1A +
⎛
⎝ ∑

i∈A+\D
μ+
i 1i +

∑
i∈A+∩D

(μ+
i − 1)1i

⎞
⎠

−
⎛
⎝ ∑

i∈A−\D
μ−
i 1i +

∑
i∈A−∩D

(μ−
i − 1)1i

⎞
⎠+

⎛
⎝ ∑

i∈A◦\D
μ◦
i 1i +

∑
i∈A◦∩D

(μ◦
i − 1)1i

⎞
⎠

for a subset D of A+ ∪ A− ∪ A◦. Since f̃ (z) < +∞ and z /∈ Z
n , we must have

|N (z) ∩ dom f | ≥ 2, which implies that there exists a nonempty D for which y′ ∈
dom f . Take any y′ ∈ N (z) ∩ dom f with D �= ∅. Then y′ ≤ y and y′ �= y, since
A− �= A and

y′ − y = −1A −
∑

i∈A+∩D

1i +
∑

i∈A−∩D

1i −
∑

i∈A◦∩D

1i ≤ 0.

We also have y′ ∈ (α1A + CA) by an alternative expression of y′:

y′ = α1A +
⎛
⎝ ∑

i∈A+\D
μ+
i (1A + 1i ) +

∑
i∈A+∩D

(μ+
i − 1)(1A + 1i )

⎞
⎠

+
⎛
⎝ ∑

i∈A−\D
μ−
i (1A − 1i ) +

∑
i∈A−∩D

(μ−
i − 1)(1A − 1i )

⎞
⎠

+
⎛
⎝ ∑

i∈A◦\D
μ◦
i (1A + 1i ) +

∑
i∈A◦∩D

(μ◦
i − 1)(1A + 1i )

⎞
⎠ + (λ + |D| − 1)1A.

Hence y′ ∈ (α1A + CA) ∩ (dom f ), a contradiction to the minimality of y. ��
We are now in the position to prove Proposition 5.4. To prove the contrapositive of

the claim, suppose that y ∈ α1A + CA for some A. Then y can be expressed as

y = α1A +
∑
i∈A

μ+
i (1A + 1i ) +

∑
i∈A

μ−
i (1A − 1i ) +

∑
i∈N\A

μ◦
i (1A + 1i ) + λ1A

for some μ+
i , μ−

i , μ◦
i , λ ∈ Z+. Equivalently,

y = ((α − 1)1A + 1A) +
∑
i∈A

μ+
i (1A + 1i ) +

∑
i∈A

μ−
i (1A − 1i )

+
∑

i∈N\A
μ◦
i (1A + 1i ) + λ1A,

which corresponds to the right-hand side of (5.11) with x = (α−1)1A. By Lemma 5.8,
we have α1A ∈ dom f . Since x = (α − 1)1A � f α1A = x + 1A by Lemma 5.5,
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Lemma 5.7 shows that y is not f -minimal. This completes the proof of Proposition
5.4.

5.3 Proof of Proposition 5.2 for n = 2

In this section we prove Proposition 5.2 for n = 2 as an illustration of the proof
method using the tools introduced in Sect. 5.2. This also gives an alternative proof of
Theorem 4.1.

Recall that dom f is assumed to be a bounded subset of Z2+, which implies, in
particular, that argmin f �= ∅. Take x∗ = (x∗

1 , x
∗
2 ) ∈ argmin f that is f -minimal. We

may assume x∗
1 ≥ x∗

2 by Proposition 2.3 (2). Since x∗ is f -minimal, Proposition 5.4
shows that x∗ belongs to

X∗ = {(x1, x2) ∈ Z
2+ | x1 ≥ x2}\ ((α1A + CA) ∪ (α1N + CN )) ,

where A = {1} and N = {1, 2}. On noting

CA = {μ1(1, 0) + μ12(1, 1) | μ1, μ12 ∈ Z+},
CN = {μ1(1, 0) + μ2(0, 1) | μ1, μ2 ∈ Z+},

we see that X∗ consists of all integer points contained in the parallelogramwith vertices
(0, 0), (α − 1, 0), (2α − 2, α − 1), (α − 1, α − 1). Therefore, ‖x∗‖∞ ≤ 2(α − 1).
Thus Proposition 5.2 for n = 2 is proved.

