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Abstract
This paper reveals that a common and central role, played in many error bound (EB)
conditions and a variety of gradient-type methods, is a residual measure operator. On
one hand, by linking this operator with other optimality measures, we define a group
of abstract EB conditions, and then analyze the interplay between them; on the other
hand, by using this operator as an ascent direction, we propose an abstract gradient-
type method, and then derive EB conditions that are necessary and sufficient for its
linear convergence. The former provides a unified framework that not only allows
us to find new connections between many existing EB conditions, but also paves a
way to construct new ones. The latter allows us to claim the weakest conditions guar-
anteeing linear convergence for a number of fundamental algorithms, including the
gradient method, the proximal point algorithm, and the forward–backward splitting
algorithm. In addition, we show linear convergence for the proximal alternating lin-
earized minimization algorithm under a group of equivalent EB conditions, which are
strictly weaker than the traditional strongly convex condition. Moreover, by defining a
new EB condition, we show Q-linear convergence of Nesterov’s accelerated forward–
backward algorithm without strong convexity. Finally, we verify EB conditions for a
class of dual objective functions.
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372 H. Zhang

1 Introduction

A standard assumption for proving linear convergence of gradient-type methods is
strong convexity [43]. In practice, however, strong convexity is too stringent. More-
over, various gradient-type methods for solving convex optimization problems have
exhibited linear convergence in numerical experiments even when strong convexity is
absent; see e.g. [24,31,59]. Thereby, one would wonder whether such a phenomenon
can be explained theoretically, and whether there exist weaker alternatives to strong
convexity that retain fast rates.

A very powerful idea to address these questions is to connect error bound (EB)
conditions with the convergence rate estimation of gradient-type methods. This idea
has a long history dating back to 1963 when Polyak introduced an EB inequality as
a sufficient condition for gradient descent to attain linear convergence [45]. In the
same year, a wide class of inequalities, which include Polyak’s as a special case,
were introduced by Łojasiewicz [36]. In recent manuscripts [10,27], the EB condition
of Polyak–Łojasiewicz’s type was further developed for analyzing the complexity of
first-order descent methods. The second type of EB conditions is due to Hoffman, who
proposed an EB inequality for systems of linear inequalities [25] in 1952. Along this
line, Luo and Tseng in the early 90’s contributed several aspects for connecting EB
conditions of Hoffman’s type with convergence analysis of descent methods [38,39].
Recently, global versions of EB conditions of Hoffman’s type attract much attention
[52,57,69]. The third type of EB conditions is the quadratic growth condition (also
called zero-order EB condition in [10]), which might go back to the work [70]. It
was recently rediscovered in the special case of convex functions, and widely used to
derive linear convergence for many gradient-type methods as well [23,35,42].

Moreover, there recently emerges a surge of interest in developing new EB condi-
tions guaranteeing (global) linear convergence for various gradient-type methods. For
example, the authors of [31,64,67] proposed a restricted secant inequality (RSI), and
developed the restricted strongly convex (RSC) property with parameter ν for ana-
lyzing linear convergence of (dual) gradient descent methods and Nesterov’s restart
acceleratedmethods; the authors of [42] proposed several relaxations of strong convex-
ity that are sufficient for obtaining linear convergence for (projected and accelerated)
gradient-type methods.

Another line of recent works is to find connections between existing EB conditions.
The authors of [20] discussed the relationship between the quadratic growth condition
and theEBcondition ofHoffman’s type (also calledLuo–Tseng’s type in [32]). Parallel
to and partially influenced by the work [20], the author of this paper also established
several new types of equivalence between the RSC property, the quadratic growth
condition, and the EB condition of Hoffman’s type in [63]. The authors of [10] showed
the equivalence between the quadratic growth condition and the Kurdyka–Łojasiewicz
inequality. Besides, we note that works [27,42] also discussed the relationships among
many of these EB conditions.

Based on these two lines of recent developments, two natural questions arise. The
first one is whether there is a unified framework for defining different EB conditions
and analyzing connections between them. The second one is whether these sufficient
conditions guaranteeing linear convergence for gradient-type methods are also neces-
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sary. To answer these two questions, we will rely on a vital observation: a common
and key role, played in many EB conditions and a variety of gradient-type methods, is
a residual measure operator. This observation immediately leads us to the following
discoveries:

1. By linking the residualmeasure operatorwith other optimalitymeasures, we define
a group of abstract EB conditions. Then, we comprehensively analyze the inter-
play between them by means of the technique developed in [10], which plays a
fundamental role in the corresponding error bound equivalence. The definition
of abstract EB conditions not only unifies many existing EB conditions, but also
helps us to construct new ones. The interplay between the abstract EB conditions
allows us to find new connections between many existing EB conditions.

2. By viewing the residual measure operator as an ascent direction, we propose an
abstract gradient-type method, and then derive EB conditions that are necessary
and sufficient for its linear convergence. The latter allows us to claim the weakest
(or say, necessary and sufficient) conditions guaranteeing linear convergence for
a number of fundamental algorithms, including the gradient method (applied to
possibly nonconvex optimization), the proximal point algorithm, and the forward–
backward splitting algorithm. The sufficiency of these EB conditions for linear
convergence has been widely known; see e.g. [10]. In contrast, there is very little
attention to the discussion of necessity.

In addition,we alsomake the following contributions, fromaspects of block coordinate
gradient descent, Nesterov’s acceleration, and verifying EB conditions, separately:

3. We show linear convergence for the proximal alternating linearized minimization
(PALM) algorithm under a group of equivalent EB conditions. It has been recently
shown [26,33,51] that PALM achieves sublinear convergence for convex problems
and linear convergence for strongly convex problems. In this study, we show its
linear convergence under strictly weaker conditions than strong convexity.

4. By defining a new EB condition, we obtain Q-linear convergence of Nes-
terov’s accelerated forward–backward algorithm, which generalizes the Q-linear
convergence of Nesterov’s accelerated gradient method, recently independently
discovered in [29,58]. The new EB condition in some special cases can be viewed
as a strictly weaker relaxation of strong convexity. In such sense, we showQ-linear
convergence ofNesterov’s acceleratedmethodwithout strong convexity. Our proof
idea is partially inspired by Attouch and Peypouquet [5] but might be of interest
in its own right.

5. We provide a new proof to show that a class of dual objective functions satisfy EB
conditions, under slightly weaker assumptions, again by means of the technique
developed in [10]. The authors of [31] gave the first proof for a special case
of this class of functions, and the author of [50] gave the first general proof by
contradiction.

The paper is organized as follows. In Sect. 2, we present the basic notation and
some elementary preliminaries. In Sect. 3, we analyze necessary and sufficient condi-
tions guaranteeing linear convergence for the gradient descent. In Sect. 4, we define a
group of abstract EB conditions, and analyze the interplay between them. In Sect. 5,
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we define an abstract gradient-type method, and derive EB conditions that are neces-
sary and sufficient for guaranteeing its linear convergence. In Sect. 6, we study linear
convergence of the PALM algorithm. In Sect. 7, we study linear convergence of Nes-
terov’s accelerated forward–backward algorithm. In Sect. 8, we verify EB conditions
for a class of dual objective functions. Finally, in Sect. 9, we give a short summary of
this paper, along with some discussion for future work.

2 Notation and preliminaries

Throughout the paper, Rn will denote an n-dimensional Euclidean space associated
with inner-product 〈·, ·〉 and induced norm ‖·‖. For any nonempty Q ⊂ R

n , we define
the distance function by d(x, Q) := inf y∈Q ‖x − y‖. For a nonempty set Q ⊂ R

n ,
we define the indicator function of Q by

δQ(x) :=
{
0, if x ∈ Q;
+∞, otherwise.

We say that f is gradient-Lipschitz-continuous with modulus L > 0 if

∀x, y ∈ R
n, ‖∇ f (x) − ∇ f (y)‖ ≤ L‖x − y‖,

and f is strongly convex with modulus μ > 0 if for any α ∈ [0, 1],

∀x, y ∈ R
n, f (αx + (1 − α)y) ≤ α f (x) + (1 − α) f (y) − 1

2
μα(1 − α)‖x − y‖2,

or if (when it is differentiable)

∀x, y ∈ R
n, 〈∇ f (x) − ∇ f (y), x − y〉 ≥ μ‖x − y‖2.

We will consider the following classes of functions.

• F1(Rn): the class of continuously differentiable convex functions from R
n to R;

• F1,1
L (Rn): the class of gradient-Lipschitz-continuous convex functions from R

n

to R with Lipschitz modulus L;
• S1,1

μ,L(Rn): the class of gradient-Lipschitz-continuous and strongly convex func-
tions from R

n to R with Lipschitz modulus L and strongly convex modulus μ;
• �(Rn): the class of proper and lower semicontinuous functions from R

n to
(−∞,+∞];

• �0(R
n): the class of proper and lower semicontinuous convex functions from R

n

to (−∞,+∞].
Obviously, we have the following inclusions:

S1,1
μ,L

(
R
n) ⊆ F1,1

L

(
R
n) ⊆ F1 (

R
n) , �0

(
R
n) ⊆ �

(
R
n) .
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It is convenient to denote by Argmin f the set of optimal solutions of minimizing
f over Rn , and to use “argmin f ”, if the solution is unique, to stand for the unique
solution. If Argmin f is nonempty, we let min f present the minimum of f over Rn .

The notation of subdifferential plays a central role in (non)convex optimization.

Definition 1 (subdifferentials, [48]) Let f ∈ �(Rn). Its domain is defined by

dom f := {
x ∈ R

n : f (x) < +∞}
.

(a) For a given x ∈ dom f , the Fréchet subdifferential of f at x , written ∂̂ f (x), is the
set of all vectors u ∈ R

n which satisfy

lim
y =x

inf
y→x

f (y) − f (x) − 〈u, y − x〉
‖y − x‖ ≥ 0.

When x /∈ dom f , we set ∂̂ f (x) = ∅.
(b) The (limiting) subdifferential, of f at x ∈ R

n , written ∂ f (x), is defined through
the following closure process

∂ f (x) :=
{
u ∈ R

n : ∃xk → x, f
(
xk
)

→ f (x) and ∂̂ f
(
xk
)

� uk → u as k → ∞
}

.

(c) If we further assume that f is convex, then the subdifferential of f at x ∈ dom f
can also be defined by

∂ f (x) := {
v ∈ R

n : f (z) ≥ f (x) + 〈v, z − x〉, ∀ z ∈ R
n} .

The elements of ∂ f (x) are called subgradients of f at x .

Denote the domain of ∂ f by dom∂ f := {x ∈ R
n : ∂ f (x) = ∅}. Then, if f ∈ �(Rn)

and x ∈ dom f , then ∂ f (x) is closed (see Theorem 8.6 in [48]); if f ∈ �0(R
n) and

x ∈ dom∂ f , then dom∂ f ⊂ dom f and ∂ f (x) is a nonempty closed convex set (see
Proposition 16.3 in [7]). In the later case, we denote by ∂0 f (x) the unique least-norm
element of ∂ f (x) for x ∈ dom∂ f , along with the convention that ‖∂0 f (x)‖ = +∞
for x /∈ dom∂ f . Points whose subdifferential contains 0 are called critical points. The
set of critical points of f is denoted by crit f . If f ∈ �0(R

n), then crit f = Argmin f .
Let f ∈ �0(R

n); its Fenchel conjugate function f ∗ : Rn → (−∞,+∞] is defined
by

f ∗(x) := sup
y∈Rn

{〈y, x〉 − f (y)},

and the proximal mapping operator by

proxλ f (x) := arg min
y∈Rn

{
f (y) + 1

2λ
‖y − x‖2

}
.
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For each x ∈ dom f , it is well-known [12] that there is a unique absolutely continuous
curve χx : [0,∞) → R

n such that χx (0) = x and for almost every t > 0,

χ̇x (t) ∈ −∂ f (χx (t)).

We say that 	 ⊂ R
n is ∂ f -invariant if

(∀x ∈ 	 ∩ dom ∂ f )(for a.e., t > 0) χx (t) ∈ 	.

This concept was proposed in [12] and recently used in [22]. There are several types
of 	 being ∂ f -invariant; see Example 7.2 in [22] and Section IV.4 in [12]. In Sects. 5
and 8, we will use the fact that the sublevel set Xr := {x : f (x) ≤ r} is always
∂ f -invariant for any function f ∈ �0(R

n).
At last, we present some variational analysis tools. Let T , E , and Ei , i = 1, 2 be

finite-dimensional Euclidean spaces. The closed ball around x ∈ E with radius r > 0
is denoted by BE (x, r) := {y ∈ E : ‖x − y‖ ≤ r}. The unit ball is denoted by BE for
simplicity, and the open unit ball around the original in E is by B

o
E . A multi-function

S : E1 ⇒ E2 is a mapping assigning each point in E1 to a subset of E2. The graph of
S is defined by

gph(S) := {(u, v) ∈ E1 × E2 : v ∈ S(u)}.

The inverse map S−1 : E2 ⇒ E1 is defined by setting

S−1(v) := {u ∈ E1 : v ∈ S(u)}.

Calmness andmetric subregularity have been considered in various contexts and under
various names. Here, we follow the terminology of Dontchev and Rockafellar [17].

