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Abstract In this paper, we propose and analyze a trust-region model-based algorithm
for solving unconstrained stochastic optimization problems. Our framework utilizes
random models of an objective function f (x), obtained from stochastic observations
of the function or its gradient. Our method also utilizes estimates of function values to
gauge progress that is being made. The convergence analysis relies on requirements
that these models and these estimates are sufficiently accurate with high enough, but
fixed, probability. Beyond these conditions, no assumptions are made on how these
models and estimates are generated.Under these general conditionswe show an almost
sure global convergenceof themethod to afirst order stationarypoint. In the secondpart
of the paper, we present examples of generating sufficiently accurate random models
under biased or unbiased noise assumptions. Lastly, we present some computational
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results showing the benefits of the proposed method compared to existing approaches
that are based on sample averaging or stochastic gradients.

Mathematics Subject Classification 90C15 · 90C30 · 90C56

1 Introduction

Derivative free optimization (DFO) [8] has recently grown as a field of nonlinear opti-
mization which addresses optimization of black-box functions, that is functions whose
value can be (approximately) computed by some numerical procedure or an exper-
iment, while their closed-form expressions and/or derivatives are not available and
cannot be approximated accurately or efficiently. Although the role of derivative-free
optimization is particularly important when objective functions are noisy, traditional
DFOmethods have been developed primarily for deterministic functions. The fields of
stochastic optimization [22,29] and stochastic approximation [33] on the other hand
focus on optimizing functions that are stochastic in nature. Much of the focus of these
methods depend on the availability and use of stochastic derivatives; however, some
work has addressed stochastic black box functions, typically by some sort of a finite
differencing scheme [18].

In this paper, using methods developed for DFO, we aim to solve

min
x∈Rn

f (x) (1)

where f (x) is a function which is assumed to be smooth and bounded from below,
but the value of which can only be computed with some noise. Let f̃ be the noisy
computable version of f , which takes the form

f̃ (x) = f (x, ε),

where the noise ε is a random variable.
In recent years, someDFOmethods have been extended to and analyzed for stochas-

tic functions [10,20]. Additionally, stochastic approximation methodologies started
to incorporate techniques from the DFO literature [5]. The analysis in all that work
assumes some particular structure of the noise, including the assumption that the noisy
function values give an unbiased estimator of the true function value.

There are two main classes of methods in this setting of stochastic optimization:
stochastic gradient (SG) methods (such as the well known Robbins–Monro method)
and sample average approximation (SAA) methods. The former (SG) methods work
roughly as follows: they obtain a realization of an unbiased estimator of the gradient
at each iteration and take a step in the direction of the negative gradient. The step sizes
progressively diminish and the iterates are averaged to form a sequence that converges
to a solution. These methods typically have very inexpensive iterations, but exhibit
slow convergence, with the convergence rate being strongly dependent on the choice of
algorithmic parameters, particularly the sequence of step sizes.Manyvariants exist that
average the gradient information from past iterations and are able to accept sufficiently
small, but nondecreasing step sizes [1,17]. The SG type ofmethod has gained very high

123



Stochastic optimization using a trust-region method and… 449

popularity with their application in the field of machine learning (e.g., see an extensive
survey on the subject [4]). Many sophisticated variants, that involve acceleration and
other techniques have been developed and shown to be efficient in practice, [14,19,24].
However, the majority of these methods aim exclusively at convex functions and may
not converge in non convex settings. Variance reduction techniques, such as [9,16]
have been proposed for the cases when f (x) is a finite sum of convex functions, which
is a much more restrictive than what we consider here. While some variants of the
above methods exists for nonconvex problems (e.g. [13]), the convergence remains
slow, and parameter tuning remains necessary in most cases.

The second class of methods, (SAA), is based on sample averaging of the function
and gradient estimators, which is applied to reduce the variance of the noise. These
methods repeatedly sample the function value at a set of points in hopes to ensure
sufficient accuracy of the function and gradient estimates. For a thorough introduction
and references therein, see [25]. The optimization method and sampling process are
usually tightly connected in these approaches; hence, again, algorithmic parameters
need to be specially chosen and tuned. These methods tend to be more robust with
respect to parameters and enjoy faster convergence at a cost of more expensive iter-
ations. Practical success has been demonstrated for specially designed methods for
problems of particular structure (see, e.g. [21]). However, very few sample averaging
methods have been developed specifically for trust region methods and general non-
convex problems. Moreover, none of the methods mentioned above are applicable in
the case of biased noise and they suffer significantly in the presence of outliers.

The goal of this paper is to show that a standard, efficient, unconstrained opti-
mization method, such as a trust region method, can be applied, with very small
modifications, to stochastic nonlinear (not necessarily convex) functions and can be
guaranteed to converge to first order stationary points as long as certain conditions
are satisfied. We present a general framework, where we do not specify any particular
sampling technique. The framework is based on the trust region DFO framework [8],
and its extension to probabilistic models [2]. In terms of this framework and the certain
conditions that must be satisfied, we essentially assume that

• the local models of the objective function constructed on each iteration satisfy
some first order accuracy requirement with sufficiently high probability,

• and that function estimates at the current iterate and at a potential next iterate are
sufficiently accurate with sufficiently high probability.

Themain novelty of thiswork is the analysis of the framework and the resultingweaker,
more general, conditions for convergence compared to prior work. In particular,

• We do not assume that the probabilities of obtaining sufficiently accurate models
and estimates are increasing (they simply need to be above a certain constant) and

• We do not assume any distribution of the random models and estimates. In other
words, if a model or estimate is inaccurate, it can be arbitrarily inaccurate, i.e. the
noise in the function values can have nonconstant bias.

It is also important to note that while our framework and model requirements are
borrowed from prior work in DFO, this framework applies to derivative-based opti-
mization as well. Later in the paper we will discuss different settings which will fit
into the proposed framework.

123



450 R. Chen et al.

This paper consists of two main parts. In the first part, we propose and analyze
a trust region framework, which utilizes random models of f (x) at each iteration to
compute the next potential iterate. It also relies on (random, noisy) estimates of the
function values at the current iterate and the potential iterate to gauge the progress that
is being made. The convergence analysis then relies on requirements that these models
and these estimates are sufficiently accurate with sufficiently high probability. Beyond
these conditions, no assumptions are made about how these models and estimates are
generated. The resulting method is a stochastic process that is analyzed with the help
of martingale theory. The method is shown to converge to first order stationary points
with probability one.

In the second part of the paper, we consider various scenarios under different
assumptions on the noise-inducing component ε and discuss how sufficiently accurate
random models can be generated. In particular, we show that in the case of unbiased
noise, that is when E[ f (x, ε)] = f (x) and Var[ f (x, ε)] ≤ σ 2 < ∞ for all x , sample
averaging techniques give us sufficiently accurate models. Although we will prove
convergence under the mentioned framework that essentially says we have the ability
to compute both sufficiently accurate models and estimates with constant, separate
probabilities, it is not necessarily easy to estimate what these probabilities ought to be
for a given problem. While we provide some guidance on the selection of sampling
rates in an unbiased noise setting in Sect. 5, our numerical experiments show that
the bounds on probabilities suggested by our theory to be necessary for almost sure
convergence are far from tight.

We also discuss the case where E[ f (x, ε)] �= f (x), and where the noise bias may
depend on x or on the method of computation of the function values. One simple
setting, which is illustrative, is as follows. Suppose we have an objective function,
which is computed by a numerical process, whose accuracy can be controlled (for
instance by tightening some stopping criterionwithin this numerical process). Suppose
now that this numerical process involves some random component (such as sampling
from some large data and/or utilizing a randomized algorithm). It may be known
that with sufficiently high probability this numerical process produces a sufficiently
accurate function value—however, with some small (but nonzero) probability the
numerical process may fail and hence no reasonable value is guaranteed. Moreover,
such failures may becomemore likely as more accurate computations are required (for
instance because an upper bound on the total number of iterations is reached inside the
numerical process). Hence the probability of failure may depend on the current iterate
and state of the algorithm. Here we simply assume that such failures do not occur
with probability higher than some constant (which will be specified in our analysis),
conditioned on the past. However, we do not assume anything about the magnitude
of the inaccurate function values. As we will demonstrate later in this paper, in this
setting, E[ f (x, ε)] �= f (x).

1.1 Comparison with related work

There is a very large volume of work on SAA and SG, most of which is quite differ-
ent from our proposed analysis and method. However, we will mention a few works

123



Stochastic optimization using a trust-region method and… 451

here that are most closely related to this paper and highlight the differences. The
three methods existing in the literature we will compare with are by Deng and Fer-
ris [10], SPSA (simultaneous perturbations stochastic approximation) [31,32], and
SCSR (sampling controlled stochastic recursion) [15]. These three settings and meth-
ods are most closely related to our work because they all rely on using models of
the (possibly non convex) objective function that can both incorporate second-order
information and whose accuracy with respect to a “true” model can be dynamically
adjusted. In particular, Deng and Ferris apply the trust-region model-based derivative
free optimizationmethodUOBYQA [26] in a setting of sample path optimization [28].
In [31,32], the author applies an approximate gradient descent and Newton method,
respectively, with gradient and Hessian estimates computed from specially designed
finite differencing techniques, with a decaying finite differencing parameter. In [15] a
very general scheme is presented, where various deterministic optimization algorithms
are generalized as stochastic counterparts, with the stochastic component arising from
the stochasticity of the models and the resulting step of the optimization algorithm.
We now compare some key components of these three methods with those of our
framework, which we hereforth refer to as STORM (STochastic Optimization with
Random Models).

