
Math. Program., Ser. B (2018) 172:77–103
https://doi.org/10.1007/s10107-017-1189-5

FULL LENGTH PAPER

On the use of intersection cuts for bilevel optimization

Matteo Fischetti1 · Ivana Ljubić2 · Michele Monaci3 ·
Markus Sinnl4

Received: 7 April 2016 / Accepted: 23 August 2017 / Published online: 16 September 2017
© Springer-Verlag GmbH Germany and Mathematical Optimization Society 2017

Abstract We address a generic mixed-integer bilevel linear program (MIBLP), i.e., a
bilevel optimization problem where all objective functions and constraints are linear,
and some/all variables are required to take integer values. We first propose neces-
sary modifications needed to turn a standard branch-and-bound MILP solver into an
exact and finitely-convergent MIBLP solver, also addressing MIBLP unboundedness
and infeasibility. As in other approaches from the literature, our scheme is finitely-
convergent in case both the leader and the follower problems are pure integer. In
addition, it is capable of dealing with continuous variables both in the leader and in
follower problems—provided that the leader variables influencing follower’s deci-
sions are integer and bounded. We then introduce new classes of linear inequalities
to be embedded in this branch-and-bound framework, some of which are intersection
cuts based on feasible-free convex sets. We present a computational study on various
classes of benchmark instances available from the literature, in which we demonstrate
that our approach outperforms alternative state-of-the-art MIBLP methods.

B Matteo Fischetti
matteo.fischetti@unipd.it

Ivana Ljubić
ivana.ljubic@essec.edu

Michele Monaci
michele.monaci@unibo.it

Markus Sinnl
markus.sinnl@univie.ac.at

1 DEI, University of Padua, Padua, Italy

2 ESSEC Business School, Cergy-Pontoise, France

3 DEI, University of Bologna, Bologna, Italy

4 ISOR, University of Vienna, Vienna, Austria

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-017-1189-5&domain=pdf
http://orcid.org/0000-0001-6601-0568
http://orcid.org/0000-0002-4834-6284
http://orcid.org/0000-0001-9978-7613
http://orcid.org/0000-0003-1439-8702

78 M. Fischetti et al.

Mathematics Subject Classification 90C11 Mixed integer programming · 90C57
Polyhedral combinatorics, branch-and-bound, branch-and-cut · 65K05 Mathematical
programming methods

1 Introduction

Bilevel optimization is a very challenging topic that received much of attention in
recent years, as witnessed by the flourishing recent literature. In this paper we address
a generic mixed-integer bilevel linear program (MIBLP), i.e., a bilevel optimization
problemwhere all objective functions and constraints are linear, and some/all variables
are required to take integer values.

While many papers in the literature proposed ad-hoc methods for specific bilevel
problems, we aim at developing a general-purpose exact algorithm applicable to a
general MIBLP in which both the leader and the follower are of mixed-integer type,
provided that the leader variables influencing follower’s decisions are integer and
bounded.

Our algorithmic design choice was to look for non-invasive supplements needed to
convert an effective branch-and-cut mixed-integer linear programming (MILP) exact
code into a valid MIBLP solver. In this way, we inherit the wide arsenal of tools (cuts,
heuristics, propagations, etc.) available in modern MILP solvers, and do not have to
address non-bilevel specific issues like numerical stability, effective LP parametriza-
tion, and multi-threading support. This is a distinguishing feature of our work: instead
of proposing sophisticated bilevel-specific solution schemes for MIBLP, as in most
papers from the literature, we build on a stable and powerful MILP solver and add
bilevel-specific features to it.

We first introduce necessary modifications of branching, node-evaluation and fath-
oming rules of a standard branch-and-bound based MILP solver, and prove that they
lead to an exact and (under appropriate conditions) finitely-convergent MIBLP solver.
We then propose the use of intersection cuts (ICs) [3] within this branch-and-cut
framework. Our approach relies on defining appropriate convex feasible-free sets that
can be used to cut off bilevel infeasible points obtained from a problem relaxation. As
far as we know, this is the first time ICs have been exploited in the context of bilevel
programming. Many of the generic MIBLP approaches proposed in the literature are
illustrated using small numerical examples involving few decision variables only (see,
e.g., [2,12,16,19]). On the contrary, in this article we present extensive computational
results on a testbed containing more than 300 instances from the literature with up to
80,000 variables. An outcome of our experiments is that our approach outperforms
available state-of-the-art MIBLP solvers by a large margin.

The paper is organized as follows. Section 2 gives a brief introduction to general
bilevel optimization and to MIBLP. Section 3 presents a basic MILP-based branch-
and-bound algorithm for MIBLP, and proves its finite convergence under appropriate
assumptions. An improved branch-and-cut algorithm is then described in Sect. 4,
where we present two new families of valid MIBLP cuts along with their separa-
tion procedures. In Sect. 5, results of our computational study are provided. Some
conclusions and possible directions for future work are finally addressed in Sect. 6.

123

On the use of intersection cuts for bilevel optimization 79

A preliminary work appeared in [11]; the current paper expands it as follows:
(i) a detailed description of a finitely-convergent branch-and-bound algorithm for
MIBLPs is added, including a discussion on how to dealwith infeasible and unbounded
followers; (ii) the separation of intersection cuts is described in more details, and two
alternative procedures for separating ICs are given; (iii) the computational study is
vastly expanded and includes a re-implementation of the recently proposed solution
method of [7] to give a fair comparison with a state-of-the-art approach.

2 The problem

A general bilevel optimization problem is defined as

min
x∈Rn1 ,y∈Rn2

F(x, y) (1)

G(x, y) ≤ 0 (2)

y ∈ arg min
y′∈Rn2

{ f (x, y′) : g(x, y′) ≤ 0 }, (3)

where F, f : R
n1+n2 → R, G : R

n1+n2 → R
m1 , and g : R

n1+n2 → R
m2 . Let

n = n1 + n2 denote the total number of decision variables, and let Nx = {1, . . . , n1}
and Ny = {1, . . . , n2} denote the index sets of the x and y variables, respectively.

We refer to F(x, y) and G(x, y) ≤ 0 as the leader objective function and con-
straints, respectively, and to (3) as the follower subproblem. In case the follower
subproblem has multiple optimal solutions, we assume that one with minimum leader
cost among those with G(x, y) ≤ 0 is chosen—i.e., we consider the optimistic version
of bilevel optimization. The reader is referred to [15] for a comprehensive discussion
on this topic.

By defining the follower value function for a given x ∈ R
n1

Φ(x) = min
y∈Rn2

{ f (x, y) : g(x, y) ≤ 0 }, (4)

one can restate the bilevel optimization problem as follows:

min F(x, y) (5)

G(x, y) ≤ 0 (6)

g(x, y) ≤ 0 (7)

(x, y) ∈ R
n (8)

f (x, y) ≤ Φ(x). (9)

Note that the above optimization problem would be hard (both theoretically and in
practice) even if one would assume convexity of F, G, f and g (which would imply
that of Φ), due to the intrinsic nonconvexity of (9).

Dropping condition (9) leads to the so-calledHigh Point Relaxation (HPR). Clearly,
if HPR is infeasible, so is its bilevel counterpart. Thus, without loss of generality, we
assume HPR is feasible.

123

80 M. Fischetti et al.

As HPR contains all the follower constraints, any HPR solution (x, y) satisfies
f (x, y) ≥ Φ(x), hence (9) actually implies f (x, y) = Φ(x). An HPR solution (x, y)

is called bilevel infeasible if it violates (9). A point (x, y) ∈ R
n is called bilevel

feasible if it satisfies all constraints (6)–(9).

2.1 Mixed-integer bilevel linear program

In the remaining part of the paper we focus on the relevant special case in which
some/all variables are required to be integer, and all leader/follower constraints and
objective functions are linear/affine functions. To be more specific, we consider the
following mixed-integer bilevel linear program (MIBLP), in its value-function refor-
mulation (5)–(9):

min cT
x x + cT

y y (10)

Gx x + G y y ≤ q (11)

Ax + By ≤ b (12)

x− ≤ x ≤ x+ (13)

l L ≤ y ≤ uL (14)

x j integer, ∀ j ∈ Jx (15)

y j integer, ∀ j ∈ Jy (16)

dT y ≤ Φ(x) (17)

where cx , cy, Gx , G y, q, A, B, b, x−, x+, l L , and uL are given rational matri-
ces/vectors of appropriate size, while sets Jx ⊆ Nx and Jy ⊆ Ny identify the (possibly
empty) indices of the integer-constrained variables in x and y, respectively. Constraints
(13)–(14) define explicit lower/upper bounds on the variables; as customary, we allow
some entries in x−, x+, l L , uL to be ±∞.