5.4 Proof of Proposition 5.2 for n ≥ 3

In this section we prove Proposition 5.2 for n ≥ 3 by induction on n. Accordingly
we assume that Proposition 5.2 is true for every integrally convex function in n − 1
variables.

Let f : Zn → R ∪ {+∞} be an integrally convex function such that dom f is
a bounded subset of Z

n+ containing the origin 0. Note that argmin f �= ∅ and take
x∗ = (x∗

1 , x
∗
2 , . . . , x

∗
n ) ∈ argmin f that is f -minimal. Then

[0, x∗]Z ∩ argmin f = {x∗}. (5.15)

We may assume

x∗
1 ≥ x∗

2 ≥ · · · ≥ x∗
n (5.16)

by Proposition 2.3 (2).
The following lemma reveals a significant property of integrally convex functions

that will be used here for induction on n. Note that, by (5.15), x∗ satisfies the condition
imposed on x•.

123



142 S. Moriguchi et al.

Lemma 5.9 Let x• ∈ dom f be an f -minimal point. Then for any i ∈ N with x•
i ≥ 1

there exists an f -minimal point x◦ ∈ dom f such that

0 ≤ x◦ ≤ x•, ‖x◦ − x•‖∞ = x•
i − x◦

i = 1.

Proof Let x◦ be a minimizer of f (x) among those x which belong to X = {x ∈
Z
n | 0 ≤ x ≤ x•, ‖x − x•‖∞ = 1, xi = x•

i − 1}; in case of multiple minimizers,
we choose a minimal minimizer with respect to the vector ordering (componentwise
ordering). To prove f -minimality of x◦, suppose, to the contrary, that there exists
z ∈ [0, x◦]Z\{x◦} with f (z) ≤ f (x◦). We have � = ‖z − x•‖∞ ≥ 2, since otherwise
z ∈ X and this contradicts the minimality of x◦.

Consider y ∈ R
n+ defined by

y = � − 1

�
x• + 1

�
z. (5.17)

The value of the local convex extension f̃ of f at y can be represented as

f̃ (y) =
∑
y j∈Y

λ j f (y
j )

with some set Y ⊆ N (y) ∩ dom f and positive coefficients λ j such that

y =
∑
y j∈Y

λ j y
j ,

∑
y j∈Y

λ j = 1. (5.18)

Since ‖y − x•‖∞ = 1 and y ≤ x• by (5.17), either y j
i = x•

i − 1 or y j
i = x•

i holds for
each y j ∈ Y . Define

Y< =
{
y j ∈ Y | y j

i = x•
i − 1

}
, Y= =

{
y j ∈ Y | y j

i = x•
i

}
.

Then we see

∑
y j∈Y<

λ j = x•
i − zi

�
,

∑
y j∈Y=

λ j = 1 − x•
i − zi

�
(5.19)

from

yi = � − 1

�
x•
i + 1

�
zi = x•

i − x•
i − zi

�
.

On the other hand, we have

f̃ (y) ≤ � − 1

�
f (x•) + 1

�
f (z) (5.20)
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by integral convexity of f . We divide into cases to derive a contradiction to this
inequality.
Case 1 (x•

i − zi = �): We have Y = Y< by (5.18) and (5.19) and then f (x◦) ≤ f (y j )

for all y j ∈ Y by the definition of x◦. Hence

f (x◦) ≤
∑
y j∈Y

λ j f (y
j ) = f̃ (y). (5.21)

For the right-hand side of (5.20), note first that the f -minimality of x• and x◦ ∈
[0, x•]Z\{x•} imply f (x•) < f (x◦). Then it follows from f (x•) < f (x◦) and f (z) ≤
f (x◦) that

� − 1

�
f (x•) + 1

�
f (z) < f (x◦). (5.22)

But (5.21) and (5.22) together contradict (5.20).

