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Abstract We propose a novel stochastic method, namely the stochastic accelerated
mirror-prox (SAMP) method, for solving a class of monotone stochastic variational
inequalities (SVI). The main idea of the proposed algorithm is to incorporate a
multi-step acceleration scheme into the stochastic mirror-prox method. The devel-
oped SAMP method computes weak solutions with the optimal iteration complexity
for SVIs. In particular, if the operator in SVI consists of the stochastic gradient of a
smooth function, the iteration complexity of the SAMP method can be accelerated in
terms of their dependence on the Lipschitz constant of the smooth function. For SVIs
with bounded feasible sets, the bound of the iteration complexity of the SAMPmethod
depends on the diameter of the feasible set. For unbounded SVIs, we adopt the modi-
fied gap function introduced by Monteiro and Svaiter for solving monotone inclusion,
and show that the iteration complexity of the SAMP method depends on the distance
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from the initial point to the set of strong solutions. It is worth noting that our study
also significantly improves a few existing complexity results for solving deterministic
variational inequality problems. We demonstrate the advantages of the SAMPmethod
over some existing algorithms through our preliminary numerical experiments.

Keywords Stochastic variational inequalities ·Stochastic programming ·Mirror-prox
method · Extragradient method

Mathematics Subject Classification 90C25 · 90C15 · 62L20 · 68Q25

1 Introduction

Let E be a finite dimensional vector space with inner product 〈·, ·〉 and norm ‖ · ‖
(not necessarily induced by 〈·, ·〉), and Z be a non-empty closed convex set in E . Our
problem of interest is to find an u∗ ∈ Z that solves the following monotone stochastic
variational inequality (SVI) problem:

〈Eξ,ζ [F(u; ξ, ζ )], u∗ − u〉 ≤ 0, ∀u ∈ Z . (1)

Here, the expectation is taken with respect to the random vectors ξ and ζ whose
distributions are supported on Ξ ⊆ R

d and Ξ ′ ⊆ R
d ′
, respectively, and F is given by

the summation of three components with different structural properties, i.e.,

F(u; ξ, ζ ) = G(u; ξ) + H(u; ζ ) + J ′(u), ∀u ∈ Z . (2)

In particular, we assume that J ′(u) ∈ ∂ J (u) is a subgradient of a relatively sim-
ple and convex function J (see (10) below), H(u; ζ ) is an unbiased estimator of a
monotone and Lipschitz continuous operator H such that Eζ [H(u; ζ )] = H(u),

〈H(w) − H(v), w − v〉 ≥ 0, and ‖H(w) − H(v)‖∗ ≤ M‖w − v‖, ∀w, v ∈ Z ,

(3)

where ‖ · ‖∗ denotes the conjugate norm of ‖ · ‖. Moreover, we assume that G(u; ξ)

is an unbiased estimator of the gradient for a convex and continuously differentiable
function G such that Eξ [G(u; ξ)] = ∇G(u) and

0 ≤ G(w) − G(v) − 〈∇G(v), w − v〉 ≤ L

2
‖w − v‖2, ∀w, v ∈ Z . (4)

Observe that u∗ given by (1) is often called a weak solution for SVI. A related
notion is a strong SVI solution. More specifically, letting

F(u) := Eξ,ζ [F(u; ξ, ζ )] = ∇G(u) + H(u) + J ′(u), (5)
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Accelerated schemes for a class of variational inequalities 115

we say that u∗ is a strong SVI solution if it satisfies

〈F(u∗), u∗ − u〉 ≤ 0, ∀u ∈ Z . (6)

It should be noted that the operator F above might not be continuous. Problems (1)
and (6) are also known as the Minty variational inequality and the Stampacchia varia-
tional inequality respectively, due to their origin [16,27]. For any monotone operator
F , it is well-known that strong solutions defined in (6) are also weak solutions in (1),
and the reverse is also true under mild assumptions (e.g., when F is continuous). For
example, for F in (5), if J = 0, then the weak and strong solutions in (1) and (6)
are equivalent. For the sake of notational convenience, we use SV I (Z;G, H, J ) or
simply SV I (Z; F) to denote problem (1).

SVIs have recently foundmany applications, especially in data analysis. Tomotivate
our discussion, let us mention one widespread machine learning model which helps
to represent massive data in a compact way [17]. Consider a set of observed data
S = {(xi , yi )}mi=1, drawn at random from an unknown distribution D on X × Y . We
would like to find a function y = Y(x, θ), parameterized by θ ∈ Θ , to describe the
relation between x and y. To this end, we can solve different problems of the form
(e.g., [4,45,49,52])

min
θ∈Θ

E[L(Y(x, θ), y)] + r(θ), (7)

where L denotes a loss function, r is a regularization to enforce certain structures of
the generated solutions, and the expectation is taken w.r.t. the random vector (x, y).
While one can directly solve (7) as a stochastic optimization problem, the SVI in (1)
provides us a unified model to study different subclasses of problems given in the
form of (7), which include but not limited to the following cases when: (a) L is a
smooth convex function (see [24]); (b) either L or r are nonsmooth, but admitting a
saddle point reformulation (see [10]); (c) the feasible set contains linear or nonlinear
functional constraints; and (d) θ has to satisfy the optimality condition for another
optimization problem. Moreover, the SVI in (1) can potentially be used to solve a
wider class of stochastic equilibrium and complementarity problems whose operators
are given in the form of expectation (see for instance the survey [26] and the references
therein).

In spite of themodeling power of SVIs andmany different algorithms that have been
developed for solving deterministic VIs [9,20,22,28,32,35,37,40,43,44], to compute
the solutions of SVIs still seems to be challenging. A basic difficulty to solve (1)
is that the expectation function in (1) cannot be computed efficiently within high
accuracy, especially when the dimension of the random vector (ξ, ζ ) is large. Hence,
the algorithms for solving deterministic VIs are not directly applicable to SVIs in
general. This paper focuses on Monte-carlo sampling (or scenario generation) based
approaches for solvingSVIs. In particular,we assume that there exist stochastic oracles
SOG and SOH that provide random samples of G(u; ξ) andH(u; ξ) for any test point
u ∈ Z . At the i-th call of SOG and SOH with input z ∈ Z , the oracles SOG and
SOH output stochastic information G(z; ξi ) and H(z; ζi ) respectively, such that
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A1

E

[
‖G(u; ξi ) − ∇G(u)‖2∗

]
≤ σ 2

G, E

[
‖H(u; ζi ) − H(u)‖2∗

]
≤ σ 2

H ,

for some σG , σH ≥ 0, where ξi and ζi are independently distributed random samples.
For the sake of notational convenience, throughout this paper we also denote

σ :=
√

σ 2
G + σ 2

H . (8)

Assumption A1 basically implies that the variance associated with G(u, ξi )

and H(u, ζi ) is bounded. It should be noted that deterministic VIs, denoted by
V I (Z;G, H, J ), are special cases of SVIs with σG = σH = 0. The above setting
covers as a special case of the regular SVIs whose operators G(u) or H(u) are given
in the form of expectation as shown in (1). Moreover, it provides a framework to study
randomized algorithms for solving deterministic VI or saddle point problems [33] (see
Sect. 4.2 for an example).

One popular approach based on Monte-carlo sampling to solve SVI is the sample
average approximation (SAA) method [8,41,42,48,50]. In this approach one first
approximates the expectationF(u) = E[F(u; ξ, ζ )]by F̃(u) ≡∑N

i=1 E[F(u; ξi , ζi )]
/N for some N > 0, and then solves a deterministic counterpart of (1) withF replaced
by F̃ . However, the resulting deterministic VI problem is still often difficult to solve
when the dimension of u or the sample size N is large. Moreover, this approach is
not applicable to the online setting when the decision vector needs to be updated as
new samples arrive. Recently, there has been a resurgence of interest in stochastic
approximation (SA) type algorithms which aim at solving the SVIs directly based on
the noisy estimation of the operators returned by the stochastic oracles (see, e.g., [19,
20,23,24,33,51]). These more recent studies focused on analyzing the convergence
behaviour of SA type methods during a finite number of iterations (i.e., complexity)
and exploring whether these performance bounds are tight or not. However, to the best
of our knowledge, none of existing algorithms can attain the theoretically optimal rate
of convergence to solve the SVI problems in (1) due to its rich structural properties
(e.g., gradient field G and Lipschitz continuity of H ). More specifically, we can see
that the total number of gradient and operator evaluations for solving SVI cannot be
smaller than

O
(√

L

ε
+ M

ε
+ σ 2

ε2

)
. (9)

This is a lower complexity bound derived based on the following three observations:

1. If H = 0 and σ = 0, SV I (Z;G, 0, 0) is equivalent to a smooth optimization
problem minu∈Z G(u), and the complexity for minimizing G(u) cannot be better
than O(

√
L/ε) [34,38];

2. If G = 0 and σ = 0, the complexity for solving SV I (Z; 0, H, 0) cannot be better
than O(M/ε) [31] (see also the discussions in Section 5 of [32]).

3. If H = 0, SV I (Z;G, 0, 0) is equivalent to a stochastic smooth optimization
problem, and the complexity cannot be better than O(σ 2/ε2) [24].
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Accelerated schemes for a class of variational inequalities 117

However, there exist significant gaps between the above lower complexity bound
and the complexity of existing algorithms, especially in terms of their dependence on
the Lipschitz constants L and M , while it is well-known that SA-type methods are
sensitive to these parameters. It is worth noting that the above lower complexity bound
has not been attained even for the deterministic VIs with σ = 0.

The lower complexity bound in (9) and the three observations stated above provide
some important guidelines to the design of efficient algorithms to solve the SVI prob-
lem with the operator given in (5). It might seem natural to consider the more general
problem (6) by combining ∇G(u) and H(u) in (5) together as a single monotone
operator, instead of separating them apart. Such consideration is reasonable from a
generalization point of view, by noting that the convexity of functionG(u) is equivalent
to the monotonicity of ∇G(u), and the Lipschitz conditions (3) and (4) are equivalent
to a Lipschitz condition of F(u) in (6) with ‖F(w) − F(v)‖∗ ≤ (L + M)‖w − v‖.
However, from the algorithmic point of view, a special treatment of ∇G separately
from H is crucial for the design of accelerated algorithms. By observations 2 and 3
above, if we consider F := ∇G + H as a single monotone operator, the complexity
for solving SV I (Z; 0; F; 0) can not be smaller than

O
(
L + M

ε
+ σ 2

ε2

)
.

This is worse than (9) in terms of the dependence on L . The identification and
specialized treatment on the gradient field ∇G allows us to use its Lipschitz condition
(4) to achieve the optimal iteration complexity (see observation 1 above) for solving
SVIs.