As to the value function Φ(x) for a given x , it is computed by solving the follower
MILP:

Φ(x) := min dT y (18)

Ax + By ≤ b (19)

l F ≤ y ≤ uF (20)

y j integer, ∀ j ∈ Jy (21)

where l F and uF are, respectively, lower and upper bounds on the y variables in
the follower—possibly l F

j = −∞ and/or uF
j = +∞ for some j . Without loss of

generality, one can assume l F ≤ l L and uF ≥ uL , i.e., the bound constraints (14)
on the y variables are not weaker than the corresponding bounds (20) in the follower
problem. Note that the follower objective function (18) does not depend on x , as the
latter would just introduce a constant term without changing the set of the optimal
follower solutions.

123

On the use of intersection cuts for bilevel optimization 81

Let m denote the number of rows of matrix A, let A j denote its j-th column, and
let Ai j denote its generic entry. In what follows we use notation

JF := { j ∈ Nx : A j
= 0} (22)

to denote the index set of the leader variables x j (not necessarily integer-constrained)
appearing in the follower problem.

Dropping the nonconvex condition (17) from (10)–(17) leads to HPR, which is a
MILP in this setting. Dropping integrality conditions as well leads to the LP relaxation
of HPR, which is denoted by HPR.

Solving MIBLPs is much more challenging than single-level MILPs: first of all,
MIBLPs are Σ P

2 -hard [14]. Furthermore, it is known that allowing continuous vari-
ables in the leader and integer variables in the follower, may lead to bilevel problems
whose optimal solutions are unattainable (see, e.g., [13,17]). Finally, in contrast to
single-level MILPs, unboundedness of a relaxation of the problem (namely, the HPR-
relaxation) does not allow to draw conclusions on the optimal solution of MIBLP.
More precisely, MIBLPs with unbounded HPR-relaxation value can be unbounded,
infeasible, or admit an optimal solution.

To deal with the above difficulties, in the remainder of this article we impose the
following assumptions:

Assumption 1 All the integer-constrained variables x and y have finite lower and
upper bounds both in HPR and in the follower MILP.

Assumption 2 JF ⊆ Jx , i.e., continuous leader variables x j (if any) do not appear
in the follower problem—hence they are immaterial for the computation of the value
function Φ(x).

3 A finitely-convergent branch-and-bound algorithm

We next show how a classical branch-and-bound (B&B) scheme for MILP can be
modified to obtain an exact MIBLP solver. Correctness and finite convergence is
proved under the Assumptions 1 and 2 stated above.

If for all HPR solutions, the follower MILP is unbounded, one may safely conclude
that the MIBLP is infeasible. In Sect. 3.1 we first show that such a situation may be
detected by solving a single LP. This check can be seen as a preprocessing step, so
that without loss of generality we may assume that for an arbitrary HPR solution, the
follower MILP is well defined.

In Sects. 3.2 and 3.3 we detail the bilevel-feasibility check and refinement proce-
dures that need to be “plugged-in” at some critical branch-and-bound nodes. Observe
that under our assumptions, the HPR feasible set can be unbounded (we impose no
bounds on continuous variables), which may result into an unbounded HPR solution
value. We show that our algorithm is able to detect whether a given MIBLP is in fact
unbounded, infeasible, or admits an optimal solution.

123

82 M. Fischetti et al.

3.1 Dealing with infeasible/unbounded follower MILPs

We now address the special cases where, for a given x , function Φ(x) is not well-
defined as the follower MILP (18)–(21) is either infeasible or unbounded.

In case the follower MILP is infeasible for a certain x , no bilevel-feasible solution
of the type (x, ·) exists. This situation of course cannot occur when (x, y) is a feasible
HPR solution, in that HPR includes all follower constraints (19)–(21).

The situation where the follower MILP is unbounded for a certain x was instead
analyzed in [20, Lemma 2], where it is proven that this implies the infeasibility of the
MIBLP model (10)–(17). The following result is a consequence of that lemma, and
shows that the solution of a single LP (not depending on x anymore) is enough to
handle all cases of unboundedness of the follower MILP; to be self contained, a short
proof is given.

Theorem 1 Relax Assumptions 1 and 2, and recall that B is a rational matrix. Let v∗
be the optimal value of the following LP:

v∗ := min dT �y (23)

B�y ≤ 0 (24)

�y j ≤ 0, ∀ j ∈ Ny : uF
j < +∞ (25)

�y j ≥ 0, ∀ j ∈ Ny : l F
j > −∞ (26)

−1 ≤�y ≤ 1. (27)

If v∗ < 0, then the MIBLP model (10)–(17) is infeasible, otherwise the value function
Φ(x) is well defined for every HPR solution (x, y).

Proof Observe that the LP (23)–(27) is not unbounded (because of (27)) nor infeasible
(as �y = 0 is a feasible solution). So let �y∗ be any optimal extreme solution of it.
The rationality of B implies that of �y∗, so we can multiply the latter by a positive
scalar to get an integer vector �y that satisfies (24)–(26). Now take any HPR solution
(x, y).

If v∗ < 0, we have dT �y < 0. Thus, for any follower solution y′ satisfying (19)–
(21), the new solution y′′ = y′ + α �y is feasible, and has a smaller value, for every
integer α > 0. This means that the follower MILP is unbounded, i.e., it does not have
any optimal solution—hence no bilevel-feasible solution of the form (x, ·) exists.

If v∗ ≥ 0, instead, the LP relaxation of the follower MILP cannot be unbounded, as
any unbounded ray would correspond to a solution �y of (23)–(27) with dT �y < 0.
So the follower MILP itself cannot be unbounded, and Φ(x) is well defined.

The claim then follows from the arbitrariness of (x, y). �
Of course, in case all follower variables have finite lower and upper bounds, condi-

tions (25)–(26) imply �y = 0 and hence v∗ = 0, thus guaranteeing that Φ(x) is well
defined for all HPR feasible solutions (x, y). Case v∗ ≥ 0 does not rule out instead
the possible infeasibility of the MIBLP model (10)–(17).

As anticipated, Theorem 1 can be used as a preprocessing step to exclude unbound-
edness of all follower MILPs by solving a single LP in the space of the follower

123

On the use of intersection cuts for bilevel optimization 83

variables only. In what follows, we will therefore assume that the value function Φ(x)

is well defined for every HPR solution (x, y).

3.2 Feasibility check and refinement procedure

Given a feasible solution (x∗, y∗) of HPR, checking bilevel feasibility requires solving
the follower MILP (18)–(21) for x = x∗ to compute Φ(x∗), and to check whether
dT y∗ ≤ Φ(x∗) holds. Observe that the followerMILP for x = x∗ cannot be infeasible,
as the input (x∗, ·) is a feasible HPR solution, nor unbounded by assumption (see
Sect. 3.1).

The refinement procedure described below is intended to solve the MIBLP sub-
problem arising after fixing all x j ’s with j ∈ JF , for which (17) can be handled easily
as Φ(x) becomes a constant.

Algorithm 1: Refinement procedure
Input : An HPR solution (x∗, y∗);
Output: A refined bilevel-feasible solution (x̂, ŷ) with x̂ j = x∗

j for all j ∈ JF (if any);

1 Solve the follower MILP (18)–(21) for x = x∗ to compute Φ(x∗);
2 Define a restricted HPR by temporarily adding the following constraints to HPR: x j = x∗

j for all

j ∈ JF , and dT y ≤ Φ(x∗);
3 Solve the restricted HPR;
4 if the restricted HPR is unbounded then return “MIBLP is UNBOUNDED”
5 Let (x̂, ŷ) be the optimal solution found, and return (x̂, ŷ)

At Step 1 we solve the follower problem for x j = x∗
j for all j ∈ JF . At Steps 2

and 3, one defines a restrictedHPR and computes a best bilevel-feasible solution (x̂, ŷ)

with x̂ j = x∗
j for all j ∈ JF , respectively; this is just aMILP because, for the restricted

HPR, (17) becomes dT y ≤ Φ(x∗) = const.
Special cases arise when the restricted HPR defined at Step 2 is either unbounded

or infeasible. In the former case (Step 4), the bilevel problem (10)–(17) is unbounded
as we can exhibit a bilevel-feasible solution (x̂, ŷ) of arbitrarily small cost cT

x x̂ +cT
y ŷ.

In the latter case, no bilevel-feasible HPR solution of the form (x̂, ·) exists, and the
procedure returns a dummy solution of HPR-cost conventionally set to +∞.

3.3 The overall branch-and-bound framework

Recall that our main goal is to solve MIBLP by using a standard LP-based B&B
algorithm applied to HPR, where the value-function constraint (17) is handled implic-
itly. In our basic scheme, branching is performed by restricting the domain of the
integer-valued x and y variables, i.e., by modifying the lower/upper HPR bounds
(x−

j , x+
j , l L

j , uL
j) appearing in (13) and (14) for the integer-constrained variables x j

with j ∈ Jx and y j with j ∈ Jy .
Finite convergence of the above scheme can be guaranteed in case:

123

84 M. Fischetti et al.

(a) The B&B algorithm for the underlying HPR, as well as for the follower MILP, is
finely-convergent.

(b) One can always prune a given B&B node where all variables x j with j ∈ Jx have
been fixed by branching.

