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Abstract Generalizing both mixed-integer linear optimization and convex optimiza-
tion,mixed-integer convex optimization possesses broad modeling power but has seen
relatively few advances in general-purpose solvers in recent years. In this paper, we
intend to provide a broadly accessible introduction to our recent work in developing
algorithms and software for this problem class. Our approach is based on construct-
ing polyhedral outer approximations of the convex constraints, resulting in a global
solution by solving a finite number of mixed-integer linear and continuous convex
subproblems. The key advance we present is to strengthen the polyhedral approxima-
tions by constructing them in a higher-dimensional space. In order to automate this
extended formulation we rely on the algebraic modeling technique of disciplined con-
vex programming (DCP), and for generality and ease of implementation we use conic
representations of the convex constraints. Although our framework requires a manual
translation of existing models into DCP form, after performing this transformation
on the MINLPLIB2 benchmark library we were able to solve a number of unsolved
instances and on many other instances achieve superior performance compared with
state-of-the-art solvers like Bonmin, SCIP, and Artelys Knitro.
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1 Introduction

Mixed-integer linear programming (MILP) has established itself as a practical frame-
work for optimization problems in scheduling, logistics, planning, and many other
areas. Although these problems are in general NP-Hard, more than 50 years of invest-
ment inMILP techniques has resulted in powerful commercial and open-source solvers
that can solve MILP problems of practical interest within reasonable time limits [30].
The aim of this paper is to developmethodologies for solving the more general class of
mixed-integer convexoptimization—ormixed-integer convexprogramming (MICP)—
problems by reducing them to a sequence of MILP problems.

In order to employ MILP, we relax the convex constraints by representing them
as an intersection of a finite number of half-spaces, that is, polyhedral constraints.
Based on this idea, Duran and Grossman [17] and Leyffer [32] developed the outer
approximation (OA) algorithm which solves a sequence of MILP and continuous,
convex subproblems to deliver a globally optimal solution for MICP problems in a
finite number of iterations;we present a generalized version of this algorithm in Sect. 2.

Despite the fact that many MICP approaches, including the OA algorithm, build
on MILP approaches, there remains a significant performance gap between the two
problem classes. Bonami, Kilinç, and Linderoth [10] note in a recent review that
continued advances in MILP have translated into “far more modest” growth in the
scale of problems whichMICP solvers can solve within reasonable time limits. Hence,
despite numerous potential applications (see the reviews [5,10]), our perception is
that MICP has not entered the mainstream of optimization techniques, perhaps with
the exception of the special case of mixed-integer second-order cone programming
(MISOCP) which we will discuss at length.

The cases in which the OA algorithm and others based on polyhedral approxi-
mation perform poorly are those in which the convex set of constraints is poorly
approximated by a small number of half-spaces. In Sect. 3, we review a simple exam-
ple identified by Hijazi et al. [27] where the OA algorithm requires 2n iterations to
solve an MICP instance with n decision variables. Fortunately, [27] also propose a
solution based on ideas from [41] that can significantly improve the quality of a polyhe-
dral approximation by constructing the approximation in a higher dimensional space.
These constructions are known as extended formulations, which have also been consid-
ered by [31,44]. Although Hijazi et al. demonstrate impressive computational gains
by using extended formulations, implementing these techniques within traditional
MICP solvers requires more structural information than provided by “black-box” ora-
cles through which these solvers typically interact with nonlinear functions. To our
knowledge, MINOTAUR [33] is the only such solver to automate extended formula-
tions. In Sect. 4 we identify the modeling concept of disciplined convex programming
(DCP) [22], popularized in the CVX software package [21], as a practical solution
to the problem of automatically generating extended formulations based on a user’s
algebraic representation of an MICP problem.

Our investigation of DCP leads us in Sect. 5 to consider conic optimization as a rep-
resentation of convex constraints that compactly encodes all of the information needed
to construct extended formulations. This key observation links together a number of
streams in convex optimization and MICP research, and in particular explains the
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Polyhedral approximation in mixed-integer convex optimization 141

increasingly popular role of MISOCP and how it can be extended to cover “general”
MICP. Pulling these pieces together, in Sect. 6 we develop the first OA algorithm
for mixed-integer conic optimization problems based on conic duality. In Sect. 7, we
presentPajarito, a new solver forMICP based on the conic OA algorithm and compare
its efficiency with state-of-the-art MICP solvers. We report the solution of a number
of previously unsolved benchmark instances.

This paper is meant to be a self-contained introduction to all of the concepts beyond
convex optimization and mixed-integer linear optimization needed to understand the
algorithm implemented in Pajarito. Following broad interest in our initial work [35],
we believe that a primary contribution of this paper is to compile the state of the art for
readers and to tell a more detailed story of why DCP and conic representations are a
natural fit for MICP. For example, in Sect. 2 we present the OA algorithm in a straight-
forward yet generic fashion not considered by previous authors that encompasses both
the traditional smooth setting and the conic setting. A notable theoretical contribution
beyond [35] is an example in Sect. 6 of what may happen when the assumptions of the
OA algorithm fail: an MICP instance for which no polyhedral outer approximation is
sufficient. Our computational results in Sect. 7 have been revised with more compar-
isons to existing state-of-the-art solvers, and as a final contribution above [35], our
solver Pajarito has now been publicly released along with the data and scripts required
to reproduce our experiments.