Deng and Ferris The assumptions of the sample path setting are roughly as
follows: on each iteration k, given a collection of points Xk = {xk1 , . . . , xkp}
one can compute noisy function values f (xk1 , ε

k), . . . , f (xkp, ε
k). The noisy func-

tion values are assumed to be realizations of an unbiased estimator of true values
f (xk1 ), . . . , f (xkp). Then, using multiple, say Nk , realizations of εk , average function

values f Nk (xk1 ), . . . , f Nk (xkp) can be computed. A quadratic model mNk
k (x) is then fit

into these function values, and so a sequence of models {mNk
k (x)} is created using a

nondecreasing sequence of sampling rates {Nk}. The assumption on this sequence of
models is that each of them satisfies a sufficient decrease condition (with respect to the
true model of the true function f ) with probability 1 − αk , such that

∑∞
k=1 αk < ∞.

The trust region maintenance follows the usual scheme like that in UOBYQA, hence
the steps taken by the algorithm can be increased or decreased depending on the
observed improvement of the function estimates.

SPSA The first order version of this method assumes that f (x, ε) is an unbiased
estimate of f (x), and the second order version, 2SPSA, assumes that an unbiased
estimate of ∇ f (x), g(x, ε) ∈ Rn , can be computed. Gradient (in the first order case)
and Hessian (in the second order case) estimates are constructed using an interesting
randomized finite differencing scheme. The finite difference step is assumed to be
decaying to zero. An approximate steepest descent direction or approximate Newton
direction are then constructed and a step of length tk is taken along this direction.
The sequence {tk} is assumed to be decaying in the usual Robbins–Monro way, that
is tk → 0,

∑
k tk = ∞. Hence, while no increase in accuracy of the models is

assumed (they only need to be accurate in expectation), the step size parameter and
the finite differencing parameter need to be tuned. Decaying step sizes often lead to
slow convergence, as has been observed often in stochastic optimization literature.

SCSR This is a very general scheme which can include multiple optimization
methods and sampling rates. The key ingredients of this scheme are a deterministic
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optimization method, and a stochastic variant that approximates it. The stochastic step
(recursion) is assumed to be a sufficiently accurate approximation of the deterministic
step with increasing probability (the probabilities of failure for each iteration are
summable). This assumption is stronger than the one in this paper. In addition, another
key assumption made for SCSR is that the iterates produced by the base deterministic
algorithm converge to the unique optimal minimizer x∗. Not only we do not assume
here that the minimizer/stationary point is unique, but we also do not assume a priori
that the iterates form a convergent sequence, since they may not do so in a nonconvex
setting, while every iterate subsequence converges to a stationary point.

STORM Like the Deng and Ferris method, we utilize a trust-region, model-based
framework, where the size of the trust region can be increased or decreased according
to empirically observed function decrease and the size of the observed approximate
gradients. The desired accuracy of the models is tied only to the trust region radius
in our case, while for Deng and Ferris, it is tied to both the radius and the size of
true model gradients (the second condition is harder to ensure). In either method,
this desired accuracy is assumed to hold with some probability—in STORM, this
probability remains constant throughout the progress of the algorithm, while for Deng
and Ferris it has to converge to 1 sufficiently rapidly.

There are three major advantages to our results. First of all, in the case of unbiased
noise, the sampling rate is directly connected to the desired accuracy of the estimates
and the probability with which this accuracy is achieved. Hence, for the STORM
method, the sampling rate may increase or decrease according to the trust region
radius, eventually increasing only when necessary, i.e. when the noise becomes dom-
inating. For all the other methods listed here, the sampling rate is assumed to increase
monotonically. Secondly, in the case of biased noise, we can still prove convergence
of our method, as long as the desired accuracy is achieved with a fixed probability.
In other words, we allow for the noise to be arbitrarily large with a small, but fixed,
probability on each iteration. This allows us to consider new models of noise which
cannot be handled by any of the other methods discussed here. In addition, STORM
incorporates first and second order models without changing the algorithm—the step
size parameter (i.e., the trust region radius) and other parameters of the method are
chosen almost identically to the standard practices of the trust region methods, which
have proved to be very effective in practice for unconstrained nonlinear optimization.
In Sect. 6 we show that the STORMmethod is very effective in different noise settings
and is very robust with respect to sampling strategies.

Finally, we want to point to [20], which proposes a very similar method to the one
in this paper. Both methods were developed based on the trust region DFO method
with random models for deterministic functions analyzed in [2] and extended to the
stochastic setting. Some of the assumptions in this paper were inspired by an early
version of [20]. However, the assumptions and the analysis in [20] are quite different
from what appears in this paper. In particular, they rely on the assumption that f (x, ε)
is an unbiased estimate of f (x), hence their analysis does not extend to the biased
case. Also they assume that the probability of having an accurate model at the k-th
iteration is at least 1−αk , such that αk → 0, while for our method this probability can
remain bounded away from zero. Similarly, they assume that the probability of having
accurate function estimates at the k-th iteration also converges to 1 sufficiently rapidly,
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while in our case it is again constant. Their analysis, as a result, is very different from
ours, and does not generalize to various stochastic settings (they only focus on the
derivative free setting with additive noise). The advantage of their method is that they
do not need to put a restriction on acceptable step sizes when the norm of the gradient
of the model is small. We, on the other hand, impose such a restriction in our method
and use it in the proof of our main result. However, as we discuss later in the paper
this restriction can be relaxed at the cost of a more complex algorithm and analysis.
In practice, we do not implement this restriction, hence our basic implementation is
virtually identical to that in [20] except that we implement a variety of model building
strategies, while only one such strategy (regression models based on randomly rotated
orthogonal samples sets) is implemented in [20]. Thus we do not directly compare
the empirical performance of our method with the method in [20] since we view it as
more or less the same method.

We conclude this section by introducing some frequently used notations and their
meanings. The rest of the paper is organized as follows. In Sect. 2 we introduce
the trust region framework, followed by Sect. 3, where we discuss the requirements
on our random models and function estimates. The main convergence results are
presented in Sect. 4. In Sect. 5 we discuss various noise scenarios and how sufficiently
accurate models and estimates can be constructed in these cases. Finally, we present
computational experiments based on these various noise scenarios in Sect. 6.

Notations Let ‖·‖ denote the Euclidean norm and B(x,�) denote the ball of radius�

around x , i.e., B(x,�) : {y : ‖x− y‖ ≤ �}. Probability sample spaces are denoted by
�, according to the context, and a sample from that space is denoted by ω ∈ �. As a
rule, whenwe describe a random process within the algorithmic framework, uppercase
letters, e.g. the k-th iterate Xk , will denote random variables, while lowercase letters
will denote realizations of the random variable, e.g. xk = Xk(ω) is the k-th iterate for
a particular realization of our algorithm.

We also list here, for convenience, several constants that are used in the paper to
bound various quantities. These constants are denoted by κ with subscripts indicating
quantities that they are meant to bound.

κe f “error in the function value”,

κeg “error in the gradient”,

κEef “expectation of the error in the function value”,

κ f cd “fraction of Cauchy decrease”,

κbhm “bound on the Hessian of the models”,

κet “error in Taylor expansion”.

2 Trust region method

We consider the trust-region class of methods for minimization of unconstrained func-
tions. They operate as follows: at each iteration k, given the current iterate xk and a
trust-region radius δk , a (random) model mk(x) is built, which serves as an approxi-
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mation of f (x) in B(xk, δk). The model is assumed to be of the form

mk(xk + s) = fk + g

k s + s
Hks. (2)

It is possible to generalize our framework to other forms of models, as long as all
conditions on the models, described below, hold. We consider quadratic models for
simplicity of the presentation and because they are the most common. The model
mk(x) is minimized (approximately) in B(xk, δk) to produce a step sk and (random)
estimates of f (xk) and f (xk+sk) are obtained, denoted by f 0k and f sk respectively. The
achieved reduction is measured by comparing f 0k and f sk and if reduction is deemed
sufficient, then xk +sk is chosen as the next iterate xk+1. Otherwise the iterate remains
xk . The trust-region radius δk+1 is then chosen by either increasing or decreasing δk
according to the outcome of the iteration. The details of the algorithm are presented
in Algorithm 1.

Algorithm 1: Stochastic DFO with Random Models
1 (Initialization): Choose an initial point x0 and an initial trust-region radius δ0 ∈ (0, δmax) with

δmax > 0. Choose constants γ > 1, η1 ∈ (0, 1), η2 > 0, set k ← 0.
2 (Model construction): Build a model mk (xk + s) = fk + g


k s + s
Hks that approximates f (x) on
B(xk , δk ) with s = x − xk .

3 (Step calculation): Compute sk = arg min
s:‖s‖≤δk

mk (s) (approximately) so that it satisfies condition

(3).
4 (Estimates calculation): Obtain estimates f 0k and f sk of f (xk ) and f (xk + sk ), respectively.

5 (Acceptance of the trial point): Compute ρk = f 0k − f sk
mk (xk ) − mk (xk + sk )

. If ρk ≥ η1 and

‖gk‖ ≥ η2δk , set xk+1 = xk + sk ; otherwise, set xk+1 = xk .
6 (Trust-region radius update): If ρk ≥ η1 and ‖gk‖ ≥ η2δk , set δk+1 = min{γ δk , δmax}; otherwise

δk+1 = γ −1δk ; k ← k + 1 and go to step 1.