Points (a) and (b) are in fact handled byAssumptions 1 and 2. A simple B&B algorithm
that solves MIBLP in a finite number of iterations is then illustrated in Algorithm 2.
For the sake of conciseness, only the bilevel-specific features are described in full
details.

Algorithm 2: A basic branch-and-bound scheme for MIBLP
Input : A MIBLP instance satisfying Assumptions 1 and 2;
Output: An optimal MIBLP solution (if any).

1 Apply a standard LP-based B&B to HPR, branching as customary on integer-constrained variables
x j and y j that are fractional at the optimal LP solution; incumbent update, as well as node-fathoming
because of unboundedness of HPR, are instead inhibited as they require a bilevel-specific check;

2 for each unfathomed B&B node where standard branching cannot be performed do
3 if HPR is not unbounded then
4 Let (x∗, y∗) be the HPR solution at the current node;
5 Compute Φ(x∗) by solving the follower MILP for x = x∗;
6 if dT y∗ ≤ Φ(x∗) then
7 The current solution (x∗, y∗) is bilevel feasible: update the incumbent, fathom the

current node, and continue with another node
8 end
9 end

10 if all variables x j with j ∈ JF are fixed by branching then
11 Apply refinement Algorithm 1 to (x, ·);
12 Possibly update the incumbent with the resulting solution (x̂, ŷ), if any;
13 Fathom the current node
14 else
15 Branch on any x j (j ∈ JF) not fixed by branching yet (even if x∗

j is integer in the
LP-solution at the node), so as to reduce its domain in both child nodes

16 end
17 end

In Steps 2–17,wehandleB&Bnodes inwhich the standard branching on a fractional
variable is not possible. This may happen because integrality requirements are met,
or the current HPR is unbounded. Nodes for which HPR is infeasible do not need any
special treatment instead, and can be fathomed as usual.

As customary, the current node is fathomed in case the current relaxation is finite
and has an optimal solution that is bilevel feasible (Step 7).

Compared to a standard B&B algorithm, the following modified rules need to be
applied:

– Fathoming is inhibited in case of an unbounded HPR value. Instead, at Step 15
one continues to branch on an integer x j (even if x∗

j is integer) until its value is
fixed by branching.

– If HPR value is unbounded and all variables x j (j ∈ JF) are fixed by branching,
we apply the refinement algorithm of Step 11. If the refinement procedure returns

123

On the use of intersection cuts for bilevel optimization 85

“MIBLP is UNBOUNDED”, the algorithm terminates. Otherwise, the incumbent
is possibly updated (if the refinement procedure returns a finite value), and the
node is eventually fathomed.

– Branching is also not required if all variables x j (j ∈ JF) have been fixed by
branching (Step 10). Indeed, under Assumption 2, one can use Algorithm 1 to
compute the best bilevel-feasible solution (x̂, ŷ) for the node.

As customary, the algorithm returns “MIBLP is INFEASIBLE”, if upon the enu-
meration of all B&B nodes, no feasible solution is found. Observe that, even in case
of an unbounded HPR value, this situation is handled correctly, due to the refine-
ment algorithm of Step 11. In the worst case, this step is executed for every possible
combination of feasible x j integer values, j ∈ JF , until all of the B&B nodes are
discarded.

Theorem 2 Under Assumptions 1 and 2, Algorithm 2 correctly solves MIBLP in a
finite number of iterations.

Proof Finiteness follows immediately by Assumption 1, as each branching operation
strictly reduces the domain of an integer-constrained variable. Thus a finite number
of B&B nodes is generated, and each node requires a finite number of operations to
be processed. Correctness follows from the fact that, because of Assumption 2, Step
11 actually computes the best bilevel-feasible solution (x̂, ŷ) for the current node (if
any), so the node can be pruned after the incumbent update. �

Note that we allow branching on y variables, though this could be avoided by a
simple modification of our scheme. The rationale of this choice is that we prefer to
exploit the underlying MILP solver as much as possible, and to deviate from it only
when strictly needed for the correctness of the approach. Also observe that, contrary
to other approaches from the literature, branching on variables y j (by changing their
lower/upper bounds l L

j /uL
j in the HPR relaxation) is a legitimate option in our set-

ting because it does not affect the follower lower/upper bound vectors l F/uF , hence
value function Φ(x∗) computed at Step 4 remains “completely blind” with respect to
branching.

3.4 Comparison with the literature

The first generic branch-and-bound approach to MIBLP was given in [17]. The
approach works for problems without y variables in the leader constraints. Our algo-
rithm is much less restrictive than the one in [17], for which the authors are able to
prove convergence only under the assumptions that theHPR feasible region is compact
and that either all leader variables are integer (i.e., Jx = Nx), or all follower variables
are continuous (i.e., Jy = ∅).

A MILP-based branch-and-cut algorithm was introduced in [7,8]. This approach
builds upon the ideas from [17], and cuts off integer bilevel infeasible solutions by
adding cuts that exploit the integrality property of the leader and the follower variables.
However, this method works with integer variables only and does not allow y variables
in the leader constraints.

123

86 M. Fischetti et al.

In the branch-and-sandwich algorithm in [12] (which is a more general approach
for nonlinear bilevel problems) novel ideas for deriving lower and upper bounds on
the follower value function Φ(x) are proposed. Also here, it is assumed that the HPR
feasible region is compact. On the other hand, continuous x variables influencing the
follower’s decision are allowed (i.e., JF ⊆ Nx), in which case only ε-convergence
can be guaranteed.

In [20], an exact approach based on multi-way branching on the slack variables
on the follower constraints is proposed. The algorithm solves a series of MILPs,
obtained by restricting the slack variables, until the convergence is reached. Again,
all x variables are required to be integer and bounded. In contrast to our approach, no
continuous variables at the leader are allowed, and the constraint matrix A is assumed
to be integer.

Recently, [5] proposed a method that works for integer x and y variables only: HPR
is embedded into a branch-and-bound tree, bilevel infeasible solutions being cut off by
linearizing the bilevel continuous problems resulting from the separation procedure.

ABenders-like decomposition scheme for generalMIBLPs is given in [19],whereas
an approach for nonlinear MIBLPs is introduced in [16]; in both cases, the algorithms
assume the HPR feasible region be compact.

In [21] an algorithm based on a single-level reformulation, which is then solved by
a column-and-constraint generation scheme, is presented. Similarly to our approach,
the algorithm requires the integer variables to be bounded and the continuous variables
at the leader level are also allowed. In contrast to our approach, the authors allow the
continuous variables of the leader to control follower’s decisions; however, they make
a strong assumption that the optimal solution in that case is attainable, thus avoiding
the discussion on how to derive ε-optimal solutions.

To conclude, our algorithm is one of the few approaches that are capable of handling
continuous x variables (as long as they do not influence the follower decisions), in
combinationwith amixed-integer follower. Our algorithm, together with the one intro-
duced in [20], is also one of the few finitely-convergent branch-and-bound approaches
that return a provably optimal solution (if such exists) without assuming the HPR
feasible region to be compact (only integer variables need to be bounded).

4 A branch-and-cut algorithm

We next elaborate the B&B algorithm described in the previous section, and introduce
new families of linear cuts used to speedup its convergence within a branch-and-cut
(B&C) scheme.

4.1 Intersection cuts

Intersection cuts have been introduced by Balas [3] in the 1970’s, and are widely used
in Mixed-Integer Programming; the reader is referred to Ch. 6 “Intersection Cuts and
Corner Polyhedra” in [6] for a recent in-depth treatment of the subject. Their use for
MIBLP was not investigated until our very recent work [11], where for the first time
we showed their usefulness in the context of bilevel optimization.

123

On the use of intersection cuts for bilevel optimization 87

The definition of an IC violated by a given point (x∗, y∗) requires the definition of
two sets:

(1) a cone pointed at (x∗, y∗) that contains all the bilevel feasible solutions, and
(2) a convex set S that contains (x∗, y∗)—but no bilevel feasible solutions—in its

interior.

It is worth observing that condition (2) is new, in that it replaces the usual “lattice free”
property (exploited in classical MILP) with the bilevel-free one. The larger the convex
set, and the smaller the cone, the better the resulting IC. We next briefly address point
(1), while point (2) is the subject of the next section.

As customary in mixed-integer programming, our ICs are generated for vertices
(x∗, y∗) of the HPR polyhedron, so a suitable cone is just the corner polyhedron
associated with the corresponding optimal basis. All relevant information about this
cone is readily available in the “optimal tableau”. As the HPR at a given B&B node
exploits locally-valid information (notably, the reduced variable domain resulting from
branching), our ICs are locally (as opposed to globally) valid as well.

4.2 Bilevel-free polyhedra

We next describe how to derive bilevel-free polyhedra to be used to generate valid
cuts as outlined in the previous section.

Theorem 3 below was implicit in some early references (including [20]), where it
was only used as a branching rule in a B&B setting.

Theorem 3 For any ŷ ∈ R
n2 that satisfies (20)–(21), the set

S(ŷ) = {(x, y) ∈ R
n : dT y > dT ŷ, Ax + B ŷ ≤ b} (28)

does not contain any bilevel feasible point.