Case 2 (x•
i − zi < �): In this case Y= is nonempty. Since x• /∈ Y by ‖x• − y‖∞ = 1,

every y j ∈ Y is distinct from x•, whereas y j ∈ [0, x•]Z. Then the assumed f -
minimality of x• implies

f (y j ) > f (x•) (∀ y j ∈ Y = Y= ∪ Y<). (5.23)

We also have

f (y j ) ≥ f (x◦) ≥ f (z) (∀ y j ∈ Y<), (5.24)

which is obvious from the definitions of x◦ and z. Then we have

f̃ (y) =
∑

y j∈Y=
λ j f

(
y j

)
+

∑
y j∈Y<

λ j f
(
y j

)

[
by (5.23) , (5.24) , Y= �= ∅]

>
∑

y j∈Y=
λ j f

(
x•) +

∑
y j∈Y<

λ j f (z)

[
by (5.19)

]

=
(
1 − x•

i − zi
�

)
f
(
x•) + x•

i − zi
�

f (z)

[
by

x•
i − zi

�
≥ 1

�
, f

(
x•) ≤ f (z)

]

≥ � − 1

�
f
(
x•) + 1

�
f (z) .

This is a contradiction to (5.20). ��
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Lemma 5.9 can be applied repeatedly, since the resulting point x◦ satisfies
the condition imposed on the initial point x•. Starting with x• = x∗ we apply
Lemma 5.9 repeatedly with i = n. After x∗

n applications, we arrive at a point
x̂ = (x̂1, x̂2, . . . , x̂n−1, 0). This point x̂ is f -minimal and

x∗
j − x∗

n ≤ x̂ j ( j = 1, 2, . . . , n − 1). (5.25)

We now consider a function f̂ : Zn−1 → R ∪ {+∞} defined by

f̂ (x1, x2, . . . , xn−1) =
{

f (x1, x2, . . . , xn−1, 0)
(
0 ≤ x j ≤ x̂ j ( j = 1, 2, . . . , n − 1)

)
,

+ ∞ (otherwise).

This function f̂ is an integrally convex function in n − 1 variables, and the origin 0 is
α-local minimal for f̂ . By the induction hypothesis, we can apply Proposition 5.2 to
f̂ to obtain

‖x̂‖∞ ≤ βn−1(α − 1). (5.26)

Note that x̂ is the unique minimizer of f̂ .
Combining (5.25) and (5.26) we obtain

x∗
1 − x∗

n ≤ βn−1(α − 1). (5.27)

We also have

x∗
n ≤ n − 1

n + 1
x∗
1 + 2(α − 1)

n + 1
(5.28)

as a consequence of f -minimality of x∗; see Lemma 5.10 below. It follows from (5.27)
and (5.28) that

x∗
1 ≤ x∗

n + βn−1(α − 1) ≤ n − 1

n + 1
x∗
1 + 2(α − 1)

n + 1
+ βn−1(α − 1).

This implies

x∗
1 ≤

(
n + 1

2
βn−1 + 1

)
(α − 1) = βn(α − 1),

where the recurrence relation

βn = n + 1

2
βn−1 + 1

is used.
It remains to derive inequality (5.28) from f -minimality of x∗.
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Lemma 5.10 The following inequalities hold for x∗ and α.