2 State of the art: polyhedral outer approximation

We state a generic mixed-integer convex optimization problem as

min
x

cT x (MICONV)

s.t. x ∈ X,

xi ∈ Z, li ≤ xi ≤ ui ∀i ∈ I,

where X is a closed, convex set, and the set I ⊆ {1, 2, . . . , n} indexes the integer-
constrained variables, over which we have explicit finite bounds li and ui for i ∈
I . We assume that the objective function is linear. This assumption is without loss
of generality because, given a convex, nonlinear objective function f (x), we may
introduce an additional variable t , constrain (t, x) to fall in the set {(t, x) : f (x) ≤ t},
known as the epigraph of f , and then take t as the linear objective to minimize [10].
For concreteness, the convex set of constraints X could be specified as

X = {x ∈ R
n : g j (x) ≤ 0, j ∈ J }, (1)

for some set J where each g j is a smooth, convex function, although we do not make
this assumption. We refer to the constraints xi ∈ Z ∀ i ∈ I as integrality constraints.
Note that when these integrality constraints are relaxed (i.e., removed), MICONV
becomes a convex optimization problem.
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142 M. Lubin et al.

A straightforward approach for finding the global solution of (MICONV) is branch
and bound. Branch and bound is an enumerative algorithmwhere lower bounds derived
from relaxing the integrality constraints in (MICONV) are combined with recursively
partitioning the space of possible integer solutions. The recursive partition is based on
“branches” such as xi ≤ k and xi ≥ k + 1 for some integer-constrained index i ∈ I
and some value k chosen between the lower bound li and the upper bound ui of xi . In
the worst case, branch and bound requires enumerating all possible assignments of the
integer variables, but in practice it can perform much better by effectively pruning the
search tree. Gupta and Ravindran [24] describe an early implementation of branch-
and-bound for MICP, and Bonami et al. [11] more recently revisit this approach.

On many problems, however, the branch-and-bound algorithm is not competitive
with an alternative family of approaches based on polyhedral outer approximation.
Driven by the availability of effective solvers for linear programming (LP) and MILP,
it was observed in the early 1990s by Leyffer and others [32] that it is often more
effective to avoid solving convex, nonlinear relaxations, when possible, in favor of
solving polyhedral relaxations using MILP. This idea has influenced a majority of the
solvers recently reviewed and benchmarked by Bonami et al. [10].

In this section, we will provide a sketch of an outer approximation (OA) algorithm.
Wederive the algorithm in amoregeneralway thanmost authors thatwill later be useful
in the discussion of mixed-integer conic problems in Sect. 6, although for intuition
and concreteness of the discussion we illustrate the key points of the algorithm for
the case of the smooth, convex representation (1), which is the traditional setting. We
refer readers to [1,9,17] for a more rigorous treatment of the traditional setting and
Sect. 6 for more on the conic setting (i.e., when X is an intersection of convex cone
and an affine subspace). We begin by defining polyhedral outer approximations.

Definition 1 A set P is a polyhedral outer approximation of a convex set X if P
is a polyhedron (an intersection of a finite number of closed half-spaces, i.e., linear
inequalities of the form aTi x ≤ bi ) and P contains X , i.e., X ⊆ P .

Note that we have not specified the explicit form of the polyhedron. While the
traditional OA algorithm imagines P to be of the form {x ∈ R : Ax ≤ b} for some
A and b, it is useful to not tie ourselves, for now, to a particular representation of the
polyhedra.

Polyhedral outer approximations of convex sets are quite natural in the sense that
every closed convex set can be represented as an intersection of an infinite number of
closed half-spaces [29]. For instance, when X is given in the functional form (1) and
each g j : Rn → R is smooth and finite-valued overRn then the following equivalence
holds:

X = {x ∈ R
n : g j (x

′) + ∇g j (x
′)T (x − x ′) ≤ 0 ∀ x ′ ∈ R

n, j ∈ J }, (2)

where ∇g j (x ′) is the gradient of g j . When some g j functions are not defined (or do
not take finite values) over all of Rn then these “gradient inequalities” plus additional
linear constraints enforcing the domain of each g j provide a representation of X as an
intersection of halfspaces; see [29] for further discussion.
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Polyhedral approximation in mixed-integer convex optimization 143

Hence, in the most basic case, a polyhedral approximation of X can be derived by
picking a finite number of points S ⊂ R

n and collecting the half-spaces in (2) for
x ′ ∈ S instead of for all x ′ ∈ R

n . What is perhaps surprising is that a finite number
of half-spaces provides a sufficient representation of X in order to solve (MICONV)
to global optimality, under some assumptions.1 This idea is encompassed by the OA
algorithm which we now describe.

Given a polyhedral outer approximation P of the constraint set X , we define the
following mixed-integer linear relaxation of (MICONV)

rP = min
x

cT x (MIOA(P))

s.t. x ∈ P,

xi ∈ Z, li ≤ xi ≤ ui ∀i ∈ I.

Note that MIOA(P) is a relaxation because any x feasible to (MICONV) must be
feasible toMIOA(P). Therefore the optimal value ofMIOA(P) provides a lower bound
on the optimal value of (MICONV). This bound may be NP-Hard to compute, since
it requires solving a mixed-integer linear optimization problem; nevertheless we may
use existing, powerful MILP solvers for these relaxations.

For notational convenience,we sometimes split the integer-constrained components
and the continuous components of x , respectively, writing x = (xI , xĪ ) where Ī =
{1, . . . , n}\ I . Given a solution x∗ = (x∗

I , x
∗̄
I
) toMIOA(P), the OA algorithm proceeds

to solve the continuous, convex problemCONV(x∗
I ) that results fromfixing the integer-

constrained variables xI to their values in x∗
I :

vx∗
I

= min cT x (CONV(x∗
I ))

s.t. x ∈ X,

xI = x∗
I .

If CONV(x∗
I ) is feasible, let x

′ be the optimal solution. Then x ′ is a feasible solution
to (MICONV) and provides a corresponding upper bound on the best possible objec-
tive value. If the objective value of this convex subproblem equals the objective value
of MIOA(P) (i.e., cT x ′ = cT x∗), then x ′ is a globally optimal solution of (MICONV).
If there is a gap, then the OA algorithm must update the polyhedral outer approxima-
tion P and re-solve MIOA(P) with a tighter approximation, yielding a nondecreasing
sequence of lower bounds.