Proof We have to prove that no bilevel feasible (x, y) exists such that dT y > dT ŷ
and Ax + B ŷ ≤ b. Indeed, for any bilevel feasible solution (x, y) with Ax + B ŷ ≤ b,
one has

dT y ≤ Φ(x) = min
y′ {dT y′ : Ax + By′ ≤ b, (20)–(21) hold for y′} ≤ dT ŷ,

hence (x, y) /∈ S(ŷ). �
Note that inequalities (Ax + By)i ≤ bi in the follower MILP that do not involve x
variables, if any, would lead to useless inequalities of the form 0 ≤ bi − (B ŷ)i (= a
nonnegative constant), so they do not contribute to the definition of S(ŷ). This is the
reason why, for example, the bound constraints l F ≤ y ≤ uF do not appear in the
definition of S(ŷ).

Unfortunately, the above set is not always suitable for IC generation, as one needs
to ensure that any bilevel-infeasible HPR solution (x∗, y∗) to be cut belongs to the
interior of the bilevel-free polyhedron. To be sure that a violated IC can be derived,

123

88 M. Fischetti et al.

one therefore needs to address an extended version of the above set, whose validity
requires the following assumption.

Assumption 3 Ax + By − b is integer for all HPR solutions (x, y).

The above assumption holds true, in particular,when all the x and y variables appearing
in the follower MILP are constrained to be integer, and (A, B, b) is integer. The latter
is in fact a very common assumption in the MIBLP literature (see Sect. 3.4), which is
also required by the MIBLP solver proposed in [7,8] and used as a benchmark code
in our computational experiments.

Let 1 = (1, · · · , 1) denote a vector of all ones of suitable size.

Theorem 4 Under Assumption 3, for any ŷ ∈ R
n2 that satisfies (20)–(21), the

extended polyhedron

S+(ŷ) = {(x, y) ∈ R
n : dT y ≥ dT ŷ, Ax + B ŷ ≤ b + 1} (29)

does not contain any bilevel feasible point in its interior.

Proof Tobe in the interior of S+(ŷ), a bilevel feasible (x, y) should satisfydT y > dT ŷ
and Ax + B ŷ < b + 1. By assumption, the latter condition can be replaced by
Ax + B ŷ ≤ b, hence the claim follows from Theorem 3. �

It isworth observing that violated ICs can sometimes be derived even from S(ŷ), i.e.,
whenAssumption 3 does not hold and the enlarged set S+(ŷ) cannot be used as itmight
contain bilevel-feasible points in its interior. In this latter case, the IC separation on
S(ŷ) can still be used as a heuristic way to improve the LP relaxation at the given B&B
node through locally-valid cutting planes. This situation is illustrated in the following
example, where we generate violated ICs both from S(ŷ) and S+(ŷ)—those derived
from the latter set being of course deeper.

Example Figure 1 illustrates the application of our ICs to a notorious example from
[17] which is frequently used in the literature, namely:

min
x∈Z −x − 10y (30)

y ∈ arg min
y′∈Z

{ y′ : (31)

−25x + 20y′ ≤ 30 (32)

x + 2y′ ≤ 10 (33)

2x − y′ ≤ 15 (34)

2x + 10y′ ≥ 15 }. (35)

In this all-integer example, there are 8 bilevel feasible points (depicted as crossed
squares in Fig. 1), and the optimal bilevel solution is (2, 2). The drawn polytope
corresponds to the HPR feasible set.

We first apply the definition of the bilevel-free set from Theorem 3 with ŷ defined
as the follower optimal solution for x = x∗. After solving the first HPR, the point

123

On the use of intersection cuts for bilevel optimization 89

1 2 3 4 5 6 7 8

(a)

x

1

2

3

4

y
A

x x

x

x

x

x

x

x

x

x

x

x

x

x

x x

y ≤ 2

1 2 3 4 5 6 7 8

(b)

x

1

2

3

4
y

B
x x

x

x

x

x

x

x

x

x

x x
2x+ 11y ≤ 27

1 2 3 4 5 6 7 8

(c)

x

1

2

3

4
y

A

x x

x

x

x

x

x

x

x

x

x

x

x

x

x x

y ≤ 2

1 2 3 4 5 6 7 8

(d)

x

1

2

3

4
y

B
x x

x

x

x

x

x

x

x

x

x x x+ 6y ≤ 14

Fig. 1 Illustration of the effect of alternative intersection cuts applied to a notorious example from [17].
Shaded regions correspond to the bilevel-free sets from which the cut is derived

A = (2, 4) is found. This point is bilevel infeasible, as for x∗ = 2 we have dT y∗ =
y∗ = 4 while Φ(x∗) = 2. Solving the follower for x = 2 we compute ŷ = 2 and
derive S(ŷ) = {(x, y) : 2

5 ≤ x ≤ 6, y > 2} and the associated intersection cut y ≤ 2,
see Fig. 1(a). In the next iteration, the optimal HPR solution moves to B = (6, 2).
Again, for x∗ = 6, f (x∗, y∗) = y∗ = 2 while Φ(x∗) = 1. So we compute ŷ = 1
and generate the IC induced by the associated S(ŷ) = {(x, y) : 5

2 ≤ x ≤ 8, y > 1},
namely 2x + 11y ≤ 27 (cf. Fig. 1(b)). In the next iteration, the fractional point
C = (5/2, 2) is found and ŷ = 1 is again computed. In this case, C is not in the
interior of S(ŷ) so we cannot generate an IC cut from C but we should proceed and
optimize HPR to integrality by using standard MILP tools such as MILP cuts or
branching. This produces the optimal HPR solution (2, 2) which is bilevel feasible
and hence optimal.

We next apply the definition of the enlarged bilevel-free set fromTheorem 4 (whose
assumption is fulfilled in this example) with ŷ defined as before; see Figures 1(c) and
(d). After the first iteration, the point A = (2, 4) is cut off by a slightly larger

123

90 M. Fischetti et al.

S+(ŷ = 2) = {(x, y) : 9
25 ≤ x ≤ 2, y ≥ 2}. Note that, however, we obtain the same

IC as before (y ≤ 2). After the second iteration, from the bilevel infeasible point
B = (6, 2) we derive a larger set S+(ŷ = 1) = {(x, y) : 2 ≤ x ≤ 17

2 , y ≥ 1} and a
stronger IC (x + 6y ≤ 14). In the third iteration, solution D = (2, 2) is found which
is the optimal bilevel solution, so no branching at all is required in this example.

4.3 Relaxed bilevel-free polyhedra

It is well known from IC theory [3,6] that the larger the bilevel-free polyhedron,
the deeper the resulting IC. Therefore one is interested in enlarging that polyhedron,
e.g., by relaxing some of its defining inequalities—as long as this does not affect the
bilevel-free property of course. To this end, one can apply the following simple (yet
very powerful) argument.

Theorem 5 Let S = {(x, y) ∈ R
n : αT

i x + βT
i y ≤ γi , i = 1, . . . , k} be any

polyhedron not containing bilevel-feasible points in its interior. Then one can remove
from the definition of S all the inequalities αT

i x + βT
i y ≤ γi such that the half-space

{(x, y) ∈ R
n : αT

i x + βT
i y ≥ γi } does not contain any bilevel-feasible solution.

Proof Obvious, as the removal of any such inequality from the definition of S cannot
bring bilevel-feasible points into it. �
Note that the condition on the theorem refers to a closed half-space, i.e., the condition
is ≥ γi and not > γi . This is consistent with the fact that S is allowed to contain
bilevel-feasible points on its boundary.

Corollary 1 Let S = {(x, y) ∈ R
n : αT

i x + βT
i y ≤ γi , i = 1, . . . , k} be any

polyhedron not containing bilevel-feasible points in its interior. Then one can remove
from the definition of S all the inequalities αT

i x + βT
i y ≤ γi such that

n1∑

j=1

max{αi j x−
j , αi j x+

j } +
n2∑

j=1

max{βi j l
L
j , βi j u

L
j } < γi .

In our implementation, the above corollary is automatically applied within IC sep-
aration, by using the current lower/upper bounds (x−, x+, l L , uL) at the given B&B
node.

Corollary 2 Let S+(ŷ) be the bilevel-free polyhedron defined by (29) and assume a
lower bound F L B on dT y is known. If dT ŷ < F L B, one can remove the inequality
dT y ≥ dT ŷ from the definition of S+(ŷ).

In our code, the above property is only exploited for “zero-sum” instances where
the leader and follower objective functions satisfy F(x, y) = − f (x, y), i.e., cx = 0
and cy = −d in (10). Indeed, at every B&B node, the incumbent value z∗ (say) is an
upper bound for the leader objective function, hence F L B = −z∗ is a lower bound
for the follower’s one.

123

On the use of intersection cuts for bilevel optimization 91

4.4 Separation of intersection cuts

We now address the question of how to cut a given vertex (x∗, y∗) of HPR by using
an IC. Given that we use the cone associated with the current LP basis, as explained
in Sect. 4.1, what remains is the choice of the bilevel-free set to be used.