Definition 2 ([17], Chapter 3H)

(a) A multi-function S : E1 ⇒ E2 is said to be calm with constant κ > 0 around
ū ∈ E1 for v̄ ∈ E2 if (ū, v̄) ∈ gph(S) and there exist constants ε, δ > 0 such that

S(u) ∩ BE2(v̄, ε) ⊆ S(ū) + κ · ‖u − ū‖2BE2 , ∀u ∈ BE1(ū, δ), (1)

or equivalently,

S(u) ∩ BE2(v̄, ε) ⊆ S(ū) + κ · ‖u − ū‖2BE2 , ∀u ∈ E1. (2)

(b) A multi-function S : E1 ⇒ E2 is said to be metrically sub-regular with constant
κ > 0 around ū ∈ E1 for v̄ ∈ E2 if (ū, v̄) ∈ gph(S) and there exists a constant
δ > 0 such that

d
(
u, S−1(v̄)

)
≤ κ · d(v̄, S(u)), ∀u ∈ BE1(ū, δ). (3)
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Note that the calmness defined above is weaker than the local upper Lipschitz-
continuity property [46]:

S(u) ⊆ S(ū) + κ · ‖u − ū‖2BE2 , ∀u ∈ BE1(ū, δ), (4)

which requires the multi-functions S to be calm around ū ∈ E1 with constant κ > 0 for
any v̄ ∈ E2. Recently, the local upper Lipschitz-continuity property (4) was employed
in [50] as a main assumption for verifying EB conditions of a class of dual objective
functions.

3 The gradient descent: a necessary and sufficient condition for linear
convergence

In this section, we first figure out the weakest condition that ensures gradient descent
to converge linearly, and then we show that a number of existing linear convergence
results can be recovered in a unified and transparent manner. This is a “warm-up”
section for the forthcoming abstract theory in Sects. 4 and 5.

Now, we start by considering the following unconstrained optimization problem

minimize
x∈Rn

f (x),

where f : R
n → R is a differentiable function achieving its minimum min f so

that Argmin f = ∅. Note that Argmin f is closed since f is differentiable. For any
x ∈ R

n , the set of its projection points ontoArgmin f , denoted byY f (x), is nonempty.
Let {xk}k≥0 be generated by the gradient descent method

xk+1 = xk − h · ∇ f (xk), k ≥ 0, (5)

where h > 0 is a constant step size. Observe that d(xk,Argmin f )measures how close
xk is to Argmin f , and the ratio of d(xk+1,Argmin f ) to d(xk,Argmin f ) measures
how fast xk converges to Argmin f . Now, we analyze the ratio of d(xk+1,Argmin f )
to d(xk,Argmin f ) as follows

d2 (xk+1,Argmin f ) = ∥∥xk+1 − x ′
k+1

∥∥2 ≤ ∥∥xk+1 − x ′
k

∥∥2
= ∥∥xk − h · ∇ f (xk) − x ′

k

∥∥2
= d2 (xk,Argmin f ) − 2h

〈∇ f (xk), xk − x ′
k

〉+h2‖∇ f (xk)‖2,

where x ′
k+1 ∈ Y f (xk+1) and x ′

k ∈ Y f (xk). To ensure gradient descent to converge
linearly in the following sense:

d2(xk+1,Argmin f ) ≤ τ · d2(xk,Argmin f ), k ≥ 0. (6)
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it suffices to require that for k ≥ 0, x ′
k ∈ Y f (xk),

d2(xk,Argmin f ) − 2h
〈∇ f (xk), xk − x ′

k

〉+ h2‖∇ f (xk)‖2 ≤ τ · d2(xk,Argmin f ),

i.e.,

inf
u∈Y f (xk )

〈∇ f (xk), xk − u〉 ≥ 1 − τ

2h
d2(xk,Argmin f ) + h

2
‖∇ f (xk)‖2, k ≥ 0.

(7)

It turns out that this sufficient condition is also necessary when the objective function
f belongs to F1,1

L (Rn) and the step size h lies in some interval.

Proposition 1 Let f be a differentiable function on R
n achieving its minimum min f

so that Argmin f = ∅, and let h > 0 and τ ∈ (0, 1).

(i) If the condition (7) holds, then the sequence {xk}k≥0 generated by the gradient
descent method (5) must converge linearly in the sense of (6).

(ii) Let f ∈ F1,1
L (Rn). If the sequence {xk} generated by the gradient descent method

(5)with 0 < h ≤ 1−√
τ

L converges linearly as (6), then the condition (7)must hold.

Proof The proof of sufficiency has been done. We now show the necessity part. Pick
uk+1 ∈ Y f (xk+1) to derive that

d(xk,Argmin f ) ≤ ‖xk − uk+1‖ ≤ ‖xk+1 − uk+1‖ + ‖xk+1 − xk‖
= d(xk+1,Argmin f ) + h‖∇ f (xk)‖, k ≥ 0. (8)

Combine (8) and the fact of linear convergence

d(xk+1,Argmin f ) ≤ √
τ · d(xk,Argmin f ), k ≥ 0

to obtain

(1 − √
τ)d(xk,Argmin f ) ≤ h‖∇ f (xk)‖, k ≥ 0. (9)

According to Theorem 2.1.5 in [43], we know that f ∈ F1,1
L (Rn) implies

〈∇ f (xk), xk − vk〉 ≥ 1

L
‖∇ f (xk)‖2, vk ∈ Y f (xk), k ≥ 0.

By letting α + β ≤ 1 and α, β > 0, we have that for any vk ∈ Y f (xk),

〈∇ f (xk), xk − vk〉 ≥ α

L
‖∇ f (xk)‖2 + β

L
‖∇ f (xk)‖2

≥ α

L
‖∇ f (xk)‖2 + β

(
1 − √

τ
)2

Lh2
d(xk,Argmin f )2, k ≥ 0,
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where the last inequality follows by (9). Thus, by letting α
L = h

2 and β(1−√
τ)2

Lh2
= 1−τ

2h ,
we get the condition (7). At last, we need

α + β = Lh

2
+ Lh(1 − τ)

2(1 − √
τ)2

= hL

1 − √
τ

≤ 1,

which forces h ≤ 1−√
τ

L . This completes the proof. ��
The condition (7) means that if the steepest descent direction −∇ f (x) is well

correlated to any direction towards optimality u − x , where u ∈ Y f (x), then a linear
convergence rate of the gradient descent method can be ensured. Conversely, when
f ∈ F1,1

L (Rn) and if the gradient descent converges linearly and the step size lies in

the interval (0, 1−√
τ

L ], then −∇ f (x) must be well correlated to u − x . Now, we list
some direct applications of this basic observation.

In our first illustrating example, we consider functions in S1,1μ,L(Rn). First, we intro-
duce an important property about this type of functions.

Lemma 1 ([43]) If f ∈ S1,1μ,L(Rn), then we have

∀x, y ∈ R
n, 〈∇ f (x) − ∇ f (y), x − y〉 ≥ μL

μ + L
‖x − y‖2

+ 1

μ + L
‖∇ f (x) − ∇ f (y)‖2.

Let x∗ be the uniqueminimizer of f ∈ S1,1μ,L(Rn); thenArgmin f = {x∗}. Using the
inequality above with x = xk, y = x∗ and noting that ∇ f (x∗) = 0 and ‖xk − x∗‖ =
d(xk,Argmin f ), we obtain

〈∇ f (xk), xk − x∗〉 ≥ μL

μ + L
d2(xk,Argmin f ) + 1

μ + L
‖∇ f (xk)‖2, k ≥ 0.

To guarantee the condition (7), we only need

μL

μ + L
≥ 1 − τ

2h
and

1

μ + L
≥ h

2
,

which implies that

(1 − τ)(μ + L)

2μL
≤ h ≤ 2

μ + L
, τ ≥ τ0 :=

(
L − μ

L + μ

)2

.

The optimal linear convergence rate τ0 can be obtained by setting h = 2
μ+L . This

gives the corresponding result in Nesterov’s book; see Theorem 2.1.15 in [43].
In our second illustrating example, we consider RSC functions [64,67]. The follow-

ing property can be viewed as a convex combination of the restricted strong convexity
and the gradient-Lipschitz-continuity property; see Lemma 3 in [64].
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Lemma 2 ([64]) If f ∈ F1,1
L (Rn) and f is RSC with 0 < ν < L, then for every

θ ∈ [0, 1] it holds:

∀x ∈ R
n,

〈∇ f (x), x − x ′〉 ≥ θ

L
‖∇ f (x)‖2 + (1 − θ)νd2(x,Argmin f ),

where x ′ is the unique projection point of x onto Argmin f since Argmin f is a
nonempty closed convex set.

Similarly, to guarantee the condition (7) , we only need

(1 − θ)ν ≥ 1 − τ

2h
and

θ

L
≥ h

2
,

which implies that

1 − τ

2(1 − θ)ν
≤ h ≤ 2θ

L
, τ ≥ 1 − 4θ(1 − θ)ν

L
≥ 1 − ν

L
.

The optimal linear convergence rate 1− ν
L can be obtained at θ = 1

2 and h = 1
L . This

gives the corresponding result in [64]. The argument here is much simpler than that
previously employed to derive the same result; see the proof of Theorem 2 in [64].

The last example to be illustrated is a nonconvex minimization. The following
definition can be viewed as a local version of Lemma 2. Therefore, it is not difficult
to predict a local linear convergence under such property.

Definition 3 (Regularity Condition, [14]) LetN be a neighborhood of Argmin f and
let α, β > 0. We say that f satisfies the regularity condition if

∀x ∈ N , inf
u∈Y f (x)

〈∇ f (x), x − u〉 ≥ 1

α
d2(x,Argmin f ) + 1

β
‖∇ f (x)‖2.

Again, to guarantee the condition (7) locally, we only need

1

α
≥ 1 − τ

2h
and

1

β
≥ h

2
,

which implies that

(1 − τ)α

2
≤ h ≤ 2

β
, τ ≥ τ0 :=

(
1 − 4

αβ

)
.

The optimal linear convergence rate τ0 can be obtained by setting h = 2
β
and assuming

αβ > 4. The latter can be guaranteed usually; see e.g. the argument belowLemma 7.10
in [14]. Therefore, we obtain the corresponding result in [14]. Regularity condition
provably holds for nonconvex optimization problems that appear in phase retrieval
and low-rank matrix recovery; interested readers can refer to [14,56] for details.
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Observe that the right-hand side of (7) has two terms. In order to better analyze
such condition, we decompose it into two parts:

inf
u∈Y f (xk )

〈∇ f (xk), xk − u〉 ≥ θ1 · d2(xk,Argmin f ),

inf
u∈Y f (xk )

〈∇ f (xk), xk − u〉 ≥ θ2 · ‖∇ f (xk)‖2,

where θi , i = 1, 2 are some positive parameters. This idea of separating the right-hand
side of (7) partially inspires us to consider new and abstract error bound conditions,
which are the main content of the next section.

4 Abstract EB conditions: definition and interplay

This section is divided into two parts. In the first part, we define a group of EB
conditions in a unified and abstract way. In the second part, we discuss some interplay
between them, along with new connections between many existing EB conditions.

4.1 Definition of abstract EB conditions

The concept of residual measure operator, given by the following definition, will play
a key role in the forthcoming theory.

Definition 4 Let ϕ ∈ �(Rn) and X ⊂ R
n . We say that Gϕ : X → R

n is a residual
measure operator related to ϕ and X , if it satisfies

{
x ∈ X : Gϕ(x) = 0

} = critϕ.

Especially, if we further assume that ϕ is convex, the above condition can be written
as

{
x ∈ X : Gϕ(x) = 0

} = Argmin ϕ.

Now, we define a group of abstract EB conditions.

Definition 5 Let ϕ ∈ �(Rn) be such that it achieves its minimum min ϕ and that
its critical point set critϕ is nonempty and closed. Let X ⊂ R

n , 	 ⊂ X , and Gϕ

be a residual measure operator related to ϕ and X . Define the projection operator
Pϕ : Rn ⇒ R

n onto critϕ by:

Pϕ(x) := Arg min
u∈critϕ‖x − u‖.

We call d(x, critϕ) point value error, ϕ(x) − min ϕ objective value error, ‖Gϕ(x)‖
residual value error, and infxp∈Pϕ(x)〈Gϕ(x), x − xp〉 least correlated error. With these
optimality measures, we say that
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1. ϕ satisfies the residual-point value EB condition with operator Gϕ and constant
κ > 0 on 	, abbreviated (Gϕ, κ,	)-(res-EB) condition, if:

∀ x ∈ 	 ∩ domϕ, ‖Gϕ(x)‖ ≥ κ · d(x, critϕ); (res-EB)

2. ϕ satisfies the correlated-point value EB condition with operator Gϕ and constant
ν > 0 on 	, abbreviated (Gϕ, ν,	)-(cor-EB) condition, if:

∀ x ∈ 	 ∩ domϕ, inf
xp∈Pϕ(x)

〈Gϕ(x), x − xp〉 ≥ ν · d2(x, critϕ); (cor-EB)

3. ϕ satisfies the objective-point value EB condition with constant α > 0 on 	,
abbreviated (ϕ, α,	)-(obj-EB) condition, if:

∀ x ∈ 	 ∩ domϕ, ϕ(x) − min ϕ ≥ α

2
· d2(x, critϕ); (obj-EB)

4. ϕ satisfies the residual-objective value EB conditionwith operatorGϕ and constant
η > 0 on 	, abbreviated (Gϕ, η,	)-(res-obj-EB) condition, if:

∀ x ∈ 	 ∩ domϕ, ‖Gϕ(x)‖ ≥ η ·√ϕ(x) − min ϕ; (res-obj-EB)

5. ϕ satisfies the correlated-residual value EB condition with operator Gϕ and con-
stant β > 0 on 	, abbreviated (Gϕ, β,	)-(cor-res-EB) condition, if:

∀ x ∈ 	 ∩ domϕ, inf
xp∈Pϕ(x)

〈Gϕ(x), x − xp〉 ≥ β · ‖Gϕ(x)‖2; (cor-res-EB)

6. ϕ satisfies the correlated-objective value EB condition with operator Gϕ and con-
stant ω > 0 on 	, abbreviated (Gϕ, ω,	)-(cor-obj-EB) condition, if:

∀ x ∈ 	 ∩ domϕ, inf
xp∈Pϕ(x)

〈Gϕ(x), x − xp〉 ≥ ω · (ϕ(x) − min ϕ).