To ensure finite termination of OA it is sufficient to prevent repetition of unique
assignments of the integer-valued components x∗

I , because there is only a finite number
of possible values. The following lemma states a condition on the polyhedral outer
approximation P that helps prove finite convergence.

1 In Lemma 3 we provide an explicit counterexample.
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Lemma 1 Fixing xI ∈ Z
|I |, if x = (xI , xĪ ) ∈ P implies cT x ≥ vxI for all x Ī ∈ R

n−|I |
where vxI is the optimal value of (CONV(xI )) then the OA algorithm must terminate
if MIOA(P) returns an optimal solution x∗ with integer components matching x∗

I = xI .

Proof Assume we solve MIOA(P) and obtain a solution x∗. If the integer part of x∗
matches xI , by our assumptions we have rP = cT x∗ ≥ vxI , where rP is the optimal
value of MIOA(P). Since MIOA(P) is a relaxation and vxI is the objective value of a
feasible solution, thenwemust have rP = vxI . Thus, we have proven global optimality
of this feasible solution and terminate.

Note that Lemma 1 provides a general condition that does not assume any particular
representation of the convex constraints X . In the traditional setting of the smooth,
convex representation (1), if x ′ is an optimal solution to CONV(x∗

I ) and strong duality
holds, e.g., as in Prop 5.1.5 of Bertsekas [7], then the set of constraints

g j (x
′) + ∇g j (x

′)T (x − x ′) ≤ 0 ∀ j ∈ J (3)

are sufficient to enforce the condition in Lemma 1 for finite convergence. In other
words, within the OA loop after solving CONV(x∗

I ), updating P by adding the con-
straints (3) is sufficient to ensure that the integer solution x∗

I does not repeat, except
possibly at termination. Intuitively, strong duality in CONV(x∗

I ) implies that there are
no descent directions (over the continuous variables) from x ′ which are feasible to a
first-order approximation of the constraints g j (x) ≤ 0 for j ∈ J [7]. Hence a point
x = (xI , xĪ ) sharing the integer components xI = x∗

I must satisfy cT (x − x ′) ≥ 0 or
precisely cT x ≥ vx∗

I
. See [1,17,32] for further discussion.

If CONV(x∗
I ) is infeasible, then to ensure finite convergence it is important to refine

the polyhedral approximation P to exclude the corresponding integer point. That is,
we update P so that

{x ∈ R
n : xI = x∗

I } ∩ P = ∅. (4)

In the traditional smooth setting, it is possible in the infeasible case to derive a set of
constraints analogous to (3), e.g., by solving an auxiliary feasibility problem where
we also assume strong duality holds [1,9].

To review, the OA algorithm proceeds in a loop between the MILP relax-
ation MIOA(P) and the continuous subproblem with integer values fixed CONV(x∗

I ).
The MILP relaxation provides lower bounds and feeds integer assignments to the
continuous subproblem. The continuous subproblem yields feasible solutions and suf-
ficient information to update the polyhedral approximation in order to avoid repeating
the same assignment of integer values. The algorithm is stated more formally in Algo-
rithm 1 and illustrated in Fig. 1.

The efficiencyof theOAalgorithm is derived from the speedof solving theMIOA(P)
problem by using state-of-the-art MILP solvers. Indeed, in 2014 benchmarks by Hans
Mittelman, the OA algorithm implemented within Bonmin using CPLEX as theMILP
solver was found to be the fastest among MICP solvers [37]. In spite of taking advan-
tage of MILP solvers, the traditional OA algorithm suffers from the fact that the
gradient inequalities (3) may not be sufficiently strong to ensure fast convergence. In
the following section, we identify when these conditions may occur and how to work
around them within the framework of OA.
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Algorithm 1 The polyhedral outer approximation (OA) algorithm
Initialize: zU ← ∞, zL ← −∞, polyhedron P ⊃ X such that MIOA(P) is bounded. Fix convergence
tolerance ε.
while zU − zL ≥ ε do

Solve MIOA(P).
if MIOA(P) is infeasible then

(MICONV) is infeasible, so terminate.
end if
Let x∗ be the optimal solution of MIOA(P) with objective value wT .
Update lower bound zL ← wT .
Solve CONV(x∗

I ).
if CONV(x∗

I ) is feasible then
Let x ′ be an optimal solution of CONV(x∗

I ) with objective value vx∗
I
.

Derive polyhedron Q satisfying x = (x∗
I , x Ī ) ∈ Q implies cT x ≥ vx∗

I
for

all x Ī ∈ R
n−|I | by using strong duality (e.g., (3)).

if vx∗
I

< zU then
Update upper bound zU ← vx∗

I
.

Record x ′ as the best known solution.
end if

else if CONV(x∗
I ) is infeasible then

Derive polyhedron Q satisfying {x ∈ R
n : xI = x∗

I } ∩ Q = ∅.
end if
Update P ← P ∩ Q.

end while

3 State of the art: outer approximation enhancements

The outer approximation algorithm is powerful but relies on polyhedral outer approx-
imations serving as good approximations of convex sets. The assumptions of the OA
algorithm guarantee that there exists a polyhedron P such that the optimal objective
value of MIOA(P) matches the optimal objective value of (MICONV), precisely at
convergence. In the case that (MICONV) has no feasible solution, these assumptions
furthermore guarantee that there exists an outer approximating polyhedron P such
that MIOA(P) has no feasible solution. In Sect. 6, we discuss in more detail what may
happen when the assumptions fail, although even in the typical case when they are
satisfied, these polyhedra may have exponentially many constraints. Indeed, there are
known cases where the OA algorithm requires 2n iterations to converge in Rn . In this
section, we review an illustrative case where the OA algorithm performs poorly and
the techniques from the literature that have been proposed to address this issue.