As ICs require that (x∗, y∗) belongs to the interior of the bilevel-free set, we con-
centrate on the extended polyhedron S+(ŷ) from Theorem 4. In doing so, we have
to restrict ourselves to the cases where Assumption 3 holds. We also assume that
(possibly after scaling) d is an integer vector, so as to replace the bilevel-infeasibility
conditions of the type dT y < dT y∗ by dT y ≤ dT y∗ − 1.

As our ICs are locally valid cuts, in this section we denote by (x−, x+, l L , uL) the
variable bounds at the current branching node, as modified by branching. Needless to
say, notation (A, B, b, d, l F , uF) refers instead to the original follower MILP, that is
required to be completely blind with respect to branching.

A very natural option for defining S+(ŷ) is to choose ŷ as an optimal solution of
the follower MILP for x = x∗, namely:

SEP − 1 : ŷ ∈ argmin dT y (36)

Ax∗ + By ≤ b (37)

l F ≤ y ≤ uF (38)

y j integer ∀ j ∈ Jy (39)

Note that the above problem is always feasible when (x∗, y∗) is an HPR solution. Also
note that one cannot write ≤ b + 1 in (37) as this would allow (x∗, ·) to belong to the
boundary of S+(ŷ).

In our B&C scheme, the computation of ŷ typically does not require extra effort
as the follower MILP is solved anyway for the sake of checking bilevel feasibility of
(x∗, y∗) and, possibly, producing heuristic solutions.

By minimizing dT ŷ, the above model maximizes the distance of (x∗, y∗) from the
face of S+(ŷ) induced by dT y ≥ dT ŷ. This is an aggressive policy that works very
well in some cases. However, a possible drawback is that the other faces of S+(ŷ) can
be quite close to (x∗, y∗), which tends to reduce the depth of the derived IC.

An alternative approach is to define ŷ so as to have a large number of removable
inequalities according toCorollary 1, i.e., inequalities of type (Ax+B ŷ)i ≤ bi +1with

∑

j∈Nx

max{Ai j x−
j , Ai j x+

j } + (B ŷ)i ≤ bi . (40)

This leads to the following alternative separation MILP (recall that m denotes the
number of rows of B).

SEP − 2 : ŷ ∈ argmin
m∑

i=1

wi (41)

dT y ≤ dT y∗ − 1 (42)

123

92 M. Fischetti et al.

By + s = b (43)

si + (Lmax
i − L∗

i) wi ≥ Lmax
i , ∀i = 1, . . . , m (44)

l F ≤ y ≤ uF (45)

y j integer, ∀ j ∈ Jy (46)

s free (47)

w ∈ {0, 1}m (48)

where, for each i = 1, . . . , m,

L∗
i :=

∑

j∈Nx

Ai j x∗
j ≤ Lmax

i :=
∑

j∈Nx

max{Ai j x−
j , Ai j x+

j }.

In themodel, the binary variablewi attains value 0 if the inequality (Ax+B ŷ)i ≤ bi +1
can be removed according to (40),wi = 1 otherwise. The objective function (41) then
minimizes the number of inequalities that cannot be removed.

Equations (43) define the free variable si = (b − By)i for each constraint, hence
condition s ≥ L∗ implied by (44) actually imposes that the final solution ŷ satisfies
Ax∗+ B ŷ ≤ b. Together with (42), this guarantees that (x∗, y∗) belongs to the interior
of S+(ŷ).

In case wi = 0, constraint (44) actually enforces the stronger condition si ≥ Lmax
i ,

i.e.,
∑

j∈Nx
max{Ai j x−

j , Ai j x+
j } + (B ŷ)i ≤ bi . Hence condition (40) holds and the

corresponding inequality can be removed, as claimed.

4.5 Informed No-Good cuts

A known drawback of ICs is their dependency on the LP basis associated with the
point to cut, which can create cut accumulation in the LP relaxation and hence shallow
cuts and numerical issues. Moreover, ICs are not directly applicable if the point to cut
is not a vertex of a certain LP relaxation of the problem at hand, as it happens e.g.,
when it is computed by the internal MILP heuristics.

We next describe a general-purpose variant of ICswhose derivation does not require
any LP basis and is based on the well-known interpretation of ICs as disjunctive cuts.
In a sense, we are replacing the cone defined by the LP basis by the cone induced
by the tight bound constraints. It turns out that the resulting inequality is valid and
violated by any bilevel infeasible solution of HPR in the relevant special case where
all x and y variables are binary.

We are given a point ξ∗ = (x∗, y∗) ∈ R
n and a polyhedron

S = {ξ ∈ R
n : gT

i ξ ≤ gi0, i = 1, . . . , k}

whose interior contains ξ∗ but no bilevel-feasible points. Assume that variable-bound
constraints ξ− ≤ ξ ≤ ξ+ are present in the HPR, where some entries of ξ− or ξ+ can
be −∞ or +∞, respectively. Given ξ∗ with ξ− ≤ ξ∗ ≤ ξ+, let

123

On the use of intersection cuts for bilevel optimization 93

L := { j ∈ {1, . . . , n} : |ξ∗
j − ξ−

j | ≤ |ξ∗
j − ξ+

j |}

and U := {1, . . . , n} \ L . In other words, L contains the indices of the variables that
are closer to their lower bound than to their upper bound, and vice-versa for U . For
the relevant case where ξ∗

j ∈ {ξ−
j , ξ+

j } for all j ∈ {1, . . . , n}, sets L and U then
contain the indices of the variables at their lower or upper bound, respectively. Given
the partition (L , U), we define the corresponding linear mapping ξ �→ ξ ∈ R

n with

ξ j :=
{

ξ j − ξ−
j , for j ∈ L

ξ+
j − ξ j , for j ∈ U

(variable shift and complement). By assumption, any feasible point ξ must satisfy the
k-way disjunction

k∨

i=1

⎛

⎝
n∑

j=1

gi jξ j ≥ gi0

⎞

⎠ , (49)

whereas ξ∗ violates all the above inequalities. Now, each term of (49) can be rewritten
in terms of ξ as

n∑

j=1

gi j ξ j ≥ β i := gi0 −
∑

j∈L

gi jξ
−
j −

∑

j∈U

gi jξ
+
j , (50)

with gi j := gi j if j ∈ L , gi j = −gi j otherwise. If β i > 0 for all i = 1, . . . , k, one
can normalize the above inequalities to get

∑n
j=1(gi j/β i) ξ j ≥ 1 and derive the valid

disjunctive cut in the ξ space

n∑

j=1

γ jξ j ≥ 1, (51)

where γ j := max{gi j/β i : i = 1, . . . , k}. Finally, one can transform it back to the ξ

space in the obvious way.
It is easy to see that, in case ξ∗

j ∈ {ξ−
j , ξ+

j } for all j ∈ {1, . . . , n}, one has β > 0,

hence the above cut is indeed valid and obviously violated as ξ
∗ = 0. In all other

cases, the above cut separation is just heuristic.
Inequality (51) is called an Informed No-Good (ING) cut as it can be viewed as a

strengthening of the following no-good cut often used for bilevel problems with all-
binary variables—and in many other Constraint Programming (CP) andMathematical
Programming (MP) contexts:

∑

j∈L

ξ j +
∑

j∈U

(1 − ξ j) ≥ 1. (52)

123

94 M. Fischetti et al.

The cut above corresponds to the very generic choice

S = {ξ ∈ R
n : ξ j ≤ 1∀ j ∈ L , 1 − ξ j ≤ 1∀ j ∈ U }

and is violated by ξ∗ but is satisfied by any other binary point, hence resulting into a
very weak cut. To the best our knowledge, ING cuts are new; they will hopefully be
useful in other CP and MP contexts.

5 Computational results

To evaluate the performance of our B&C solution method, we implemented it (in C
language) on top of the general-purposeMILP solver IBM ILOGCPLEX 12.6.3 using
callbacks.

Internal CPLEX’s heuristics as well as preprocessing have been deactivated in all
experiments. IC separation is applied both to fractional solutions (in the so-called
usercut callback) and to integer solutions (in the so-called lazyconstraint callback).
For fractional solutions, ICs whose normalized violation is very small are just skipped,
and a maximum number of cuts max_node_cuts (a given parameter) is allowed to
be generated at each node.

Internal numerical-precision thresholds for integrality and constraint-satisfaction
tests are set to a very small value (10−9) so as to guarantee a very precise overall
computation.

Our computational study has been performed on an Intel Xeon E3-1220V2 3.1GHz,
with 16GB of RAM. This is a quad-core processor launched by Intel in 2012 and
credited for 1892 Mflop/s in the Linpack benchmark report of Dongarra [10].

Computing times reported in what follows are in wall-clock seconds and refer to
4-thread runs. The time limit for each run was set to 3600 wall-clock seconds.