The trial step computed on each iteration has to provide sufficient decrease of the
model; in other words it has to satisfy the following standard fraction of Cauchy
decrease condition:

Assumption 2.1 For every k, the step sk is computed so that

mk(xk) − mk(xk + sk) ≥ κ f cd

2
‖gk‖min

{ ‖gk‖
‖Hk‖ , δk

}

(3)

for some constant κ f cd ∈ (0, 1].
If progress is achieved and a new iterate is accepted in the k-th iteration then we

call this a successful iteration. Otherwise, the iteration is unsuccessful (and no step is
taken). Hence a successful iteration occurs when ρk ≥ η1 and ‖gk‖ ≥ η2δk . However,
a successful iteration does not necessarily yield an actual reduction in the true function
f . This is because the values of f (x) are not accessible in our stochastic setting and
the step acceptance decision is made merely based on the estimates of f (xk) and
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f (xk + sk). If these estimates, f 0k and f sk , are not accurate enough, a successful
iteration can result in an increase of the true function value. Hence we consider two
types of successful iterations - those where f (x) is in fact decreased proportionally to
f 0k − f sk which we call true successful iterations, and all other successful iterations,
where the decrease of f (x) can be arbitrarily small or even negative, which we call
false successful iterations. Our setting and algorithmic framework do not allow us
to determine which successful iterations are true and which ones are false; however,
we will be able to show that true successful iterations occur sufficiently often for
convergence to hold if the random estimates f 0k and f sk are sufficiently accurate.

A trust region framework based on randommodels was introduced and analyzed in
[2]. In that paper, the authors introduced the concept of probabilistically fully-linear
models to determine the conditions that randommodels should satisfy for convergence
of the algorithm to hold. However, the randomness in the models in their setting arises
from the construction process, and not from the noisy objective function. It is assumed
in [2] that the function values at the current iterate and the trial point can be computed
exactly and hence all successful iterations are true in that case. In our case, it is
necessary to define a measure for the accuracy of the estimates f 0k and f sk (which, as
we will see, generally has to be tighter than the measure of accuracy of the model).
We will use a modified version of the probabilistic estimates introduced in [20].

3 Probabilistic models and estimates

Themodels in this paper are functionswhich are constructed on each iteration, based on
some random samples of stochastic function f̃ (x). Hence, the models themselves are
random and so is their behavior and influence on the iterations. Hence, Mk will denote
a randommodel in the k-th iteration, whilewewill use the notationmk = Mk(ω) for its
realizations.As a consequenceof using randommodels, the iterates Xk , the trust-region
radii�k and the steps Sk are also random quantities, and so xk = Xk(ω), δk = �k(ω),
sk = Sk(ω) will denote their respective realizations. Similarly, let random quantities
{F0

k , Fs
k } denote the estimates of f (Xk) and f (Xk+Sk), with their realizations denoted

by f 0k = F0
k (ω) and f sk = Fs

k (ω). In other words, Algorithm 1 results in a stochastic
process {Mk, Xk, Sk,�k, F0

k , Fs
k }. Our goal is to show that under certain conditions

on the sequences {Mk} and {F0
k , Fs

k } the resulting stochastic process has desirable
convergence properties with probability one. In particular, we will assume that models
Mk and estimates F0

k , Fs
k are sufficiently accurate with sufficiently high probability,

conditioned on the past.
To formalize conditioning on the past, letFM ·F

k−1 denote the σ -algebra generated by
M0, . . . , Mk−1 and F0, . . . , Fk−1 and let FM ·F

k−1/2 denote the σ -algebra generated by
M0, . . . , Mk and F0, . . . , Fk−1.

To formalize sufficient accuracy, let us recall a measure for the accuracy of deter-
ministic models introduced in [7,8] (with the exact notation introduced in [3]).

Definition 3.1 Suppose ∇ f is Lipschitz continuous. A functionmk is a κ-fully linear
model of f on B(xk, δk) provided, for κ = (κe f , κeg) and ∀y ∈ B,
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‖∇ f (y) − ∇mk(y)‖ ≤ κegδk, and (4)

| f (y) − mk(y)| ≤ κe f δ
2
k .

In this paper we extend the following concept of probabilistically fully-linear mod-
els which is proposed in [2].

Definition 3.2 A sequence of random models {Mk} is said to be α-probabilistically
κ-fully linear with respect to the corresponding sequence {B(Xk,�k)} if the events

Ik = {Mk is a κ-fully linear model of f on B(Xk,�k)} (5)

satisfy the condition

P
(
Ik |FM

k−1

)
≥ α,

where FM
k−1 is the σ -algebra generated by M0, . . . , Mk−1.

These probabilistically fully-linear models have the very simple properties that they
are fully-linear (i.e., accurate enough)with sufficiently high probability conditioned on
the past, and they can be arbitrarily inaccurate otherwise. This property is somewhat
different from the properties of models typical to stochastic optimization (such as,
for example, stochastic gradient-based models), where assumptions on the expected
value and the variance of the models is imposed. We will discuss this in more detail
in Sect. 5.

In this paper, aside from sufficiently accurate models, we require estimates of the
function values f (xk), f (xk +sk) that are sufficiently accurate. This is needed in order
to evaluate whether a step is successful, unlike the case in [2] where the exact values
f (xk) and f (xk +sk) are assumed to be available. The following definition of accurate
estimates is a modified version of that used in [20].

Definition 3.3 The estimates f 0k and f sk are said to be εF -accurate estimates of f (xk)
and f (xk + sk), respectively, for a given δk if

∣
∣
∣ f 0k − f (xk)

∣
∣
∣ ≤ εFδ2k and | f sk − f (xk + sk)| ≤ εFδ2k . (6)

WenowmodifyDefinitions 3.2 and 3.3 and introduce definitions of probabilistically
accuratemodels and estimateswhichwewill use throughout the remainder of the paper.

Definition 3.4 A sequence of random models {Mk} is said to be α-probabilistically
κ-fully linear with respect to the corresponding sequence {B(Xk,�k)} if the events

Ik = {Mk is a κ-fully linear model of f on B(Xk,�k)} (7)

satisfy the condition

P
(
Ik |FM ·F

k−1

)
≥ α,
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where FM ·F
k−1 is the σ -algebra generated by M0, . . . , Mk−1 and F0, . . . , Fk−1.

Definition 3.5 A sequence of random estimates {F0
k , Fs

k } is said to be β-probabilis-
tically εF -accurate with respect to the corresponding sequence {Xk,�k, Sk} if the
events

Jk = {
F0
k , Fs

k are εF -accurate estimates of f (xk) and f (xk + sk), respectively, for �k
}

(8)

satisfy the condition

P
(
Jk |FM ·F

k−1/2

)
≥ β,

where εF is a fixed constant and FM ·F
k−1/2 is the σ -algebra generated by M0, . . . , Mk

and F0, . . . , Fk−1.

Motivated by Definitions 3.4 and 3.5, we will make later an assumption in our
analysis that our method has access to a sequence of α-probabilistically κ-fully linear
models, for some fixed κ = (κe f , κeg) and to a sequence of β-probabilistically εF -
accurate estimates, for some fixed, sufficiently small εF . This will imply that the
model and the estimate accuracy are both assumed to be proportional to δ2k (with some
probability); we remark now that the condition on the estimates will be somewhat
tighter due to an upper bound on εF . However, we will see that this upper bound is
not too small.

Procedures for obtaining probabilistically fully-linear models and probabilistically
accurate estimates under different models of noise are discussed in Sect. 5.

4 Convergence analysis

We now present first-order convergence analysis for the general framework described
in Algorithm 1. Towards that end, we assume that the function f and its gradient are
Lipschitz continuous in regions considered by the algorithm realizations.

Assumption 4.1 (Assumptions on f) Let x0 and δmax be given. Let L(x0) define the
set in Rn which contains all iterates of our algorithm. Assume that f is bounded from
below on L(x0). Assume also that the function f and its gradient ∇ f are L-Lipschitz
continuous on the set Lenl(x0), where Lenl(x0) defines the region considered by the
algorithm realizations

Lenl(x0) =
⋃

x∈L(x0)

B(x; δmax).

Remark 4.2 In the case of deterministic functionsL(x0) = {x ∈ R
n : f (x) ≤ f (x0)},

because algorithm iterates never increase the objective function value, hence they do
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not step outside the initial level set. However, here we allow iterates to increase the
function value, because the true function value is not known. Such iterates, as we will
see, may happen with some (relatively small) probability, hence the algorithm can
venture outside the initial level set. Hence we choose to make the assumption above,
which of course depends on the algorithmic behavior. Clearly, if we assume a global
Lipschitz constant and global lower bound, then the above assumption always holds.
If we prefer to weaken this assumption, then there are several algorithmic remedies
possible; however, they will make our analysis more complicated and we choose to
leave it for future work.

The second assumption provides a uniform upper bound on the model Hessian.

Assumption 4.3 There exists a positive constant κbhm such that, for every k, the
Hessian Hk of all realizations mk of Mk satisfy

‖Hk‖ ≤ κbhm .

Note that since we are concerned with convergence to a first order stationary point in
this paper, the bound κbhm can be chosen to be any nonnegative number, including
zero. Allowing a larger boundwill givemore flexibility to the algorithm andmay allow
better Hessian approximations, but as we will see in the convergence analysis, this
imposes restrictions on the trust region radius and some other algorithmic parameters.

We now state the following result from martingale literature [12] (see Exercise
5.3.1) that will be useful later in our analysis.

Theorem 4.4 Let Gk be a submartingale, i.e., a sequence of random variables which,
for every k,

E
[
Gk |FG

k−1

]
≥ Gk−1,

where FG
k−1 = σ(G0, . . . ,Gk−1) is the σ -algebra generated by G0, . . . ,Gk−1, and

E[Gk |FG
k−1] denotes the conditional expectation of Gk given the past history of events

FG
k−1.
Assume further that Gk − Gk−1 ≤ M < ∞, for every k. Then,

P

({

lim
k→∞Gk < ∞

}

∪
{

lim sup
k→∞

Gk = ∞
})

= 1. (9)

We nowprove some auxiliary lemmas that provide conditions underwhich decrease
of the true objective function f (x) is guaranteed. The first lemma states that if the
trust region radius is small enough relative to the size of the model gradient and if the
model is fully linear, then the step sk provides a decrease in f (x) proportional to the
size of the model gradient. Note that the trial step may still be rejected if the estimates
f 0k and f sk are not accurate enough.
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Lemma 4.5 Suppose that a model mk of the form (2) is a (κe f , κeg)-fully linear model
of f on B(xk, δk). If

δk ≤ min

{
1

κbhm
,
κ f cd

8κe f

}

‖gk‖,

then the trial step sk leads to an improvement in f (xk + sk) such that

f (xk + sk) − f (xk) ≤ −κ f cd

4
‖gk‖δk . (10)

Proof Using the Cauchy decrease condition, the upper bound on model Hessian and
the fact that ‖gk‖ ≥ κbhmδk , we have

mk(xk) − mk(xk + sk) ≥ κ f cd

2
‖gk‖min

{ ‖gk‖
‖Hk‖ , δk

}

= κ f cd

2
‖gk‖δk .