(1) n−1∑
i=1

(
x∗
i − x∗

n

) ≥ x∗
n − α + 1. (5.29)

(2)
n∑

i=2

(
x∗
1 − x∗

i

) ≥ x∗
1 − α + 1. (5.30)

(3) x∗
n ≤ n − 1

n + 1
x∗
1 + 2(α − 1)

n + 1
. (5.31)

Proof (1) To prove by contradiction, suppose that
∑n−1

i=1 (x∗
i − x∗

n ) ≤ x∗
n − α. Then

the expression

x∗ = α1N +
n−1∑
i=1

(
x∗
i − x∗

n

)
(1N + 1i ) +

(
x∗
n − α −

n−1∑
i=1

(
x∗
i − x∗

n

))
1N

shows x∗ ∈ α1N + CN . By Proposition 5.4, this contradicts the fact that x∗ is f -
minimal.

(2) To prove by contradiction, suppose that
n∑

i=2

(x∗
1 − x∗

i ) ≤ x∗
1 − α. Then the

expression

x∗ = α1N +
n∑

i=2

(
x∗
1 − x∗

i

)
(1N − 1i ) +

(
x∗
1 − α −

n∑
i=2

(
x∗
1 − x∗

i

))
1N

shows x∗ ∈ α1N + CN . By Proposition 5.4, this contradicts the fact that x∗ is f -
minimal.

(3) Since

n−1∑
i=1

(
x∗
i − x∗

n

) +
n∑

i=2

(x∗
1 − x∗

i ) = n
(
x∗
1 − x∗

n

)
,

the addition of (5.29) and (5.30) yields

n
(
x∗
1 − x∗

n

) ≥ x∗
1 + x∗

n − 2(α − 1),

which is equivalent to (5.31). ��

This completes the proof of Proposition 5.2, and hence that of Theorem 5.1 (1).
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5.5 Estimation of βn

The estimate of βn given in Theorem 5.1 (2) is derived in this section.
The recurrence relation (5.3) can be rewritten as

2n

(n + 1)!βn = 2n−1

n! βn−1 + 2n

(n + 1)! ,

from which follows

2n

(n + 1)!βn = 22

3! β2 +
n∑

k=3

2k

(k + 1)! = 4

3
+

n∑
k=3

2k

(k + 1)! . (5.32)

For the last term we have

n∑
k=3

2k

(k + 1)! ≤
7∑

k=3

2k

(k + 1)! +
∞∑
k=8

2k

(k + 1)! ≤ 167

315
(5.33)

since

7∑
k=3

2k

(k + 1)! = 23

4! + 24

5! + 25

6! + 26

7! + 27

8! = 166

315
(≈ 0.53),

∞∑
k=8

2k

(k + 1)! ≤ 28

9!
∞∑
k=1

(
2

10

)k−1

= 320

9! (≈ 8.8 × 10−4) <
1

315
.

Substitution of (5.33) into (5.32) yields

βn ≤
(
4

3
+ 167

315

)
(n + 1)!

2n
= 587

315
× (n + 1)!

2n
≤ (n + 1)!

2n−1 .

Thus the upper bound (5.4) is proved.

6 Optimization of integrally convex functions

In spite of the facts that the factorβn of theproximity bound is superexponential inn and
that integral convexity is not stable under scaling, we can design a proximity-scaling
type algorithm for minimizing integrally convex functions with bounded effective
domains. The algorithm runs inC(n) log2 K∞ time for some constantC(n) depending
only on n, where K∞ (> 0) denotes the �∞-size of the effective domain. This means
that, if the dimension n is fixed and treated as a constant, the algorithm is polynomial in
the problem size. Note that no algorithm for integrally convex function minimization
can be polynomial in n, since any function on the unit cube {0, 1}n is integrally convex.
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Theproposed algorithm is amodification of the generic proximity-scaling algorithm
given in the Introduction. In Step S1, we replace the function f̃ (y) = f (x +αy) with
its restriction to the discrete rectangle {y ∈ Z

n | ‖αy‖∞ ≤ βn(2α − 1)}, which is
denoted by f̂ (y). Then a local minimizer of f̂ (y) is found to update x to x +αy. Note
that a local minimizer of f̂ (y) can be found, e.g., by any descent method (the steepest
descent method, in particular).