5.1 Testbed

Table 1 summarizes details about the data sets that have been considered in our
computational study. The following four data sources with a total number of 302
instances have been considered: CARAMIA-MARI (available from the authors of [5]
upon request), DENEGRE and INTERDICTION (both available at https://github.com/

Table 1 Our testbed

Class Source #inst Type Notes

CARAMIA-MARI [5] 70 I Randomly generated (very small and easy)

DENEGRE [7,18] 50 I Randomly generated (medium difficulty)

INTERDICTION [7,18] 125 B Interdiction inst.s (treated as general bilevel)

MIPLIB [11] 57 B From MIPLIB 3.0 (very large and difficult)

Column #inst reports the total number of instances in the class, while column type indicates whether the
instances are binary (B) or integer (I)

123

https://github.com/tkralphs/MibS/tree/library/data

On the use of intersection cuts for bilevel optimization 95

tkralphs/MibS/tree/library/data in February 2016), and MIPLIB (available at https://
msinnl.github.io/pages/bilevel.html).

Class CARAMIA-MARI contains 70 randomly generated instances with n1, n2 ∈
{5, 10, 15}, with no leader constraints and with m = n1 + n2 follower constraints. All
variables are required to be integer and all coefficients are randomly generated integer
values; see [5] for further details.

Instances of class DENEGRE have been proposed in [7]. They consist of n1 ∈
{5, 10, 15} integer leader variables, and the number of integer follower variables n2 is
set such that n1 + n2 = 20. There are m ∈ {20, 30, 40} follower constraints and no
constraints at the leader. All coefficients are integers in the range [−50, 50].

Instances of class INTERDICTION have the following structure. All variables are
binary and each variable in the leader is associated with a variable in the follower,
and vice-versa. The leader has a single constraint that is called the interdiction-budget
constraint. The follower problemconsists of some combinatorial optimization problem
defined on the y variables only, plus additional constraints that involve both x and y
variables and have the form xi + yi ≤ 1. In other words, the leader is allowed to
interdict to the follower the use of some items, subject to the interdiction budget.
The leader and follower problems share the same objective function, with opposite
signs. In class INTERDICTION, the follower problem is an assignment problem (25
instances with 25 + 25 variables) or a knapsack problem (100 instances with up to
50+ 50 variables). Although interdiction problems can in some cases be treated with
specialized ad-hoc algorithms exploiting the problem structure (as, e.g., done in [7]),
in our computational study they are treated as general bilevel problems.

Finally, class MIPLIB has been introduced in [11] with the aim of producing very
challenging instances for MIBLP solvers. It is derived from 19 instances of MILPLIB
3.0 [4] containing only binary variables. They have been converted into bilevel prob-
lems by labeling the first Y% (rounded up) variables as y’s, and the remaining ones
as x’s, with Y ∈ {10, 50, 90}, thus resulting in 57 instances in total. All constraints in
the resulting model belong to the follower subproblem, while the objective function
is used as the leader objective cT

x x + cT
y y. Finally, the follower objective is defined

as dT y = −cT
y y. In [11], only 30 out of 57 instances from this class have been

considered—those containing equality constraints were left out, for the sake of com-
parison with an alternative solver which could not handle equality constraints. By
design, instances in class MIPLIB are much larger (and difficult) than those in the
other classes, and involve up to about 80,000 HPR variables and up to about 5000
follower constraints.

5.2 Benchmark solver

In order to have a benchmark code, we implemented the solution method recently
proposed in [7], called BENCHMARK in what follows. To have an apple-to-apple com-
parison, we decided to embed the cuts proposed in [7, cf. Proposition 2.2] within
our own CPLEX-based code. These cuts can only be applied to pure integer MIBLP
instances in which all variables are integer-constrained, and all constraint coefficients
are integer as well. They are used to cut-off a bilevel-infeasible integer vertex (x∗, y∗)

123

https://github.com/tkralphs/MibS/tree/library/data
https://msinnl.github.io/pages/bilevel.html
https://msinnl.github.io/pages/bilevel.html

96 M. Fischetti et al.

of HPR at a given node, so they have been implemented in the CPLEX’s lazyconstraint
callback. Each such cut is obtained by adding up all tight constraints (including vari-
able bounds) at (x∗, y∗), written in their ≥ form, and then adding 1 to the right-hand
side. Note that the resulting cut is locally valid, and requires that all coefficients in
the node-LP matrix are integer (meaning that one is not allowed to generate other cuts
with non-integer coefficients); see [7] for details.

A comparison with the results on 30 instances (that were available online) from the
set DENEGRE reported in [7, cf. Table 2.4] is given in Table 2. Computing times for the
original implementation refer to an eight-core AMD Opteron Processor 6128 @2.0
Ghzwith 32GB ofmemory, launched inMarch 2010. Time limit for BENCHMARKwas
set to 3600 wall-clock seconds, while a time limit of 30,000 seconds was used in [7].
Table 2 reports the value of the best solution found (BestSol), the computing time in
seconds (t[s]), the percentage gap between the final lower and upper bounds (%GAP),
and the speedup of BENCHMARKwith respect to the original implementation (column
speedup, not reported in case of both hit the time limit).

According to the table, our BENCHMARK implementation is about 10-100 times
faster (and solves to proven optimality two more instances) than the original one.
Moreover, for problems not solved to proven optimality, BENCHMARK systematically
produces better lower and upper bounds. This is not surprising, as our implementation
is based on the commercial software CPLEX, while the original one uses the open-
source software COIN-OR (BLIS).

We can therefore conclude that our benchmark code BENCHMARK represents in
fair way a state-of-the-art exact solver for general MIBLPs.

5.3 Results

In this subsection we compare the performance of six alternative settings for our
MIBLP solver, namely:

– SEP-1a: our B&C solver using model SEP-1 of Sect. 4.4 for IC separation, and
generating at most max_node_cuts=20 cuts at each node (including root);

– SEP-2a: our B&C solver with SEP-2 and max_node_cuts=20 for all nodes
(including root);

– SEP-1b: our B&C solver with SEP-1 and max_node_cuts=20 for the root
node only (=0 for all other nodes);

– SEP-2b: our B&C solver with SEP-2 and max_node_cuts=20 for the root
node only (=0 for all other nodes);

– ING: our B&C solver with ING cuts applied to the SEP-1 bilevel-free polyhedron;
only integer points being separated, i.e., max_node_cuts=0 for all nodes;

– BENCHMARK: our benchmark code implementing cuts in [7].

The computational analysis reported in [11] shows that ING cuts significantly
outperform standard no-good cuts, hence the latter were not considered in our
computational tests. Note that, similarly to no-good cuts, ING cuts only work for
binary problems, thus setting ING cannot be applied to the instances of classes
CARAMIA-MARI and DENEGRE, as they contain general-integer variables.

123

On the use of intersection cuts for bilevel optimization 97

Ta
bl

e
2

Pe
rf
or
m
an
ce

of
ou

r
B
E
N
C
H
M
A
R
K
co
de

In
st
an
ce

O
ri
gi
na
li
m
pl
em

en
ta
tio

n
[7
]

O
ur

B
E
N
C
H
M
A
R
K
im

pl
em

en
ta
tio

n

B
es
tS
ol

t[s
]

%
G
A
P

B
es
tS
ol

t[s
]