Since the model is κ-fully linear, one can express the improvement in f achieved
by sk as

f (xk + sk) − f (xk)

= f (xk + sk) − m(xk + sk) + m(xk + sk) − m(xk) + m(xk) − f (xk)

≤ 2κe f δ
2
k − κ f cd

2
‖gk‖δk

≤ −κ f cd

4
‖gk‖δk,

where the last inequality is implied by δk ≤ κ f cd
8κe f

‖gk‖.

The next lemma shows that for δk small enough relative to the size of the true
gradient ∇ f (xk), the guaranteed decrease in the objective function, provided by sk , is
proportional to the size of the true gradient.

Lemma 4.6 Under Assumption 4.3, suppose that a model is (κe f , κeg)-fully linear on
B(xk, δk). If

δk ≤ min

⎧
⎨

⎩

1

κbhm + κeg
,

1
8κe f
κ f cd

+ κeg

⎫
⎬

⎭
‖∇ f (xk)‖, (11)

then the trial step sk leads to an improvement in f (xk + sk) such that

f (xk + sk) − f (xk) ≤ −C1‖∇ f (xk)‖δk, (12)

where C1 = κ f cd
4 · max

{
κbhm

κbhm+κeg
,

8κe f
8κe f +κ f cdκeg

}
.
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Proof The definition of a κ-fully-linear model yields that

‖gk‖ ≥ ‖∇ f (x)‖ − κegδk .

Since condition (11) implies that ‖∇ f (xk)‖ ≥ max
{
κbhm + κeg,

8κe f
κ f cd

+ κeg

}
δk , we

have

‖gk‖ ≥ max

{

κbhm,
8κe f
κ f cd

}

δk .

Hence, the conditions of Lemma 4.5 hold and we have

f (xk + sk) − f (xk) ≤ −κ f cd

4
‖gk‖δk . (13)

Since ‖gk‖ ≥ ‖∇ f (x)‖ − κegδk in which δk satisfies (11), we also have

‖gk‖ ≥ max

{
κbhm

κbhm + κeg
,

8κe f
8κe f + κ f cdκeg

}

‖∇ f (xk)‖. (14)

Combining (13) and (14) yields (12).

We now prove a lemma that states that if a) the estimates are sufficiently accurate,
b) the model is fully-linear, and c) the trust-region radius is sufficiently small relative
to the size of the model gradient, then a successful step is guaranteed.

Lemma 4.7 Under Assumption 4.3, suppose that mk is (κe f , κeg)-fully linear on
B(xk, δk) and the estimates { f 0k , f sk } are εF-accurate with εF ≤ κe f . If

δk ≤ min

{
1

κbhm
,
1

η2
,
κ f cd(1 − η1)

8κe f

}

‖gk‖, (15)

then the k-th iteration is successful.

Proof Since δk ≤ ‖gk‖
κbhm

, the Cauchy decrease condition and the uniform bound on Hk

immediately yield that

mk(xk) − mk(xk + sk) ≥ κ f cd

2
‖gk‖min

{‖gk‖
κbhm

, δk

}

= κ f cd

2
‖gk‖δk . (16)

The model mk being (κe f , κeg)-fully linear implies that

| f (xk) − mk(xk)| ≤ κe f δ
2
k , and (17)

| f (xk + sk) − mk(xk + sk)| ≤ κe f δ
2
k . (18)
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Since the estimates are εF -accurate with εF ≤ κe f , we obtain

∣
∣
∣ f 0k − f (xk)

∣
∣
∣ ≤ κe f δ

2
k , and

∣
∣ f sk − f (xk + sk)

∣
∣ ≤ κe f δ

2
k . (19)

We have

ρk = f 0k − f sk
mk(xk) − mk(xk + sk)

= f 0k − f (xk)

mk(xk) − mk(xk + sk)
+ f (xk) − mk(xk)

mk(xk) − mk(xk + sk)
+ mk(xk) − mk(xk + sk)

mk(xk) − mk(xk + sk)

+mk(xk + sk) − f (xk + sk)

mk(xk) − mk(xk + sk)
+ f (xk + sk) − f sk

mk(xk) − mk(xk + sk)
,

which, combined with (16)–(19), implies

|ρk − 1| ≤ 8κe f δ2k
κ f cd‖gk‖δk ≤ 1 − η1,

where we have used the assumption δk ≤ κ f cd (1−η1)

8κe f
‖gk‖ to deduce the last inequality.

Hence, ρk ≥ η1. Moreover, since ‖gk‖ ≥ η2δk , the k-th iteration is successful.

Finally, we state and prove a lemma which guarantees an amount of decrease of
the objective function on a true successful iteration.

Lemma 4.8 Under Assumption 4.3, suppose that the estimates { f 0k , f sk } are εF-

accurate with εF < 1
4η1η2κ f cd min

{
η2

κbhm
, 1

}
. If a trial step sk is accepted (a

successful iteration occurs), then the improvement in f is bounded below as follows

f (xk+1) − f (xk) ≤ −C2δ
2
k , (20)

where C2 = 1
2η1η2κ f cd min

{
η2

κbhm
, 1

}
− 2εF > 0.

Proof An iteration being successful indicates that ‖gk‖ ≥ η2δk and ρ ≥ η1. Thus,

f 0k − f sk ≥ η1(mk(xk) − mk(xk + sk))

≥ η1
κ f cd

2
‖gk‖min

{ ‖gk‖
‖Hk‖ , δk

}

≥ 1

2
η1η2κ f cd min

{
η2

κbhm
, 1

}

δ2k .

Then, since the estimates are εF -accurate, we have that the improvement in f can be
bounded as

f (xk + sk) − f (xk) = f (xk + sk) − f sk + f sk − f 0k + f 0k − f (xk) ≤ −C2δ
2
k ,
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where C2 = 1
2η1η2κ f cd min

{
η2

κbhm
, 1

}
− 2εF > 0.

To prove convergence of Algorithm 1 we will need to assume that models {Mk}
and estimates {F0

k , Fs
k } are sufficiently accurate with sufficiently high probability.

Assumption 4.9 Given values of α, β ∈ (0, 1) and εF > 0, there exist κeg and κe f
such that the sequence ofmodels {Mk} and estimates {F0

k , Fs
k } generated byAlgorithm

1 are, respectively, α-probabilistically (κe f , κeg)- fully-linear and β-probabilistically
εF -accurate.

Remark 4.10 Note that this assumption is a statement about the existence of constants
κ = (κe f , κeg) given an α, β and εF - we will determine exact conditions on α, β and
εF in Theorem 4.11 and Lemma 4.12 below.

The following theorem states that the trust-region radius converges to zero with
probability 1.

Theorem 4.11 Let Assumptions 4.1 and 4.3 be satisfied and assume that in Algorithm
1 the following holds.

• The step acceptance parameter η2 is chosen so that

η2 ≥ max

{

κbhm,
8κe f

κ f cd(1 − η1)

}

. (21)

• The accuracy parameter of the estimates satisfies

εF ≤ min

{

κe f ,
1

8
η1η2κ f cd

}

. (22)

Then α and β can be chosen so that, if Assumption 4.9 holds for these values, then
the sequence of trust-region radii, {�k}, generated by Algorithm 1 satisfies

∞∑

k=0

�2
k < ∞ (23)

almost surely.

Proof We base our proof on properties of the random function �k = ν f (Xk) + (1 −
ν)�2

k , where ν ∈ (0, 1) is a fixed constant, which is specified below. A similar function
is used in the analysis in [20], but the analysis itself is different. The overall goal is to
show that there exists a constant σ > 0 such that for all k

E
[
�k+1 − �k |FM ·F

k−1

]
≤ −σ�2

k < 0. (24)

Since f is bounded from below and �k > 0, we have that �k is bounded from below
for all k; hence if (24) holds on every iteration, then by summing (24) over k ∈ (1,∞)
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and taking expectations on both sides we can conclude that (23) holds with probability
1. Hence, to prove the theorem we need to show that (24) holds on each iteration.

Let us pick some constant ζ which satisfies

ζ ≥ κeg + max

{

η2,
8κe f

κ f cd(1 − η1)

}

. (25)

We now consider two possible cases: ‖∇ f (xk)‖ ≥ ζ δk and ‖∇ f (xk)‖ < ζδk . We will
show that (24) holds in both cases and hence it holds on every iteration. Given ζ we
now select ν ∈ (0, 1) such that

ν

1 − ν
> max

{
4γ 2

ζC1
,

4γ 2

η1η2κ f cd
,

γ 2

κe f

}

, (26)

with C1 defined as in Lemma 4.6.
As usual, let xk , δk , sk , gk , and φk denote realizations of random quantities Xk , �k ,

Sk , Gk , and �k , respectively.
Let us consider some realization of Algorithm 1. Note that on all successful itera-

tions, xk+1 = xk + sk and δk+1 = min{γ δk, δmax } with γ > 1, hence

φk+1 − φk ≤ ν( f (xk+1) − f (xk)) + (1 − ν)(γ 2 − 1)δ2k . (27)

On all unsuccessful iterations, xk+1 = xk and δk+1 = 1
γ
δk , i.e.