(cor-obj-EB)

We will refer to these EB conditions as global if 	 = R
n . For global EB conditions,

we will omit 	 for simplicity.

In order to gain some intuition of the abstract EB conditions, we point out their
correspondences to existing notions: (res-EB) corresponds to the EB condition of
Hoffman’s type [20,38,69], (res-obj-EB) to the Polyak–Łojasiewicz’s type [10,27],
(obj-EB) to the quadratic growth condition [10,20], (cor-EB) to the RSI’s type [67],
and (cor-obj-EB) to the subgradient inequality for convex functions. The (cor-res-EB)
condition, which will be used in Sect. 5, is a relaxation of the following property:

∀x, y ∈ R
n, 〈∇ϕ(x) − ∇ϕ(y), x − y〉 ≥ 1

L
‖∇ϕ(x) − ∇ϕ(y)‖2,
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which is equivalent to ϕ ∈ F1,1
L (Rn); see Theorem 2.1.5 in [43]. The reader now could

find that we use the residual measure operator to replace concrete notions such as
gradient and proximal gradient in some existing conditions. But compared to [10], we
here consider only the case where the desingularizing function (used in the definition
of Kurdyka–Łojasiewicz inequality) is taken to be the square-root. Below, let us briefly
explain why we only consider the square-root case.

1. Our motivation is to study linear convergence without strong convexity, as
described at the beginning of the introduction. Many clues indicate that linear
convergence corresponds to the square-root case. Actually, we will show such link
is essential.

2. Our framework includes six types of abstract EB conditions, while [10] only
considers two types of them. Currently, it is not an easy task to take general desin-
gularizing functions into account in this framework. But this definitely deserves
further study in the future.

In our early manuscript [62], we only roughly gave global EB conditions in Def-
inition 5. The above was obtained by incorporating the referee’s comments and was
influenced by the recent work [22], resulting in a much more complete list than the
previous one.

4.2 Interplay between the EB conditions

We first show the interplay between the abstract EB conditions. The proof of equiva-
lence will rely heavily on a technical result developed in [10].

Theorem 1 Let ϕ ∈ �(Rn) be such that it achieves its minimum min ϕ and that critϕ
is nonempty and closed. Let X ⊂ R

n,	 ⊂ X, and Gϕ be a residual measure operator
related to ϕ and X. Assume that the (Gϕ, ω,	)-(cor-obj-EB) condition holds. Then,
we have the following implications

(obj-EB) ⇒ (cor-EB) ⇒ (res-EB) ⇒ (res-obj-EB).

One can take ν = αω
2 , κ = ν, η = √

κω to show above implications. If we further
assume that ϕ ∈ �0(R

n), 	 is ∂ϕ-invariant, and Gϕ satisfies

∀ x ∈ 	 ∩ domϕ, ‖Gϕ(x)‖ ≤ inf
g∈∂ϕ(x)

‖g‖, (10)

then we have the following equivalent relationship

(obj-EB) ⇔ (cor-EB) ⇔ (res-EB) ⇔ (res-obj-EB).

For (res-obj-EB) ⇒ (obj-EB), one can take α = 1
2η

2.

Proof We prove this theorem by showing the following implications

(obj-EB) ⇒ (cor-EB) ⇒ (res-EB) ⇒ (res-obj-EB) ⇒ (obj-EB).

123



384 H. Zhang

Firstly, the implication of (obj-EB) ⇒ (cor-EB) follows from

inf
xp∈Pϕ(x)

〈
Gϕ(x), x − xp

〉 ≥ ω · (ϕ(x) − min ϕ) ≥ αω

2
· d2(x, critϕ),

where the left inequality is (cor-obj-EB) and the right one is (obj-EB).
Secondly, the implication of (cor-EB) ⇒ (res-EB) follows fromadirect application

of the Cauchy–Schwarz inequality to (cor-EB).
Thirdly, we show (res-EB) ⇒ (res-obj-EB). By (cor-obj-EB) and (res-EB), we

derive that for ∀ x ∈ 	 ∩ domϕ,

ω · (ϕ(x) − min ϕ) ≤ inf
xp∈Pϕ(x)

〈Gϕ(x), x − xp〉
≤ inf

xp∈Pϕ(x)
‖Gϕ(x)‖‖x − xp‖ = ‖Gϕ(x)‖ · d(x, critϕ)

≤ κ−1‖Gϕ(x)‖2.

Thus, it holds that ∀ x ∈ 	 ∩ domϕ, ‖Gϕ(x)‖ ≥ √
κω · √

ϕ(x) − min ϕ, which is
just (res-obj-EB).

At last, we show (res-obj-EB) ⇒ (obj-EB). The following is based on an argument
used for proving Theorem 27 in [10]. For the sake of completeness, we reproduce
that proof in our particular case. First of all, take x ∈ 	 ∩ domϕ and recall that we
have additionally assumed critϕ = Argmin ϕ. Without loss of generality, we assume
that min ϕ = 0 and x /∈ Argmin ϕ. According to the result about subgradient curves
due to Brézis [12] and Bruck [13] and recently used in [10], we can find the unique
absolutely continuous curve χx : [0,+∞) → R

n such that χx (0) = x and

χ̇x (t) ∈ −∂ϕ(χx (t))

for almost every t > 0. Moreover, χx (t) converges to some point x̂ in Argmin ϕ as
t → +∞ and the function t �→ ϕ(χx (t)) is nonincreasing and

lim
t→+∞ ϕ(χx (t)) = min ϕ = 0.

By the ∂ϕ-invariant property of 	, we have χx (t) ∈ 	 and hence χx (t) ∈ 	 ∩ domϕ

due to the nonincreasingness of ϕ(χx (t)). Let

T := inf{t ∈ [0,+∞) : ϕ(χx (t)) = 0}.

We claim that T > 0. Otherwise, T = 0 and then, by the lower semicontinuity
property of ϕ, we can derive that

ϕ(x) = ϕ(χx (0)) ≤ lim inf
t→0+ ϕ(χx (t)) = 0.
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This contradicts x /∈ Argmin ϕ. Now, combining (10) and (res-obj-EB), we derive
that

‖χ̇x (t)‖√
ϕ(χx (t))

≥ infg∈∂ϕ(χx (t)) ‖g‖√
ϕ(χx (t))

≥ ‖Gϕ(χx (t))‖√
ϕ(χx (t))

≥ η, ∀t ∈ [0, T ).

Observe that for p, q ∈ [0, T ) with q ≥ p,

√
ϕ(χx (p)) −√

ϕ(χx (q)) =
∫ p

q

d
√

ϕ(χx (t))

dt
dt

=1

2

∫ q

p
(ϕ(χx (p)))

− 1
2 ‖χ̇x (t)‖2dt = 1

2

∫ q

p

‖χ̇x (t)‖√
ϕ(χx (t))

‖χ̇x (t)‖dt

≥1

2

∫ q

p
η‖χ̇x (t)‖dt = η

2
· length(χx (t), p, q) ≥ η

2
· ‖χx (p) − χx (q)‖,

where length(χx (t), p, q) stands for the length of subgradient curve from p to q. By
letting p = 0 and q → +∞ if T = +∞ and q → T if T < +∞, we obtain

√
ϕ(χx (0)) = √

ϕ(x) ≥ η

2
· ‖x − x̂‖.

Therefore, for ∀ x ∈ 	 ∩ domϕ we always have

ϕ(x) − min ϕ ≥ η2

4
· ‖x − x̂‖2 ≥ η2

4
· d2(x,Argmin ϕ) = η2

4
· d2(x, critϕ),

which implies that (obj-EB) with α = η2

2 holds. This completes the proof. ��
As a direct consequence, we have the following corollary.

Corollary 1 Let ϕ ∈ �0(R
n) be such that its achieves its minimum min ϕ so that

Argmin ϕ = ∅. Let X ⊂ R
n, 	 ⊂ X be ∂ϕ-invariant, and Gi

ϕ, i = 1, 2 be two
different residual measure operators related to the same function ϕ and the same
subset X. We assume that Gi

ϕ, i = 1, 2 satisfy

∀ x ∈ 	 ∩ domϕ,

∥∥∥Gi
ϕ(x)

∥∥∥ ≤ inf
g∈∂ϕ(x)

‖g‖, (11)

and (Gi
ϕ, ω,	)-(cor-obj-EB) conditions hold. Then, we have

(
G1

ϕ, κ,	
)
-(res-EB) ⇔

(
G1

ϕ, ν,	
)
-(cor-EB) ⇔

(
G1

ϕ, η,	
)
- (res-obj-EB)

⇔ (ϕ, α,	) -(obj-EB) ⇔
(
G2

ϕ, κ,	
)
-(res-EB) ⇔

(
G2

ϕ, ν,	
)
-(cor-EB)

⇔
(
G2

ϕ, η,	
)
-(res-obj-EB).
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Now, we list some cases where the equivalence between the EB conditions indeed
holds.

Corollary 2 The EB conditions (cor-EB), (res-EB), (obj-EB), and (res-obj-EB) are
equivalent under each of the following situations:

case 1: ϕ ∈ F1(Rn) achieves its minimum min ϕ, X = R
n and 	 ⊂ X is ∇ϕ-

invariant, and Gϕ = ∇ϕ;
case 2: ϕ ∈ �0(R

n) achieves its minimum min ϕ, X = dom∂ϕ and 	 ⊂ X is ∂ϕ-
invariant, and Gϕ = ∂0ϕ;

case 3: ϕ = f + g, where f ∈ F1,1
L (Rn) and g ∈ �0(R

n), achieves its minimum
min ϕ, X = R

n and 	 ⊂ X is ∂ϕ-invariant, and Gϕ = Rt , where Rt (x) :=
t−1(x − x+) with t ∈ (0, 1

L ] and x+ = proxtg(x − t∇ f (x)). In addition, we

assume that there exists a constant 0 < ε ≤ 2
t such that

‖Gϕ(x)‖2 ≥ ε
(
ϕ(x) − ϕ

(
x+)) . (12)

Proof First of all, critϕ is nonempty since critϕ = Argmin ϕ = ∅, and is closed since
ϕ a proper and lower semicontinuous function, in all the listed cases. Secondly, by
optimality conditions, one can easily verify that Gϕ in all the listed cases are residual
measure operators. We only need to verify the remaining assumptions in Theorem 1.

For both cases 1 and 2, the convexity of ϕ implies the (cor-obj-EB) condition with
ω = 1. In case 1, the assumption (10) holds obviously because of ∂ϕ(x) = {∇ϕ(x)}.
In case 2, the assumption (10) follows from the definition of ∂0ϕ(x).

Now, let us consider the case 3. Since f ∈ F1,1
L (Rn) and g ∈ �0(R

n), we have that
Gϕ(x) satisfies the standard result

∀x, y ∈ R
n, ϕ

(
x+) ≤ ϕ(y) + 〈Gϕ(x), x − y〉 − t

2
‖Gϕ(x)‖2;

see e.g. Lemma 2.3 in [8] or Lemma 2 in the very recent work [4]. Since ϕ also belongs
to �0(R

n), we can conclude that Argmin ϕ is a nonempty closed convex set. Thus,
by the projection theorem, there exists a unique projection point of x onto Argmin ϕ,
denoted by xp. Using the inequality above with y = xp and the assumption (12), we
derive that

〈Gϕ(x), x − xp〉 ≥ ϕ
(
x+)− min ϕ + t

2
‖Gϕ(x)‖2

≥ ϕ
(
x+)− min ϕ + tε

2

(
ϕ(x) − ϕ

(
x+))

= tε

2
(ϕ(x) − min ϕ) + (1 − tε

2
)
(
ϕ
(
x+)− min ϕ

)

≥ tε

2
(ϕ(x) − min ϕ),

fromwhich the (Gϕ, ω,	)-(cor-obj-EB) condition withω = tε
2 follows. The assump-

tion (10) in this case was established in Theorem 3.5 in [20] and Lemma 4.1 in [32].
This completes the proof. ��
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Remark 1 (i) In cases 1 and 2, from Theorem 1 we can see that if one only needs the
implication

(obj-EB) ⇒ (cor-EB) ⇒ (res-EB) ⇒ (res-obj-EB),

then the assumption on 	 can be removed.
(ii) In case 2, if 	 = dom∂ϕ, then (ϕ, α, dom∂ϕ)-(obj-EB) is actually equivalent to

∀ x ∈ R
n, ϕ(x) − min ϕ ≥ α

2
· d2(x,Argmin ϕ),

since dom∂ϕ is a dense subset of domϕ according to Corollary 16.29 in [7] and
ϕ(x) = +∞ for x /∈ domϕ.

We note that while this work was under review, the authors of [27] indepen-
dently also obtained the equivalent relationship between the EB conditions (cor-EB),
(res-EB), (obj-EB), and (res-obj-EB) for functions in F1,1

L (Rn). We also note that the
authors of [22] independently recently obtained the equivalent relationship between
the EB conditions (res-EB), (obj-EB), and (res-obj-EB) for functions in �0(R

n). The
former is merely limited to F1,1

L (Rn), and the latter mainly focuses on �0(R
n) but

does not consider (cor-EB).
Observe that the condition (12) is implied by the (res-obj-EB) condition since

‖Gϕ(x)‖2 ≥ η2(ϕ(x) − min ϕ) ≥ η2
(
ϕ(x) − ϕ

(
x+)) .