Proximity-scaling algorithm for integrally convex functions
S0: Find an initial vector x with f (x) < +∞, and set α := 2�log2 K∞�.
S1: Find an integer vector y that locally minimizes

f̂ (y) =
{
f (x + αy) (‖αy‖∞ ≤ βn(2α − 1)),
+∞ (otherwise),

in the sense of f̂ (y) ≤ f̂ (y + d) (∀d ∈ {−1, 0,+1}n)
(e.g., by the steepest descent method), and set x := x + αy.

S2: If α = 1, then stop (x is a minimizer of f ).
S3: Set α := α/2, and go to S1.

The steepest descent method to locally minimize f̂ (y)
D0: Set y := 0.
D1: Find d ∈ {−1, 0,+1}n that minimizes f̂ (y + d).
D2: If f̂ (y) ≤ f̂ (y + d), then stop (y is a local minimizer of f̂ ).
D3: Set y := y + d, and go to D1.

The correctness of the algorithm can be shown as follows. We first assume that f
has a unique (global) minimizer x∗. Let x2α denote the vector x at the beginning of
Step S1, and define

f (α)(x) =
{
f (x) (‖x − x2α‖∞ ≤ βn(2α − 1)),
+∞ (otherwise),

f̂ (α)(y) =
{
f (x2α + αy) (‖αy‖∞ ≤ βn(2α − 1)),
+∞ (otherwise).

Note that f (α) is integrally convex, whereas f̂ (α) is not necessarily so. Let ŷα be the
output of Step S1 and xα = x2α + α ŷα . Then ŷα is a local minimizer of f̂ (α) and
xα − x2α = α ŷα ∈ (αZ)n .

Lemma 6.1 x∗ ∈ dom f (α) for all α.

Proof This is obviously true in the initial phase with α = 2�log2 K∞�. To prove x∗ ∈
dom f (α) by induction on descending α, we show that x∗ ∈ dom f (α) implies x∗ ∈
dom f (α/2). Since x∗ ∈ dom f (α) and x∗ ∈ argmin f , we have x∗ ∈ argmin f (α).
On the other hand, xα is an α-local minimizer of f (α), since ŷα is a local minimizer of
f̂ (α). Then, by the proximity theorem (Theorem5.1) for f (α), we obtain ‖xα−x∗‖∞ ≤
βn(α − 1), which shows x∗ ∈ dom f (α/2). ��

In the final phase with α = 1, f (α) is an integrally convex function, and hence,
by Theorem 2.5, an α-local minimizer of f (α) is a global minimizer of f (α). This
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observation, with Lemma 6.1 above, shows that the output of the algorithm is a global
minimizer of f .

The complexity of the algorithm can be analyzed as follows. The number of iter-
ations in the descent method is bounded by the total number of points in Y = {y ∈
Z
n | ‖αy‖∞ ≤ βn(2α − 1)}, which is bounded by (4βn)

n . For each y we examine all
of its 3n neighboring points to find a descent direction or verify its local minimality.
Thus Step S1, which updates x2α to xα , can be done with at most (12βn)

n function
evaluations. The number of scaling phases is log2 K∞. Therefore, the time complexity
(or the number of function evaluations) is bounded by (12βn)

n log2 K∞. For a fixed
n, this gives a polynomial bound O(log2 K∞) in the problem size.

Finally, we describe how to get rid of the uniqueness assumption of the minimizer.
Consider a perturbed function fε(x) = f (x) + ∑n

i=1 εi xi with a sufficiently small
ε > 0. By the assumed boundedness of the effective domain of f , the perturbed
function has a minimizer, which is unique as a result of the perturbation. To find
the minimum of fε it is not necessary to explicitly introduce parameter ε into the
algorithm, but a lexicographically smallest local minimizer y of f̂ (y) should be found
in Step S1.