φk+1 − φk = (1 − ν)

(
1

γ 2 − 1

)

δ2k ≡ b1 < 0. (28)

For each iteration and each of the two cases we consider, we will analyze the
four possible combined outcomes of the events Ik and Jk as defined in (7) and (8),
respectively.

Before presenting the formal proof let us outline the key ideas. We will show that,
unless both the model and the estimates are bad on iteration k, we select ν ∈ (0, 1)
sufficiently close to 1, so that the decrease in φk on a successful iteration is greater
than the decrease on an unsuccessful iteration (which is equal to b1, according to
(28)). When the model and the estimates are both bad, an increase in φk may occur.
This increase is bounded by a value proportional to δ2k when ‖∇ f (xk)‖ < ζδk . When
‖∇ f (xk)‖ ≥ ζ δk , though, the increase in φk may be proportional to ‖∇ f (xk)‖δk .
However, since iterations with good models and good estimates will provide decrease
in φk also proportional to ‖∇ f (xk)‖δk , then by choosing values of α and β close
enough to 1, we can ensure that in expectation φk decreases.

We now present the proof.

Case 1: ‖∇ f (xk)‖ ≥ ζ δk .
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(a) Ik and Jk are both true, i.e., both the model and the estimates are good on iteration
k. From the definition of ζ , we know

‖∇ f (xk)‖ ≥
(

κeg + max

{

η2,
8κe f

κ f cd(1 − η1)

})

δk .

Then since the model mk is κ-fully linear and, from η2 > κbhm , εF ≤ κe f and
0 < η1 < 1, it is easy to show that the condition (11) in Lemma 4.6 holds.
Therefore, the trial step sk leads to a decrease in f as in (12).
Moreover, since

‖gk‖ ≥ ‖∇ f (xk)‖ − κegδk ≥ (ζ − κeg)δk ≥ max

{

η2,
8κe f

κ f cd(1 − η1)

}

δk,

and the estimates { f 0k , f sk } are εF -accurate, with εF ≤ κe f , the condition (15)
in Lemma 4.7 holds. Hence, iteration k is successful, i.e. xk+1 = xk + sk and
δk+1 = γ δk .
Combining (12) and (27), we get

φk+1 − φk ≤ −νC1‖∇ f (xk)‖δk + (1 − ν)(γ 2 − 1)δ2k ≡ b2, (29)

with C1 defined in Lemma 4.6. Since ‖∇ f (xk)‖ ≥ ζ δk we have

b2 ≤ [−νC1ζ + (1 − ν)(γ 2 − 1)]δ2k < 0, (30)

for ν ∈ (0, 1) satisfying (26).
(b) Ik is true and Jk is false, i.e.,we have a goodmodel and bad estimates on iteration k.

In this case, Lemma 4.6 still holds, that is sk yields a sufficient decrease in f ;
hence, if the iteration is successful, we obtain (29) and (30). However, the step can
be erroneously rejected, because of inaccurate probabilistic estimates, in which
case we have an unsuccessful iteration and (28) holds. Since (26) holds, the right
hand side of the first relation in (30) is strictly smaller than the right hand side of
the first relation in (28) and therefore, (28) holdswhether the iteration is successful
or not.

(c) Ik is false and Jk is true, i.e.,we have a badmodel and good estimates on iteration k.
In this case, iteration k canbe either successful or unsuccessful. In the unsuccessful
case (28) holds. When the iteration is successful, since the estimates are εF -
accurate and (22) holds then by Lemma 4.8 (20) holds with C2 ≥ 1

4η1η2κ f cd .
Hence, in this case we have

φk+1 − φk ≤ [−νC2 + (1 − ν)(γ 2 − 1)]δ2k . (31)

Again, due to the choice of ν satisfying (26) we have that, as in case (b), (28)
holds whether the iteration is successful or not.

123



Stochastic optimization using a trust-region method and… 465

(d) Ik and Jk are both false, i.e., both themodel and the estimates are bad on iteration k.
Inaccurate estimates can cause the algorithm to accept a bad step, which may
lead to an increase both in f and in δk . Hence in this case φk+1 − φk may be
positive. However, combining the Taylor expansion of f (xk) at xk + sk and the
Lipschitz continuity of ∇ f (x) we can bound the amount of increase in f , hence
bounding φk+1 − φk from above. By adjusting the probability of outcome (d) to
be sufficiently small, we can ensure that in expectation�k is sufficiently reduced.
In particular, from Taylor’s Theorem and the L-Lipschitz continuity of ∇ f (x)
we have, respectively,

f (xk) − f (xk + sk) ≥ ∇ f (xk + sk)
T (−sk) − 1

2
Lδ2k , and

‖∇ f (xk + sk) − ∇ f (xk)‖ ≤ Lsk ≤ Lδk .

From this we can derive that any increase of f (xk) is bounded by

f (xk + sk) − f (xk) ≤ C3‖∇ f (xk)‖δk,
where C3 = 1 + 3L

2ζ . Hence, the change in function φ is bounded:

φk+1 − φk ≤ νC3‖∇ f (xk)‖δk + (1 − ν)(γ 2 − 1)δ2k ≡ b3. (32)

Now we are ready to take the expectation of �k+1 − �k for the case when
‖∇ f (Xk)‖ ≥ ζ�k . We know that case (a) occurs with a probability at least αβ

(conditioned on the past) and in that case φk+1 −φk = b2 < 0 with b2 defined in (29).
Case (d) occurs with probability at most (1− α)(1− β) and in that case φk+1 − φk is
bounded from above by b3 > 0. Cases (b) and (c) occur otherwise and in those cases
φk+1 − φk is bounded from above by b1 < 0, with b1 defined in (28). Finally we note
that b1 > b2 due to our choice of ν in (26).

Hence, we can combine (28), (29), (31), and (32), and use B1, B2, and B3 as random
counterparts of b1, b2, and b3, to obtain the following bound

E
[
�k+1 − �k |FM ·F

k−1 , {‖∇ f (Xk)‖ ≥ ζ�k}
]

≤ αβB2 + [α(1 − β) + (1 − α)β] B1 + (1 − α)(1 − β)B3

= αβ
[
−νC1‖∇ f (Xk)‖�k + (1 − ν)(γ 2 − 1)�2

k

]

+ [α(1 − β) + (1 − α)β] (1 − ν)

(
1

γ 2 − 1

)

�2
k

+(1 − α)(1 − β)
[
νC3‖∇ f (Xk)‖�k + (1 − ν)(γ 2 − 1)�2

k

]
.

Rearranging the terms we obtain

E
[
�k+1 − �k |FM ·F

k−1 , {‖∇ f (Xk)‖ ≥ ζ�k}
]

≤ [−νC1αβ + (1 − α)(1 − β)νC3] ‖∇ f (Xk)‖�k
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+
[

αβ − 1

γ 2 (α(1 − β) + (1 − α)β) + (1 − α)(1 − β)

]

(1 − ν)(γ 2 − 1)�2
k

≤ [−C1αβ + (1 − α)(1 − β)C3] ν‖∇ f (Xk)‖�k + (1 − ν)(γ 2 − 1)�2
k,

where the last inequality holds becauseαβ− 1
γ 2 (α(1−β)+(1−α)β)+(1−α)(1−β) ≤

[α + (1 − α)][(β + (1 − β)] = 1.
Let us choose 0 < α ≤ 1 and 0 < β ≤ 1 so that they satisfy

(
αβ − 1

2

)

(1 − α)(1 − β)
≥ C3

C1
(33)

which implies

[C1αβ − (1 − α)(1 − β)C3] ≥ 1

2
C1 ≥ 2

(1 − ν)(γ 2 − 1)

νζ
,

where the last inequality is the result of (26). We note that the quantity 1
2 in the

numerator of (33) was chosen so that the first inequality of the above expression
holds: see Remark 4.15 following the proof for a brief discussion about this choice.

Recall that ‖∇ f (Xk)‖ ≥ ζ�k , hence

[−C1αβ + (1 − α)(1 − β)C3] ν‖∇ f (Xk)‖�k + (1 − ν)(γ 2 − 1)�2
k

≤ 1

2
[−C1αβ + (1 − α)(1 − β)C3] ν‖∇ f (Xk)‖�k ≤ −1

4
C1ν‖∇ f (Xk)‖�k .

In summary, we have

E
[
�k+1 − �k |FM ·F

k−1 , {‖∇ f (Xk)‖ ≥ ζ�k}
]

≤ −1

4
C1ν‖∇ f (Xk)‖�k (34)

and

E
[
�k+1 − �k |FM ·F

k−1 , {‖∇ f (Xk)‖ ≥ ζ�k}
]

≤ −1

2
(1 − ν)(γ 2 − 1)�2

k . (35)

For the purposes of this lemma and the liminf-type convergence result, which will
follow, bound (35) is sufficient. We will use bound (34) in the proof of the lim-type
convergence result.

Case 2: Let us consider now the iterations when ‖∇ f (xk)‖ < ζδk . First we note that
if ‖gk‖ < η2δk , then we have an unsuccessful step and (28) holds. Hence, we now
assume that ‖gk‖ ≥ η2δk and again consider four possible outcomes. We will show
that in all situations, except when both the model and the estimates are bad, (28) holds.
In the remaining case, because ‖∇ f (xk)‖ < ζδk , the increase in φk can be bounded
from above by a multiple of δ2k . Hence by selecting appropriate values for probabilities
α and β wewill be able to establish the bound on expected decrease in�k as in Case 1.
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(a) Ik and Jk are both true, i.e., both themodel and the estimates are goodon iteration k.
The iteration may or may not be successful, even though Ik is true. On successful
iterations, the good model ensures reduction in f . Applying the same argument
as in the case 1(c) we establish (28).