And also, note that ϕ = f + g ∈ �0(R
n) if f ∈ F1,1

L (Rn) and g ∈ �0(R
n). With a

little effort, we can get the following result.

Corollary 3 Let ϕ = f + g with f ∈ F1,1
L (Rn) and g ∈ �0(R

n) achieve its minimum
min ϕ, and let 	 ⊂ R

n be ∂ϕ-invariant and t ∈ (0, 1
L ]. If the (Rt , η,	)-(res-obj-EB)

condition holds, then each of the following conditions holds and hence they are equiv-
alent:
(
∂0ϕ, κ,	

)
-(res-EB) ⇔

(
∂0ϕ, ν,	

)
-(cor-EB)

⇔
(
∂0ϕ, η,	

)
-(res-obj-EB) ⇔ (ϕ, α,	) -(obj-EB) ⇔ (Rt , κ,	) -(res-EB)

⇔ (Rt , ν,	) -(cor-EB) ⇔ (Rt , η,	) -(res-obj-EB).

Based on the relationship established in Theorem 2 in [63], that is (ϕ, α,	)-
(obj-EB) ⇔ (Rt , κ,	)-(res-EB)⇔ (Rt , ν,	)-(cor-EB), and together with the case 2
of Corollary 2, we still have the following result even if we do not take the (Rt , η,	)-
(res-obj-EB) condition as an assumption.

Corollary 4 Let ϕ = f + g with f ∈ F1,1
L (Rn) and g ∈ �0(R

n) achieve its minimum
min ϕ, and let 	 ⊂ dom∂ϕ be ∂ϕ-invariant and t ∈ (0, 1

L ]. Then, we have
(
∂0ϕ, κ,	

)
-(res-EB) ⇔

(
∂0ϕ, ν,	

)
-(cor-EB) ⇔

(
∂0ϕ, η,	

)
-(res-obj-EB)
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⇔ (ϕ, α,	)-(obj-EB) ⇔ (Rt , κ,	)-(res-EB)

⇔ (Rt , ν,	)-(cor-EB).

Note that the (Rt , η,	)-(res-obj-EB) condition is not involved in the equivalence
above. This might explain why one can avoid the condition (12) in existing related
results.

In all corollaries above, parameters involved in different EB conditions can be set
explicitly as in Theorem 1, but we omit the details here.

5 An abstract gradient-typemethod: linear convergence and
applications

In this section, we define an abstract gradient-type method by viewing the negative of
the residual measure operator as a descent direction, and then figure out a necessary
and sufficient condition for linear convergence based on the abstract EB conditions
defined before. The following main result generalizes Proposition 1.

Theorem 2 Let ϕ ∈ �(Rn) be such that it achieves its minimum min ϕ and that critϕ
is nonempty and closed. Let X ⊂ R

n,	 ⊂ X, and Gϕ be a residual measure operator
related to ϕ and X. Suppose that ϕ satisfies the (Gϕ, β,	)-(cor-res-EB) condition.
Define the abstract gradient-type method by

xk+1 = xk − h · Gϕ(xk), k ≥ 0,

with step size h > 0 and arbitrary initial point x0 ∈ 	. Assume that xk ∈ 	, k ≥ 0.
Let τ, θ ∈ (0, 1).

(i) If ϕ satisfies the (Gϕ, ν,	)-(cor-EB) condition with ν < 1
β
and the following

inequalities hold

1 − τ

2θν
≤ h ≤ 2(1 − θ)β, τ ≥ 1 − 4θ(1 − θ)βν, (13)

then the abstract gradient-type method converges linearly in the sense that

d2(xk+1, critϕ) ≤ τ · d2(xk, critϕ), k ≥ 0. (14)

The optimal rate τ0 := 1 − βν is obtained at h = β and θ = 1
2 .

(ii) Conversely, if the abstract gradient-type method converges linearly in the sense of

(14), then ϕ satisfies the (Gϕ, ν,	)-(cor-EB) condition with ν = β(1−√
τ)2

h2
.

Proof First, we repeat the argument before (6) to obtain that for vk ∈ Pϕ(xk),

d2(xk+1, critϕ) ≤ d2(xk, critϕ) − 2h〈Gϕ(xk), xk − vk〉 + h2‖Gϕ(xk)‖2, k ≥ 0.
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Take θ ∈ (0, 1) and then use a convex combination of the (cor-res-EB) and (cor-EB)
conditions at x = xk to obtain

inf
vk∈Pϕ(xk )

〈Gϕ(xk), xk − vk〉 ≥ θν · d2(xk, critϕ) + (1 − θ)β · ‖Gϕ(xk)‖2, k ≥ 0.

Therefore, we can derive that

d2(xk+1, critϕ) ≤ (1 − 2θνh)d2(xk, critϕ) +
(
h2 − 2h(1 − θ)β

)
‖Gϕ(xk)‖2

≤ τ · d2(xk, critϕ), k ≥ 0,

where the second inequality follows from the condition (13) on the step size.Obviously,
the optimal linear convergence rate τ0 = 1 − βν can be obtained at h = β, θ = 1

2 .
Conversely, pick uk+1 ∈ Pϕ(xk+1) to derive that

d(xk, critϕ) ≤ ‖xk − uk+1‖ ≤ ‖xk+1 − uk+1‖ + ‖xk+1 − xk‖
= d(xk+1, critϕ) + h‖Gϕ(xk)‖, k ≥ 0. (15)

Combine (15) and the fact of linear convergence

d(xk+1, critϕ) ≤ √
τ · d(xk, critϕ), k ≥ 0

to obtain

(
1 − √

τ
)2

d2(xk, critϕ) ≤ h2‖Gϕ(xk)‖2, k ≥ 0.

Thus, together with the (cor-res-EB) condition, we can derive that

inf
vk∈Pϕ(xk )

〈Gϕ(xk), xk − vk〉 ≥ β‖Gϕ(xk)‖2 ≥ β
(
1 − √

τ
)2

h2
d2(xk, critϕ), k ≥ 0.

Observe that the starting point x0 ∈ 	 can be arbitrary. Therefore, the (cor-EB)

condition with ν = β(1−√
τ)2

h2
holds. This completes the proof. ��

With Theorem 2 in hand, we now claim the necessary and sufficient EB conditions
guaranteeing linear convergence for the gradientmethod, the proximal point algorithm,
and the forward–backward splitting algorithm. These conditions, previously known to
be sufficient for linear convergence (see e.g. Section 4 in [10]), are actually necessary.
We start by the gradient method, applied to possibly nonconvex optimization.

Corollary 5 Let f : Rn → R be a gradient-Lipschitz-continuous function with modu-
lus L > 0. Assume that f achieves its minimum min f and crit f = Argmin f = ∅.
Let ε > 0 be a fixed constant and set 	 = {x : f (x) ≤ min f + ε}. Let {xk}k≥0 be
generated by the gradient descent method (5) with h = 1

L and x0 ∈ 	.

123



390 H. Zhang

(i) If f satisfies the (∇ f , ν,	)-(cor-EB) condition with ν < L, then the gradient
descent method (5) with h = 1

L converges linearly in the sense that

f (xk+1) − min f ≤
(
1 −

( ν

L

)2)
( f (xk) − min f ), k ≥ 0. (16)

(ii) If we further assume that f is convex, then the gradient descent method (5) with
h = 1

L attains the following linear convergence:

d2(xk+1,Argmin f ) ≤
(
1 − ν

L

)
· d2(xk,Argmin f ), k ≥ 0. (17)

(iii) Conversely, if f is convex and if starting from an arbitrary initial point x0 ∈ 	,
the gradient descent method (5) with h = 1

L converges linearly like (17) but
replacing 1 − ν

L with τ , then f satisfies the (∇ f , ν,	)-(cor-EB) condition with
ν = L(1 − √

τ)2.

Proof We first show (16) by modifying the argument due to Polyak [45] and recently
highlighted in [27,28]. The gradient-Lipschitz-continuity of f implies

f (y) − f (x) − 〈∇ f (x), y − x〉 ≤ L

2
‖y − x‖2, ∀ x, y ∈ R

n . (18)

Using this inequality with y = xk+1 and x = xk and together with the update rule of
gradient descent, we get

f (xk+1) − f (xk) ≤ − 1

2L
‖∇ f (xk)‖2, k ≥ 0, (19)

which implies xk ∈ 	, k ≥ 0. Using again inequality (18) with y = xk and x =
uk ∈ P f (xk), and noting that uk ∈ crit f = Argmin f and hence f (uk) = min f and
∇ f (uk) = 0, we have

f (xk) − min f ≤ L

2
d2(xk, crit f ), k ≥ 0. (20)

Applying the Cauchy-Schwarz inequality to the (∇ f , ν,	)-(cor-EB) condition, we
obtain

∀x ∈ 	 ∩ dom f , ‖∇ f (x)‖ ≥ ν · d(x, crit f ).

Thus, combining inequalities (19) and (20), we have that

f (xk+1) − f (xk) ≤ − 1

2L
‖∇ f (xk)‖2 ≤ − ν2

L2 ( f (xk) − min f ), k ≥ 0,

from which (16) follows.
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Now, with the additional convexity assumption of f , we have f ∈ F1,1
L (Rn), which

is equivalent to the following condition

〈∇ f (x) − ∇ f (y), x − y〉 ≥ 1

L
‖∇ f (x) − ∇ f (y)‖2, x, y ∈ R

n;

see Theorem 2.1.5 [43]. Using this inequality with y ∈ P f (x), we obtain

inf
y∈P f (x)

〈∇ f (x), x − y〉 ≥ 1

L
‖∇ f (x)‖2, x ∈ R

n,

which is just the (∇ f , β,	)-(cor-res-EB) condition with β = 1
L . Therefore, the

remaining results follow from Theorem 2. This completes the proof. ��
Remark 2 In Example 2 in [64], we constructed a one-dimensional nonconvex func-
tion, that satisfies all the conditions in Corollary 5 that ensure (16). In this sense, (16) is
one of the few general results for global linear convergence on non-convex problems.
We note that a similar phenomenon was observed by the authors of [27] under the
Polyak–Łojasiewicz condition.

While crit f = Argmin f is a strong assumption, it is not the same as convexity but
implies the weaker condition of invexity, which says that a function f is invex if and
only if its every critical point is a global minimum. This assumption can be satisfied by
some nonconvex optimization problems recently appeared in machine/deep learning,
see e.g. [61,68].

Before discussing the linear convergence of the proximal point algorithm (PPA),
we introduce the following result.

Lemma 3 ([7,49]) Let f ∈ �0(R
n) and λ > 0. Let the Moreau–Yosida regularization

of f be defined by

fλ(x) := min
u∈Rn

{
f (u) + 1

2λ
‖x − u‖2

}
.

Then,

• fλ is real-valued, convex, and continuously differentiable and can be formulated
as

fλ(x) = f
(
proxλ f (x)

)+ 1

2λ

∥∥x − proxλ f (x)
∥∥2 ;

• Its gradient

∇ fλ(x) = λ−1 (x − proxλ f (x)
)

is λ−1-Lipschitz continuous.
• Argmin fλ = Argmin f and min f = min fλ.
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Now, we are ready to present the result of linear convergence for PPA.

Corollary 6 Let f ∈ �0(R
n) achieve its minimum min f and λ > 0. Let ε > 0 be a

fixed constant and set 	 = {x : f (x) ≤ min f + ε} ∩ dom∂ f . Starting from x0 ∈ 	,
the PPA can be defined by

xk+1 = proxλ f (xk) = xk − λ · ∇ fλ(xk), k ≥ 0.

(i) If f satisfies the ( f , α,	)-(obj-EB) condition, then fλ satisfies the (∇ fλ, ν,	)-
(cor-EB) condition with ν = min{α

4 , 1
4λ }, and hence the PPA converges linearly

in the sense that

d2(xk+1,Argmin f ) ≤
(
1 − min

{
αλ

4
,
1

4

})
· d2(xk,Argmin f ), k ≥ 0.

(21)

(ii) Conversely, if starting from an arbitrary initial point x0 ∈ 	 the PPA converges
linearly like (21) but replacing the rate 1−min{αλ

4 , 1
4 } with a constant τ ∈ (0, 1),

then f satisfies the ( f , α,	)-(obj-EB) condition with α = (1−√
τ)2

2λ .

Proof First of all, we remark that

crit f = Argmin f = Argmin fλ = crit fλ. (22)

From Lemma 3, we have fλ ∈ F1,1
L (Rn) with L = λ−1 and hence the (∇ fλ, β,	)-

(cor-res-EB) condition with β = λ holds. Now, we first prove that the ( f , α,	)-
(obj-EB) condition implies the ( fλ, c,	)-(obj-EB) condition with c = min{α

2 , 1
2λ }.