Remark 6.1 Some technical points are explained here. By working with f (α), we can
bound the number of iterations for finding an α-local minimizer in terms of the number
of integer vectors contained in dom f̂ (α). The vector xα is an α-local minimizer for
f (α), but not necessarily for the original function f . This iswhywe apply the proximity
theorem to f (α) in the proof of Lemma 6.1.

Remark 6.2 The proximity bound βn(α −1) in Theorem 5.1 is linear in α. This linear
dependence on α is critical for the complexity O(log2 K∞) of the algorithm when
n is fixed. Suppose, for example, that the proximity bound is βn(α

m − 1) for some
m > 1. Then in the above analysis, (2α − 1) should be replaced by ((2α)m − 1), and
the total number of points in Y = {y ∈ Z

n | ‖αy‖∞ ≤ βn((2α)m − 1)} is bounded
by (2m+1βn)

nα(m−1)n . The sum of α(m−1)n over α = 1, 2, 22, . . . , 2�log2 K∞� is of the
order of K (m−1)n∞ . Then the proposed algorithm will not be polynomial in log2 K∞.
Thus the particular form βn(α − 1) of our proximity bound is important for our
algorithm.

7 Concluding remarks

As shown in this paper, the nice properties of L�-convex functions such as stability
under scaling and the proximity bound n(α − 1) are not shared by integrally convex
functions in general. Two subclasses of integrally convex functions which still enjoy
these nice properties have been introduced in [19] based on discretemidpoint convexity
(1.1) for every pair (x, y) ∈ Z

n × Z
n with ‖x − y‖∞ ≥ 2 or ‖x − y‖∞ = 2.

Both classes of such functions are superclasses of L�-convex functions, subclasses of
integrally convex functions, and closed under scaling for all n and admit a proximity
theorem with the bound n(α − 1) for all n. See [19] for details.
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Appendix A: An alternative Proof of Theorem 2.4

Here is a proof of Theorem 2.4 (local characterization of integral convexity) that
is shorter than the original proof in [2] and valid for functions defined on general
integrally convex sets rather than discrete rectangles.

Obviously, (a) implies (b). The proof for the converse, (b) ⇒ (a), is given by
the following two lemmas, where integral convexity of dom f and condition (b) are
assumed.

Lemma A.1 Let B ⊆ R
n be a box of size two with integer vertices, i.e., B = [a, a +

21]R for some a ∈ Z
n. Then f̃ is convex on B ∩ dom f .

Proof First, the assumed integral convexity of dom f implies that B ∩ dom f =
B ∩ dom f and that every point in B∩dom f can be represented as a convex combina-
tion of points in B∩dom f . Wemay assume B = [0, 21]R. To prove by contradiction,
assume that there exist x ∈ B ∩ dom f and y1, . . . , ym ∈ B ∩ dom f such that

x =
m∑
i=1

λi y
i , f̃ (x) >

m∑
i=1

λi f (y
i ), (A.1)

where
∑m

i=1 λi = 1 and λi > 0 (i = 1, . . . ,m). We may also assume x ∈ [0, 1]R
without loss of generality. For each j = 1, . . . , n, we look at the j-th component of
the generating points yi to define

I 0j =
{
i | yij = 0

}
, I 2j =

{
i | yij = 2

}
.

Since x j = ∑m
i=1 λi yij ≤ 1, if I 2j �= ∅, then I 0j �= ∅.