(b) Ik is true and Jk is false, i.e., we have a goodmodel and bad estimates on iteration k.
On unsuccessful iterations, (28) holds. On successful iterations, ‖gk‖ ≥ η2δk and
η2 ≥ κbhm imply that

mk(xk) − mk(xk + sk) ≥ κ f cd

2
‖gk‖min

{ ‖gk‖
‖Hk‖ , δk

}

≥ η2
κ f cd

2
δ2k .

Since Ik is true, the model is κ-fully-linear, and the function decrease can be
bounded as

f (xk) − f (xk + sk)

= f (xk) − mk(xk) + mk(xk) − mk(xk + sk) + mk(xk + sk) − f (xk + sk)

≥ (η2
κ f cd

2
− 2κe f )δ

2
k ≥ κe f δ

2
k

due to (21).
It follows that, if the k-th iterate is successful, then

φk+1 − φk ≤ [−νκe f + (1 − ν)(γ 2 − 1)]δ2k . (36)

Again by choosing ν ∈ (0, 1) so that (26) holds, we ensure that the right hand side
of (36) is strictly smaller than that of (28), hence (28) holds, whether the iteration
is successful or not.

Remark η2 may need to be a relatively large constant to satisfy (21). This is due
to the fact that the model has to be sufficiently accurate to ensure decrease in the
function if a step is taken, since the step is accepted based on poor estimates. Note
that η2 restricts the size of �k , which is used both as a bound on the step size and
the control of the accuracy. In general it is possible to have two separate quantities
(related by a constant)—one to control the step size and another to control the
accuracy. Hence, it is possible to modify our algorithm to accept steps larger than
‖gk‖/η2. This will make the algorithmmore practical, but the analysis muchmore
complex. In this paper, we choose to stay with the simplest version, but keep in
mind that the condition (26) is not terminally restrictive.

(c) Ik is false and Jk is true, i.e., we have a badmodel and good estimates on iteration k.
This case is analyzed identically to the case 1(c).
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(d) Ik and Jk are both false, i.e., both themodel and the estimates are bad on iteration k.
Here we bound the maximum possible increase in φk using the Taylor expansion
and the Lipschitz continuity of ∇ f (x).

f (xk + sk) − f (xk) ≤ ‖∇ f (xk)‖δk + 1

2
Lδ2k < C3ζ δ2k .

Hence, the change in function φ is

φk+1 − φk ≤
[
νC3ζ + (1 − ν)(γ 2 − 1)

]
δ2k . (37)

We are now ready to bound the expectation of φk+1 − φk as we did in Case 1,
except that in Case 2 we simply combine (37), which holds with probability at most
(1 − α)(1 − β), and (28), which holds otherwise:

E
[
�k+1 − �k |FM ·F

k−1 , {‖∇ f (Xk)‖ < ζ�k}
]

≤ [αβ + α(1 − β) + (1 − α)β](1 − ν)

(
1

γ 2 − 1

)

�2
k

+(1 − α)(1 − β)[νC3ζ + (1 − ν)(γ 2 − 1)]�2
k

≤ (1 − ν)

(
1

γ 2 − 1

)

�2
k + (1 − α)(1 − β)

[

νC3ζ + (1 − ν)

(

γ 2 − 1

γ 2

)]

�2
k

If we choose probabilities 0 < α ≤ 1 and 0 < β ≤ 1 so that the following holds,

(1 − α)(1 − β) ≤ γ 2 − 1

γ 4 − 1 + 2γ 2C3ζ · ν
1−ν

, (38)

then

E
[
�k+1 − �k |FM ·F

k−1 , {‖∇ f (Xk)‖ < ζ�k}
]

≤ −1

2
(1 − ν)

(
1

1 − γ 2

)

�2
k . (39)

In conclusion, combining (35) and (39), and noting that 1− 1
γ 2 < γ 2 − 1 we have

E
[
�k+1 − �k |FM ·F

k−1 }
]

≤ −1

2
(1 − ν)

(

1 − 1

γ 2

)

�2
k < 0,

which implies that (24) holds with σ = − 1
2 (1− ν)(1− 1

γ 2 − 1) < 0. This concludes
the proof of the theorem.

To summarize the conditions on the probabilities involved in Theorem 4.11 to
ensure that the theorem holds, we state the following additional lemma.
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Corollary 4.12 Let all assumptions of Theorem 4.11 hold. The statement of Theorem
4.11 holds if the α and β are chosen to satisfy the following conditions:

(
αβ − 1

2

)

(1 − α)(1 − β)
≥ 1 + 3L

2ζ

C1
(40)

and

(1 − α)(1 − β) ≤ γ 2 − 1

γ 4 − 1 + γ 2 (3L + 2ζ ) · max
{

4
ζC1

, 4
η1η2κ f cd

, 1
κe f

} , (41)

with C1 = κ f cd
4 · max

{
κbhm

κbhm+κeg
,

8κe f
8κe f +κ f cdκeg

}
and ζ = κeg + η2.

Proof The proof follows simply from combining the expression for C3 and condition
(26) with (33) and (38).

Clearly, choosing α and β sufficiently close to 1 will satisfy this condition.

Remark 4.13 We will briefly illustrate through a simple example how these algorith-
mic parameters scale with problem data.

Recall that L is the Lipschitz constant of the gradient of f and of f over Lenl(x0).
It is reasonable to expect that κe f and κeg are quantities that scale with L , since Taylor
models satisfy this condition, as do polynomial interpolation and regression models
based on well-poised data sets [8]. Let us assume for the sake of an example that
κe f = κeg = 10L . The bound on model Hessians κbhm can be chosen to be arbitrarily
small, at the expense of limiting the class of models; however, it is clearly reasonable
to choose κbhm as something that scales with L if this information is available. Let us
assume that κbhm = 10L , as well. In a standard trust region method, a common choice
of algorithmic parameters would use κ f cd = 1

2 , γ = 2, and η1 = 1
2 .

The reader can easily verify that with these parameter choices and previous assump-
tions, Lemma 4.12 states that we must choose η2 ≥ 32L . The intermediate constants
satisfy ζ ≥ 42L and C1 = 2

17 . Without loss of generality, we will simply accept
ζ = 42L .

From observing that, given the above values of the constants,

max

{
4

ζC1
,

4

η1η2κ f cd
,

1

κe f

}

≤ 1

L
,

we have (
αβ − 1

2

)

(1 − α)(1 − β)
≥ 9 (42)

and

(1 − α)(1 − β) ≤ 1

440
(43)

We note that as η1 and κ f cd constants are driven closer to 1, the constant 440 can be
reduced by up to a factor of 4.
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Supposing that κe f , κeg , and κbhm scale linearly with L , then η2, εF , and the expres-
sions relating to α and β in Corollary 4.12 are all functions in L satisfying

η2 ≥ �(L), (44)

εF ≤ �(L), (45)
αβ

(1 − α)(1 − β)
≥ �(1), (46)

and
(1 − α)(1 − β) ≤ �(1), (47)

where we use the notation �(·) to indicate the O(·) relationship with moderate con-
stants.

Remark 4.14 Recall our remark made earlier in Theorem 4.11, case 2b, on how η2
bounds our step sizes. Indeed, if η2 ≥ �(L) has to be imposed this may force the
algorithm to take small step sizes throughout. However, as mentioned earlier, the
analysis of Theorem 4.11 can be modified by introducing a tradeoff between the size
of η2 and the accuracy parameters εF and κe f (as both of these constant parameters can
be made smaller). It also may be advantageous to choose η2 dynamically. Exploring
this is a subject for future work. In the practical implementations that we will discuss
in Sect. 6, we do not make use of the algorithmic parameter η2 at all, and so even
though η2 is effectively arbitrarily close to 0, the algorithm still works.

Remark 4.15 Note that if β = 1, then �k → 0 for α ≥ 1
2 , which is the case shown in

[2]. This is because, in our discussion of Case 1, the condition (33) via an appropriate
adjustment to (26) could be written as

[C1αβ − (1 − α)(1 − β)C3] ≥ θ1C1 ≥ θ2
(1 − ν)(γ 2 − 1)

νζ
,

where θ1 is positive and arbitrarily close to zero and θ2 > 1 is arbitrarily close to one.
In the proof we provided, we chose values of θ1 = 1

2 and θ2 = 2 for simplicity of the
presentation.

4.1 The liminf-type convergence

We are ready to prove a liminf-type first-order convergence result, i.e., that a subse-
quence of the iterates drive the gradient of the objective function to zero. The proof
follows closely that in [2], the key difference being the assumption on the function
estimates that are needed to ensure that a good step gets accepted by Algorithm 1.

Theorem 4.16 Let the assumptions of Theorem 4.11 and Corollary 4.12 hold.
Then the sequence of random iterates generated by Algorithm 1, {Xk}, almost surely

satisfies

lim inf
k→∞ ‖∇ f (Xk)‖ = 0.
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Proof We prove this result by contradiction conditioned on the almost sure event
�k → 0. Let us thus assume that there exists ε′ such that, with positive probability,
we have

‖∇ f (Xk)‖ ≥ ε′, ∀k.

Let {xk} and {δk} be realizations of {Xk} and {�k}, respectively for which
‖∇ f (xk)‖ ≥ ε′, ∀k. Since lim

k→∞ δk = 0 (because we conditioned on �k → 0),

there exists k0 such that for all k ≥ k0,

δk < b := min

{
ε′

2κeg
,

ε′

2κbhm
,
κ f cd(1 − η1)ε

′

16κe f
,

ε′

2η2
,
δmax

γ

}

. (48)

We define a random variable Rk with realizations rk = logγ

(
δk

b

)

. Then for the

realization {rk} of {Rk}, rk < 0 for k ≥ k0. The main idea of the proof is to show that
such realizations occur only with probability zero, hence obtaining a contradiction
with the initial assumption of ‖∇ f (xk)‖ ≥ ε′ ∀k.