Indeed, letting v = proxλ f (x) and v′ ∈ P f (v), for any x ∈ 	 ∩ dom f we can derive
that

fλ(x) − min fλ = f
(
proxλ f (x)

)+ 1

2λ

∥∥x − proxλ f (x)
∥∥2 − min f

≥ α

2
d2
(
proxλ f (x), crit f

)+ 1

2λ

∥∥x − proxλ f (x)
∥∥2

= α

2

∥∥v − v′∥∥2 + 1

2λ
‖x − v‖2 ≥ c ·

(∥∥v − v′∥∥2 + ‖x − v‖2
)

≥ c

2

(∥∥v − v′∥∥+ ‖x − v‖)2 ≥ c

2

∥∥x − v′∥∥2 ≥ c

2
d2(x, crit fλ),

where the first inequality utilizes the fact of f (v)+ 1
2λ‖v−x‖2 ≤ f (x), which implies

v ∈ 	 ∩ dom f , and the last inequality follows by v′ ∈ P f (v) ⊂ crit f = crit fλ.
From case 1 of Corollary 2 and (i) in Remark 1, the ( fλ, c,	)-(obj-EB) condition
implies the (∇ fλ, ν,	)-(cor-EB) condition with ν = min{α

4 , 1
4λ }. Therefore, (21)

follows from Theorem 2 and the fact in (22).
Now, we turn to the necessity part. Invoking Theorem 2 again, we conclude that fλ

satisfies the (∇ fλ, ν,	)-(cor-EB) condition with ν = (1−√
τ)2

λ
, that is

∀ x ∈ 	 ∩ dom fλ, inf
xp∈P fλ (x)

〈∇ fλ(x), x − xp〉 ≥ ν · d2(x, crit fλ). (23)
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Together with the fact of crit f = crit fλ, we can get

∀ x ∈ 	 ∩ dom fλ, ‖∇ fλ(x)‖ ≥ ν · d(x, crit f ). (24)

On the other hand, using the definition of v = proxλ f (x), which implies 1
λ
(x − v) ∈

∂ f (v), and the convexity of f , we obtain that

∀ x ∈ dom f ,∀ g ∈ ∂ f (x),

〈
1

λ
(x − v) − g, v − x

〉
≥ 0, (25)

which further implies that

∀ x ∈ dom f , inf
g∈∂ f (x)

‖g‖ ≥ 1

λ
‖x − v‖ = ‖∇ fλ(x)‖. (26)

Thus, combining (24) and (26) and noting that dom f ⊂ dom fλ and ‖∂0 f (x)‖ = +∞
for x /∈ dom∂ f , we obtain

∀ x ∈ 	 ∩ dom f ,
∥∥∥∂0 f (x)∥∥∥ = inf

g∈∂ f (x)
‖g‖ ≥ ν · d(x, crit f ). (27)

This is just the (∂0 f , κ,	)-(res-EB) condition with κ = ν. Note that	 is ∂ f -invaiant.

Therefore, the ( f , α,	)-(obj-EB) condition with α = (1−√
τ)2

2λ holds by case 2 of
Corollary 2. ��
Remark 3 Linear convergence of PPA was previously provided based on different
EB conditions, such as the Łojasiewicz inequality [corresponding to (res-obj-EB)] in
[2,3,10], the quadratic growth condition [corresponding to (obj-EB)] in Proposition
6.5.2 in [9], and the EB condition of Hoffman’s type [corresponding to (res-EB)] in
Theorem 2.1 in [40]. Our novelty here mainly lies in the necessity part, i.e., conclusion
(ii).

Finally, we discuss linear convergence for the forward–backward splitting (FBS)
algorithm. Recall that R1/L(x) = L

(
x − proxtg(x − 1

L ∇ f (x))
)
.

Corollary 7 Let ϕ = f + g, where f ∈ F1,1
L (Rn) and g ∈ �0(R

n), achieve its
minimum min ϕ. Let ε > 0 be a fixed constant and set 	 = {x : ϕ(x) ≤ min ϕ + ε}.
Starting from x0 ∈ 	, the FBS can be defined by

xk+1 = prox 1
L g

(
xk − 1

L
∇ f (xk)

)
= xk − 1

L
· R1/L(xk), k ≥ 0.

Denote Sk := ∑∞
i=0 ‖R1/L(xk+i )‖2, k ≥ 0.

(i) Ifϕ satisfies the (R1/L , ν,	)-(cor-EB) conditionwith ν < 2L, thenFBSconverges
linearly in the sense that

ϕ(xk+1) − min ϕ ≤
(
1 − ν

2L

)
(ϕ(xk) − min ϕ) , k ≥ 0, (28)
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d2(xk+1,Argmin ϕ) ≤
(
1 − ν

2L

)
· d2(xk,Argmin ϕ), k ≥ 0, (29)

and

Sk+1 ≤
(
1 − ν

2L

)
Sk, k ≥ 0. (30)

(ii) Conversely, if starting from an arbitrary initial point x0 ∈ 	, FBS converges
linearly like (29) but replacing 1 − ν

2L with τ , then ϕ satisfies the (R1/L , ν,	)-
(cor-EB) condition with ν = L

2 (1 − √
τ)2.

Proof We rely on the following standard result (see again Lemma 2.3 in [8]):

∀x, y ∈ R
n,

〈
R1/L(y), y − x

〉 ≥ ϕ

(
prox 1

L g

(
y − 1

L
∇ f (y)

))
− ϕ(x)

+ 1

2L
‖R1/L(y)‖2. (31)

Using successively this result at x = y = xk , and then at y = xk, x = uk ∈ Pϕ(xk),
together with the fact of xk+1 = prox 1

L g
(xk − 1

L ∇ f (xk)), we obtain the following
sufficient decrease property

ϕ(xk+1) − ϕ(xk) ≤ − 1

2L
‖R1/L(xk)‖2, k ≥ 0, (32)

and

ϕ(xk+1) − min ϕ + 1

2L
‖R1/L(xk)‖2 ≤ 〈R1/L(xk), xk − uk〉, k ≥ 0.

Note that (32) implies xk ∈ 	, k ≥ 0. Applying the Cauchy–Schwarz inequality
to the (R1/L , ν,	)-(cor-EB) condition, we obtain

∀ x ∈ 	 ∩ domϕ, ‖R1/L(x)‖ ≥ ν · d(x, critϕ),

from which the following inequality follows

〈R1/L(xk), xk − uk〉 ≤ 1

ν
‖R1/L(xk)‖2, k ≥ 0.

Thus, we obtain

ϕ(xk+1) − min ϕ ≤
(
1

ν
− 1

2L

)
‖R1/L(xk)‖2, k ≥ 0. (33)

Combining (32) and (33), we get

ϕ(xk+1) − ϕ(xk) ≤ − 1

2L

(
1

ν
− 1

2L

)−1

(ϕ(xk+1) − min ϕ), k ≥ 0,
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from which the announced result (28) follows. The convergence result (30) can also
be derived from (32) and (33). In fact, we first observe that for any integer N > 0, it
holds

ϕ(xk+1) − min ϕ ≥
N∑
i=1

(ϕ(xk+i ) − ϕ(xk+i+1)), k ≥ 0

and hence the sufficient decrease property (32) yields

ϕ(xk+1) − min ϕ ≥
∞∑
i=1

(ϕ(xk+i ) − ϕ(xk+i+1)) ≥ 1

2L

∞∑
i=1

‖R1/L(xk+i )‖2, k ≥ 0.

Together with (33), we derive that

ϕ(xk) − ϕ(xk+1) = ϕ(xk) − min ϕ − (ϕ(xk+1) − min ϕ)

≤
(
1

ν
− 1

2L

)
‖R1/L(xk−1)‖2 − 1

2L

∞∑
i=1

‖R1/L(xk+i )‖2, k ≥ 1.

Using (32) again, we obtain

(
1

ν
− 1

2L

)
‖R1/L(xk−1)‖2 ≥ 1

2L

∞∑
i=0

‖R1/L(xk+i )‖2, k ≥ 1,

i.e., (
1

ν
− 1

2L

)
(Sk−1 − Sk) ≥ 1

2L
Sk, k ≥ 1,

from which the announced result (30) follows.
Now, using the standard result (31) with x = yp ∈ Pϕ(y) to yield

〈R1/L(y), y − yp〉 ≥ ϕ

(
prox 1

L g

(
y − 1

L
∇ f (y)

))
− ϕ(yp) + 1

2L
‖R1/L(y)‖2,

and noting that

ϕ

(
prox 1

L g

(
y − 1

L
∇ f (y)

))
− ϕ(yp) = ϕ

(
prox 1

L g

(
y − 1

L
∇ f (y)

))
− min ϕ ≥ 0,

we obtain

∀y ∈ R
n, 〈R1/L(y), y − yp〉 ≥ 1

2L
‖R1/L(y)‖2.

Thus, ϕ satisfies the (R1/L , β,	)-(cor-res-EB) condition with β = 1
2L . Therefore,

the remaining results follow from Theorem 2 and the fact of critϕ = Argmin ϕ. ��
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Remark 4 The results (28) and (29) were essentially shown in [20,63] respectively,
with different methods. We note that while this work was under review, the authors
of [16] improved these results under error bound conditions and weaken assumptions
on the gradient Lipschitz continuity. Our novelty here lies in conclusion (ii), which
was independently also recently observed by the authors in [22]. In addition, the result
(30) seems also new and interesting.

6 Linear convergence of the PALM algorithm

The PALM algorithm was recently introduced by the authors of [11] for a class of
composite optimization problems in the general non-convex and non-smooth setting.
The authors developed a convergence analysis framework relying on the Kurdyka–
Łojasiewicz (KL) inequality and proved that PALM converges globally to a critical
point for problems with semi-algebraic data. A global non-asymptotic sublinear rate
of convergence of PALM for convex problems was obtained independently in [26,
51]. Very recently, global linear convergence of PALM for strongly convex problems
was obtained in [33]. Note that PALM is called block coordinate proximal gradient
algorithm in [26] and cyclic block coordinate descent-type method in [33]. In this
section, we show linear convergence of PALM under EB conditions, which are strictly
weaker than strong convexity.

Let x1:k := (x1, x2, . . . , xk) and denote x (t+1)
1:( j−1) := (x (t+1)

1 , . . . , x (t+1)
j−1 ),

x (t)
( j+1):p := (x (t)

j+1, . . . , x
(t)
p ), ψ

(t)
j (x j ) := f (x (t+1)

1:( j−1), x j , x
(t)
( j+1):p), and ϕ

(t)
j (x j ) :=

ψ
(t)
j (x j ) + g j (x j ). Start with given initial points {x (0)

j }pj=1. PALM generates

{x (t+1)
j }pj=1 via solving a collection of subproblems

x (t+1)
j = argmin

x j

{〈
x j − x (t)

j ,∇ψ
(t)
j

(
x (t)
j

)〉
+ L j

2

∥∥∥x j − x (t)
j

∥∥∥2 + g j (x j )

}
,

j = 1, . . . , p, t ≥ 0.

The following is our main result in this section.

Theorem 3 Consider the following composite convex nonsmooth minimization prob-
lem

minimize
x∈Rd

ϕ(x) := f (x1, . . . , xp) +
p∑

j=1

g j (x j ), (34)

where R
d � x = (x1, . . . , xp) with the j th block x j ∈ R

d j , and d = ∑p
j=1 d j .

Set g(x) := ∑p
j=1 g j (x j ) so that domg = �

p
j=1domg j . With these notations, the

objective function of (34) reads as ϕ = f + g. Assume that

• f ∈ F1,1
L (Rd), g j ∈ �0(R

d j ), j = 1, . . . , p, and 	 ⊂ dom∂ϕ;

• f (x1:( j−1), x j , x( j+1):p) ∈ F1,1
L j

(Rd j ) for all x1:( j−1) and x( j+1):p, j = 1, . . . ; p;
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• ϕ = f + g is such that it achieves its minimum min ϕ;
• ϕ satisfies the (∂0ϕ, η,	)-(res-obj-EB) condition (or its equivalent conditions
from case 2 of Corollary 2), which is strictly weaker than strong convexity.

Here, L j , j = 1, . . . , p and L are positive constants. Let {x (t)} be generated by PALM
and assume that x (t) ∈ 	, t ≥ 0. Then, PALM converges linearly in the sense that

ϕ
(
x (t+1)

)
− min ϕ ≤

(
η2Lmin

4pL2 + 4L2
max

+ 1

)−1 (
ϕ
(
x (t)

)
− min ϕ

)
, t ≥ 0,

where Lmin = min j L j and Lmax = max j L j .

Proof We divide the proof into three steps.

Step 1. We prove that

ϕ
(
x (t)

)
− ϕ

(
x (t+1)

)
≥ Lmin

2

∥∥∥x (t) − x (t+1)
∥∥∥2 , t ≥ 0. (35)

Let G(t)
j = L j (x

(t)
j − x (t+1)

j ). By the definition of x (t+1)
j and Lemma 2.3 in [8], we

get

ϕ
(t)
j

(
x (t)
j

)
− ϕ

(t)
j

(
x (t+1)
j

)
≥ 1

2L j

∥∥∥G(t)
j

∥∥∥2 = L2
j

2L j

∥∥∥x (t)
j − x (t+1)

j

∥∥∥2 = L j

2

∥∥∥x (t)
j − x (t+1)

j

∥∥∥2 .

In addition, note that

p∑
j=1

ϕ
(t)
j

(
x (t)
j

)
=

p∑
j=1

(
f
(
x (t+1)
1:( j−1), x

(t)
j :p
)

+ g j

(
x (t)
j

))

and

p∑
j=1

ϕ
(t)
j

(
x (t+1)
j

)
=

p∑
j=1

(
f
(
x (t+1)
1: j , x (t)

( j+1):p
)

+ g j

(
x (t+1)
j

))
.