In order to achieve the complexity bound in (9) for SVIs, we incorporate a multi-
step acceleration scheme into the stochastic mirror-prox method in [20], and introduce
a stochastic accelerated mirror-prox (SAMP) method that fully exploits the structural
properties of (1). We show that SAMP can exhibit a complexity bound given by (9).
To the best of our knowledge, this is the first time in the literature that the lower com-
plexity bound in (9) has been achieved for SVIs. Table 1 shows in more details how
our results improve the best-known so-far complexity results for solving deterministic
and stochastic VIs. In particular, for deterministic VIs, the Lipschitz constant L can
be as large as Ω(1/ε) without affecting the rate of convergence. Moreover, the Lips-
chitz constant L can be as large as Ω(1/ε3/2) without significantly slowing down the
convergence rate for solving SVIs. We demonstrate the advantages of these acceler-
ated algorithms over some existing algorithms through our numerical experiments in
Sect. 4.

In addition to improving existing complexity bounds for solving VI problems,
we incorporate into SAMP the termination criterion employed by Monteiro and
Svaiter [28,29] for solving variational and hemivariational inequalities posed asmono-
tone inclusion problem. As a result, the SAMP can deal with the case when Z is
unbounded, as long as a strong solution to problem (6) exists, and the iteration com-
plexity of SAMP will depend on the distance from the initial point to the set of strong
solutions. It is worth noting that no such complexity results have been presented before
in the literature for solving unbounded SVIs.
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Table 1 Comparison of complexity results

Problem class Complexity bound Related work

V I (Z;G, H, 0) O
(
L + M

ε

)
Nemirovski [32] (see also [1,35])

V I (Z;G, H, J ) O
(
L + M

ε

)
Monteiro et al. [29]

V I (Z;G, H, J ) O
(√

L

ε
+ M

ε

)
This paper

SV I (Z;G, H, 0) O
(
L + M

ε
+ σ 2

ε2

)
Juditsky et al. [20]

SV I (Z;G, H, J ) O
(√

L

ε
+ M

ε
+ σ 2

ε2

)
This paper

The remaining part of this paper is organized as follows. We propose the SAMP
algorithm and discuss its main convergence results for solving SVIs in Section 2. To
facilitate the readers, we present the proofs of the main convergence results in Sect.
3. Some preliminary numerical experiments are provided in Sect. 4 to demonstrate
the efficiency of the SAMP algorithm. Finally, we make some concluding remarks in
Sect. 5.

2 The stochastic accelerated mirror-prox method

In this section, we develop the stochastic accelerated mirror-prox (SAMP) method for
solving SV I (Z; F) and demonstrate that it can achieve the optimal rate of convergence
in (9).

Throughout this paper, we assume that the following prox-mapping can be solved
efficiently:

P J
z (η) := argmin

u∈Z
〈η, u − z〉 + V (z, u) + J (u). (10)

In (10), the function V (·, ·) is defined by

V (z, u) := ω(u) − ω(z) − 〈∇ω(z), u − z〉, ∀u, z ∈ Z , (11)

where ω(·) is a strongly convex function with convexity parameter μ > 0, and is
called the distance generating function. The function V (·, ·) is known as a prox-
function, or Bregman divergence [6] (see, e.g., [2,3,32,39] for the properties of prox-
functions and prox-mappings and their applications in convex optimization). Using
the aforementioned definition of the prox-mapping, we describe the SAMPmethod in
Algorithm 1.

Observe that in the SAMP algorithm we introduced two sequences, i.e., {wmd
t } and

{wag
t } (here “md” stands for “middle”, and “ag” stands for “aggregated”), that are

convex combinations of iterations {wt } and {rt } as long as αt ∈ [0, 1]. If αt ≡ 1,
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Accelerated schemes for a class of variational inequalities 119

Algorithm 1 The stochastic accelerated mirror-prox (SAMP) method

Choose r1 ∈ Z . Set w1 = r1, w
ag
1 = r1.

For t = 1, 2, . . . , N − 1, calculate

wmd
t = (1 − αt )w

ag
t + αt rt , (12)

wt+1 = Pγt J
rt

(
γtH(rt ; ζ2t−1) + γtG(wmd

t ; ξt )
)

, (13)

rt+1 = Pγt J
rt

(
γtH(wt+1; ζ2t ) + γtG(wmd

t ; ξt )
)

, (14)

w
ag
t+1 = (1 − αt )w

ag
t + αtwt+1. (15)

Output wag
N .

G = 0 and J = 0, then Algorithm 1 for solving SV I (Z; 0, H, 0) is equivalent to
the stochastic mirror-prox method in [20]. If, in addition, σ = 0, then it reduces to
the mirror-prox method in [32]. Moreover, if the distance generating function w(·) =
‖ · ‖2/2, then iterations (13) and (14) become

wt+1 = argmin
u∈Z

〈γt H(rt ), u − rt 〉 + 1

2
‖u − rt‖2,

rt+1 = argmin
u∈Z

〈γt H(wt+1), u − rt 〉 + 1

2
‖u − rt‖2,

which are exactly the iterates of the extragradient method in [22]. On the other hand, if
H = 0, then (13) and (14) produce the same optimizer wt+1 = rt+1, and Algorithm 1
is equivalent to the accelerated stochastic approximation method in [24]. Specifically,
if, in addition, σ = 0, then it reduces to a version of Nesterov’s accelerated gradient
method for solving minu∈Z G(u) + J (u) (see, for example, Algorithm 1 in [46]).
Therefore, Algorithm 1 can be viewed as a hybrid algorithm of the stochastic mirror-
prox method and the accelerated stochastic approximation method, which gives its
name stochastic accelerated mirror-prox method. It is interesting to note that for any
t , there are two calls of SOH but just one call of SOG . However, if we assume that
J = 0 and use the stochastic mirror-prox method in [20] to solve SV I (Z;G, H, 0),
for any t there would be two calls of SOH and two calls of SOG . Therefore, the cost
per iteration of SAMP is less than that of the stochastic mirror-prox method.

In order to analyze the convergence of Algorithm 1, we introduce a notion to
characterize the weak solutions of SV I (Z;G, H, J ). For all ũ, u ∈ Z , we define

Q(ũ, u) := G(ũ) − G(u) + 〈H(u), ũ − u〉 + J (ũ) − J (u). (16)
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120 Y. Chen et al.

Clearly, for F defined in (5), we have 〈F(u), ũ − u〉 ≤ Q(ũ, u). Therefore, if
Q(ũ, u) ≤ 0 for all u ∈ Z , then ũ is a weak solution of SV I (Z;G, H, J ). Hence
when Z is bounded, it is natural to use the gap function

g(ũ) := sup
u∈Z

Q(ũ, u) (17)

to evaluate the accuracy of a feasible solution ũ ∈ Z . However, if Z is unbounded,
then g(z̃) may not be well-defined, even when z̃ ∈ Z is a nearly optimal solution.
Therefore, we need to employ a slightly modified gap function in order to measure the
accuracy of candidate solutions when Z is unbounded. In the sequel, we will consider
the cases of bounded and unbounded Z separately. For both cases we establish the rate
of convergence of the gap functions in terms of their expectation, i.e., the “average”
rate of convergence over many runs of the algorithm. Furthermore, we demonstrate
that if Z is bounded, then we can also establish the rate of convergence of g(·) in the
probability sense, under the following “light-tail” assumption:
A2 For any i-th call on oracles SOH and SOH with any input u ∈ Z ,

E[exp{‖∇G(u) − G(u; ξi )‖2∗/σ 2
G}] ≤ exp{1},

and

E[exp{‖H(u) − H(u; ζi )‖2∗/σ 2
H }] ≤ exp{1}.

Assumption A2 is sometimes called the sub-Gaussian assumption. Many different
randomvariables, such asGaussian, uniform, and any randomvariableswith a bounded
support, will satisfy this assumption. It should be noted that Assumption A2 implies
Assumption A1 by Jensen’s inequality.

We start with establishing some convergence properties of Algorithm 1 when Z is
bounded. It should be noted that the following quantity will be used throughout the
convergence analysis of this paper:

Γt =
{
1, when t = 1

(1 − αt )Γt−1, when t > 1.
(18)

Theorem 1 Suppose that
sup

z1,z2∈Z
V (z1, z2) ≤ Ω2

Z . (19)

Also assume that the parameters {αt } and {γt } in Algorithm 1 satisfy α1 = 1,

qμ − Lαtγt − 3M2γ 2
t

μ
≥ 0 for some q ∈ (0, 1), and

αt

Γtγt
≤ αt+1

Γt+1γt+1
, ∀t ≥ 1,

(20)

where Γt is defined in (18). Then,
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(a) Under Assumption A1, for all t ≥ 1,

E
[
g(wag

t+1)
] ≤ Q0(t) := 2αt

γt
Ω2

Z +
[
4σ 2

H +
(
1 + 1

2(1 − q)

)
σ 2
G

]
Γt

t∑
i=1

αiγi

μΓi
.

(21)

(b) Under Assumption A2, for all λ > 0 and t ≥ 1,

Prob{g(wag
t+1) > Q0(t) + λQ1(t)} ≤ 2 exp{−λ2/3} + 3 exp{−λ}, (22)

where

Q1(t) := Γt (σG + σH )ΩZ

√√√√ 2

μ

t∑
i=1

(
αi

Γi

)2

+
[
4σ 2

H +
(
1 + 1

2(1 − q)

)
σ 2
G

]
Γt

t∑
i=1

αiγi

μΓi
.

(23)

There are various options for choosing the parameters {αt } and {γt } that satisfy
(20). In the following corollary, we give one example of such parameter settings.

Corollary 1 Suppose that (19) holds. If the stepsizes {αt } and {γt } in Algorithm 1 are
set to:

αt = 2

t + 1
and γt = μt

4L + 3Mt + β(t + 1)
√

μt
, (24)

where β > 0 is a parameter. Then under Assumption A1,

E
[
g(wag

t+1)
] ≤ 16LΩ2

Z

μt (t + 1)
+ 12MΩ2

Z

μ(t + 1)

+ σΩZ√
μ(t − 1)

(
4βΩZ

σ
+ 16σ

3βΩZ

)
=: C0(t), (25)

where σ andΩZ are defined in (8) and (19), respectively. Furthermore, under Assump-
tion A2,

Prob{g(wag
t+1) > C0(t) + λC1(t)} ≤ 2 exp{−λ2/3} + 3 exp{−λ}, ∀λ > 0,

where

C1(t) := σΩZ√
μ(t − 1)

(
4
√
3

3
+ 16σ

3βΩZ

)
. (26)
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Proof It is easy to check that

Γt = 2

t (t + 1)
and

αt

Γtγt
≤ αt+1

Γt+1γt+1
.