%
G
A
P

sp
ee
du
p

m
ib
lp
-2
0-
20

-5
0-
01

10
-5
-1

−5
48

60
.6
2

0
−5

48
0.
78

0
77

.7

m
ib
lp
-2
0-
20

-5
0-
01

10
-5
-2

−5
58

30
,0
00

.0
0

25
.1

−5
83

3,
60

0.
00

5.
7

–

m
ib
lp
-2
0-
20

-5
0-
01

10
-5
-3

−4
77

0.
14

0
−4

77
0.
01

0
14

.0

m
ib
lp
-2
0-
20

-5
0-
01

10
-5
-4

−7
53

0.
22

0
−7

53
0.
02

0
11

.0

m
ib
lp
-2
0-
20

-5
0-
01

10
-5
-5

−3
92

0.
11

0
−3

92
0.
01

0
11

.0

m
ib
lp
-2
0-
20

-5
0-
01

10
-5
-6

−1
06

1
10

91
.9
1

0
−1

06
1

5.
38

0
20

3.
0

m
ib
lp
-2
0-
20

-5
0-
01

10
-5
-7

−5
47

0.
35

0
−5

47
0.
02

0
17

.5

m
ib
lp
-2
0-
20

-5
0-
01

10
-5
-8

−9
36

0.
32

0
−9

36
0.
02

0
16

.0

m
ib
lp
-2
0-
20

-5
0-
01

10
-5
-9

−8
77

0.
24

0
−8

77
0.
02

0
12

.0

m
ib
lp
-2
0-
20

-5
0-
01

10
-5
-1
0

−3
40

0.
85

0
−3

40
0.
03

0
28

.3

m
ib
lp
-2
0-
20

-5
0-
01

10
-1
0-
1

−3
53

30
,0
00

.0
0

47
.0

−3
59

3,
60

0.
00

30
.7

–

m
ib
lp
-2
0-
20

-5
0-
01

10
-1
0-
2

−6
59

15
.8
2

0
−6

59
0.
63

0
25

.1

m
ib
lp
-2
0-
20

-5
0-
01

10
-1
0-
3

−6
18

12
0.
31

0
−6

18
0.
89

0
13

5.
2

m
ib
lp
-2
0-
20

-5
0-
01

10
-1
0-
4

−5
97

30
,0
00

.0
0

25
.7

−6
04

3,
60

0.
00

13
.8

–

m
ib
lp
-2
0-
20

-5
0-
01

10
-1
0-
5

−1
00

3
0.
06

0
−1

00
3

0.
01

0
6.
0

m
ib
lp
-2
0-
20

-5
0-
01

10
-1
0-
6

−6
72

30
,0
00

.0
0

26
.2

−7
07

3,
60

0.
00

17
.3

–

m
ib
lp
-2
0-
20

-5
0-
01

10
-1
0-
7

−6
18

30
,0
00

.0
0

36
.8

−6
69

3,
60

0.
00

22
.3

–

m
ib
lp
-2
0-
20

-5
0-
01

10
-1
0-
8

−6
67

99
7.
46

0
−6

67
9.
89

0
10

0.
9

m
ib
lp
-2
0-
20

-5
0-
01

10
-1
0-
9

−2
56

68
49

.9
1

0
−2

56
39

.1
2

0
17

5.
1

m
ib
lp
-2
0-
20

-5
0-
01

10
-1
0-
10

−4
29

30
,0
00

.0
0

23
.6

−4
41

77
3.
36

0
38

.8

m
ib
lp
-2
0-
20

-5
0-
01

10
-1
5-
1

−2
89

30
,0
00

.0
0

60
.6

−4
20

3,
60

0.
00

31
.4

–

m
ib
lp
-2
0-
20

-5
0-
01

10
-1
5-
2

−6
45

30
,0
00

.0
0

23
.2

−6
45

3,
60

0.
00

17
.1

–

m
ib
lp
-2
0-
20

-5
0-
01

10
-1
5-
3

−5
93

30
,0
00

.0
0

20
.2

−5
93

3,
49

9.
93

0
8.
6

123

98 M. Fischetti et al.

Ta
bl

e
2

co
nt
in
ue
d

In
st
an
ce

O
ri
gi
na
li
m
pl
em

en
ta
tio

n
[7
]

O
ur

B
E
N
C
H
M
A
R
K
im

pl
em

en
ta
tio

n

B
es
tS
ol

t[s
]

%
G
A
P

B
es
tS
ol

t[s
]

%
G
A
P

sp
ee
du
p

m
ib
lp
-2
0-
20

-5
0-
01

10
-1
5-
4

−3
96

30
,0
00

.0
0

36
.4

−4
24

3,
60

0.
00

20
.9

–

m
ib
lp
-2
0-
20

-5
0-
01

10
-1
5-
5

−7
5

30
,0
00

.0
0

90
.1

−3
20

3,
60

0.
00

52
.2

–

m
ib
lp
-2
0-
20

-5
0-
01

10
-1
5-
6

−5
96

30
,0
00

.0
0

40
.4

−5
96

3,
60

0.
00

32
.2

–

m
ib
lp
-2
0-
20

-5
0-
01

10
-1
5-
7

−4
71

30
,0
00

.0
0

28
.0

−4
71

3,
60

0.
00

3.
5

–

m
ib
lp
-2
0-
20

-5
0-
01

10
-1
5-
8

−2
42

30
,0
00

.0
0

73
.9

−3
01

3,
60

0.
00

64
.8

–

m
ib
lp
-2
0-
20

-5
0-
01

10
-1
5-
9

−5
84

32
4.
33

0
−5

84
4.
30

0
75

.4

m
ib
lp
-2
0-
20

-5
0-
01

10
-1
5-
10

−2
51

9.
12

0
−2

51
0.
08

0
11

4.
0

123

On the use of intersection cuts for bilevel optimization 99

Table 3 Summary of results obtained for the CARAMIA-MARI class. All 70 instances are solved to
optimality by each of the settings

Setting SEP-1a SEP-2a SEP-1b SEP-2b BENCHMARK

t[s] 1.5 2.5 0.1 0.3 0.1

Nodes 88.2 101.1 369.7 345.0 398.5

Average computing time (t[s]) and average number of nodes are reported

First, we provide a summary of our results on the class of CARAMIA-MARI
instances, see Table 3. Given that these instances are solved by each of our settings
within fractions of a second, we conclude that they are too easy and do not con-
sider them in the remainder of this computational study. Note that the best performing
approach presented in [5] needed on average 35 seconds for this class, on a PCPentium
Core 2 Duo with a 2 GHz processor and 1 GB RAM and using CPLEX 12.3.

We next compare the performance of our different settings using performance pro-
files [9]. To construct performance profiles, for each setting s ∈ S and instance p ∈ P ,
a performance ratio

rp,s = tp,s

mins′∈S{tp,s′ }
is calculated, where tp,s is the time setting s needs to solve instance p to optimality.
If a setting s does not solve instance p, rp,s is set to rM , which is a value larger than
any rp,s , e.g., rM = maxs∈S,p∈P rp,s + 1. In the profiles, the cumulative distribution
function of the performance ratio

ρs(τ) = 100

|P|
∣∣{p ∈ P : rps ≤ τ }∣∣

is displayed for each setting s ∈ S. In particular, the value ρs(1) is the percentage
of instances, for which setting s is the fastest, and ρs(rM − 1) gives the percentage
of instances setting s manages to solve to optimality. In the performance profile plot,
those two values correspond, respectively, to the leftmost and rightmost point of the
graph for setting s.

The performance profile plot for all 232 instances from the classes MIPLIB,
INTERDICTION and DENEGRE is given in Figure 2. Note that the horizontal axis is
log-scaled. Analyzing the obtained results, we may conclude that, consistently over
all different instance classes, our intersection cuts embedded in the branch-and-cut
framework significantly outperform the BENCHMARK code. Setting SEP-2a turns
out to be the best performing one: for 28% of all instances, SEP-2a is the fastest
approach, and it manages to solve to optimality 71% of them within the time limit of
one hour. In comparison, the BENCHMARK code is the fastest one for only 8% of all
instances and manages to solve only 42% of them to optimality.

To evaluate usefulness of ING cuts, we separately considered only binary instances
(namely, those from classesINTERDICTION and MIPLIB) and compared our setting
ING with the five remaining ones. The corresponding performance profile is reported
in Figure 3. We observe that ING outperforms BENCHMARK by a large margin, being

123

100 M. Fischetti et al.

0

20

40

60

10 100 1000
No more than x times worse than best setting

Pe
rc

en
ta

ge
 o

f i
ns

ta
nc

es
Setting

SEP−1a
SEP−2a
SEP−1b
SEP−2b
BENCHMARK

Fig. 2 Performance profile plot over all instances (classes DENEGRE, INTERDICTION and MIPLIB);
setting ING is missing as it only works for binary problems. For each plotted line, the leftmost value gives
the percentage of instances for which the corresponding setting was the fastest, while the rightmost value
gives the percentage of instances solved to proven optimality

0

20

40

60

1 10 100 1000

No more than x times worse than best setting

Pe
rc

en
ta

ge
 o

f i
ns

ta
nc

es Setting
SEP−1a
SEP−2a
SEP−1b
SEP−2b

BENCHMARK
ING

Fig. 3 Performance profile plot over all binary instances (classes INTERDICTION and MIPLIB). Setting
ING is now included

the fastest performing approach for about 15% of all binary instances, and solving
to optimality 48% of them. On the contrary, BENCHMARK is almost never the fastest
one, and it manages to solve only 32% of all binary instances to optimality.

In Table 4 we further summarize the obtained results. We provide the number of
solved instances (#) per each class, the shifted geometric mean of computing times and
the number of branch-and-cut nodes, as well as the average gap. The shifted geometric
mean for a given shift s and values v1, v2, . . . , vn is defined as n

√∏
(vi + s) − s

(see, e.g., [1]). Computing times and number of nodes are shifted by 10 seconds
and 100 nodes, respectively. The percentage gap for each instance is calculated as
min{100, 100 · (U B − L B)/(|U B|+10−10)}, i.e., gaps are clipped to 100% to avoid
too-large values that would make the comparison harder.