Thus, we derive that for t ≥ 0,

ϕ
(
x(t)

)
− ϕ

(
x(t+1)

)
=

p∑
j=1

ϕ
(t)
j

(
x(t)
j

)
−

p∑
j=1

ϕ
(t)
j

(
x(t+1)
j

)
≥

p∑
j=1

L j

2

∥∥∥x(t)
j − x(t+1)

j

∥∥∥2 ,

from which (35) follows.

Step 2. The (∂0ϕ, η,	)-(res-obj-EB) condition at x = x (t+1) reads as

ϕ
(
x (t+1)

)
− min ϕ ≤

∥∥∂0ϕ (x (t+1)
)∥∥2

η2
.
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At the (t + 1)th iteration, there exists ξ
(t+1)
j ∈ ∂g j (x

(t+1)
j ) satisfying the optimality

condition:

∇ j f
(
x (t+1)
1:( j−1), x

(t)
j , x (t)

( j+1):p
)

+ L j

(
x (t+1)
j − x (t)

j

)
+ ξ

(t+1)
j = 0.

Here and below, we denote the partial gradient ∇x j f (x) by ∇ j f (x) for notational

simplicity. Let ξ (t+1) = (ξ
(t+1)
1 , . . . , ξ

(t+1)
p ). Then,

∇ f
(
x (t+1)

)
+ ξ (t+1) ∈ ∂ϕ

(
x (t+1)

)

and hence

ϕ
(
x (t+1)

)
− min ϕ ≤

∥∥∂0ϕ (x (t+1)
)∥∥2

η2
≤
∥∥∇ f

(
x (t+1)

)+ ξ (t+1)
∥∥2

η2
.

Using the optimality condition and the fact of f (x) ∈ F1,1
L (Rd), we derive that

∥∥∥∇ f
(
x (t+1)

)
+ ξ (t+1)

∥∥∥2 =
p∑

j=1

∥∥∥∇ j f
(
x (t+1)

)
− ∇ j f

(
x (t+1)
1:( j−1), x

(t)
j , x (t)

( j+1):p
)

−L j

(
x (t+1)
j − x (t)

j

)∥∥∥2

≤
p∑

j=1

2
∥∥∥∇ j f

(
x (t+1)

)
− ∇ j f

(
x (t+1)
1:( j−1), x

(t)
j , x (t)

( j+1):p
)∥∥∥2

+
p∑

j=1

2L2
j

∥∥∥x (t+1)
j − x (t)

j

∥∥∥2

≤
p∑

j=1

2
∥∥∥∇ f

(
x (t+1)

)
− ∇ f

(
x (t+1)
1:( j−1), x

(t)
j , x (t)

( j+1):p
)∥∥∥2

+
p∑

j=1

2L2
j

∥∥∥x (t+1)
j − x (t)

j

∥∥∥2

≤
p∑

j=1

2L2
∥∥∥x (t+1)

j :p − x (t)
j :p
∥∥∥2 +

p∑
j=1

2L2
j

∥∥∥x (t+1)
j − x (t)

j

∥∥∥2

≤
(
2pL2 + 2L2

max

) ∥∥∥x (t+1) − x (t)
∥∥∥2 .

Therefore, we obtain

ϕ
(
x (t+1)

)
− min ϕ ≤

(
2pL2 + 2L2

max

)
η2

∥∥∥x (t+1) − x (t)
∥∥∥2 . (36)
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Step 3. Combining (35) and (36), we derive that

ϕ
(
x (t)

)
− min ϕ =

(
ϕ
(
x (t)

)
− ϕ

(
x (t+1)

))
+
(
ϕ
(
x (t+1)

)
− min ϕ

)

≥ Lmin

2

∥∥∥x (t) − x (t+1)
∥∥∥2 +

(
ϕ
(
x (t+1)

)
− min ϕ

)

≥
(

η2Lmin

4pL2 + 4L2
max

+ 1

)(
ϕ
(
x (t+1)

)
− min ϕ

)
,

from which the claimed result follows. This completes the proof. ��
On one hand, the (ϕ, α,	)-(obj-EB) condition is obviously weaker than strong

convexity. On the other hand, we can easily construct functions that satisfy (obj-EB)
but fail to be strongly convex. For example, the composition f (Ax), where f (·) is
strongly convex and A is rank deficient, is such a function. This explains why we
say that the (∂0ϕ, η,	)-(res-obj-EB) condition, which is equivalent to the (ϕ, α,	)-
(obj-EB) condition, is strictly weaker than strong convexity.

We note that the authors of [6] very recently showed that the regularized Jacobi
algorithm-a type of cyclic block coordinate descent method-achieves a linear conver-
gence rate under similar conditions to that of Theorem 3.

7 Linear convergence of Nesterov’s accelerated forward–backward
algorithm

This section is divided into two parts. In the first part, we first introduce a composite
optimization problem, and then we give a new EB condition. In the second part, we
introduce Nesterov’s accelerated forward–backward algorithm and show its Q-linear
convergence.

7.1 Problem formulation and a new EB condition

Given a nonnegative real sequence {rk}k≥0. Following the terminology from [44], we
say that rk converges:

• Q-linearly if there exists a constant τ ∈ (0, 1) such that ∀k ≥ 0, rk+1 ≤ τ · rk ,
• R-linearly if there exists a sequence {sk}k≥0 Q-linearly converging to zero such
that ∀k ≥ 0, rk ≤ sk .

It is well-known that Nesterov’s accelerated gradient method with the following form

⎧⎪⎨
⎪⎩

yk = xk +
√
L−√

μ√
L+√

μ
(xk − xk−1)

xk+1 = yk − 1
L ∇ f (yk),

(37)

converges R-linearly for minimizing f ∈ S1,1
μ,L(Rn) in the sense that { f (xk) −

min f }k≥0 converges R-linearly. Very recently, the following Q-linear convergence
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was independently discovered in [29,58] by quite different methods:

f (xk+1) − min f + μ

2

∥∥wk+1 − x∗∥∥2 ≤
(
1 −

√
μ

L

)
( f (xk) − min f

+μ

2

∥∥wk − x∗∥∥2) , ∀k ≥ 0, (38)

wherewk = (1+
√

L
μ
)yk−

√
L
μ
xk . In Nesterov’s book [48], via replacing gradient with

gradient mapping, the accelerated scheme (37) was successfully extended to solve the
following minimization problems:

minimize
x∈Q f (x), (39)

and

minimize
x∈Q f (x) := max

1≤i≤m
fi (x), (40)

where f , fi ∈ S1,1
μ,L(Rn), i = 1, . . . ,m and Q is a nonempty closed convex set.

Similarly, the accelerated scheme (37) can also be successfully extended to solve

minimize
x∈Rn

ϕ(x) := f (x) + g(x), (41)

where f ∈ S1,1
μ,L(Rn) and g ∈ �0(R

n). Nesterov’s extended accelerated methods have
been proved to achieve R-linear convergence. A natural question arises:Whether there
exists Q-linear convergence for Nesterov’s accelerated method applied to problems
(39)–(41) as well. In order to study problems (39)–(41) in a unified way, we consider
the following composite optimization problem:

minimize
x

ϕ(x) := f (e(x)) + g(x). (42)

This is a very powerful expression covering many optimization problems, including
problems (39)–(41), as its special cases; see [19,20]. Now, we introduce a new EB
condition, commonly satisfied by many concrete examples in the form of (39)–(41);
see Remark 6 below. Our forthcoming argument will heavily rely on this condition.

Definition 6 Let ϕ := f ◦e+g be such that f : Rm → R is a closed convex function,
g ∈ �0(R

n), and e : Rn → R
m is a smoothmapping with its Jacobian given by∇e(x).

Let L > 0 and define

�(x; y) := g(x) + f (e(y) + ∇e(y)(x − y)) + L

2
‖x − y‖2,

and

p(y) := arg min
x∈Rn

�(x; y),
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G(y) := L(y − p(y)).

Wesay thatϕ satisfies the compositeEBconditionwith positive constantsμ, L obeying
μ < L if

∀x, y ∈ R
n, 〈G(y), y − x〉 ≥ ϕ(p(y)) − ϕ(x) + 1

2L
‖G(y)‖2 + μ

2
‖x − y‖2.(43)

Let us give several comments on this definition.

Remark 5 1. Both p(y) and G(y) are well defined due to the strong convexity of
�(·; y) for any y ∈ R

n . Moreover, the operator G is a residual measure operator
related to ϕ andRn . In fact, observe that the optimality conditions for the proximal
subproblem Argminx∈Rn �(x; y) read as

G(y) ∈ ∂g(p(y)) + ∇e(y)T ∂ f (e(y) + ∇e(y)(p(y) − y)),

which implies y ∈ critϕ if G(y) = 0. On the other hand, by the definition of p(y)
and using the convexity of g and f , we derive that

ϕ(y) = �(y; y) ≥ �(p(y); y)
= g(p(y)) + f (e(y) + ∇e(y)(p(y) − y)) + L

2
‖p(y) − y‖2

≥ (g(y) + 〈z, p(y) − y〉) + ( f (e(y)) + 〈w, ∇e(y)(p(y) − y)〉) + L

2
‖p(y) − y‖2

= ϕ(y) + 〈z + ∇e(y)Tw, p(y) − y〉 + L

2
‖p(y) − y‖2, (44)

where z ∈ ∂g(y) and w ∈ ∂ f (e(y)), and hence z + ∇e(y)Tw ∈ ∂ϕ(y). Thus,
if 0 ∈ ∂ϕ(y), then we can take some z ∈ ∂g(y) and w ∈ ∂ f (e(y)) such that
z+∇e(y)Tw = 0. Hence, the inequality (44) implies that G(y) = 0 if y ∈ critϕ.
Therefore, we have {x ∈ R

n : G(y) = 0} = critϕ, i.e., G is a residual measure
operator related to ϕ.

2. The composite EB condition (43) can be viewed as a relaxation of strong convexity
to some degree. This perspective is in the spirit of the work [42]. Indeed, in case
of m = 1, g(x) ≡ 0, f (t) ≡ t, t ∈ R, and e ∈ F1,1

L (Rn), (43) reads as

∀x, y ∈ R
n, e(x) ≥

(
e(y − 1

L
∇e(y)) + 1

2L
‖∇e(y)‖2

)

+〈∇e(y), x − y〉 + μ

2
‖x − y‖2. (45)

On the other hand, e ∈ F1,1
L (Rn) implies that

∀x, y ∈ R
n, e(y) ≥ e(y − 1

L
∇e(y)) + 1

2L
‖∇e(y)‖2.
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Therefore, (45) is a relaxation of strong convexity in the following form:

∀x, y ∈ R
n, e(x) ≥ e(y) + 〈∇e(y), x − y〉 + μ

2
‖x − y‖2.

In the case of f ◦ e(x) ≡ 0 and g ∈ �0(R
n), (43) reads as

∀x, y ∈ R
n, g(x) ≥ gλ(y) + 〈∇gλ(y), x − y〉 + μ

2
‖x − y‖2, (46)

where λ = 1
L . Recall that gλ is the Moreau–Yosida regularization of g and note

that g(x) ≥ gλ(x). We can see that (46) is a relaxation of strong convexity of gλ.
3. Although we have shown that (43) can be viewed as a relaxation of strong con-

vexity, it is still a very strong property. Now, we construct an example to show
that even strongly convex property of f is not enough to ensure (43) to hold. This
example is obtained by setting n = m = 2, x = (x1, x2)T , e(x) = (x1, x1)T ,
f (x) = 1

2 x
2
1 + 1

2 x
2
2 , g(x) ≡ 0; then ϕ(x) = f ◦ e(x) = x21 . It is obvious to see

that f is strongly convex. Let us show that in this special case (43) fails to hold.
Actually, after some simple calculations, we can get

p(y) =
( L

L+2 y1
y2

)
, G(y) =

( 2L
L+2 y1
0

)
,

and therefore (43) reads as

2L

L + 2
y1(y1 − x1) ≥

(
L

L + 2
y1

)2

− x21 + 2L

(L + 2)2
y21

+ μ

2
(x1 − y1)

2 + μ

2
(x2 − y2)

2, ∀xi , yi ∈ R, i = 1, 2.

But, if we take x1 = y1 ≡ 0, then we should have

0 ≥ μ

2
(x2 − y2)

2, ∀x2, y2 ∈ R.

Obviously, this is impossible for any positive constant μ.
4. Let A ∈ R

m×n with m < n be a given matrix and b ∈ R
m be a given vector. A

well-known fact in the community of EB is that the quadratic function 1
2‖Ax−b‖2

is not strongly convex but satisfies EB conditions. Unfortunately, this function fails
to satisfy (45). We show this point by contradiction. It is enough to consider the
case of m = 1, g(x) ≡ 0, f (t) ≡ t, t ∈ R, and e(x) = 1

2 x
T aaT x with ‖a‖2 = L .

In this case, (45) reads as

1

2

(
aT x − aT y

)2 ≥ μ

2
‖x − y‖2, ∀x, y ∈ R

n .
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Let h = 0 be an orthogonal vector of a. Now, take y − x = λh, λ ∈ R. Then, we
have

0 ≥ μ

2
λ2‖h‖2, ∀λ ∈ R,

which is impossible for any positive constant μ.
5. In order to show that (46) can be strictly weaker than strong convexity, we now

construct a one-dimensional example that satisfies (46) but fails to be strongly
convex. Define the shrinkage operator by S(t) := sign(t) · max{|t | − 1, 0} and
the projection operator by [x]+I := argminy∈I ‖x − y‖, where I is some closed
interval. Now, we take λ = 1, I = [−2, 2], and g(x) = |x | + δI (x). Obviously,
such g(x) is convex but not strongly convex. Using formula (14) in [65] and
Lemma 3, we have

gλ(x) = ∣∣[S(x)]+I
∣∣+ 1

2

(
x − [S(x)]+I

)2
.