In addition, in view of (24), we have γt ≤ μt/(4L) and γ 2
t ≤ (μ2)/(9M2), which

implies

5μ

6
− Lαtγt − 3M2γ 2

t

μ
≥ 5μ

6
− μt

4
· 2

t + 1
− μ

3
≥ 0.

Therefore the first relation in (20) holds with constant q = 5/6. In view of Theorem
1, it now suffices to show that Q0(t) ≤ C0(t) and Q1(t) ≤ C1(t). Observing that
αt/Γt = t , and γt ≤ √

μ/(β
√
t), we obtain

t∑
i=1

αiγi

Γi
≤

√
μ

β

t∑
i=1

√
i ≤

√
μ

β

∫ t+1

0

√
tdt =

√
μ

β
· 2(t + 1)3/2

3
= 2

√
μ(t + 1)3/2

3β
.

Using the above relation, (19), (21), (23), (24), and the fact that
√
t + 1/t ≤ 1/

√
t − 1

and
∑t

i=1 i
2 ≤ t (t + 1)2/3, we have

Q0(t) = 4Ω2
Z

μt (t + 1)

(
4L + 3Mt + β(t + 1)

√
μt
)+ 8σ 2

μt (t + 1)

t∑
i=1

αiγi

Γi

≤ 16LΩ2
Z

μt (t + 1)
+ 12MΩ2

Z

μ(t + 1)
+ 4βΩ2

Z√
μt

+ 16σ 2
√
t + 1

3
√

μβt

≤ C0(t),

and

Q1(t) = 2(σG + σH )

t (t + 1)
ΩZ

√√√√ 2

μ

t∑
i=1

i2 + 8σ 2

μt (t + 1)

t∑
i=1

αiγi

Γi

≤ 2
√
2(σG + σH )ΩZ√

3μt
+ 16σ 2

√
t + 1

3
√

μβt

≤ C1(t).

We now add a few remarks about the results obtained in Corollary 1. Firstly, in view
of (9), (25) and (26), we can clearly see that the SAMP method is robust with respect
to the estimates of σ andΩZ . Indeed, the SAMPmethod achieves the optimal iteration
complexity for solving the SVI problem as long as β = O(σ/ΩZ ). In particular, in
this case, the number of iterations performed by the AMPmethod to find an ε-solution
of (1), i.e., a point w̄ ∈ Z s.t. E[g(w̄)] ≤ ε, can be bounded by
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Accelerated schemes for a class of variational inequalities 123

O
(√

L

ε
+ M

ε
+ σ 2

ε2

)
, (27)

which implies that this algorithm allows L to be as large as O(ε−3/2) and M to be as
large as O(ε−1) without significantly affecting its convergence properties. Secondly,
for the deterministic case when σ = 0, the complexity bound in (27) significantly
improves the best-known so-far complexity for solving problem (1) (see (9)) in terms
of their dependence on the Lipschitz constant L .

In the following theorem, we demonstrate some convergence properties of Algo-
rithm 1 for solving the stochastic problem SV I (Z;G, H, J ) when Z is unbounded.
It seems that this case has not been well-studied previously in the literature. To study
the convergence properties of AMP in this case, we use a perturbation-based termi-
nation criterion recently employed by Monteiro and Svaiter [28,29], which is based
on the enlargement of a maximal monotone operator first introduced in [7]. More
specifically, we say that the pair (ṽ, ũ) ∈ E × Z is a (ρ, ε)-approximate solution
of SV I (Z;G, H, J ) if ‖ṽ‖ ≤ ρ and g̃(ũ, ṽ) ≤ ε, where the gap function g̃(·, ·) is
defined by

g̃(ũ, ṽ) := sup
u∈Z

Q(ũ, u) − 〈ṽ, ũ − u〉. (28)

We call ṽ the perturbation vector associated with ũ. One advantage of employing
this termination criterion is that the convergence analysis does not depend on the
boundedness of Z .

Theorem 2 below describes the convergence properties of SAMP for solving SVIs
with unbounded feasible sets, under the assumption that a strong solution of (6) exists.
It should be noted that this assumption does not limit too much the applicability of
the SAMP method. For example, when J ≡ 0 in (1), the conditions for the existence
of strong solutions are described in Section 2.2 of the seminal book [12]. Indeed, any
weak solution to SV I (Z; F) is also a strong solution in such case. For general case
in which J �≡ 0 and F in (5) is a point-to-set map, there has also been several studies
on the theories of strong solutions to (6) (see, e.g., [13,21]). For example, when J
is a finite-valued closed convex function, some conditions for the existence of strong
solutions are proven in Theorem 2.3 of [21].

Theorem 2 Suppose that V (r, z) := ‖z − r‖2/2 for any r ∈ Z and z ∈ Z. If the
parameters {αt } and {γt } in Algorithm 1 are chosen such that α1 = 1, and for all
t > 1,

0≤αt <1, Lαtγt + 3M2γ 2
t ≤c2<q for some c, q∈(0, 1), and

αt

Γtγt
= αt+1

Γt+1γt+1
,

(29)

where Γt is defined in (18). Then for all t ≥ 1 there exists a perturbation vector vt+1
and a residual εt+1 ≥ 0 such that g̃(wag

t+1, vt+1) ≤ εt+1. Moreover, for all t ≥ 1, we
have

E[‖vt+1‖] ≤ αt

γt

(
2D + 2

√
D2 + C2

t

)
, (30)
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E[εt+1] ≤ αt

γt

[
(3 + 6θ)D2 + (1 + 6θ)C2

t

]
+ 18α2

t σ
2
H

γ 2
t

t∑
i=1

γ 3
i , (31)

where

D := ‖r1 − u∗‖, (32)

u∗ is a strong solution of SV I (Z;G, H, J ),

θ = max

{
1,

c2

q − c2

}
and Ct =

√√√√
[
4σ 2

H +
(
1 + 1

2(1 − q)

)
σ 2
G

] t∑
i=1

γ 2
i . (33)

Below we give an example of parameters αt and γt that satisfies (29).

Corollary 2 Suppose that there exists a strong solution of (1). If themaximumnumber
of iterations N is given, and the stepsizes {αt } and {γt } in Algorithm 1 are set to

αt = 2

t + 1
and γt = t

5L + 3MN + βN
√
N − 1

, (34)

where σ is defined in Corollary 1, then there exists vN ∈ E and εN > 0, such that
g̃(wag

t [][N ], vN ) ≤ εN ,

E[‖vN‖] ≤ 40LD

N (N − 1)
+ 24MD

N − 1
+ σ√

N − 1

(
8βD

σ
+ 5

)
, (35)

and

E[εN ] ≤ 90LD2

N (N − 1)
+ 54MD2

N − 1
+ σD√

N − 1

(
18βD

σ
+ 56σ

3βD
+ 18σ

βDN

)
. (36)

Proof Clearly, we have Γt = 2/[t (t + 1)], and hence (18) is satisfied. Moreover, in
view of (34), we have

Lαtγt + 3M2γ 2
t ≤ 2L

5L + 3MN
+ 3M2N 2

(5L + 3MN )2

= 10L2 + 6LMN + 3M2N 2

(5L + 3MN )2
<

5

12
<

5

6
,

which implies that (29) is satisfied with c2 = 5/12 and q = 5/6. Observing from (34)
that γt = tγ1, setting t = N − 1 in (33) and (34), we obtain

αN−1

γN−1
= 2

γ1N (N − 1)
and C2

N−1 = 4σ 2
N−1∑
i=1

γ 2
1 i

2 ≤ 4σ 2γ 2
1 N

2(N − 1)

3
, (37)
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where CN−1 is defined in (33). Applying (37) to (30) we have

E[‖vN‖] ≤ 2

γ1N (N − 1)
(4D + 2CN−1) ≤ 8D

γ1N (N − 1)
+ 8σ√

3(N − 1)

≤ 40LD

N (N − 1)
+ 24MD

N − 1
+ σ√

N − 1

(
8βD

σ
+ 5

)
.

In addition, using (31), (37), and the facts that θ = 1 in (33) and

N−1∑
i=1

γ 3
i = γ 3

1 N
2(N − 1)2/4,

we have

E[εN−1] ≤ 2

γ1N (N − 1)
(9D2 + 7C2

N−1) + 72σ 2
H

γ 2
1 N

2(N − 1)2
· γ 3

1 N
2(N − 1)2

4

≤ 18D2

γ1N (N − 1)
+ 56σ 2γ1N

3
+ 18σ 2

Hγ1

≤ 90LD2

N (N − 1)
+ 54MD2

N − 1
+ 18βD2

√
N − 1

+ 56σ 2

3β
√
N − 1

+ 18σ 2
H

βN
√
N − 1

≤ 90LD2

N (N − 1)
+ 54MD2

N − 1
+ σD√

N − 1

(
18βD

σ
+ 56σ

3βD
+ 18σ

βDN

)
.

Several remarks are in place for the results obtained in Theorem 2 and Corollary 2.
Firstly, similarly to the bounded case (see the remark after Corollary 1), one may want
to choose β in a way such that the right hand side of (35) or (36) is minimized, e.g.,
β = O(σ/D). However, since the value of D will be very difficult to estimate for the
unbounded case and hence one often has to resort to a suboptimal selection for β. For
example, if β = σ , then the RHS of (35) and (36) will becomeO(LD/N 2+MD/N+
σD/

√
N ) and O(LD2/N 2 + MD2/N + σD2/

√
N ), respectively. Secondly, both

residuals ‖vN‖ and εN in (35) and (36) converge to 0 at the same rate (up to a constant
factor). Finally, it is only for simplicity that we assume that V (r, z) = ‖z − r‖2/2;
Similar results can be achieved under assumptions that ∇ω is Lipschitz continuous.

3 Convergence analysis

In this section, we focus on proving the main convergence results in Sect. 2, namely,
Theorems 1 and 2.

To prove the convergence of the stochastic AMP algorithm, we first present some
technical results. Lemmas 1 and 2 describe some important properties of the prox-
mapping P J

r (η) used in (13) and (14) of Algorithm 1. Lemma 3 provides a recursion
related to the function Q(·, ·) defined in (16). With the help of Lemmas 1, 2 and 3, we
estimate a bound on Q(·, ·) in Lemma 4.
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Lemma 1 For all r, ζ ∈ E , if w = P J
r (ζ ), then for all u ∈ Z, we have

〈ζ,w − u〉 + J (w) − J (u) ≤ V (r, u) − V (r, w) − V (w, u).

Proof See Lemma 2 in [14] for the proof.

The following lemma is a slight extension of Lemma 6.3 in [20]. In particular, when
J (·) = 0, we can obtain (41) and (42) directly by applying (40) to (6.8) in [20], and
the results when J (·) �≡ 0 can be easily constructed from the proof of Lemma 6.3 in
[20]. We provide the proof here only for the sake of completeness.