Figure 2 illustrates an example developed by Hijazi et al. [27], specifically the
problem,

min
x

cT x

s.t.
n∑

i=1

(
xi − 1

2

)2

≤ n − 1

4
, (5)

x ∈ Z
n, 0 ≤ x ≤ 1,
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c

x′

x∗

x′

Fig. 1 An illustration of the outer approximation algorithm. Here, we minimize a linear objective c over
the ball x21 + x22 ≤ 2.5 with x1 integer constrained. On the left, the point x ′ is the solution of the continuous
relaxation, and we initialize the polyhedral outer approximation with the tangent at x ′. We then solve
the MIOA(P) subproblem, which yields x∗. Fixing x1 = 2, we optimize over the circle and update the
polyhedral approximation with the tangent at x ′ (on the right). In the next iteration of the OA algorithm
(not shown), we will prove global optimality of x ′

Fig. 2 The example developed by Hijazi et al. [27] demonstrating the case where the outer approximation
algorithm requires 2n iterations to converge in dimension n. The intersection of the ball with the integer
lattice points (in black) is empty, yet any polyhedral outer approximation of the ball in R

n requires 2n

hyperplanes before it has an empty intersection with the integer lattice, because the line segments between
any two lattice points (one of which is drawn) intersect the ball. Hence, any hyperplane can separate at most
one lattice point from the ball, and we require 2n of these to prove infeasibility

which, regardless of the objective vector c, has no feasible solutions. Any polyhedral
approximation of the single convex constraint, a simple ball, requires 2n half-spaces
until the corresponding outer approximation problem MIOA(P) has no feasible solu-
tion. At this point the OA algorithm terminates reporting infeasibility.

Hijazi et al. propose a simple yet powerful reformulation that addresses this poor
convergence behavior. To motivate their reformulation, we recall a basic example
from linear programming. The �1 unit ball, i.e., {x ∈ R

n : ∑n
i=1 |xi | ≤ 1}, is repre-
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Polyhedral approximation in mixed-integer convex optimization 147

sentable as an intersection of half spaces in Rn , namely the 2n half spaces of the form∑n
i=1 si xi ≤ 1 where si = ±1. This exponentially large representation of the �1 ball

is seldom used in practice, however. Instead, it is common to introduce extra variables
zi with constraints

zi ≥ xi , zi ≥ −xi for i = 1, . . . , n and
n∑

i=1

zi ≤ 1. (6)

It is not difficult to show that ||x ||1 ≤ 1 if and only if there exist z satisfying the
constraints (6). Note that these 2n + 1 constraints define a polyhedron in R

2n , which
we call an extended formulation of the �1 ball because the �1 ball is precisely the
projection of this polyhedron defined in (x, z) space onto the space of x variables. It
is well known that polyhedra, such as the �1 ball, which require a large description
as half-spaces in R

n might require many fewer half-spaces to represent if additional
variables are introduced [36]. Note, in this case, that the extended formulation is
derived by introducing a variable zi to represent the epigraph {(z, x) : |x | ≤ z} of
each |xi | term, taking advantage of the fact that the �1 ball can be represented as a
constraint on a sum of these univariate functions.

The solution proposed byHijazi et al. and earlier by Tawarmalani and Sahinidis [41]
follows this line of reasoningby introducing an extended formulation for the polyhedral
representation of the smooth �2 ball. Analogously to the case of the �1 ball, Hijazi et
al. construct an outer-approximating polyhedron inR2n with 2n+1 constraints which
contains no integer points. By the previous discussion, we know that the projection of
this small polyhedron in R

2n must have at least 2n inequalities in R
n . Their solution

precisely exploits the separability structure in the definition of the �2 ball, introducing
an extra variable zi for each term and solving instead

min
x,z

cT x (7)

s.t.
n∑

i=1

zi ≤ n − 1

4
,

zi ≥
(
xi − 1

2

)2

, ∀ i = 1, . . . , n

x ∈ Z
n, 0 ≤ x ≤ 1.

The OA algorithm applied to (7) proves infeasibility in 2 iterations because it
constructs polyhedral approximations (based on gradient inequalities (3)) to the con-
straints in the (x, z) space.More generally, Hijazi et al. and Tawarmalani and Sahinidis
propose to reformulate any convex constraint of the form

∑
i fi (xi ) ≤ k as

∑
i zi ≤ k

and zi ≥ fi (xi ) for each i where fi are univariate convex functions. Just by performing
this simple transformation before providing the problem to the OA algorithm, they are
able to achieve impressive computational gains in reducing the time to solution and
number of iterations of the algorithm.

Building on the ideas of Hijazi et al. and Tawarmalani and Sahinidis, Vielma et
al. [44] propose an extended formulation for the second-order cone {(t, x) ∈ R

n+1 :

123



148 M. Lubin et al.

||x ||2 ≤ t}, which is not immediately representable as a sum of univariate convex
functions. They recognize that the second-order cone is indeed representable as a sum

of bivariate convex functions, i.e.,
∑

i
x2i
t ≤ t , after squaring both sides and dividing

by t . They obtain an extended formulation by introducing auxiliary variables zi ≥ x2i
t

and constrain
∑

i zi ≤ t . This simple transformation was subsequently implemented
by commercial solvers for MISOCP like Gurobi [8], CPLEX [42], and Xpress [4],
yielding significant improvements on their internal and public benchmarks.