Here, gλ is the Moreau–Yosida regularization of g. Denote �gλ(x; y) := gλ(y) +
〈∇gλ(y), x − y〉. We have the following expression:

�gλ(x; y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(y + 2)x − 1
2 y

2 + 4, y ≤ −3,
−x − 1

2 , −3 ≤ y ≤ −1,
yx − 1

2 y
2, −1 ≤ y ≤ 1,

x − 1
2 , 1 ≤ y ≤ 3,

(y − 2)x − 1
2 y

2 + 4, y ≥ 3

(47)

Then, one can verify case by case that for any μ ∈ (0, 1
9 ], (46) always holds. For

example, in the case of y ≤ −3, we only need to verify that

|x | ≥ (y + 2)x − 1

2
y2 + 4 + μ

2
(x − y)2, x ∈ [−2, 2],

i.e., 1−μ
2 (x − y)2 ≥ 1

2 x
2 + 2x − |x | + 4, x ∈ [−2, 2]. Thus, it is sufficient to

require that

μ ≤ 1 − max
y≤−3,|x |≤2

x2 + 4x − 2|x | + 8

(x − y)2
.

After some simple calculations, we have μ ≤ 1
9 . The other cases can be similarly

verified; we omit the details here. This example shows that the composite EB
condition (43) indeed holds for some non-strongly convex functions.

Now, we explain why we say that the condition (43) is commonly satisfied by
problems (39)–(41), whose objective functions are clearly not in S1,1

μ,L(Rn).
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Remark 6 (i) The minimization problem (42) with m = 1, e ∈ S1,1
μ,L(Rn), f (t) ≡

t, t ∈ R, g(x) = δQ(x), and Q being nonempty closed convex, corresponds to
problem (39). The condition (43) holds in this setting; see Theorem 2.2.7 in [43].

(ii) The minimization problem (42) with f (y) = max1≤i≤m{yi }, fi ∈ S1,1
μ,L(Rn),

e(x) = ( f1(x), f2(x), . . . , fm(x)), g(x) = δQ(x), and Q being nonempty closed
convex, corresponds to problem (40). The condition (43) holds in this setting; see
Corollary 2.3.2 in [43].

(iii) The minimization problem (42) with m = 1, e ∈ S1,1
μ,L(Rn), f (t) ≡ t, t ∈ R,

and g ∈ �0(R
n), corresponds to problem (41). The condition (43) holds in this

setting; see the inequality (4.36) in [15].

Interestingly, we note that while this work was under review, the authors of [41]
utilized the exact form (43) to construct underestimate sequences and proposed sev-
eral first order methods for minimizing strongly convex smooth functions and for
strongly convex composite functions. Based on the discussion in this section, it could
be expected to extend the corresponding results in [41] to the composite optimization
problem (42).

In general, we have to admit that it is difficult to verify the composite EB condition
(43), which therefore deserves further study in the future.

7.2 Q-linear convergence of Nesterov’s acceleration

In this part, we show Q-linear convergence of Nesterov’s acceleration under the com-
posite EB condition (43), which is more general than strong convexity. First, in light
of Nesterov’s accelerated scheme (2.2.11) in [43], Nesterov’s accelerated forward–
backward algorithm for solving the problem (42) reads as: choosing x−1 = x0 ∈ R

n ,
for k ≥ 0,

⎧⎪⎨
⎪⎩

yk = xk +
√
L−√

μ√
L+√

μ
(xk − xk−1)

xk+1 = yk − 1
L G(yk).

Let

α =
√
L − √

μ√
L + √

μ
, β = 2

√
μ√

L + √
μ

, γ = 1

2L

(
1 +

√
L

μ

)
.

Let

�k(x
∗; τ) := ϕ(xk) − min ϕ + τ · ‖zk − x∗‖2, k ≥ 0,

where x∗ ∈ Argmin ϕ (assumed to be nonempty) and

zk = 1

2

(
1 +

√
L

μ

)
yk + 1

2

(
1 −

√
L

μ

)
xk, k ≥ 0.
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Now, we are ready to present the main result in this section. The proof idea behind is
partially inspired by the argument in [5] but might be of interest in its own right.

Theorem 4 Let ϕ := f ◦ e+ g be such that f : Rm → R is a closed convex function,
g ∈ �0(R

n), and e : R
n → R

m is a smooth mapping with its Jacobian given by
∇e(x). Let ϕ satisfy the composite EB condition (43) with positive constants μ, L
obeying μ < L. Assume that ϕ achieves its minimum min ϕ so that Argmin ϕ = ∅.
Then, there exist a unique vector x∗ such that Argmin ϕ = {x∗}, and Nesterov’s
accelerated forward–backward method converges Q-linearly in the sense that there
exists a positive constant θ0 < 1 such that for any θ ∈ [θ0, 1) it holds

�k+1
(
x∗; τ

) ≤ ρ · �k
(
x∗; τ

)
, k ≥ 0, (48)

where ρ = max{α, θ} < 1 and τ = θβ
2ργ

. Especially, by taking θ = max{θ0, α}, we
have

�k+1

⎛
⎜⎝x∗; 2Lμ(√

L + √
μ
)2
⎞
⎟⎠ ≤ max{θ0, α} · �k

⎛
⎜⎝x∗; 2Lμ(√

L + √
μ
)2
⎞
⎟⎠ , k ≥ 0.

(49)

Proof We first show the uniqueness of optimal solution x∗ of ϕ. In fact, by statement
(i) in Remark 5 and the fact of Argmin ϕ ⊂ critϕ, we have that G(x∗) = 0 and
p(x∗) = x∗, and hence (43) at y = x∗ reads as

ϕ(x) − min ϕ ≥ μ

2

∥∥x − x∗∥∥2 , ∀x ∈ R
n,

which clearly implies that Argmin ϕ = {x∗}.
Now, we analyze rates of linear convergence. Using successively (43) at x = xk

and y = yk , and then at y = yk and x = x∗, together with the fact of xk+1 = p(yk),
we obtain

ϕ(xk+1) ≤ ϕ(xk) + 〈G(yk), yk − xk〉 − 1

2L
‖G(yk)‖2 − μ

2
‖xk − yk‖2

and

ϕ(xk+1) ≤ ϕ
(
x∗)+ 〈

G(yk), yk − x∗〉− 1

2L
‖G(yk)‖2 − μ

2

∥∥x∗ − yk
∥∥2 .

Multiplying the first inequality by α and the second one by β, and then adding the two
resulting inequalities, we obtain

ϕ(xk+1) ≤αϕ(xk) + βϕ
(
x∗)+ 〈

G(yk), α(yk − xk) + β
(
yk − x∗)〉

− 1

2L
‖G(yk)‖2 − μα

2
‖xk − yk‖2 − μβ

2

∥∥x∗ − yk
∥∥2 .
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In order to estimate the right-hand side of the inequality above, we first write down:

α(yk − xk) + β
(
yk − x∗) = β

(
zk − x∗) . (50)

Secondly, using the expression of yk+1 = xk+1 + α(xk+1 − xk), we get

zk+1 = 1

2

(
1 +

√
L

μ

)
xk+1 + 1

2

(
1 −

√
L

μ

)
xk . (51)

Then, substitute xk+1 = yk − 1
L G(yk) into formula (51) to obtain

zk+1 − x∗ = zk − x∗ − γ · G(yk). (52)

Using equality (52), we derive that

〈
G(yk), zk − x∗〉 = 1

γ

〈
zk − x∗ − (

zk+1 − x∗) , zk − x∗〉

= 1

γ

∥∥zk − x∗∥∥2 − 1

γ

〈
zk+1 − x∗, zk − x∗〉

= 1

γ

∥∥zk − x∗∥∥2 − 1

γ

〈
zk+1 − x∗, zk+1 − x∗ + γ · G(yk)

〉

= 1

γ

∥∥zk − x∗∥∥2 − 1

γ

∥∥zk+1 − x∗∥∥2 − 〈
zk+1 − x∗,G(yk)

〉

= 1

γ

∥∥zk − x∗∥∥2 − 1

γ

∥∥zk+1 − x∗∥∥2 − 〈
G(yk), zk − x∗〉+ γ ‖G(yk)‖2.

Thus, we have

〈
G(yk), zk − x∗〉 = 1

2γ

(∥∥zk − x∗∥∥2 − ∥∥zk+1 − x∗∥∥2)+ γ

2
‖G(yk)‖2. (53)

Combining formula (53) and formula (50), we derive that

ϕ(xk+1) ≤ αϕ(xk) + βϕ
(
x∗)+ β

2γ

(∥∥zk − x∗∥∥2 − ∥∥zk+1 − x∗∥∥2)

+
(

βγ

2
− 1

2L

)
‖G(yk)‖2 − μα

2
‖xk − yk‖2 − μβ

2

∥∥x∗ − yk
∥∥2

= αϕ(xk) + βϕ
(
x∗)+ β

2γ

(∥∥zk − x∗∥∥2 − ∥∥zk+1 − x∗∥∥2)

− μα

2
‖xk − yk‖2 − μβ

2

∥∥x∗ − yk
∥∥2 ,
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where the term ‖G(yk)‖2 is eliminated since βγ
2 = 1

2L . Note that (50) can be written
as

zk − x∗ = (
yk − x∗)+ 1

2

(√
L

μ
− 1

)
(yk − xk),

with which we further derive that

∥∥zk − x∗∥∥2 ≤ 2
∥∥x∗ − yk

∥∥2 + 1

2

(√
L

μ
− 1

)2

‖yk − xk‖2

≤ max

⎧⎨
⎩2,

1

2

(√
L

μ
− 1

)2
⎫⎬
⎭
(∥∥x∗ − yk

∥∥2 + ‖yk − xk‖2
)

.

Denote η1 := min
{

μα
2 ,

μβ
2

}
and η2 := max

{
2, 1

2 (
√

L
μ

− 1)2
}
. Then, we have

ϕ(xk+1) ≤ αϕ(xk) + βϕ
(
x∗)+ β

2γ

(∥∥zk − x∗∥∥2 − ∥∥zk+1 − x∗∥∥2)

− η1

(∥∥x∗ − yk
∥∥2 + ‖yk − xk‖2

)

≤ αϕ(xk) + βϕ
(
x∗)+ β

2γ

(∥∥zk − x∗∥∥2 − ∥∥zk+1 − x∗∥∥2)− η1

η2

∥∥zk − x∗∥∥2 .

Rearrange the terms to obtain

ϕ(xk+1) − ϕ
(
x∗)+ β

2γ

∥∥zk+1 − x∗∥∥2 ≤ α
(
ϕ(xk) − ϕ

(
x∗))+

(
β

2γ
− η1

η2

)∥∥zk − x∗∥∥2 .

Thus, there exists a positive constant θ0 < 1 such that for any θ ∈ [θ0, 1) it holds

ϕ(xk+1) − ϕ
(
x∗)+ β

2γ

∥∥zk+1 − x∗∥∥2 ≤ α
(
ϕ(xk) − ϕ

(
x∗))+ θβ

2γ

∥∥zk − x∗∥∥2 .

Since ρ = max{α, θ}, we have that ρ < 1 and θ
ρ

≤ 1. Thus, we obtain

ϕ(xk+1) − ϕ
(
x∗)+ θβ

2ργ

∥∥zk+1 − x∗∥∥2 ≤ α
(
ϕ(xk) − ϕ

(
x∗))+ θβ

2γ

∥∥zk − x∗∥∥2

≤ ρ

(
ϕ(xk) − ϕ

(
x∗) )+ θβ

2ργ

∥∥zk − x∗∥∥2) ,

i.e., �k+1(x∗; τ) ≤ ρ · �k(x∗; τ) with τ = θβ
2ργ

. This is just the announced result
(48).
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It remains to show (49). In fact, if θ = max{θ0, α}, then ρ = max{α, θ} =
max{θ0, α} = θ and hence

τ = θβ

2ργ
= β

2γ
= 2Lμ(√

L + √
μ
)2 .

This completes the proof. ��
Remark 7 It should be noted that we here only show the existence of rates of linear
convergence for Nesterov’s accelerated forward–backward method. But, it is not clear

whether one can derive an exact rate of linear convergence as 1−
√

μ
L as obtained for

Nesterov’s accelerated gradient method.

8 A class of dual functions satisfying EB conditions

Verifying EB conditions for functions with certain structure is a difficult topic. In
this section, we consider a class of dual objective functions, that have interesting
applications in signal processing and compressive sensing [31,66]. We first describe
the problem, along with some direct results.

Proposition 2 Consider the linearly constrained optimization problem

minimize
y∈Rm

g(y), subject to Ay = b, (P)

where g : Rm → R is a real-valued and strongly convex function with modulus c > 0,
A ∈ R

n×m is a given matrix with m ≤ n, and b ∈ R(A) is a given vector. Here, R(A)

stands for the range of A. The dual problem is

minimize
x∈Rn

f (x) := g∗ (AT x
)

− 〈b, x〉. (D)

Then, we have that

• the primal problem (P) has a unique optimal solution ȳ,

• the dual objective function f belongs to F1,1
L (Rn) with L = ‖A‖2

c , and
• the set of optimal solutions of the dual problem,

Argmin f :=
{
x ∈ R

n : A∇g∗ (AT x
)

= b
}

,

is a nonempty closed convex set, and can be characterized by {x ∈ R
n : AT x ∈

∂g(ȳ)} or equivalently by {x ∈ R
n : ∇g∗(AT x) = ȳ} .