We first show that Rk is a submartingale. Recall the events Ik and Jk in Definitions
3.2 and 3.5. Consider some iterate k ≥ k0 for which Ik and Jk both occur, which
happens with probability P(Ik ∩ Jk) ≥ αβ. Since (48) holds we have exactly the same
situation as in Case 1(a) in the proof of Theorem 4.11. In other words, we can apply
Lemmas 4.6 and 4.7 to conclude that the k-th iteration is successful, hence, the trust-
region radius is increased. In particular, since δk ≤ δmax

γ
, δk+1 = γ δk . Consequently,

rk+1 = rk + 1.
Let F I ·J

k−1 = σ(I0, . . . , Ik−1) ∩ σ(J0, . . . , Jk−1). For all other outcomes of Ik and
Jk , which occur with total probability of at most 1 − αβ, we have δk+1 ≥ γ −1δk .
Hence

E

[
rk+1|F I ·J

k−1

]
≥ αβ(rk + 1) + (1 − αβ)(rk − 1) ≥ rk,

because αβ > 1/2 as a consequence of the assumptions from Corollary 4.12. This
implies that Rk is a submartingale.

Now let us construct another submartingale Wk , on the same probability space as

Rk which will serve as a lower bound on Rk and for which

{

lim sup
k→∞

Wk = ∞
}

holds

almost surely. Define indicator random variables 1Ik and 1Jk such that 1Ik = 1 if Ik
occurs, 1Ik = 0 otherwise, and similarly, 1Jk = 1 if Jk occurs, 1Jk = 0 otherwise.
Then define

Wk =
k∑

i=0

(2 · 1Ik · 1Jk − 1).
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Notice that Wk is a submartingale since

E

[
Wk |F I ·J

k−1

]
= E

[
Wk−1|F I ·J

k−1

]
+ E

[
2 · 1Ik · 1Jk − 1|F I ·J

k−1

]

= Wk−1 + 2E
[
1Ik · 1Jk |F I ·J

k−1

]
− 1

= Wk−1 + 2P
(
Ik ∩ Jk |F I ·J

k−1

)
− 1

≥ Wk−1,

where the last inequality holds because αβ ≥ 1/2. Since Wk only has ±1 increments,

it has no finite limit. Therefore, by Theorem 4.4, we have

{

lim sup
k→∞

Wk = ∞
}

.

By the construction of Rk andWk , we know that rk−rk0 ≥ wk−wk0 . Therefore, Rk

has to be positive infinitely often with probability one. This implies that the sequence
of realizations rk such that rk < 0 for k ≥ k0 occurs with probability zero. Therefore
our assumption that ‖∇ f (Xk)‖ ≥ ε′ holds for all k with positive probability is false
and

lim inf
k→∞ ‖∇ f (Xk)‖ = 0

holds almost surely.

4.2 The lim-type convergence

In this subsection we show that limk→∞ ‖∇ f (Xk)‖ = 0 almost surely.
We now state an auxiliary lemma, which is similar to the one in [2], but requires

a different proof because in our case the function values f (Xk) can increase with k,
while in the case considered in [2], function values are monotonically nonincreasing.

Lemma 4.17 Let the same assumptions that were made in Theorem 4.16 hold. Let
{Xk} and {�k} be sequences of random iterates and random trust-region radii gener-
ated by Algorithm 1. Fix ε > 0 and define the sequence {Kε} consisting of the natural
numbers k for which ‖∇ f (Xk)‖ > ε (note that Kε is a sequence of random variables).
Then,

∑

k∈{Kε}
�k < ∞

almost surely.

Proof From Theorem 4.11 we know that
∑

�2
k < ∞ and hence �k → 0 almost

surely. For each realization of Algorithm 1 and a sequence {δk}, there exists k0 such
that δk ≤ ε/ζ , ∀k ≥ k0, where ζ is defined as in Theorem 4.11. Let K0 be the
random variable with realization k0 and let K denote the sequence of indices k such
that k ∈ Kε and k ≥ K0. Then for all k ∈ K , Case 1 of Theorem 4.11 holds, i.e.,
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‖∇ f (Xk)‖ ≥ ζ�k , since ‖∇ f (Xk)‖ ≥ ε for all k ∈ K . From this and from (34) we
have

E
[
�k+1 − �k |FM ·F

k−1

]
≤ −1

4
C1νε�k, ∀k ≥ k0.

Recall that �k is bounded from below. Hence, summing up the above inequality
for all k ∈ K and taking the expectation, we have that

∑

k∈K
�k < ∞

almost surely. Since Kε ⊆ K ∪ {k : k ≤ K0} and K0 is finite almost surely then the
statement of the lemma holds.

We are now ready to state the lim-type result.

Theorem 4.18 Let the same assumptions as in Theorem 4.16 hold. Let {Xk} be a
sequence of random iterates generated by Algorithm 1. Then, almost surely,

lim
k→∞ ‖∇ f (Xk)‖ = 0.

Proof The proof of this result is almost identical to the proof of the same theorem in
[2]; hence we will not present the proof here. The key idea of the proof is to show that
if the theorem does not hold, then with positive probability

∑

k∈{Kε}
�k = ∞,

with Kε defined as in Lemma 4.17. This result is shown using Lipschitz continuity
of the gradient and does not depend on the stochastic nature of the algorithm. Since
this result contradicts the almost sure result of Lemma 4.17, we can conclude that the
statement of the theorem holds almost surely.

5 Constructing models and estimates in different stochastic settings

We now discuss various settings of stochastic noise in the objective function and how
α-probabilistically κ-fully linearmodels andβ-probabilistically εF -accurate estimates
can be obtained in these settings.

Recall that we assume that for each x we can compute the value of f̃ (x), which is
the noisy version of f ,

f̃ (x) = f (x, ω),

where ω is a random variable which induces the noise.
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Simple stochastic noise. The example of noise which is typically considered in
stochastic optimization is the “i.i.d.” noise, that is noise with distribution indepen-
dent of the function values. Here we consider a somewhat more general setting, where
the noise is unbiased for all f , i.e.,

Eω[ f (x, ω)] = f (x), ∀x,
and

Varω[ f (x, ω)] ≤ V < ∞, ∀x .
This is the typical noise assumption in stochastic optimization literature. In the

case of unbiased noise as above, constructing estimates and models that satisfy our
assumptions is fairly straight-forward. First, let us consider the case when only the
noisy function values are available (without any gradient information), where we want
to construct a model that is κ-fully linear in a given trust region B(x0, δ) with some
sufficiently high probability, α.

One can employ standard sample averaging approximation techniques to reduce the
variance of the function evaluations. In particular, let f̄ p(x, ω) = 1

p

∑p
i=1 f (x, ωi ),

where ωi are the i.i.d. realizations of the noise ω. Then, by Chebyshev inequality, for
any v > 0,

P
(| f̄ p(x, ω) − f (x)]| > v

) = P
(| f̄ p(x, ω) − Eω[ f (x, ω)]| > v

) ≤ V

pv2
.

In particular, we want v = κ ′
e f δ

2 for some κ ′
e f > 0 and V

pv2
≤ 1 − α′ for some α′,

which can be ensured by choosing p ≥ V
(κ ′

e f )
2(1−α′)δ4 .

We now construct a fully linear model as follows: given a well-poised set1 Y of
n + 1 points in B(x0, δ), at each point yi ∈ Y , we compute f̄ p(yi , ω) and build a
linear interpolation modelm(x) such thatm(yi ) = f̄ p(yi , ω), for all i = 1, . . . , n+1.
Hence, for any yi ∈ Y , we have

P
(
|m(yi ) − f (yi )]| > κ ′

e f δ
2
)

≤ 1 − α′.

Moreover, the events {|m(yi ) − f (yi )]| > κ ′
e f δ

2} are independent, hence

P( max
i=1..n+1

{|m(yi ) − f (yi )]|} > κ ′
e f δ

2) ≤ 1 − (α′)n+1.

It is easy to show using, for example, techniques described in [8], thatm(x) is a κ-fully
linear model of Eω[ f (x, ω)] in B(x0, δ) for appropriately chosen κ = (κeg, κe f ), with
probability at least α = (α′)n+1.

Computing the β-probabilistically εF -accurate estimates of f (x, ω) can be done
analogously to the construction of the models described above.

1 See [8] for details on well-poised sets and how they can be obtained.
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Themajority of stochastic optimization and sample average approximationmethods
focus on derivative based optimization where it is assumed that, in addition to f (x, ω),
∇x f (x, ω) is also available, and that the noise in the gradient computation is also
independent of x , that is

Eω[∇x f (x, ω)] = ∇ f (x), ∀x

and

Varω[‖∇x f (x, ω)‖] ≤ V < ∞, ∀x,

(in general the variance of the gradient and the function value are not the same, but
here for simplicity we bound both by V ).

In the case where the noisy gradient values are available, the construction of fully
linear models in B(x0, δ) is simpler. Let ∇̄ f p(x, ω) = 1

p

∑p
i=1 ∇ f (x, ωi ). Again, by

an extension of the Chebyshev inequality, for p such that

p ≥ max

{
V

κ2
e f (1 − α′)δ4

,
V

κ2
eg(1 − α′)δ2

}

,

P(‖∇̄ f p(x
0, ω) − ∇ f (x0)]‖ > κegδ)

= P
(
‖∇̄ f p(x

0, ω) − Eω[∇ f (x0, ω)]‖ > κegδ
)

≤ 1 − α′,

and

P
(
| f̄ p(x0, ω) − f (x0)| > κe f δ

2
)

= P
(
| f̄ p(x0, ω) − Eω[ f (x0, ω)]| > κe f δ

2
)

≤ 1 − α′.