In spite of the promising computational results of Hijazi et al. first reported in 2011
and the more recent extension by Vielma et al., to our knowledge, MINOTAUR [33]
is the only general MICP solver which has implemented these techniques in an auto-
mated way. To understand why others like Bonmin [9] have not done so, it is important
to realize that MICP solvers historically have had no concept of the mathematical or
algebraic structure behind their constraints, instead viewing them through black-box
oracles to query first-order and possibly second-order derivative values. The summa-
tion structure we exploit, which is algebraic in nature, is simply not available when
viewed through this form, making it quite difficult to retrofit this functionality into the
existing architectures of MICP solvers. In the following section, we will propose a
substantially different representation of mixed-integer convex optimization problems
that is a natural fit for extended formulations.

4 Disciplined convex programming (DCP) as a solution

In order to implement the extended formulation proposal of [27] in an automated
way, one may be led to attempt a direct analysis of a user’s algebraic represen-
tation of the convex constraints in a problem. However, this approach is far from
straightforward. First of all, the problem of convexity detection is necessary as a sub-
routine, because it is only correct to exploit summation structure of a convex function
h(x) = f (x)+ g(x) when both f and g are convex. This is not a necessary condition
for the convexity of h; consider f (x) = x21 − x22 and g(x) = 2x22 . Convexity detection
of algebraic expressions is NP-Hard [3], which poses challenges for implementing
such an approach in a reliable and scalable way. Ad-hoc approaches [18] are possible
but are highly sensitive to the form in which the user inputs the problem; for example,

approaches based on composition rules fail to recognize convexity of
√
x21 + x22 and

log(exp(x1) + exp(x2)) [41].
Instead of attempting such analyses of arbitrary algebraic representations of convex

functions, we propose to use themodeling concept of disciplined convex programming
(DCP) first proposed byGrant, Boyd, andYe [20,22]. In short, DCP solves the problem
of convexity detection by asking users to express convex constraints in such a way
that convexity is proven by composition rules, which are sufficient but not necessary.
These composition rules are those from basic convex analysis, for example, the sum of
convex functions is convex, the point-wise maximum of convex functions is convex,
and the composition f (g(x)) is convex when f is convex and nondecreasing and g is
convex. The full set of DCP rules is reviewed in [22,40].
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Polyhedral approximation in mixed-integer convex optimization 149

Even though it is possible to write down convex functions which do not satisfy these
composition rules, the DCP philosophy is to disallow them and instead introduce new
atoms (or basic operations) which users must use when writing down their model. For
example, logsumexp(

[
x1 x2

]
) replaces log(exp(x1) + exp(x2)) and norm(

[
x1 x2

]
)

replaces
√
x21 + x22 . Although asking users to express their optimization problems in

this form breaks away from the traditional setting of MICP, DCP also formalizes the
folklore within theMICP community that the way in which youwrite down the convex
constraints can have a significant impact on the solution time; see, e.g., Hijazi et al. [27]
and our example later discussed in Eq. 17.

The success over the past decade of the CVX software package [21] which imple-
ments DCP has demonstrated that this modeling concept is practical. Users are willing
to learn the rules of DCP in order to gain access to powerful (continuous, convex)
solvers, and furthermore the number of basic atoms needed to cover nearly all convex
optimization problems of practical interest is relatively small.

AlthoughwemotivatedDCP as a solution to the subproblem of convexity detection,
it in fact provides a complete solution to the problem of automatically generating an
extended formulation and encoding it in a computationally convenient form given a
user’s algebraic representation of a problem. All DCP-valid expressions are composi-
tions of basic operations (atoms); for example the expression max{exp(x2),−2x} is
DCP-valid because the basic composition rules prove its convexity. A lesser-known
aspect of DCP is that these rules of composition have a 1-1 correspondence with
extended formulations based on the epigraphs of the atoms. Observe, for example,
that

t ≥ max{exp(x2),−2x} (8)

if and only if
t ≥ exp(x2), t ≥ −2x (9)

if and only if there exists s such that

s ≥ x2, t ≥ exp(s), t ≥ −2x, (10)

where the validity of the latter transformation holds precisely because exp(·) is increas-
ing and therefore s ≥ x2 implies exp(s) ≥ exp(x2). Furthermore, the constraints
s ≥ x2 and t ≥ exp(s) are convex because square and exp are convex functions;
hence (10) is a convex extended formulation of (8). Note that while we previously dis-
cussed extended formulations derived only from disaggregating sums, disaggregating
compositions of functions in this form also yields stronger polyhedral approxima-
tions [41]. The existence of this extended formulation is no coincidence. Grant and
Boyd [20] explain that a tractable representation of the epigraph of an atom is suffi-
cient to incorporate it into a DCP modeling framework. That is, if an implementation
of DCP knows how to optimize over a model with the constraint t ≥ f (x) for some
convex function f , then f can be incorporated as an atom within the DCP framework
and used within much more complex expressions so long as they follow the DCP
composition rules.
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Our analysis of DCP has led us to the conclusion that DCP provides the means
to automate the generation of extended formulations in a way that has never been
done in the context of MICP. Users need only express their MICP problem by using a
DCP modeling language like CVX or more recent implementations like CVXPY [14]
(in Python), or Convex.jl [43] (in Julia). Any DCP-compatible model is convex by
construction and emits an extended formulation that can safely disaggregate sums and
more complex compositions of functions.

We do note that in some cases it may not be obvious how to write a known convex
function in DCP form. In our work described in [35] where we translated MICP
benchmark instances into DCP form, we were unable to find a DCP representation of
the univariate concave function x

x+1 which is not in DCP form because division of
affine expressions is neither convex nor concave in general. Fortunately, a reviewer
suggested rewriting x

x+1 = 1− 1
x+1 where 1

x+1 is a DCP-recognized convex function
so long as x + 1 ≥ 0. With this trick we were able to translate all of the benchmark
instances we considered into DCP form, as we discuss in more details in the following
section.