Let j = n and suppose that I 2n �= ∅. Then I 0n �= ∅. Wemay assume y1n = 0, y2n = 2;
λ1 > 0, λ2 > 0. By (2.2) for (y1, y2) and the definition of f̃ we have

f (y1) + f (y2) ≥ 2 f̃

(
y1 + y2

2

)
= 2

l∑
k=1

μk f (z
k),

where

y1 + y2

2
=

l∑
k=1

μk z
k, zk ∈ N

(
y1 + y2

2

)
∩ dom f (k = 1, . . . , l) (A.2)
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with μk > 0 (k = 1, . . . , l) and
∑l

k=1 μk = 1. This implies, with notation λ =
min(λ1, λ2), that

λ1 f (y
1) + λ2 f (y

2) ≥ (λ1 − λ) f (y1) + (λ2 − λ) f (y2) + 2λ
l∑

k=1

μk f (z
k).

Hence

m∑
i=1

λi f (y
i ) ≥ (λ1 − λ) f (y1) + (λ2 − λ) f (y2) + 2λ

l∑
k=1

μk f (z
k) +

m∑
i=3

λi f (y
i ).

Since

x = (λ1 − λ)y1 + (λ2 − λ)y2 + 2λ
l∑

k=1

μk z
k +

m∑
i=3

λi y
i ,

we have obtained another representation of the form (A.1). With reference to this new
representation define Î 0n (resp., Î 2n ) to be the set of indices of the generators whose
n-th component is equal to 0 (resp., 2). Since zkn = 1 for all k as a consequence
of (A.2) with (y1n + y2n )/2 = (0 + 2)/2 = 1, we have Î 0n ⊆ I 0n , Î

2
n ⊆ I 2n and

| Î 0n | + | Î 2n | ≤ |I 0n | + |I 2n | − 1.
By repeating the above process with j = n, we eventually arrive at a representation

of the form of (A.1) with I 2n = ∅, which means that yin ∈ {0, 1} for all generators yi .
Then we repeat the above process for j = n − 1, n − 2, . . . , 1, to obtain a repre-

sentation of the form of (A.1) with yi ∈ [0, 1]Z for all generators yi . This contradicts
the definition of f̃ . ��

Lemma A.2 For any x, y ∈ dom f , f̃ is convex on the line segment connecting x
and y.

Proof Let L denote the (closed) line segment connecting x and y, and consider the
boxes B, as in LemmaA.1, that intersect L . There exists a finite number of such boxes,
say, B1, . . . , Bm , and L is covered by the line segments L j = L ∩ Bj ( j = 1, . . . ,m).
That is, L = ⋃m

j=1 L j . For each point z ∈ L\{x, y}, there exists some L j that contains

z in its interior. Since L j ⊆ L ⊆ dom f , f̃ is convex on L j by Lemma A.1. Hence4

f̃ is convex on L . ��

4 See H. Tuy: D.C. optimization: Theory, methods and algorithms, in: R. Horst and P. M. Pardalos, eds.,
Handbook of Global Optimization, Kluwer Academic Publishers, Dordrecht, 1995, 149–216; Lemma 2 to
be specific.
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Appendix B: Proof of Proposition 5.3

It is known (cf. [29, proof of Theorem 16.4]) that the set of integer vectors contained
in

FA =
⎧⎨
⎩
∑
i∈A

μ+
i (1A + 1i ) +

∑
i∈A

μ−
i (1A − 1i ) +

∑
i∈N\A

μ◦
i (1A + 1i )

+λ1A

∣∣∣∣∣∣∣
μ+
i , μ−

i ∈ [0, 1]R (i ∈ A);
μ◦
i ∈ [0, 1]R (i ∈ N\A);

λ ∈ [0, 1]R

⎫⎪⎬
⎪⎭

forms a Hilbert basis of C̃A. Let z be an integer vector in FA. That is, z ∈ Z
n and

z =
∑
i∈A

μ+
i (1A + 1i ) +

∑
i∈A

μ−
i (1A − 1i ) +

∑
i∈N\A

μ◦
i (1A + 1i ) + λ1A (B.1)

=
∑
i∈A

(
μ+
i − μ−

i

)
1i +

∑
i∈N\A

μ◦
i (1A + 1i ) +

(
λ +

∑
i∈A

(
μ+
i + μ−

i

))
1A (B.2)

for some μ+
i , μ−

i ∈ [0, 1]R (i ∈ A); μ◦
i ∈ [0, 1]R (i ∈ N\A); λ ∈ [0, 1]R. Our goal

is to show that z can be represented as a nonnegative integer combination of vectors
in BA.