Analyzing Table 4, one easily concludes that the most-challenging instances con-
sidered in our computational study are those from the MIPLIB class. Computing
times, number of nodes and final gaps are much larger than the respective values of
DENEGRE class. The setting SEP-2a turns out to be the best performing one for
classes MIPLIB and INTERDICTION. Its success is particularly striking for the

123

On the use of intersection cuts for bilevel optimization 101

Ta
bl

e
4

Su
m
m
ar
y
of

ob
ta
in
ed

re
su
lts
.W

e
re
po

rt
th
e
nu

m
be
r
of

so
lv
ed

in
st
an
ce
s
(#
),
th
e
sh
if
te
d
ge
om

et
ri
c
m
ea
n
fo
r
co
m
pu

tin
g
tim

e
(t

[s]
)
an
d
fo
r
nu

m
be
ro

f
no

de
s
(n

od
es
),

an
d
th
e
av
er
ag
e
ga
ps

(g
[%

])
Se
tti
ng

M
I
P
L
I
B
(5
7
in
st
.s
)

I
N
T
E
R
D
I
C
T
I
O
N
(1
25

in
st
.s
)

D
E
N
E
G
R
E
(5
0
in
st
.s
)

#
t[s

]
N
od
es

g[%
]

#
t[s

]
N
od
es

g[%
]

#
t[s

]
N
od
es

g[%
]

S
E
P
-
1
a

20
59

9
9,
65

5.
9

27
.6
5

83
14

8
36

,7
69

.3
33

.0
6

42
40

57
4.
0

4.
61

S
E
P
-
2
a

20
61

8
8,
55

2.
9

26
.1
2

10
4

50
2,
51

3.
4

4.
64

40
60

69
2.
3

7.
16

S
E
P
-
1
b

18
66

0
1,
00

,4
75

.8
27

.8
5

64
24

5
2,
40

,8
59

.4
48

.3
9

45
35

12
,4
52

.1
3.
89

S
E
P
-
2
b

18
66

6
80

,1
72

.1
28

.4
2

61
31

7
2,
95

,5
95

.8
41

.5
5

43
39

13
,4
21

.1
5.
06

I
N
G

16
87

2
1,
72

,3
34

.9
30

.7
1

69
17

3
71

,9
67

.8
44

.3
5

–
–

–
–

B
E
N
C
H
M
A
R
K

15
95

4
2,
34

,6
70

.7
31

.7
8

44
49

6
13

,1
0,
63

9.
5

63
.4
5

38
58

27
,9
18

.5
9.
20

123

102 M. Fischetti et al.

INTERDICTION class, for which the average gap is only 4.64%, whereas for the
remaining five settings this gap remains larger than 30%. This indicates that SEP-2
model for separating ICs has a practical value when the follower has a clean (combina-
torial) substructure, which is exploited by our inequality-removal scheme for enlarging
the bilevel-free polyhedron.

A slightly different behavior can be observed for instances from theDENEGRE class.
Recall that this class contains very small instanceswith up to 20 integer variables.Most
of these instances are very easy and can be solved within a fraction of a second. See,
for example, Table 1, which reports the computing times for BENCHMARK over the
largest 30 instances from this class. For such small instances, separating intersection
cuts at every node of the B&C tree does not pay off in general. This explains why the
settings with max_node_cuts=0 at the non-root B&C nodes (SEP-1b, SEP-2b
and also BENCHMARK) perform much better for these particular cases.

6 Conclusions

We have presented a finitely-convergent (under appropriate conditions) branch-and-
cut method for MIBLP, that is intended to be a modification of a classical MILP
scheme. By design, our approach focuses on the add-on extras required to convert a
branch-and-cut MILP exact code into a valid MIBLP solver. In this way, we inherit
the rich set of tools (cuts, heuristics, propagations, etc.) available in modern MILP
solvers, and concentrate on bilevel-specific issues.

Valid intersection cuts for MIBLP have been proposed, along with the correspond-
ing separation procedures. We have also introduced a class of “Informed No-Good”
(ING) cuts that can be used in the pure-binary case. An extensive computational anal-
ysis on different classes of instances from the literature has been reported, showing
that the proposed approach outperforms previous proposals by a large margin.

Future work should address the use of different bilevel-free polyhedra for deriving
deeper intersection cuts. Different kinds of cuts not requiring the LP basis (like ING
cuts) are also of interest and should be investigated as well.

Acknowledgements This research was funded by the Vienna Science and Technology Fund (WWTF)
through Project ICT15-014. The work of M. Fischetti and M. Monaci was also supported by the University
of Padova (Progetto di Ateneo “Exploiting randomness in Mixed Integer Linear Programming”), and by
MiUR, Italy (PRIN2015 Project “Nonlinear and Combinatorial Aspects of Complex Networks”). The work
of I. Ljubić and M. Sinnl was also supported by the Austrian Research Fund (FWF, Project P 26755-N19).
The authors thank M. Caramia and T. Ralphs for providing the instances used in [5] and [7], respectively.
Thanks are also due to two anonymous referees for their helpful comments and suggestions.

References

1. Achterberg, T.: Constraint integer programming. PhD thesis, Technische Universität Berlin, Germany
(2009)

2. Audet, C., Haddad, J., Savard, G.: Disjunctive cuts for continuous linear bilevel programming. Optim.
Lett. 1(3), 259–267 (2007)

3. Balas, E.: Intersection cuts-a new type of cutting planes for integer programming. Oper. Res. 19(1),
19–39 (1971)

123

On the use of intersection cuts for bilevel optimization 103

4. Bixby, R .E., Ceria, S., McZeal, C .M., Savelsbergh, M .W .P.: An updated mixed integer programming
library: MIPLIB 3.0. Optima 58, 12–15 (1998)

5. Caramia, M., Mari, R.: Enhanced exact algorithms for discrete bilevel linear problems. Optim. Lett.
9(7), 1447–1468 (2015)

6. Conforti, M., Cornuejols, G., Zambelli, G.: Integer Programming. Springer International Publishing,
Berlin (2014)

7. DeNegre, S.: Interdiction and discrete bilevel linear programming. PhD Thesis, Lehigh University
(2011)

8. DeNegre, S., Ralphs, T.K.: A branch-and-cut algorithm for integer bilevel linear programs. In: Chin-
neck, J.W., Kristjansson, B., Saltzman. M.J (eds.) Operations Research and Cyber-Infrastructure, pp.
65–78. Springer, Berlin (2009)

9. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Pro-
gram. 91(2), 201–213 (2002)

10. Dongarra, J.J.: Performance of various computers using standard linear equations software. http://
www.netlib.org/benchmark/performance.ps (2014). Accessed 20 Feb 2016

11. Fischetti,M., Ljubić, I.,Monaci,M., Sinnl,M.: Intersection cuts for bilevel optimization. In: Louveaux,
Q., Skutella, M. (eds) IPCO Proceedings, LNCS, Springer (2016)

12. Kleniati, P.-M., Adjiman, C.S.: A generalization of the branch-and-sandwich algorithm: from contin-
uous to mixed-integer nonlinear bilevel problems. Comput. Chem. Eng. 72, 373–386 (2015)

13. Köppe, M., Queyranne, M., Ryan, C.T.: Parametric integer programming algorithm for bilevel mixed
integer programs. J. Optim. Theory Appl. 146(1), 137–150 (2010)

14. Lodi, A., Ralphs, T.K., Woeginger, G.J.: Bilevel programming and the separation problem. Math.
Program. 146(1–2), 437–458 (2014)

15. Loridan, P.,Morgan, J.:Weak via strong Stackelberg problem: new results. J. Global Optim. 8, 263–297
(1996)

16. Mitsos, A.: Global solution of nonlinear mixed-integer bilevel programs. J. Global Optim. 47(4),
557–582 (2010)

17. Moore, J., Bard, J.: The mixed integer linear bilevel programming problem. Oper. Res. 38(5), 911–921
(1990)

18. Ralphs, T.K., Adams, E.: Bilevel instance library. http://coral.ise.lehigh.edu/data-sets/bilevel-
instances/ (2016). Accessed 10 Feb 2016

19. Saharidis, G.K., Ierapetritou, M.G.: Resolution method for mixed integer bi-level linear problems
based on decomposition technique. J. Global Optim. 44(1), 29–51 (2009)

20. Xu, P., Wang, L.: An exact algorithm for the bilevel mixed integer linear programming problem under
three simplifying assumptions. Comput. Oper. Res. 41, 309–318 (2014)

21. Zeng, B., An, Y.: Solving bilevel mixed integer program by reformulations and decomposition.
optimization-online, 1–34 (2014)

123

http://www.netlib.org/benchmark/performance.ps
http://www.netlib.org/benchmark/performance.ps
http://coral.ise.lehigh.edu/data-sets/bilevel-instances/
http://coral.ise.lehigh.edu/data-sets/bilevel-instances/

	On the use of intersection cuts for bilevel optimization
	Abstract
	1 Introduction
	2 The problem
	2.1 Mixed-integer bilevel linear program

	3 A finitely-convergent branch-and-bound algorithm
	3.1 Dealing with infeasible/unbounded follower MILPs
	3.2 Feasibility check and refinement procedure
	3.3 The overall branch-and-bound framework
	3.4 Comparison with the literature

	4 A branch-and-cut algorithm
	4.1 Intersection cuts
	4.2 Bilevel-free polyhedra
	4.3 Relaxed bilevel-free polyhedra
	4.4 Separation of intersection cuts
	4.5 Informed No-Good cuts

	5 Computational results
	5.1 Testbed
	5.2 Benchmark solver
	5.3 Results

	6 Conclusions
	Acknowledgements
	References