5 MIDCP and conic representability

While DCP modeling languages have traditionally supported only convex problems,
CVX recently added support for mixed-integer convex problems under the name
of MIDCP, and the subsequently-developed DCP modeling languages also support
integer constraints. We will use the terminology MIDCP to refer to MICP models
expressed in DCP form. In the previous section we argued that an MIDCP represen-
tation of an MICP problem provides sufficient information to construct an extended
formulation, which in turn could be used to accelerate the convergence of the outer
approximation algorithm by providing strong polyhedral approximations. However,
an MIDCP representation is quite complex, much more so than the “black-box”
derivative-based representation that traditional MICP solvers work with. Handling the
MIDCP form requires understanding each atom within the DCP library and manip-
ulating the expression graph data structures which are used to represent the user’s
algebraic expressions.

It turns out that there is a representation of MIDCP models which is much more
compact and convenient for use as an input format for an MICP solver, and this is as
mixed-integer conic optimization problems. Before stating the form of these problems,
we first consider the standard continuous conic optimization problem:

min
x

cT x (CONE)

s.t. Ax = b

x ∈ K,

where K ⊆ R
n is a closed convex cone, that is, a closed convex set K where any

nonnegative scaling αx of a point x in the set remains in the set. A simple example
of a cone is the nonnegative orthant Rn+ = {x ∈ R

n : x ≥ 0}. When K = R
n+
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then (CONE) reduces to a linear programming problem. Typically, K is a product of
cones K1 × K2 × · · · × Kr , where each Ki is one of a small number of recognized
cones.

One of Grant et al.’s original motivations for developing the DCP framework was
to provide access to powerful solvers for the second-order cone [34],

SOCn = {(t, x) ∈ R
n : ||x || ≤ t}, (11)

and the cone of positive semidefinite matrices,

PSDn = {A ∈ R
n×n : A = AT , xT Ax ≥ 0 ∀ x ∈ R

n}. (12)

CVX, for example, does not use smooth, derivative-based representations of the
epigraphs of atoms but instead uses a conic representation of each of its atoms. For
instance, for x, y ≥ 0 the epigraph of the negated geometric mean f (x, y) = −√

xy
is a convex set representable as t ≥ −√

xy iff ∃ z ≥ 0 such that −t ≤ z ≤ √
xy iff

− t ≤ z and z2 ≤ xy iff − t ≤ z and (x/
√
2, y/

√
2, z) ∈ RSOC3, (13)

where

RSOCn := {(x, y, z) ∈ R × R × R
n−2 : 2xy ≥ ||z||22, x ≥ 0, y ≥ 0} (14)

is the n-dimensional rotated second-order cone, a common cone useful for modeling
(e.g., also for functions like x2) which itself is representable as a transformation of the
second-order cone [6].While this conic representation of the geometricmean is known
in the literature [6], it is arguably unnecessarily complex for modelers to understand,
and CVX, for example, provides a geo_mean atom which transparently handles this
transformation.

Subsequent to the second-order and positive semidefinite cones, researchers have
investigated the exponential cone [39],

EXP = cl{(x, y, z) ∈ R
3 : y exp(x/y) ≤ z, y > 0}, (15)

and the power cone [26],

POWα = {(x, y, z) ∈ R
3 : |z| ≤ xα y1−α, x ≥ 0, y ≥ 0}, (16)

which can be used to represent functions like entropy (−x log(x)) and fractional pow-
ers, respectively. This small collection of cones is sufficient to represent any convex
optimization problem which you may input within existing DCP implementations,
including CVX.

In the context of MICP, these cones are indeed sufficient from our experience.
We classified all 333 MICP instances from the MINLPLIB2 benchmark library [38]
and found that 217 are representable by using purely second-order cones (and so
fall under the previously mentioned MISOCP problem class), 107 are representable
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by using purely exponential cones, and the remaining by some mix of second-order,
exponential, and power cones. We refer readers to [35] for an extended discussion
of conic representability. Of particular note are the trimloss [25] family of instances
which have constraints of the form,

q∑

k=1

−√
xk yk ≤ cT z + b. (17)

Prior to our report in [35], the tls5 and tls6 instances had been unsolved since
2001.Bydirectly rewriting these problems intoMIDCP form,weobtained anMISOCP
representation because all constraints are representable by using second-order cones,
precisely by using the transformation of the geometric mean discussed above. Once
in MISOCP form, we provided the problem to Gurobi 6.0, which was able to solve
them to global optimality within a day, indicating the value of conic formulations.

Given that DCP provides an infrastructure to translate convex problems into conic
form, we may consider mixed-integer conic problems as a compact representation of
MIDCP problems. Below, we state our standard form for mixed-integer conic prob-
lems,

min
x,z

cT z (MICONE)

s.t. Ax x + Azz = b

L ≤ x ≤ U, x ∈ Z
n, z ∈ K,

whereK ⊆ R
k is a closed convex cone. Without loss of generality, we assume integer

variables are not restricted to cones, since we may introduce corresponding contin-
uous variables by equality constraints. In Sect. 6 we discuss solving (MICONE) via
polyhedral outer approximation.

6 Outer approximation algorithm for mixed-integer conic problems

The observations of the previous section motivated the development of a solver for
problems of the form (MICONE). In [35] we developed the first outer-approximation
algorithmwith finite-time convergence guarantees for such problems.We note that the
traditional convergence theory is generally insufficient because it assumes differentia-
bility, while conic problems have nondifferentiability that is sometimes intrinsic to the
model. Nonsmooth perspective functions like f (x, y) = x2/y, for example, which
are used in disjunctive convex optimization [13], have been particularly challenging
for derivative-based MICP solvers and have motivated smooth approximations [23].
On the other hand, conic form can handle these nonsmooth functions in a natural way,
so long as there is a solver capable of solving the continuous conic relaxations.