Proof The first two statements are standard results which can be found in textbooks
on convex analysis and no proof will be given here. Now, we prove the third state-
ment. First, let the Lagrangian function be given by L(y, x) = g(y) − 〈Ay − b, x〉.
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By the assumption of b ∈ R(A) and the finiteness of the optimal value of primal
problem, according to Proposition 5.3.3 in [9], for any x̄ ∈ Argmin f we have
that ȳ ∈ Argmin L(y, x̄). Hence, AT x̄ ∈ ∂g(ȳ) or equivalently ∇g∗(AT x̄) = ȳ
due to (∂g)−1 = ∇g∗, which holds by Corollary 23.5.1 in [47]. This implies that
Argmin f ⊆ {x ∈ R

n : ∇g∗(AT x) = ȳ}. The inverse inclusion is obvious since
Aȳ = b. Thereby,

Argmin f =
{
x ∈ R

n : ∇g∗ (AT x
)

= ȳ
}

=
{
x ∈ R

n : AT x ∈ ∂g(ȳ)
}

.

This completes the proof. ��
Now, we state the main result of this section.

Theorem 5 Use the same setting as Proposition 2. Denote Xr := {x ∈ R
n : f (x) ≤

min f + r} with r ≥ 0 and Vr := cl(AT Xr ), where cl(AT Xr ) stands for the closure
of AT Xr . If the following assumptions hold:

(a) ∂g is calm around ȳ for any z̄ ∈ V0,
(b) the collection {∂g(ȳ), R(AT )} is linearly regular with constant γ > 0, that is

d
(
AT x, ∂g(ȳ)

)
≥ γ · d

(
AT x, ∂g(ȳ) ∩ R

(
AT
))

, ∀x ∈ R
n,

then we have that

(i) There exist positive constants r0, τ such that the ( f , τ, Xr0)-(obj-EB) condition
holds, that is

f (x) − min f ≥ τ

2
· d2(x, crit f ), ∀x ∈ Xr0 . (54)

Specifically, if ∂g is calm with constant κ > 0 around ȳ for any z̄ ∈ V0, then (54)
holds for all τ ∈ (0, κ−1).

(ii) For any sublevel set Xr , pick r1 ∈ (0, r0) and let cr :=
√

r1
r and

ρr :=
{
cr , when r ≥ r0,
1, when r ≤ r0.

Then, the (∇ f , ν, Xr )-(cor-EB) condition with ν = τρ2
r
8 holds.

Proof We first prove that Vr is compact for any r ≥ 0. To this end, letting fr =
min f + r and using the fact b = Aȳ, we write Xr into the following form:

Xr =
{
x ∈ R

n : g∗ (AT x
)

−
〈
ȳ, AT x

〉
≤ fr

}
.

Denote

Yr := {
y ∈ R

m : g∗(y) − 〈ȳ, y〉 ≤ fr
}
.
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Obviously, AT Xr ⊆ Yr . Let g̃(·) := g∗(·) − 〈ȳ, ·〉. Then, g̃∗(y) = g(y + ȳ). Thus,
domg̃∗ = domg = R

m . This implies that g̃ is coercive (see Theorem 11.8 in [48]) and
hence Yr = {y ∈ R

m : g̃(y) ≤ fr } is bounded. Furthermore, since g̃ is continuous, Yr
is closed and hence compact. Thereby, Vr = cl(AT Xr ) ⊆ Yr is bounded and hence
also compact.

Second, we show that V0 ⊆ ∂g(ȳ). Recall that we have shown that X0 = {x ∈
R
n : AT x ∈ ∂g(ȳ)} in Proposition 2. Hence, AT X0 ⊆ ∂g(ȳ). Since g is a real-valued

convex function, ∂g(ȳ)must be nonempty, closed, and bounded according to Theorem
23.4 in [47] and Theorem 8.6 in [48]. Therefore, V0 = cl(AT X0) ⊆ ∂g(ȳ)

Now, since ∂g is calmat ȳ for any z̄ ∈ V0 andV0 ⊆ ∂g(ȳ) is compact, byProposition
2 in [69] we can conclude that there exist constants κ, ε > 0 such that

∂g(y) ∩ (V0 + εBE ) ⊆ ∂g(ȳ) + κ · ‖y − ȳ‖2BE , ∀y ∈ E, (55)

where we denote R
m by E for simplicity. Pick z ∈ V0 + εBE and let y = ∇g∗(z).

Then, z ∈ ∂g(y) due to ∂g = (∇g∗)−1 and hence z ∈ ∂g(y) ∩ (V0 + εBE ). By
inclusion (55), we obtain

d(z, ∂g(ȳ)) ≤ κ‖y − ȳ‖2 = κ · d (ȳ,∇g∗(z)
)
, ∀z ∈ V0 + εBE , (56)

which can be rewritten as

d
(
z,
(∇g∗)−1

(ȳ)
)

≤ κ · d (ȳ,∇g∗(z)
)
, ∀z ∈ V0 + εBE . (57)

This implies that ∇g∗ is always metrically subregular at each z̄ ∈ V0 for ȳ. Thus, by
Theorem 3.1 in [21], for each z̄ ∈ V0 there exists a neighborhood z̄ + ε(z̄)BE and a
positive constant α(z̄) such that

g∗(z) ≥ g∗(z̄) − 〈ȳ, z̄ − z〉 + α(z̄)

2
· d2

(
z,
(∇g∗)−1

(ȳ)
)

,

∀z ∈ E with ‖z − z̄‖2 ≤ ε(z̄), (58)

where the constant α(z̄) can be chosen arbitrarily in (0, κ−1). Note that {z̄ +
ε(z̄)Bo

E }z̄∈V0 forms an open cover of the compact set V0. Hence, by the Heine-Borel
theorem, there exist K points (where K ≥ 1 is finite) z̄1, . . . , z̄K ∈ V0 such that

V0 ⊆ U :=
K⋃
i=1

(
z̄i + ε(z̄i )B

o
E
)
.

Let α = min{α(z̄1), . . . , α(z̄K )}, which can be chosen arbitrarily in (0, κ−1), and note
that min f = g∗(z̄) − 〈ȳ, z̄〉, ∀z̄ ∈ V0. From (58), we have

g∗(z) − 〈ȳ, z〉 ≥ min f + α

2
· d2

(
z,
(∇g∗)−1

(ȳ)
)

, ∀z ∈ U .
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Letting r0 > 0 be small enough such that Vr0 ⊆ U and using the fact of (∇g∗)−1 = ∂g,
we obtain

g∗(z) − 〈ȳ, z〉 ≥ min f + α

2
· d2(z, ∂g(ȳ)), ∀z ∈ Vr0 ,

and hence,

f (x) − min f ≥ α

2
· d2

(
AT x, ∂g(ȳ)

)
, ∀x ∈ Xr0 . (59)

Using the linear regularity property of {∂g(ȳ), R(AT )}, we derive that

d
(
AT x, ∂g(ȳ)

)
≥ γ · d

(
AT x, ∂g(ȳ) ∩ R

(
AT
))

= γ · min
AT u∈∂g(ȳ)

∥∥∥AT x − AT u
∥∥∥

= γ · min
y∈AT X0

∥∥∥AT x − y
∥∥∥ ≥ γ · min

y∈V0

∥∥∥AT x − y
∥∥∥ = γ ·

∥∥∥AT x − ŷ
∥∥∥ ,

where such ŷ ∈ V0 exists due to the compactness of V0. Now, we follow the argument
in [50] to finish the proof of (i). Since ŷ ∈ V0 = cl(AT X0), we can find a sequence
{xn}∞n=0 ⊂ X0 such that AT xn → ŷ as n → +∞. Denote the null space of AT

by N (AT ) and the minimal positive singular value of A by σ(A). Using the fact of
Argmin f + N (AT ) ⊆ Argmin f , we can derive that

d(x,Argmin f ) ≤
∥∥∥x −

(
xn + PN(AT )(x − xn)

)∥∥∥ ≤ 1

σ(A)

∥∥∥AT x − AT xn
∥∥∥ , n ≥ 0,

where PN (AT ) stands for the orthogonal projection operator onto N (AT ). Thus, by
letting n → +∞, we obtain

d(x,Argmin f ) ≤ 1

σ(A)

∥∥∥AT x − ŷ
∥∥∥ ≤ d

(
AT x, ∂g(ȳ)

)
γ · σ(A)

. (60)

Note thatArgmin f = crit f . Thereby, in viewof (59) and (60), the (obj-EB) condition
follows with τ = αγ 2σ 2(A).

Let us prove (ii). Without loss of generality, we assume that min f = 0 and r ≥
r0. Since for any r > 0 the sublevel set Xr is ∇ f -invariant, using (54) together
with the equivalence established in Corollary 2, we can conclude that f satisfies the

(∇ f , η, Xr0)-(res-obj-EB) conditions with η =
√

τ
2 , that is

∀ x ∈ Xr0 , ‖∇ f (x)‖ ≥ η ·√ f (x). (61)

Let ϕ(t) := 2η−1t
1
2 . Then, inequality (61) can be written as

∀ x ∈ Xr0 , ‖∇ f (x)‖ϕ′( f (x)) ≥ 1. (62)
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By applying Proposition 30 in [10], a globalization result for KL inequalities, to (62),
we have that for the given r1 ∈ (0, r0), the function given by

φ(t) :=
{

ϕ(t), when t ≤ r1,
ϕ(r1) + (t − r1)ϕ′(r1), when t ≥ r1,

is desingularising for f on all of Rn and hence it holds

∀ x ∈ Xr , ‖∇ f (x)‖φ′( f (x)) ≥ 1. (63)

Thereby, we can get

‖∇ f (x)‖ ≥ η
√
r1, ∀x ∈ Xr ∩ Xc

r1 ,

where Xc
r1 is the complement of Xr1 . By the definition of cr , we can further obtain

‖∇ f (x)‖ ≥ ηcr
√
r ≥ ηcr

√
f (x), ∀x ∈ Xr ∩ Xc

r1 .

Finally, noting the expression of ρr and together with (61), for r > 0 we have

‖∇ f (x)‖ ≥ ηρr
√

f (x), ∀x ∈ Xr ,

which is just the (∇ f , ηρr , Xr )-(res-obj-EB) condition. Thus, the (∇ f , ν, Xr )-
(cor-EB) condition follows from Corollary 2. Using the relevant formulas in
Theorem 1, we have

ν = 1

4
(ηρr )

2 = 1

4
ρ2
r · τ

2
= 1

8
ρ2
r τ,

which completes the proof. ��
Remark 8 By directly invoking Corollary 4.3 in [1], we can derive (58) with the con-
stant satisfying α(z̄) ∈ (0, 1

4κ ), which is slightly worse than that of α(z̄) ∈ (0, κ−1).

Remark 9 The author of [50], with slightly different assumptions, proved by con-
tradiction that the dual objective function f (x) = g∗(AT x) − 〈b, x〉 satisfies the
(∇ f , ν, Xr )-(cor-EB) condition. While the author of [50] requires that ∂g is calm
around ȳ for any z̄ ∈ R

m , i.e., the local upper Lipschitz-continuity property (4), we
only require that ∂g is calm around ȳ for any z̄ ∈ V0. Our proof is by means of the KL
inequality globalization technique developed in [10], and hence quite different from
that of [50].

Remark 10 Verifying EB conditions for more general functions with the form f (x) :=
h(Ax) + l(x) was studied recently in [20,32,69]. Specialized to the dual objective
function f (x) = g∗(AT x) − 〈b, x〉, the existing theory usually requires g∗ to be
strictly or strongly convex; see e.g., Corollary 4.3 in [20] and Assumption 1 in [69].
In contrast, our study, following the research line of work [50], relies on exploiting
the primal-dual structure, and is thus quite different from that in [20,32,69].

123



New analysis of linear convergence of gradient-type… 413

9 Discussion

In this paper, we provide a new perspective for studying EB conditions and analyz-
ing linear convergence of gradient-type methods. Under our theoretical framework, a
group of new technical results are discovered. Especially, some EB conditions, previ-
ously known to be sufficient for linear convergence, are also necessary; and Nesterov’s
accelerated forward–backward algorithm, previously known to be R-linearly conver-
gent, is also Q-linearly convergent. Finally, we close this paper with the following
possible future works:

1. We have defined a group of abstract EB conditions of “square type”. But we do not
know whether the idea behind can be extended to that of general types by intro-
ducing so-called desingularizing functions [10], so that the other EB conditions
discussed in [22] can be included in a more general framework.

2. Althoughwe have shown sufficient conditions guaranteeing linear convergence for
PALM and Nesterov’s accelerated forward–backward algorithms, it is still unclear
whether they are necessary. The very recent work [37] might shed light on this
topic.

3. VerifyingEBconditionswith high probability for non-convex functions has proven
to be a very powerful approach for non-convex optimization; see e.g. [14,34,56].
Thus, seeking or verifying new classes of non-convex functions, satisfying EB
condition with high-probability, deserves future study.

4. What are the optimal rates of linear convergence (or say, exact worst-case conver-
gence rates) for gradient-type methods under general EB conditions? The method
of performance estimation, originally proposed in [18] and further developed in
[30,54,55], might be useful for this topic.

5. Ordinary differential equation (ODE) approaches are recently used to study (accel-
erated) gradient-type methods [53,58]. Except one paper [60], existing analyses
only consider general convex and strongly convex conditions, and do not work
on general EB conditions. It would be interesting to investigate whether the EB
condition presented in this paper can be embedded in the ODE approaches to study
linear convergence for gradient-type methods.
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