First note that μ◦
i ∈ {0, 1} for each i ∈ N\A; define A◦ = {i ∈ N\A | μ◦

i = 1}.
We denote the coefficient of 1A in (B.2) as

ξ = λ +
∑
i∈A

(
μ+
i + μ−

i

)

and divide into cases according to whether ξ is an integer or not.

Case 1 (ξ ∈ Z): Using ξ we rewrite (B.2) as

z =
∑
i∈A

(
μ+
i − μ−

i

)
1i +

∑
i∈N\A

μ◦
i (1A + 1i ) + ξ1A,

in which ξ is an integer. For each i ∈ A, μ+
i − μ−

i must be an integer, which is equal
to 0, 1 or −1. Accordingly we define

A= = {
i ∈ A | μ+

i − μ−
i = 0

}
,

A> = {
i ∈ A | μ+

i − μ−
i = 1

} = {
i ∈ A | μ+

i = 1, μ−
i = 0

}
,

A< = {
i ∈ A | μ+

i − μ−
i = −1

} = {
i ∈ A | μ+

i = 0, μ−
i = 1

}
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to rewrite (B.1) as

z =
∑
i∈A>

(1A+1i )+
∑
i∈A<

(1A − 1i ) +
∑
i∈A◦

(1A + 1i ) +
(

λ +
∑
i∈A=

(
μ+
i + μ−

i

))
1A.

(B.3)

Here the coefficient of 1A is integral, since

λ +
∑
i∈A=

(μ+
i + μ−

i ) = ξ −
∑
i∈A>

1 −
∑
i∈A<

1.

Hence (B.3) gives a representation of z as a nonnegative integer combination of vectors
in BA.

Case 2 (ξ /∈ Z): Let η denote the fractional part of ξ , i.e., η = ξ −ξ�with 0 < η < 1.
We rewrite (B.2) as

z =
∑
i∈A

(μ+
i − μ−

i + η)1i +
∑

i∈N\A
μ◦
i (1A + 1i ) + ξ�1A. (B.4)

For each i ∈ A,μ+
i −μ−

i +η must be an integer, which is equal to 1 or 0. Accordingly
we define

A+ = {
i ∈ A | μ+

i − μ−
i + η = 1

}
,

A− = {
i ∈ A | μ+

i − μ−
i + η = 0

}
.

Then

ξ� ≥ min(|A+|, |A−|),

which follows from

μ+
i + μ−

i

{= 2μ−
i + 1 − η ≥ 1 − η (i ∈ A+)

= 2μ+
i + η ≥ η (i ∈ A−),

ξ = λ +
∑
i∈A

(
μ+
i + μ−

i

) ≥ (1 − η)|A+| + η|A−| ≥ min(|A+|, |A−|).

In the case of |A+| ≤ |A−|, we see from (B.4) that

z =
∑
i∈A+

1i +
∑
i∈A◦

(1A + 1i ) + ξ�1A

=
∑
i∈A+

(1A + 1i ) +
∑
i∈A◦

(1A + 1i ) + (ξ� − |A+|)1A,
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which is a nonnegative integer combination of vectors in BA. In the other case with
|A+| > |A−|, we have an alternative expression

z = −
∑
i∈A−

1i +
∑
i∈A◦

(1A + 1i ) + (ξ� + 1)1A

=
∑
i∈A−

(1A − 1i ) +
∑
i∈A◦

(1A + 1i ) + (ξ� + 1 − |A−|)1A,

which is also a nonnegative integer combination of vectors in BA. This completes the
proof of Proposition 5.3.
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