In this section, we provide an overview of the key points of the algorithm and refer
readers to [35] for the full description. The finite-time convergence guarantees of the
outer approximation algorithm depend on an assumption that strong duality holds in
certain convex subproblems. Extending [35], we include a discussion on what may
happen when this assumption does not hold.

We begin with the definition of dual cones.
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Definition 2 Given a cone K, we define K∗ := {β ∈ R
k : βT z ≥ 0 ∀z ∈ K} as the

dual cone of K.

Dual cones provide an equivalent outer description of any closed, convex cone, as
the following lemma states. We refer readers to [6] for the proof.

Lemma 2 Let K be a closed, convex cone. Then z ∈ K iff zTβ ≥ 0 ∀β ∈ K∗.

We note that the second-order cone SOCn , the rotated second order cone
RSOCn (14), and the cone of positive semidefinite matrices are self-dual, whichmeans
that the dual cone and the original cone are the same [6]. While the exponential and
power cones are not self-dual, the discussions that follow are valid for them and other
general cones.

Based on the above lemma, we state the analogue of the MILP relaxationMIOA(P)
for (MICONE) as

min
x,z

cT z (MICONEOA(T))

s.t. Ax x + Azz = b

L ≤ x ≤ U, x ∈ Z
n,

βT z ≥ 0 ∀β ∈ T .

Note that if T = K∗, MICONEOA(T) is an equivalent semi-infinite representation
of (MICONE). If T ⊂ K∗ and |T | < ∞ then MICONEOA(T) is an MILP outer
approximation of (MICONE) whose objective value is a lower bound on the optimal
value of (MICONE). In the context of the discussion in Sect. 2, given T , our polyhedral
approximation ofK is PT = {z : βT z ≥ 0 ∀β ∈ T }, and we explicitly treat the linear
equality constraints separately.

In the conic setting, we state the continuous subproblem CONV(x∗
I ) with integer

values fixed as

vx∗ = min
z

cT z (CONE(x∗))

s.t. Azz = b − Ax x
∗,

z ∈ K.

Using conic duality, we obtain the dual of CONE(x∗) as

max
β,λ

λT (b − Ax x
∗)

s.t. β = c − AT
z λ

β ∈ K∗. (18)

In [35] we prove that under the assumptions of strong duality, the optimal solutions
β to the dual problem (18) correspond precisely to the half-spaces which ensure the
conditions in Lemma 1 when CONE(x∗) is feasible; hence, we add these solutions
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to the set T . When CONE(x∗) is infeasible and (18) is unbounded, the rays of (18)
provide solutions that satisfy (4), guaranteeing finite convergence of theOA algorithm.

We previously deferred a discussion of what may happen when the assumption of
strongduality fails.Wenowpresent a negative result for this case.When the assumption
of strong duality fails, it may be impossible for the OA algorithm to converge in a
finite number of iterations.

Consider the problem adapted from [28],

min z

s.t. x = 0,

(x, y, z) ∈ RSOC3.

(19)

Note that (0, y, z) ∈ RSOC3 implies z = 0, so the optimal value is trivially zero.
The conic dual of this problem is

max 0

s.t. (β, 0, 1) ∈ RSOC3,

β free.

(20)

The dual is infeasible because there is no β satisfying 0β ≥ 1. So there is no strong
duality in this case. The following lemmademonstrates that polyhedral approximations
fail entirely. The proof is more technical than the rest of the paper but uses only basic
results from linear programming and conic duality.

Lemma 3 There is no polyhedral outer approximation PRSOC3 ⊃ RSOC3 such that
the following relaxation of (19) is bounded:

min z

s.t. x = 0,

(x, y, z) ∈ PRSOC3 .

(21)

Proof Let us assume that RSOC3 ⊂ PRSOC3 := {(x, y, z) : Ax x+Ay y+Azz ≥ 0} for
some vectors Ax , Ay , Az . The right-hand side can be taken to be zero because RSOC3
is a cone. Specifically, positive right-hand-side values are invalid because they would
cut off the point (0, 0, 0), and negative values can be strengthened to zero. Since (21)
is a linear programming problem invariant to positive rescaling, it is bounded iff there
exists a feasible dual solution (β, α) satisfying

αT Ax = β, (22)

αT Ay = 0, (23)

αT Az = 1, (24)

α ≥ 0. (25)
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Suppose, for contradiction, that there exist (β, α) satisfying these dual feasibility
conditions. Let (Ax,i , Ay,i , Az,i ) denote the coefficients of the i th linear inequality in
PRSOC3 . Since PRSOC3 is a valid outer approximation, we have that

(Ax,i , Ay,i , Az,i ) · (x, y, z) ≥ 0, ∀(x, y, z) ∈ RSOC3, (26)

hence (Ax,i , Ay,i , Az,i ) ∈ (RSOC3)
∗ = RSOC3, recalling that RSOC3 is self-dual.

Therefore we have
(αT Ax , α

T Ay, α
T Az) ∈ RSOC3 (27)

for α ≥ 0. This follows from the fact that the vector, (αT Ax , α
T Ay, α

T Az), is a
non-negative linear combination of elements of RSOC3 and RSOC3 is a convex cone.
However, the duality conditions imply (β, 0, 1) ∈ RSOC3, i.e., 0 ≥ 1, which is a
contradiction. ��

Lemma 3 implies that the following MISOCP instance cannot be solved by the OA
algorithm:

min z

s.t. x = 0,

(x, y, z) ∈ RSOC3,

x ∈ {0, 1},
(28)

because the optimal value of anyMILP relaxation will be −∞ while the true optimal
objective is 0, hence the convergence conditions cannot be satisfied.