Lemma 2 Given r, w, y ∈ Z and η, ϑ ∈ E that satisfy

w = P J
r (η), (38)

y = P J
r (ϑ), (39)

and

‖ϑ − η‖2∗ ≤ L2‖w − r‖2 + M2. (40)

Then, for all u ∈ Z,

〈ϑ,w − u〉 + J (w) − J (u) ≤ V (r, u) − V (y, u) −
(

μ

2
− L2

2μ

)
‖r − w‖2 + M2

2μ
,

(41)

and

V (y, w) ≤ L2

μ2 V (r, w) + M2

2μ
. (42)

Proof Applying Lemma 1 to (38) and (39), for all u ∈ Z we have

〈η,w − u〉 + J (w) − J (u) ≤ V (r, u) − V (r, w) − V (w, u), (43)

〈ϑ, y − u〉 + J (y) − J (u) ≤ V (r, u) − V (r, y) − V (y, u), (44)

In particular, letting u = y in (43) we have

〈η,w − y〉 + J (w) − J (y) ≤ V (r, y) − V (r, w) − V (w, y). (45)

Adding inequalities (44) and (45), then

〈ϑ, y − u〉 + 〈η,w − y〉 + J (w) − J (u)

≤ V (r, u) − V (y, u) − V (r, w) − V (w, y),

123



Accelerated schemes for a class of variational inequalities 127

which is equivalent to

〈ϑ,w − u〉 + J (w) − J (u) ≤ 〈ϑ − η,w − y〉 + V (r, u)

− V (y, u) − V (r, w) − V (w, y).

Applying Schwartz inequality and Young’s inequality to the above inequality, and
using the fact that

μ

2
‖z − u‖2 ≤ V (u, z),∀u, z ∈ Z , (46)

due to the strong convexity of ω(·) in (11), we obtain

〈ϑ,w − u〉 + J (w) − J (u)

≤ ‖ϑ − η‖∗‖w − y‖ + V (r, u) − V (y, u) − V (r, w) − μ

2
‖w − y‖2

≤ 1

2μ
‖ϑ − η‖2∗ + μ

2
‖w − y‖2 + V (r, u) − V (y, u) − V (r, w) − μ

2
‖w − y‖2

= 1

2μ
‖ϑ − η‖2∗ + V (r, u) − V (y, u) − V (r, w).

(47)

The result in (41) then follows immediately from above relation, (40) and (46).
Moreover, observe that by setting u = w and u = y in (44) and (47), respectively,

we have

〈ϑ, y − w〉 + J (y) − J (w) ≤ V (r, w) − V (r, y) − V (y, w),

〈ϑ,w − y〉 + J (w) − J (y) ≤ 1

2μ
‖ϑ − η‖2∗ + V (r, y) − V (r, w).

Adding the above two inequalities, and using (40) and (46), we have

0 ≤ 1

2μ
‖ϑ − η‖2∗ − V (y, w) ≤ L2

2μ
‖r − w‖2 + M2

2μ
− V (y, w)

≤ L2

μ2 V (r, w) + M2

2μ
− V (y, w),

and thus (42) holds.

Lemma 3 For any sequences {rt }t≥1 and {wt }t≥1 ⊂ Z, if the sequences {wag
t } and

{wmd
t } are generated by (12) and (15), then for all u ∈ Z,

Q(w
ag
t+1, u) − (1 − αt )Q(w

ag
t , u) ≤ αt 〈∇G(wmd

t ) + H(wt+1), wt+1 − u〉

+ Lα2
t

2
‖wt+1 − rt‖2+αt J (wt+1) − αt J (u).

(48)
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Proof Observe from (12) and (15) thatwag
t+1−wmd

t = αt (wt+1−rt ). This observation
together with the convexity of G(·) imply that for all u ∈ Z ,

G(w
ag
t+1) ≤ G(wmd

t ) + 〈∇G(wmd
t ), w

ag
t+1 − wmd

t 〉 + L

2
‖wag

t+1 − wmd
t ‖2

= (1 − αt )
[
G(wmd

t ) + 〈∇G(wmd
t ), w

ag
t − wmd

t 〉
]

+ αt

[
G(wmd

t ) + 〈∇G(wmd
t ), u − wmd

t 〉
]

+ αt 〈∇G(wmd
t ), wt+1 − u〉 + Lα2

t

2
‖wt+1 − rt‖2

≤ (1 − αt )G(w
ag
t ) + αtG(u) + αt 〈∇G(wmd

t ), wt+1 − u〉

+ Lα2
t

2
‖wt+1 − rt‖2.

Using the above inequality, (15), (16) and the monotonicity of H(·), we have

Q(w
ag
t+1, u) − (1 − αt )Q(w

ag
t , u)

= G(w
ag
t+1) − (1 − αt )G(w

ag
t ) − αtG(u)

+ 〈H(u), w
ag
t+1 − u〉 − (1 − αt )〈H(u), w

ag
t − u〉

+ J (w
ag
t+1) − (1 − αt )J (w

ag
t ) − αt J (u)

≤ G(w
ag
t+1) − (1 − αt )G(w

ag
t ) − αtG(u) + αt 〈H(u), wt+1 − u〉

+ αt J (wt+1) − αt J (u)

≤ αt 〈∇G(wmd
t ), wt+1 − u〉 + Lα2

t

2
‖wt+1 − rt‖2 + αt 〈H(wt+1), wt+1 − u〉

+ αt J (wt+1) − αt J (u).

In the sequel, we will use the following notations to describe the inexactness of the
first order information from SOH and SOG . At the t-th iteration, lettingH(rt ; ζ2t−1),
H(wt+1; ζ2t ) and G(wmd

t ; ξt ) be the output of the stochastic oracles, we denote

Δ2t−1
H := H(rt ; ζ2t−1) − H(rt ),

Δ2t
H := H(wt+1; ζ2t ) − H(wt+1), and

Δt
G := G(wmd

t ; ξt ) − ∇G(wmd
t ).

(49)

Lemma 4 below provides a bound on Q(w
ag
t+1, u) for all u ∈ Z .
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Lemma 4 Suppose that the parameters {αt } in Algorithm 1 satisfies α1 = 1 and
0 ≤ αt < 1 for all t > 1. Then the iterates {rt }, {wt } and {wag

t } satisfy

1

Γt
Q(w

ag
t+1, u) ≤ Bt (u, r[t]) −

t∑
i=1

αi

2Γiγi

(
qμ − Lαiγi − 3M2γ 2

i

μ

)
‖ri − wi+1‖2

+
t∑

i=1

Λi (u), ∀u ∈ Z ,

(50)

where Γt is defined in (18),

Bt (u, r[t]) :=
t∑

i=1

αi

Γiγi
(V (ri , u) − V (ri+1, u)), (51)

and

Λi (u) := 3αiγi

2μΓi

(
‖Δ2i

H‖2∗ + ‖Δ2i−1
H ‖2∗

)
− (1 − q)μαi

2Γiγi
‖ri − wi+1‖2

− αi

Γi
〈Δ2i

H + Δi
G, wi+1 − u〉.

(52)

Proof Observe from (49) that

‖H(wt+1; ζ2t ) − H(rt ; ζ2t−1)‖2∗
≤
(
‖H(wt+1) − H(rt )‖∗ + ‖Δ2t

H‖∗ + ‖Δ2t−1
H ‖∗

)2

≤ 3
(
‖H(wt+1) − H(rt )‖2∗ + ‖Δ2t

H‖2∗ + ‖Δ2t−1
H ‖2∗

)

≤ 3
(
M2‖wt+1 − rt‖2 + ‖Δ2t

H‖2∗ + ‖Δ2t−1
H ‖2∗

)
.

(53)

Applying Lemma 2 to (13) and (14) (with r = rt , w = wt+1, y = rt+1, η =
γtH(rt ; ζ2t−1)+γtG(wmd

t ; ξt ), ϑ = γtH(wt+1; ζ2t )+γtG(wmd
t ; ξt ), J = γt J , L2 =

3M2γ 2
t and M2 = 3γ 2

t (‖Δ2t
H‖2∗ +‖Δ2t−1

H ‖2∗)), and using (53), we have for any u ∈ Z ,

γt 〈H(wt+1; ζ2t ) + G(wmd
t ; ξt ), wt+1 − u〉 + γt J (wt+1) − γt J (u)

≤ V (rt , u) − V (rt+1, u) −
(

μ

2
− 3M2γ 2

t

2μ

)
‖rt − wt+1‖2

+ 3γ 2
t

2μ
(‖Δ2t

H‖2∗ + ‖Δ2t−1
H ‖2∗).
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Applying (49) and the above inequality to (48), we have

Q(w
ag
t+1, u) − (1 − αt )Q(w

ag
t , u)

≤ αt 〈H(wt+1; ζ2t ) + G(wmd
t ; ξt ), wt+1 − u〉 + αt J (wt+1) − αt J (u)

+ Lα2
t

2
‖wt+1 − rt‖2 − αt 〈Δ2t

H + Δt
G, wt+1 − u〉

≤ αt

γt
(V (rt , u) − V (rt+1, u)) − αt

2γt

(
μ − Lαtγt − 3M2γ 2

t

μ

)
‖rt − wt+1‖2

+ 3αtγt

2μ

(
‖Δ2t

H‖2∗ + ‖Δ2t−1
H ‖2∗

)
− αt 〈Δ2t

H + Δt
G , wt+1 − u〉.

Dividing the above inequality by Γt and using the definition of Λt (u) in (52), we
obtain

1

Γt
Q(w

ag
t+1, u) − 1 − αt

Γt
Q(w

ag
t , u)

≤ αt

Γtγt
(V (rt , u) − V (rt+1, u))

− αt

2Γtγt

(
qμ − Lαtγt − 3M2γ 2

t

μ

)
‖rt − wt+1‖2 + Λt (u).

Noting the fact that α1 = 1 and (1 − αt )/Γt = 1/Γt−1, t > 1, due to (18), applying
the above inequality recursively and using the definition ofBt (·, ·) in (51), we conclude
(50).

We still need the following technical result that helps to provide a bound on the last
stochastic term in (50) before proving Theorems 1 and 2.

Lemma 5 Let θt , γt > 0, t = 1, 2, . . . , be given. For any w1 ∈ Z and any sequence
{Δt } ⊂ E , if we define wv

1 = w1 and

wv
i+1 = argmin

u∈Z
−γi 〈Δi , u〉 + V (wv

i , u), ∀i > 1, (54)

then

t∑
i=1

θi 〈−Δi , wv
i −u〉 ≤

t∑
i=1

θi

γi
(V (wv

i , u)−V (wv
i+1, u))+

t∑
i=1

θiγi

2μ
‖Δi‖2∗, ∀u ∈ Z .