This example strengthens the observation by [28] that MISOCP solvers may fail
when certain constraint qualifications do not hold. In fact, no approach based on
straightforward polyhedral approximation can succeed. Very recently, Gally et al. [19]
have studied conditions in the context of mixed-integer semidefinite optimization
which ensure that strong duality holds when integer values are fixed.

7 Computational experiments

In this section we extend the numerical experiments performed in our previous
work [35]. In that work, we introduced Pajarito. Pajarito is an open-source stand-
alone Julia solver, now publicly released2 at https://github.com/JuliaOpt/Pajarito.jl,
that heavily relies on the infrastructure of JuMP [16].

Since [35] we have improved the performance of Pajarito and report revised
numerical experiments. We translated 194 convex instances of MINLPLIB2 [38] into
Convex.jl [43], a DCP algebraic modeling language in Julia which performs auto-
matic transformation into conic form. Our main points of comparison are Bonmin [9]
using its OA algorithm, SCIP [2] using its default LP-based branch-and-cut algorithm,

2 The results reported here are based on Pajarito version 0.1. The latest release, version 0.4, has been almost
completely rewritten with significant algorithmic advances, which will be discussed in upcoming work with
Chris Coey.
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Fig. 3 Comparison performance profiles [15] (solver performswithin a factor of θ of the best on proportion
p of instances) over all instances we tested from the MINLPLIB2 benchmark library. Higher is better.
Bonmin is faster than Pajarito often within a small factor, yet Pajarito is able to solve a few more instances
overall and with significantly fewer iterations. (a) Solution time, (b) number of OA iterations

and Artelys Knitro [12] using its default nonlinear branch-and-bound algorithm; all
three can be considered state-of-the-art academic or commercial solvers. We further
compare our results with CPLEX for MISOCP instances only. All computations were
performed on a high-performance cluster at Los Alamos National Laboratory with
Intel� Xeon� E5-2687W v3 @3.10GHz 25.6MB L3 cache processors and 251GB
DDR3 memory installed on every node. CPLEX v12.6.2 is used as a MILP and MIS-
OCP solver. Because conic solvers supporting exponential cones were not sufficiently
reliable in our initial experiments, we use Artelys Knitro v9.1.0 to solve all conic
subproblems via traditional derivative-based methods.

Bonmin v1.8.3 and SCIP v3.2.0 are both compiled with CPLEX v12.6.2 and Ipopt
v3.12.3 using the HSL linear algebra library MA97. All solvers are set to a relative
optimality gap of 10−5, are run on a single thread (both CPLEX and Artelys Knitro),
and are given 10 hours of wall time limit (with the exception of gams01, a previously
unsolved benchmark instance, where we give 32 threads to CPLEX for the MILP
relaxations). The scripts to run these experiments can be found online at https://github.
com/mlubin/MICPExperiments.

Numerical experiments indicate that the extended formulation drastically reduces
the number of polyhedral OA iterations as expected. In aggregate across the instances
we tested, Bonmin requires 2685 iterations while Pajarito requires 994. We list the
full results in Table 1 and summarize them in Fig. 3. In Fig. 4 we present results for
the subset of SOC-representable instances, where we can compare with commercial
MISOCP solvers. In our performance profiles, all times are shifted by 10 seconds to
decrease the influence of easy instances.

Notably, Pajarito is able solve a previously unsolved instance, gams01, whose
conic representation requires a mix of SOC and EXP cones and hence was not a pure
MISOCP problem. The best known bound was 1735.06 and the best known solution
was 21516.83. Pajarito solved the instance to optimality with an objective value of
21380.20 in 6 iterations.
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Fig. 4 Performance profile [15]
(solver is the fastest within a
factor of θ of the best on
proportion p of instances) over
the instances representable as
mixed-integer second-order cone
problems where we can compare
with the commercial CPLEX
solver. Higher is better. CPLEX
is the best overall, since notably
it already implements the
extended formulation proposed
by Vielma et al. [44]

8 Concluding remarks and future work

In thiswork,we have presented and advanced the state-of-the-art in polyhedral approx-
imation techniques for mixed-integer convex optimization problems, in particular
exploiting the idea of extended formulations and how to generate them automatically
by using disciplined convex programming (DCP). We explain why the mixed-integer
conic view of mixed-integer convex optimization is surprisingly powerful, precisely
because it encodes the extended formulation structure in a compact way. We claim
that for the vast majority of problems in practice, conic forms using a small number of
recognized cones is a sufficient and superior representation to the traditional smooth
“black box” view.

Our developments for mixed-integer conic optimization seem to have outpaced
the capabilities of existing conic solvers, and we hope that the convex optimization
community will continue to develop techniques and publicly available, numerically
robust solvers in particular for nonsymmetric cones like the exponential cone. In spite
of somenumerical troubleswhen solving the conic subproblems using existing solvers,
our new mixed-integer conic solver, Pajarito, has displayed superior performance in
many cases to state-of-the-art solvers likeBonmin, including the solution of previously
unsolved benchmark problems.

This work has opened up a number of promising directions which we are currently
pursuing. In the near term we plan on composing a rigorous report on the technical
aspects of implementing the outer-approximation algorithm for mixed-integer conic
problems, including aspects we have omitted which are important for the reliability
and stability of Pajarito. These will include a larger set of benchmark instances and
experiments with a branch-and-cut variant of the algorithm.

We intend to investigate the application of polyhedral approximation in the context
of mixed-integer semidefinite optimization, where we expect that failures in strong
duality could be a common occurrence based on the reports of [19]. It remains an
open question what guidance we can provide to modelers on how to avoid cases where
polyhedral approximation can fail, or even if this could be resolved automatically at
the level of DCP.
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Finally, we note that neither the DCP representation of a problem nor the conic
representation of a DCP atom is necessarily unique. Understanding the effects of
different formulation choices is an important avenue for future work.
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