(55)

Proof Applying Lemma 1 to (54) (with r = wv
i , w = wv

i+1, ζ = −γiΔ
i and J = 0),

we have

−γi 〈Δi , wv
i+1 − u〉 ≤ V (wv

i , u) − V (wv
i , w

v
i+1) − V (wv

i+1, u), ∀u ∈ Z .
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Moreover, by Schwartz inequality, Young’s inequality and (46) we have

− γi 〈Δi , wv
i − wv

i+1〉 ≤ γi‖Δi‖∗‖wv
i − wv

i+1‖ ≤ γ 2
i

2μ
‖Δi‖2∗ + μ

2
‖wv

i − wv
i+1‖2

≤ γ 2
i

2μ
‖Δi‖2∗ + V (wv

i , w
v
i+1).

Adding the above two inequalities andmultiplying the resulting inequality by θi/γi ,
we obtain

−θi 〈Δi , wv
i − u〉 ≤ θiγi

2μ
‖Δi‖2∗ + θi

γi
(V (wv

i , u) − V (wv
i+1, u)).

Summing the above inequalities from i = 1 to t , we conclude (55).

With the help of Lemma 4 and 5, we are now ready to prove Theorem 1, which
provides an estimate of the gap function of SAMP in both expectation and probability.

Proof of Theorem 1 Wefirst provide a bound onBt (u, r[t]). Since the sequence {ri }t+1
i=1

is in the bounded set Z , applying (19) and (20) to (51) we have

Bt (u, r[t])

= α1

Γ1γ1
V (r1, u) −

t−1∑
i=1

[
αi

Γiγi
− αi+1

Γi+1γi+1

]
V (rt+1[i], u) − αt

Γtγt
V (rt+1, u)

≤ α1

Γ1γ1
Ω2

Z −
t−1∑
i=1

[
αi

Γiγi
− αi+1

Γi+1γi+1

]
Ω2

Z = αt

Γtγt
Ω2

Z , ∀u ∈ Z ,

(56)

Applying (20) and the above inequality to (50) in Lemma 4, we have

1

Γt
Q(w

ag
t+1, u) ≤ αt

Γtγt
Ω2

Z +
t∑

i=1

Λi (u), ∀u ∈ Z . (57)

Letting wv
1 = w1, defining wv

i+1 as in (54) with Δi = Δ2i
H + Δi

G for all i > 1, we
conclude from (51) and Lemma 5 (with θi = αi/Γi ) that

−
t∑

i=1

αi

Γi
〈Δ2i

H + Δi
G, wv

i − u〉 ≤ Bt (u, wv[t]) +
t∑

i=1

αiγi

2μΓi
‖Δ2i

H + Δi
G‖2∗, ∀u ∈ Z .

(58)
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The above inequality together with (52) and the Young’s inequality yield

t∑
i=1

Λi (u) = −
t∑

i=1

αi

Γi
〈Δ2i

H + Δi
G, wv

i − u〉 +
t∑

i=1

3αiγi

2μΓi

(
‖Δ2i

H‖2∗ + ‖Δ2i−1
H ‖2∗

)

+
t∑

i=1

αi

Γi

[
− (1 − q)μ

2γi
‖ri − wi+1‖2 − 〈Δi

G , wi+1 − ri 〉
]

−
t∑

i=1

αi

Γi
〈Δi

G, ri − wv
i 〉 −

t∑
i=1

αi

Γi
〈Δ2i

H , wi+1 − wv
i 〉

≤ Bt (u, wv[t]) +Ut ,

(59)

where

Ut :=
t∑

i=1

αiγi

2μΓi
‖Δ2i

H + Δi
G‖2∗ +

t∑
i=1

αiγi

2(1 − q)μΓi
‖Δi

G‖2∗

+
t∑

i=1

3αiγi

2μΓi

(
‖Δ2i

H‖2∗ + ‖Δ2i−1
H ‖2∗

)

−
t∑

i=1

αi

Γi
〈Δi

G, ri − wv
i 〉 −

t∑
i=1

αi

Γi
〈Δ2i

H , wi+1 − wv
i 〉.

(60)

Applying (56) and (59) to (57), we have

1

Γt
Q(w

ag
t+1, u) ≤ 2αt

γtΓt
Ω2

Z +Ut , ∀u ∈ Z ,

or equivalently,

g(wag
t+1) ≤ 2αt

γt
Ω2

Z + ΓtUt . (61)

Now it suffices to bound Ut , in both expectation and probability.
We prove part (a) first. By our assumptions on SOG and SOH and in view

of (13), (14) and (54), during the i-th iteration of Algorithm 1, the random noise
Δ2i

H is independent of wi+1 and wv
i , and Δi

G is independent of ri and wv
i , hence

E[〈Δi
G, ri − wv

i 〉] = E[〈Δ2i
H , wi+1 − wv

i 〉] = 0. In addition, Assumption A1 implies
that E[‖Δi

G‖2∗] ≤ σ 2
G , E[‖Δ2i−1

H ‖2∗] ≤ σ 2
H and E[‖Δ2i

H‖2∗] ≤ σ 2
H , where Δi

G , Δ
2i−1
H

and Δ2i
H are independent. Therefore, taking expectation on (60) we have
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E[Ut ] ≤ E

[
t∑

i=1

αiγi

μΓi

(
‖Δ2i

H‖2 + ‖Δi
G‖2∗

)
+

t∑
i=1

αiγi

2(1 − q)μΓi
‖Δi

G‖2∗

+
t∑

i=1

3αiγi

2μΓi

(
‖Δ2i

H‖2∗ + ‖Δ2i−1
H ‖2∗

)]

=
t∑

i=1

αiγi

μΓi

[
4σ 2

H +
(
1 + 1

2(1 − q)

)
σ 2
G

]
.

(62)

Taking expectation on both sides of (61), and using (62), we obtain (21).
Nextwe prove part (b).Observe that the sequence {〈Δi

G , ri−wv
i 〉}i≥1 is amartingale

difference and hence satisfies the large-deviation theorem (see, e.g., Lemma 2 of [25]).
Therefore using Assumption A2 and the fact that

E

[
exp

{
μ(αiΓ

−1
i 〈Δi

G , ri − wv
i 〉)2

2(σGαiΓ
−1
i ΩZ )2

}]

≤ E

[
exp

{
μ‖Δi

G‖2∗‖ri − wv
i ‖2

2σ 2
GΩ2

Z

}]
≤ E

[
exp

{
‖Δi

G‖2∗/σ 2
G

}]
≤ exp{1},

we conclude from the large-deviation theorem that

Prob

⎧⎨
⎩−

t∑
i=1

αi

Γi
〈Δi

G, ri − wv
i 〉 > λσGΩZ

√√√√ 2

μ

t∑
i=1

(
αi

Γi

)2
⎫⎬
⎭ ≤ exp{−λ2/3}.

(63)

By using a similar argument we have

Prob

⎧⎨
⎩−

t∑
i=1

αi

Γi
〈Δ2i

H , wi+1 − wv
i 〉 > λσHΩZ

√√√√ 2

μ

t∑
i=1

(
αi

Γi

)2
⎫⎬
⎭ ≤ exp{−λ2/3}.

(64)

In addition, letting Si = αiγi/(μΓi ) and S =∑t
i=1 Si , by Assumption A2 and the

convexity of exponential functions, we have

E

[
exp

{
1

S

t∑
i=1

Si‖Δi
G‖2∗/σ 2

G

}]
≤ E

[
1

S

t∑
i=1

Si exp
{
‖Δi

G‖2∗/σ 2
G

}]
≤ exp{1}.

Noting by Markov’s inequality that P(X > a) ≤ E[X ]/a for all nonnegative
random variables X and constants a > 0, the above inequality implies that

Prob

[
t∑

i=1

Si‖Δi
G‖2∗ > (1 + λ)σ 2

GS

]
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= Prob

[
exp

{
1

S

t∑
i=1

Si‖Δi
G‖2∗/σ 2

G

}
> exp{1 + λ}

]

≤ E

[
exp

{
1

S

t∑
i=1

Si‖Δi
G‖2∗/σ 2

G

}]/
exp{1 + λ}

≤ exp{−λ}.

Recalling that Si = αiγi/(μΓi ) and S =∑t
i=1 Si , the above relation is equivalent

to

Prob

{(
1 + 1

2(1 − q)

) t∑
i=1

αiγi

μΓi
‖Δi

G‖2∗ > (1 + λ)σ 2
G

(
1 + 1

2(1 − q)

) t∑
i=1

αiγi

μΓi

}

≤ exp{−λ}.
(65)

Using similar arguments, we also have

Prob

{
t∑

i=1

3αiγi

2μΓi
‖Δ2i−1

H ‖2∗ > (1 + λ)
3σ 2

H

2

t∑
i=1

αiγi

μΓi

}
≤ exp{−λ}, (66)

Prob

{
t∑

i=1

5αiγi

2μΓi
‖Δ2i

H‖2∗ > (1 + λ)
5σ 2

H

2

t∑
i=1

αiγi

μΓi

}
≤ exp{−λ}. (67)

Using the fact that ‖Δ2i
H + Δ2i−1

G ‖2∗ ≤ 2‖Δ2i
H‖2∗ + 2‖Δ2i−1

G ‖2∗, we conclude from
(61)–(67) that (22) holds.

In the remaining part of this subsection, wewill focus on proving Theorem 2, which
describes the rate of convergence of Algorithm 1 for solving SV I (Z;G, H, J ) when
Z is unbounded.

Proof the Theorem 2 LetUt be defined in (60). Firstly, applying (29) and (59) to (50)
in Lemma 4, and noting that μ = 1, we have

1

Γt
Q(w

ag
t+1, u) (68)

≤ Bt (u, r[t]) − αt

2Γtγt

t∑
i=1

(
q − c2

)
‖ri − wi+1‖2 + Bt (u, wv[t]) +Ut , ∀u ∈ Z .

(69)
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In addition, applying (29) to the definition of Bt (·, ·) in (51), we obtain

Bt (u, r[t]) = αt

2Γtγt
(‖r1 − u‖2 − ‖rt+1 − u‖2) (70)

= αt

2Γtγt
(‖r1 − w

ag
t+1‖2 − ‖rt+1 − w

ag
t+1‖2 + 2〈r1 − rt+1, w

ag
t+1 − u〉).

(71)

By using a similar argument and the fact that wv
1 = w1 = r1, we have

Bt (u, wv[t]) = αt

2Γtγt
(‖r1 − u‖2 − ‖wv

t+1 − u‖2) (72)

= αt

2Γtγt
(‖r1 − w

ag
t+1‖2 − ‖wv

t+1 − w
ag
t+1‖2 + 2〈r1 − wv

t+1, w
ag
t+1 − u〉).

(73)

We then conclude from (68), (71), and (73) that

Q(w
ag
t+1, u) − 〈vt+1, w

ag
t+1 − u〉 ≤ εt+1, ∀u ∈ Z , (74)

where

vt+1 := αt

γt
(2r1 − rt+1 − wv

t+1) (75)

and

εt+1 : = αt

2γt

(
2‖r1 − w

ag
t+1‖2 − ‖rt+1 − w

ag
t+1‖2 − ‖wv

t+1 − w
ag
t+1‖2

−
t∑

i=1

(
q − c2

)
‖ri − wi+1‖2

)
+ ΓtUt .

(76)

It is easy to see that the residual εt+1 is positive by setting u = w
ag
t+1 in (74).

Hence g̃(wag
t+1, vt+1) ≤ εt+1. To finish the proof, it suffices to estimate the bounds for

E[‖vt+1‖] and E[εt+1]. Observe that by (2), (6), (16) and the convexity of G and J ,
we have

Q(w
ag
t+1, u

∗) ≥ 〈F(u∗), wag
t+1 − u∗〉 ≥ 0, (77)

where the last inequality follows from the assumption that u∗ is a strong solution of
SV I (Z;G, H, J ). Using the above inequality and letting u = u∗ in (68), we conclude
from (70) and (72) that
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2‖r1 − u∗‖2 − ‖rt+1 − u∗‖2 − ‖wv
t+1 − u∗‖2 −

t∑
i=1

(
q − c2

)
‖ri − wi+1‖2

+ 2Γtγt

αt
Ut ≥ 2γt

αt
Q(w

ag
t+1, u

∗) ≥ 0.

By the above inequality and the definition of D in (32), we have

‖rt+1 − u∗‖2 + ‖wv
t+1 − u∗‖2 +

t∑
i=1

(
q − c2

)
‖ri − wi+1‖2 ≤ 2D2 + 2Γtγt

αt
Ut .

(78)

In addition, applying (29) and the definition of Ct in (33) to (62), we have

E[Ut ] ≤
t∑

i=1

αtγ
2
i

Γtγt

[
4σ 2

H +
(
1 + 1

2(1 − q)

)
σ 2
G

]
= αt

Γtγt
C2
t . (79)

Combining (78) and (79), we have

E[‖rt+1−u∗‖2]+E[‖wv
t+1−u∗‖2]+

t∑
i=1

(
q − c2

)
E[‖ri − wi+1‖2] ≤ 2D2 + 2C2

t .

(80)

We are now ready to prove (30). Observe from the definition of vt+1 in (75) and
the definition of D in (32) that ‖vt+1‖ ≤ αt (2D + ‖wv

t+1 − u∗‖ + ‖rt+1 − u∗‖)/γt ,
using the previous inequality, Jensen’s inequality, and (80), we obtain

E[‖vt+1‖] ≤ αt

γt

(
2D +

√
E[(‖rt+1 − u∗‖ + ‖wv

t+1 − u∗‖)2]
)

≤ αt

γt

(
2D +

√
2E[‖rt+1 − u∗‖2 + ‖wv

t+1 − u∗‖2]
)

≤ αt

γt

(
2D + 2

√
D2 + C2

t

)
.

Our remaining goal is to prove (31). By (15) and (18), we have

1

Γt
w

ag
t+1 = 1

Γt−1
w

ag
t + αt

Γt
wt+1, ∀t > 1.

Using the assumption that wag
1 = w1, we obtain

w
ag
t+1 = Γt

t∑
i=1

αi

Γi
wi+1, (81)
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where by (18) we have

Γt

t∑
i=1

αi

Γi
= 1. (82)

Therefore,wag
t+1 is a convex combinationof iteratesw2, . . . , wt+1.Also, by a similar

argument in the proof of Lemma 4, applying Lemma 2 to (13) and (14) (with r =
rt , w = wt+1, y = rt+1, η = γtH(rt ; ζ2t−1) + γtG(wmd

t ; ξt ), ϑ = γtH(wt+1; ζ2t ) +
γtG(wmd

t ; ξt ), J = γt J , L = 3M2γ 2
t and M2 = 3γ 2

t (‖Δ2t
H‖2∗ + ‖Δ2t−1

H ‖2∗)), and
using (42) and (53), we have

1

2
‖rt+1 − wt+1‖2 ≤ 3M2γ 2

t

2
‖rt − wt+1‖2 + 3γ 2

t

2
(‖Δ2t

H‖2∗ + ‖Δ2t−1
H ‖2∗)

≤ c2

2
‖rt − wt+1‖2 + 3γ 2

t

2
(‖Δ2t

H‖2∗ + ‖Δ2t−1
H ‖2∗),

where the last inequality follows from (29).
Now using (76), (81), (82), the above inequality, and applying Jensen’s inequality,

we have

εt+1 − ΓtUt ≤ αt

γt
‖r1 − w

ag
t+1‖2 = αt

γt

∥∥∥∥∥r1 − u∗ + Γt

t∑
i=1

αi

Γi
(u∗ − ri+1)

+Γt

t∑
i=1

αi

Γi
(ri+1 − wi+1)

∥∥∥∥∥
2

≤ 3αt

γt

[
D2 + Γt

t∑
i=1

αi

Γi

(
‖ri+1 − u∗‖2 + ‖wi+1 − ri+1‖2

)]

≤ 3αt

γt

[
D2 + Γt

t∑
i=1

αi

Γi

(
‖ri+1 − u∗‖2 + c2‖wi+1 − ri‖2

+ 3γ 2
i (‖Δ2i

H‖2∗ + ‖Δ2i−1
H ‖2∗)‖

)]
.

(83)

Noting that by (33) and (78),

Γt

t∑
i=1

αi

Γi
(‖ri+1 − u∗‖2 + c2‖wi+1 − ri‖2)

≤ Γt

t∑
i=1

αiθ

Γi
(‖ri+1 − u∗‖2 + (q − c2)‖wi+1 − ri‖2)

≤ Γt

t∑
i=1

αiθ

Γi
(2D2 + 2Γiγi

αi
Ui ) = 2θD2 + 2θΓt

t∑
i=1

γiUi ,
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and that by (29),

Γt

t∑
i=1

3αiγ
2
i

Γi
(‖Δ2i

H‖2∗ + ‖Δ2i−1
H ‖2∗) = Γt

t∑
i=1

3αtγ
3
i

Γtγt
(‖Δ2i

H‖2∗ + ‖Δ2i−1
H ‖2∗)

= 3αt

γt

t∑
i=1

γ 3
i (‖Δ2i

H‖2∗ + ‖Δ2i−1
H ‖2∗),

we conclude from (79), (83) and Assumption A1 that

E[εt+1] ≤ ΓtE[Ut ] + 3αt

γt

[
D2 + 2θD2 + 2θΓt

t∑
i=1

γiE[Ui ] + 6αtσ
2
H

γt

t∑
i=1

γ 3
i

]

≤ αt

γt
C2
t + 3αt

γt

[
(1 + 2θ)D2 + 2θΓt

t∑
i=1

αi

Γi
C2
i + 6αtσ

2
H

γt

t∑
i=1

γ 3
i

]
.

Finally, observing from (33) and (82) that

Γt

t∑
i=1

αi

Γi
C2
i ≤ C2

t Γt

t∑
i=1

αi

Γi
= C2

t ,

we conclude (31) from the above inequality.

4 Numerical experiments

In this section, we present some preliminary experimental results on solving deter-
ministic and stochastic variational inequality problems using the SAMP algorithm.
The comparisons with the mirror-prox method in [32] and the stochastic mirror-prox
method in [20] are provided for better examination of the performance of the SAMP
algorithm.

4.1 Overlapped group lasso

Our first numerical experiment is on a problem of form (7). Specifically, we consider
the following overlapped group lasso problem:

min
x∈X

1

2
Ea, f [(〈a, x〉 − f )2] + λ

∑
g∈S

‖xg‖. (84)

Here, the feasible set X is a Euclidean ball with X := {x ∈ R
n|‖x‖ ≤ D}, ‖ · ‖ is

the Euclidean norm, the random variable pair (a, f ) represents a dataset of interest,
and x is the sparse feature of the dataset to be extracted. The sparsity structure of x is
represented by group S ⊆ 2{1,...,n}, and for any g ⊆ {1, . . . , n}, xg is a sparse vector
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that is constructed by components of x whose indices are in g, i.e., xg := (xi )i∈g
and there are very few number of non-zero components in xg . Problems utilizing such
sparsity structure is known as the overlapped group lasso [18]. In this experiment, we
assume that each group g ∈ S consists of k elements. The first term in (84) describes
the fidelity of the relation between dataset and its underlying feature, and the second
term is the regularization term to enforce certain group sparsity. Problem (84) can be
formulated as a SVI problem (1) with ξ = (a, f ) and

F(u; ξ) =
(

(〈a, x〉 − f )a + KT y
−KT x

)
, ∀u = (x, y) ∈ Z := X × Y. (85)

Here the linear operator K is defined by Kx = λ(xTg1 , x
T
g2 , . . . , x

T
gl )

T , where gi ∈ S
and S = {gi }li=1. The set X is Rn , and the set Y is the set of vectors y ∈ R

kn that are
composed by n sub-vectors in the k dimensional unit ball:

Y :=
{
y ∈ R

kn|
∥∥∥∥
(
y(ki−k+1), y(ki−k+2), . . . , y(ki)

)T ∥∥∥∥ ≤ 1

}
. (86)

We can see that F has the form of (2) where

G(u; ξ) =
(〈(a, x〉 − f )a

0

)
, H(u; ξ) = H(u) =

(
0 KT

−K 0

)
u, and J (u) ≡ 0.

(87)

In this experiment, we assume that the k-th components of a satisfy a(k) ∼ N (0, 1)
for all k, f = 〈a, xtrue〉 + ε for some underlying ground truth xtrue and noise ε ∼
N (0, σ 2

noise). The goal of solving (84) is to recover a feature x that is as close to xtrue
as possible, with only the knowledge of norm D := ‖xtrue‖ of the underlying ground
truth. With such assumptions, it can be computed that G(u) = ‖x − xtrue‖2/2 +
σ 2
noise. The stochastic gradients G(u; ξ) is computed through a mini-batch fashion

with batch size b, namely, G(u; ξ) = (
∑b

i=1(〈ai , x〉 − fi )ai )/b with b independently

generated samples (ai , fi ), where a
(k)
i ∼ N (0, 1) for all the k-th components of a(k),

fi = 〈ai , xtrue〉 + εi , and εi ∼ N (0, σ 2
noise). Fixing any x ∈ X and denoting that

d := x − xtrue and κi := (〈ai , d〉 − εi )ai − d, we have E[κi ] = 0 and ‖d‖ ≤ 2D,
hence

E
[‖κi‖2

] = E
[‖(〈ai , d〉 − εi )ai‖2

]− ‖d‖2
= E [‖〈ai , d〉ai‖]2 + E

[
ε2i ‖ai‖2

]− ‖d‖2

= E

⎡
⎢⎢⎣

n∑
j=1

⎛
⎜⎜⎝a

( j)
i d( j) +

n∑
k=1
k �= j

a(k)
i d(k)

⎞
⎟⎟⎠

2

(
a( j)
i

)2
⎤
⎥⎥⎦+ nσ 2

noise − ‖d‖2

= E

⎡
⎢⎢⎣

n∑
j=1

⎛
⎜⎜⎝
(
a( j)
i

)2
d( j) +

n∑
k=1
k �= j

a( j)
i a(k)

i d(k)

⎞
⎟⎟⎠

2⎤
⎥⎥⎦+ nσ 2

noise − ‖d‖2
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= E

⎡
⎢⎢⎣

n∑
j=1

⎛
⎜⎜⎝
(
a( j)
i

)4 (
d( j)

)2 +
n∑

k=1
k �= j

(
a( j)
i a(k)

i

)2 (
d(k)
)2
⎞
⎟⎟⎠

⎤
⎥⎥⎦+ nσ 2

noise − ‖d‖2

=
n∑
j=1

⎛
⎜⎜⎝3
(
d( j)

)2 +
n∑

k=1
k �= j

(
d(k)
)2
⎞
⎟⎟⎠+ nσ 2

noise − ‖d‖2

= (n + 1)‖d‖2 + nσ 2
noise ≤ 4(n + 1)D2 + nσ 2

noise.

Therefore, noting that κi are i.i.d., we have

E[G(u; ξ)] = E

[
1

b

b∑
i=1

κi + d

]
= x − xtrue = ∇G(u),

and

E

[
‖G(u; ξ) − ∇G(u)‖2∗

]
= E

⎡
⎣
∥∥∥∥∥
1

b

b∑
i=1

κi

∥∥∥∥∥
2⎤
⎦ = 1

b2

b∑
i=1

E[‖κi‖2]

≤ 4(n + 1)D2 + σ 2
noisen

b
.

By the above analysis, it can be computed that L = 1 in (4), M = ‖K‖ in (3),
σ 2
G = (4(n+1)D2+σ 2

noisen)/b and σ 2
H = 0 in Assumption A1. The true feature xtrue

is the n-vector form of a 64×64 two-dimensional signal whose intensities are shown in
Fig. 1. Within its support, the nonzero intensities of xtrue are generated independently
from standard normal distribution. The group sparsity structure we enforce is a grid
structure as described in [18] with all the 4-cycles, in order to enforce that each pixel
in the support xtrue is connected to the pixels that are above, below, left, and right of
itself.

Fig. 1 True feature xtrue in the experiment of overlapped group LASSO. From left to right: problem
instances 1 through 3
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Table 2 The comparison of the SAMP and SMP algorithms in extracting overlapped group sparse feature
of datasets, in terms of the relative error (88) to the ground truth

Problem instance Iteration SAMP SMP

N Rel. error (%) CPU Rel. error (%) CPU

1 500 26.8 1.7 89.3 3.4

1000 11.6 3.5 80.1 6.8

1500 6.5 5.3 72.2 10.2

2000 4.7 7.0 65.3 13.7

2 500 26.8 1.9 89.3 3.3

1000 11.6 3.8 80.1 6.6

1500 6.5 5.7 72.2 9.9

2000 4.7 7.7 65.3 13.3

3 500 26.7 1.7 89.3 3.3

1000 11.6 3.5 80.1 6.6

1500 6.5 5.3 72.1 9.9

2000 4.7 7.1 65.3 13.2

The relative error and CPU time in the table is the average results of 100 runs

We present in Table 2 the comparison results between the SAMP algorithm and the
stochastic mirror-prox (SMP) algorithm in [20]. Three problem instances are gener-
ated, and in all the instances we set λ = 10−4 in (84), and σnoise = 0.1 and b = 50
in the sampling process. The accuracy of feature extraction of algorithm output x is
evaluated by the relative error to the ground truth, which is defined by

‖x − xtrue‖
‖xtrue‖ . (88)

For both the SAMP and SMP algorithms, the parameters are selected based on
the recommended optimal settings. In particular, for the SAMP algorithm, we use the
parameters described in Corollary 1 (in which β = σ/D). For the SMP algorithm, we
use the parameters described in Corollary 1 (with L = 1+‖K‖, M = 0, Ω = D, and
σ = σG ) in [20] . We can observe that the SAMP algorithm significantly outperforms
the SMP algorithm in extracting the underlying feature of the datasets.

4.2 Randomized algorithm for solving two-player game

The goal of this subsection is to demonstrate the efficiency of the SAMP algorithm in
computing the equilibrium of a two-player game. In particular, we consider the SVI
problem

〈
E

[( P(x; ξx ) + Ky(y; ζy)

−Kx (x; ζx ) + Q(y; ξy)

)]
,

(
x∗ − x
y∗ − y

)〉
≤ 0, ∀x, y ∈ Δn, (89)
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where ξx , ξy, ζx , ζy are random variables such that

Prob(P(x; ξx ) = Pj ) = x ( j)
i , Prob(Q(y; ξy) = Qk) = y(k)

i , (90)

Prob(Kx (x; ζx ) = Kl) = x (l)
i , and Prob(Ky(y; ζy) = Km) = y(m)

i . (91)

HereΔn is a standard simplex, Pj and Qk are the j-th and k-th columns of positive
semidefinite matrices P and Q, and Kl and (Km)T are the l-th column and m-th row
of a matrix K , respectively. Letting Z := Δn × Δn , ξ := (ξx , ξy), ζ := (ζx , ζy), and
using the notation u = (x, y) ∈ Z , problem (89) can be formulated as (1) where

G(u; ξ) =
(P(x; ξx )

Q(y; ξy)

)
, H(u; ζ ) =

( Ky(y; ζy)

−Kx (x; ζx )

)
, and J (u) ≡ 0. (92)

Also, it can be checked from (90) that E[P(x; ξx )] = Px , E[Q(y; ξy)] = Qy,
E[Kx (x; ζx )] = Kx and E[Ky(y; ζy)] = KT y, hence problem (89) also have the
equivalent form (5) where

F(u) =
(

P KT

−K Q

)
u, G(u) = 1

2
〈Px, x〉 + 1

2
〈Qy, y〉, and H(u) =

(
KT y
−Kx

)
,

or a saddle point problem

min
x∈Δn

max
y∈Δn

1

2
〈Px, x〉 + 〈Kx, y〉 − 1

2
〈Qy, y〉. (93)

The above saddle point problem describes the equilibrium of a two-player game.
It should be noted that, although problems (89) and (93) are equivalent, from the

algorithm design point of view the stochastic formulation (89) may have some advan-
tages over its deterministic counterpart (93), as pointed out in [33]. This is because
that when P, Q and K are dense and n is large, the matrix-vector multiplication of
Px , Qy, KT y and Kx may be relatively expensive. Consequently, the stochastic for-
mulation (89) becomes more favorable than its deterministic counterpart (89), since
each sampling of P(x; ξx ),Q(y; ξy),Ky(y; ζy) andKx (x; ζx ) is just a random selec-
tion of a column or row, rather than a matrix-vector computation. Indeed, designing a
stochastic approximation algorithm for solving the SVI (89) is equivalent to designing
a randomized algorithm for solving (93).

To compute a solution of (1), we consider an entropy setting for the prox-function
used in the AMP algorithm. For simplicity, we only consider in this experiment the
case when maxi, j |P(i, j)| = maxi, j |Q(i, j)|.1 For all z = (x̃, ỹ) ∈ Z , u = (x, y) ∈ Z
and η = (ηx , ηy) ∈ E , we define

1 When the maximum absolute values of P and Q are different, it is recommended to introduce weights ωx

and ωy and set ‖u‖ :=
√

ωx‖x‖21 + ωy‖y‖21 and ‖η‖∗ :=
√

‖ηx‖21/ωx + ‖ηy‖21/ωy . See “mixed setups”
in Section 5 of [32] for the detailed derivations for best values of weights ωx and ωy .
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‖u‖ :=
√

‖x‖21 + ‖y‖21s, ‖η‖∗ :=
√

‖ηx‖2∞ + ‖ηy‖2∞, and

V (z, u) :=
n∑
j=1

(x ( j)
i + ν/n) ln

x ( j)
i + ν/n

x̃ ( j)
i + ν/n

+
n∑
j=1

(y( j)
i + ν/n) ln

y( j)
i + ν/n

ỹ( j)
i + ν/n

.
(94)

Here, y( j)
i denotes the j-th entry of the strategy yi , and ν is arbitrarily small (e.g.,

ν = 10−16).With the above setting, the optimization problem in the prox-mapping (10)
can be efficiently solved within machine accuracy, and the strong convexity parameter
of the prox-function V (z, u) is μ = 1 + ν (See [3] for details on the entropy prox-
functions). It is easy to check that

L ≤ max

{
max
k, j

|P(k, j)|,max
k, j

|Q(k, j)|
}

, M ≤ max
k, j

|K (k, j)|, Ω2
Z = 2

(
1 + ν

n

)
ln
(n

ν
+ 1
)

,

Eξ

[
‖G(u; ξ) − ∇G(u)‖2∗

]
≤ 4

(
max
k, j

|P(k, j)|2 + max
k, j

|Q(k, j)|2
)

, and

Eζ

[
‖H(u; ζ ) − H(u)‖2∗

]
≤ 8max

k, j
|K (k, j)|2.

Therefore, we set

σG = 2

√(
max
k, j

|P(k, j)|2 + max
k, j

|Q(k, j)|2
)

, σH = 2
√
2max

k, j
|K (k, j)|,

and σ by (8).
In this experiment, we generate random matrices B,C ∈ R

100×n , and K ∈ R
n×n

first, where each entry of these matrices are independently and uniformly distributed
over [0, 1]. Thematrices P and Q are then generated by P = BT B and Q = CTC , and
also rescaled so that P and Q are both positive semidefinite and L = maxk, j |P(k, j)| =
maxk, j |Q(k, j)|. For the SAMP algorithm, we use the scheme in Algorithm 1 with the
parameters described in (94) and Corollary 1 (in which β = σ/ΩZ ). As a comparison,
we also implement the stochastic mirror-prox (SMP) method in with parameters set

by Corollay 1 in [20] (in which L =
√
2maxk, j |P(k, j)|2 + 2maxk, j |K (k, j)|2, σ =

4
√
maxk, j |P(k, j)|2 + maxk, j |K (k, j)|2 andΩ = Ω2

Z ). The performance of the SAMP
and SMP algorithms are compared in terms of the average of the gap function values
(17) (computed by MOSEK [30]) in 100 runs.

The comparison between the SAMP and SMP algorithms in terms of the perfor-
mance on computing approximate solutions of (93) is described in Table 3. We can
see that the SAMP algorithm outperforms the SMP algorithm, which is consistent
with our theoretical observation on the iteration complexities of the SAMP and SMP
algorithms. In particular, as L increases, the advantage of SAMP over SMP in terms
of E[g(u)] becomes more evident.
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Table 3 The comparison of the SAMP and SMP algorithms in solving SVI (89), in terms of the expectation
of the gap function value g(u) for any approximate solution u

Problem Iteration SAMP SMP

instance N E[g(u)] CPU (ave.) E[g(u)] CPU (ave.)

1 1000 6.39e−2 0.4 7.69e−2 0.4

2000 5.82e−2 0.7 7.27e−2 0.8

5000 4.54e−2 1.7 6.43e−2 2.0

2 1000 4.09e−2 0.5 5.05e−1 0.6

2000 1.86e−2 0.9 4.84e−1 1.1

5000 6.78e−3 2.3 4.44e−1 2.8

3 1000 9.51e−2 0.9 3.72e0 1.1

2000 5.81e−2 2.2 3.63e0 2.6

5000 3.27e−2 5.4 3.45e0 6.6

The CPU time in the table is the average time of 100 runs
Instance 1: n = 1000, L = 1, M = 1, σ = 4.00
Instance 2: n = 2000, L = 10, M = 1, σ = 9.38
Instance 3: n = 5000, L = 100, M = 1, σ = 28.43

4.3 Two-player game with nonlinear payoff

Our goal in this subsection is to demonstrate the advantages of the SAMP algorithm
over themirror-proxmethod (or extragradient method) even for solving certain classes
of deterministicVIs.We consider a problemon computing the equilibriumof a convex-
concave two-player game of form

min
x∈Δn

max
y∈Δn

m∑
i=1

log
(
1 + e〈ai ,x〉

)
+

n∑
i=1

log

(
1 + y(i)

c(i) + x (i)

)
−

m∑
i=1

log
(
1 + e〈bi ,x〉

)
,

(95)

where Δn is the standard simplex. When ai = bi = 0 for all i = 1, . . . ,m, the above
becomes the water filling problem (see, e.g., [5]). Letting Z := Δn × Δn and using
the notation u = (x, y), the above problem is equivalent to (5) with J (u) ≡ 0 and

G(u) =
m∑
i=1

log
(
1 + e〈ai ,x〉

)
+

m∑
i=1

log
(
1 + e〈bi ,x〉

)
, (96)

H(u) =

⎛
⎜⎜⎝

− y(i)

(c(i) + x (i))(c(i) + x (i) + y(i))

− 1

c(i) + x (i) + y(i)

⎞
⎟⎟⎠ . (97)

In this experiment, we generate ai and bi randomly from the standard normal
distribution, and set c(i) = 1 for all i . We apply the entropy setting in (94). For
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Fig. 2 Performance of SAMP and MP on solving problem (95). Left: iteration versus gap value g(u).
Right: CPU time versus gap value g(u)

the SAMP algorithm, we incorporate a backtracking linesearch technique in order to
determine the best values of L and M that guarantees the convergence of Algorithm
1 (see, e.g., the backtracking technique in [36]). We compare the SAMP algorithm
with the mirror-prox (MP) algorithm with adaptive stepsize described in [32]. The
comparison between the SAMP algorithm and the MP algorithm is illustrated through
the convergence of gap function g(u) in (17) (computed by IPOPT [47]). It can be
observed from Fig. 2 that the SAMP algorithm outperforms theMP algorithm in terms
of both iteration vs. gap value and CPU time versus gap value. This is consistent with
our theoretical observation that SAMP has a better iteration complexity bound than
the MP algorithm for solving deterministic VIs.

4.4 Variational inequality on the Lorentz cone

In this section, we study the performance of SAMPwhen the feasible set is unbounded.
In particular, we consider an SVI problem on solving u∗ ∈ Z such that

〈E[Au + ζ ], u∗ − u〉 ≤ 0, ∀u ∈ Z , (98)

where A ∈ R
(n+1)×(n+1) is a linear monotone operator, ξ is a random vector whose

expectation b = E[ζ ] is unknown a priori, and Z is the Lorentz cone:

Z := {(x, t) ∈ R
(n+1) | ‖x‖ ≤ t}.

To solve (98), we can decompose the linear monotone operator A to the sum of a
symmetric positive semidefinite matrix (A + AT )/2 and a skew-symmetric matrix
(A − AT )/2, hence the SVI problem (98) can be viewed as an instance of (1) and (5)
with
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Table 4 The comparison of the SAMP and MP algorithms in solving the SVI problem (98)

Problem N SAMP, N iterations MP, 2N iterations

E[g̃(w, v)] E[‖v‖] CPU g̃(w, v) ‖v‖ CPU

n = 1999 1000 8.0e−2 3.6e−1 5.0 7.6e−2 3.3e0 6.7

L = 5861.5 2000 3.6e−2 1.6e−1 10.2 1.1e−1 2.3e0 13.9

M = 36.5 4000 2.3e−2 1.1e−1 15.3 1.2e−1 1.8e0 20.5

n = 2999 1000 4.5e−2 3.1e−1 10.7 6.0e−1 3.6e0 14.9

L = 8645.0 2000 2.0e−2 1.4e−1 22.2 7.6e−2 2.4e0 30.6

M = 44.6 3000 1.3e−2 9.3e−2 33.6 7.9e−2 1.8e0 45.6

In the table w and v denote the approximate solution and perturbation vector respectively, and g̃(·, ·) is the
gap function defined in (28)
The CPU time in the table is the average time of 100 runs

F(u) = Au + b, G(u) = 1

4
〈(A + AT )u, u〉, H(u) = 1

2
(A − AT )u + b, J (u) = 0,

G(u; ξ) ≡ ∇G(u), and H(u; ζ ) = 1

2
(A − AT )u + ζ.

(99)

In this experiment, we generate the linear monotone operator A randomly by A =
BT B+ (C −CT ), where B ∈ R

�(n+1)/2�×(n+1) (so that A is monotone but not strictly
monotone),C ∈ R

(n+1)×(n+1), and the entries of B andC are generated independently
from the uniform [0, 1] distribution.We generate ξ by ξ ∼ N (b, 1

n I ), where the entries
of the mean vector b are also randomly distributed between 0 and 1. Therefore, in
Assumption A1 we have σG = 0 and σH = 1. By setting V (z, u) = ‖z − u‖2/2, the
prox-mapping P J

z (u) in (10) becomes the projection of z − η to the Lorentz cone Z ,
which can be calculated efficiently. For the SAMP algorithm, we use the parameter
settings in Corollary 2 with L = ‖A + AT ‖/2, M = ‖A − AT ‖/2, and β = 1.
Since the study of the stochastic mirror-prox method in [20] only considers compact
feasible sets, we could not find recommended parameter settings of the stochastic
mirror-prox method for solving unbounded SVI. Therefore, we compare the SAMP
algorithmwith the deterministicmirror-prox (MP)method in [32]. In each iteration, the
SAMP algorithm is supplied with the stochastic information F(u; ξ, ζ ), and the MP
method is suppliedwith the deterministic information F(u).We choose the parameters
of MP according to (3.2) of [32] in which L = ‖A‖. Noting the fact that SAMP
computes relatively more matrix-vector multiplications due to the aforementioned
decomposition, we set the total number of iterations of the MP method to be twice
of that of the SAMP method. The performance of the SAMP and MP algorithms are
compared in terms of the gap function (28), which is computed using MOSEK [30].
In particular, for any approximate solution w and perturbation vector v, we compute
the value of g̃(w, v) in (28) and norm of the perturbation vector ‖v‖.2 The comparison
between the SAMP and MP algorithms is described in Table 4.

2 See the proof of Theorem 2 for the definition of the perturbation term in the SAMP algorithm, and
Theorem 5.2 in [28] for the definition of the perturbation term in the MP algorithm.
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Two remarks on the performance of the SAMP and MP algorithms are in order.
Firstly, it is interesting to observe that the practical convergence of the perturbation
vector ‖v‖ is slower than that of the gap function value g̃(w, v), although they have
the same rate of convergence (see Corollary 2). Secondly, the SAMP algorithm out-
performs the MP algorithm for solving (98). Such performance comparison indicates
the importance of the special treatment of the gradient field term ∇G from the SVI
(98).

5 Concluding remarks

We present in this paper a novel stochastic accelerated mirror-prox method for solving
a class of stochastic variational inequality problems. The basic idea of this algorithm
is to incorporate a multi-step acceleration scheme into the stochastic mirror-prox
method in [20]. The SAMP achieves the optimal iteration complexity, not only in
terms of its dependence on the number of the iterations, but also on a variety of
problem parameters. As a byproduct, the SAMP also significantly improves the
iteration complexity for solving a class of deterministic variational inequalities. More-
over, the iteration cost of the SAMP is comparable to, or even less than that of
the stochastic mirror-prox method in that it saves one computation of the stochas-
tic gradient of the smooth component. To the best of our knowledge, this is the
first algorithm with the optimal iteration complexity bounds for solving the SVIs
of type (2). Furthermore, we show that the developed SAMP scheme can deal with
the situation when the feasible region is unbounded, as long as a strong solution
of the VI exists. In the unbounded case, we adopt the modified termination crite-
rion employed by Monteiro and Svaiter in solving monotone inclusion problem, and
demonstrate that the rate of convergence of SAMP depends on the distance from the
initial point to the set of strong solutions. Our preliminary numerical results show that
the proposed SAMP algorithm is promising to solve large-scale variational inequality
problems.

It should be noted that in this paper we focus on the algorithm design for com-
puting weak solutions to monotone SVIs. In view of some recent development on
the unified analysis for convex and nonconvex stochastic optimization algorithms
(see, e.g., [15]), it will be interesting to study a unified SAMP method that deals
with both monotone and non-monotone SVIs. Also, considering that the problem
of interest is a SVI with only deterministic feasible set, in the future it will be
interesting to study different stochastic approximation type algorithms for solv-
ing SVIs involving expectation or probabilistic constraints. Moreover, it has been
shown in [11,28,29] that the for SV I (Z; 0, H, 0) with σ = 0 and G = 0, the
mirror-prox method in [32] indeed converges to a strong solution with complex-
ity O(M2/ε2). Since our main interest of this paper is to study the specialized
treatment of gradient field ∇G in the SVI, we focus only on how to achieve the
lower complexity bound for computing weak solutions. However, by incorporat-
ing the analysis in [11], it will be interesting to see if Algorithm 1 could also
compute an approximate strong solution of the SVI problem (1) with complexity
O(

√
L/ε + (M2 + σ 2)/ε2).
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