Hence the linear expansion m(x) = f̄ p(x0, ω) + ∇̄ f p(x0, ω)T (x − x0) is a κ-fully
linear model of f (x) = Eω[ f (x, ω)] on B(x0, δ) for appropriately chosen κ =
(κeg, κe f ), with probability at least α = (α′)2.

In [20] it is shown that least squares regression models based on sufficiently large
strongly poised [8] sample sets are α-probabilistically κ-fully linear models.

There are many existing methods and convergence results using sample average
approximations and stochastic gradients for stochastic optimization with i.i.d. or unbi-
ased noise. Some of these methods have been shown to achieve optimal sampling rate
[15], that is they converge to the optimal solution while sampling the gradient at the
best possible rate. We do not provide convergence rates in this paper (it is a subject for
future research), hence it remains to be seen if our algorithm can achieve the optimal
rate. Our contribution here is the method which applies beyond the i.i.d. case, as we
will discuss below. In Sect. 6, however, we demonstrate that our method can have
superior numerical behavior compared to standard sample averaging even in the case
of i.i.d. noise, so it is at least competitive in practice.
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Function computation failures Now, let us consider a more complex noise case. Sup-
pose that the function f (x) is computed (as it often is, in black-box optimization)
by some numerical method that includes a random component. Such examples are
common in machine learning applications, for instance, where x is the vector of
hyperparameters of a learning algorithm and f (x) is the expected error of the result-
ing classifier. In this case, for each value of x , the classifier is obtained by solving an
optimization problem, up to a certain accuracy, on a given training set. Then the clas-
sifier is evaluated on the testing set. If a randomized coordinate descent or a stochastic
gradient descent is applied to train the classifier for a given vector x , then the resulting
classifier is sufficiently close to the optimal classifier with some known probability.
However, in the case when the training of the classifier fails to produce a sufficiently
accurate solution, the resulting error is difficult to estimate. Usually, it is possible to
know the upper bound on the value of this inaccurate objective function but nothing
else may be known about the distribution of this value. Moreover, it is likely that the
probability of the accurate computation depends on x ; for example, after k iterations
of randomized coordinate descent, the error between the true f (x) and the computed
f̃ (x) is bounded by some value, with probability α, where the value depends on α, k,
and x [27].

Another example is solving a system of nonlinear black-box equations. Assume
that we seek x such that

∑
i ( fi (x))

2 = 0, for some functions fi (x), i = 1, . . . ,m
that are computed by numerical simulation, with noise. As is often done in practice
(and is supported by our theory) the noise in the function computation is reduced as
the algorithm progresses, for example, by reducing the size of a discretization, step
size, or convergence tolerance within the black-box computation. These adjustments
for noise reduction usually increase the workload of the simulation. With the increase
of the workload, there is an increased probability of failure of the code. Hence, the
smaller the values of fi (x), the more likely the computation of fi (x) will fail and
some inaccurate value is returned.

These two examples show that the noise in f̃ (x) may be large with some positive
probability, which may depend on x . Hence, let us consider the following, idealized,
noise model

f̃ (x) = f (x, ω) =
{
f (x), w.p. 1 − σ(x)
ω(x) ≤ V w.p. σ (x),

where σ(x) is the probability with which the function f (x) is computed inaccurately,
and ω(x) is some random function of x , for which only an upper bound V is known.
This case is idealized, because we assume that with probability 1 − σ(x), f (x) is
computed exactly. It is trivial to extend this example to the casewhen f (x) is computed
with an error, but this error can be made sufficiently small.

For this model of function computation failures we have

Eω[ f (x, ω)] = (1 − σ(x)) f (x) + σ(x)E[ω(x)] �= f (x), ∀σ(x) > 0.

and it is clear, that for any σ(x) > 0, unless E[ω(x)] ≡ some constant, optimizing
Eω[ f (x, ω)] does not give the same result as optimizing f (x). Hence applyingMonte-

123



Stochastic optimization using a trust-region method and… 477

Carlo sampling within an optimization algorithm solving this problem is not a correct
approach.

We now observe that constructing α-probabilistically κ-fully linear models and β-
probabilistically εF -accurate estimates is trivial in this case, assuming that σ(x) ≤ σ

for all x , when σ is small enough. In particular, given a trust region B(x0, δ), sampling
a function f (x) on a sample set Y ⊂ B(x0, δ)well-poised for linear interpolation will
produce a κ-fully linear model in B(x0, δ) with probability at least (1 − σ)|Y |, since
with this probability all of the function values are computed exactly. Similarly, for any
s ∈ B(x0, δ), the function estimates F0 and Fs are both correct with probability at
least (1−σ)2. Assuming that (1−σ)|Y | ≥ α and (1−σ)2 ≥ β, where α and β satisfy
the assumptions of Theorem 4.11 and Lemma 4.12 and αβ ≥ 1

2 as in Theorem 4.16,
we observe that the resulting models satisfy our theory.

Remark 5.1 We assume here that the probability of failure to compute f (x) is small
enough for all x . In the machine learning example above, it is often possible to control
the probability σ(x) in the computation of f (x), for example by increasing the number
of iterations of a randomized coordinate descent or stochastic gradient method. In the
case of the black-box nonlinear equation solver, the probability of code failure is
expected to be quite small. There are, however, examples of black box optimization
problems where the computation of f (x) fails all the time for specific values of x .
This is often referred to as hidden constraints [23]. Clearly our theory does not apply
here, but we believe there is no local method that can provably converge to a local
minimizer in such a setting without additional information about these specific values
of x .

6 Computational experiments

In this section, we will discuss the performance of several variants of our proposed
method (varied in the way the models are constructed), henceforth only referred to as
STORM (STochastic Optimization using Random Models), that target various noisy
situations discussed in the previous section. We note that a comparison of STORM to
the SPSA method of [31] and the classical Kiefer–Wolfowitz method in [18] has been
reported in [6] and shows that STORM significantly outperformed these two methods,
while no special tuning of SPSAorKiefer–Wolfowitzwas applied. Since a trust-region
based method, which is able to use second order information is likely to outperform
stochastic gradient-like methods in many settings, we omit such comparison here.

Throughout this section, all proposed algorithms were implemented in Matlab and
all experiments were performed on a laptop computer running Ubuntu 14.04 LTS with
an Intel Celeron 2955U @ 1.40GHz dual processor.

6.1 Simple stochastic noise

In these experiments, we used a set of 53 unconstrained problems adapted from the
CUTEr test set, each being in the form of a sum of squares problem, i.e.
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f (x) =
m∑

i=1

( fi (x))
2, (49)

where for each i ∈ {1, . . . ,m}, fi (x) is a smooth function. Two different types of noise
will be used in this first subsection, which we will refer to as multiplicative noise and
additive noise. In the multiplicative noise case, for each i ∈ {1, . . . ,m}, we generate
some ωi from the uniform distribution on [−σ, σ ] for some parameter σ > 0, and
then compute the noisy function

f̃ (x, ω) =
m∑

i=1

((1 + ωi ) fi (x))
2. (50)

The key characteristic of this noise is that for each x , we have Eω[ f (x, ω)] = f (x),
however the variance is nonconstant over x and scales with the magnitudes of the com-
ponents fi (x). Thus, one should expect that if an algorithm is minimizing a function
of the form (50), the accuracy of the estimates of f (x) based on a constant number of
samples of f̃ (x, ω) should increase, assuming that the algorithm produces a decreas-
ing sequence { f (xk)}∞k=1. While this behavior is not supported by theory, because
we do not know how quickly f (xk) decreases, our computational results show that a
constant number of samples is indeed sufficient for convergence.

The other type of noise we will test is additive, i.e. we additively perturb each
component in (49) by some ωi uniformly generated in [−σ, σ ] for some parameter
σ > 0. That is,

f̃ (x, ω) =
m∑

i=1

( fi (x) + ωi )
2 (51)

Note that the noise is additive only in terms of the component functions,
but not in terms of the objective function, moreover Eω[ f (x, ω)] = f (x) +∑m

i E(ωi )
2. However, the constant bias term does not affect optimization results,

since minx Eω[ f (x, ω)] = minx f (x).
In our first set of experiments for these two noisy settings, we compare a version

of STORM to a version of sample average based trust region algorithms, which we
will call “TR-SAA”, and which is similar to a trust-region algorithm presented in
[10]. A similar method, with convergence guarantees, has been recently proposed in
[30]. In their work, they use a Bayesian scheme to select a sufficiently large sample
complexity for computing average function values at a current interpolation set. Here,
in TR-SAA, we simplify this approach, by increasing sample complexity in each
iteration proportionally to the decrease of the trust region radius δk . A description of
TR-SAA is given in Algorithm 2 in the “Appendix”.

There are two particular aspects of TR-SAA that we would like to draw attention to:
in the estimate calculation step, the computation of f 0k is performed before the model
mk is constructed, and mk is built to interpolate f 0k , hence the quality of estimate f 0k
and that of the model mk are dependent. Additionally, the quality of the model mk is
dependent on that of mk−1 because the samples are reused. Both of these aspects are
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violations of the typical assumptions of STORM. Thus, we also propose TR-SAA-
resample, which is the same algorithm as TR-SAA except that at each iteration, the
function value at every interpolation point is recomputed as an average of function
evaluations, independent of past function evaluations. While TR-SAA-resample may
overcome some of the problems of the dependence of mk on mk−1, it still doesn’t
satisfy the assumptions of STORM because of the dependence of f 0k on mk .

Thus, in Algorithm 3, stated in the “Appendix”, we propose a version of STORM,
comparable to TR-SAA in terms of sample sizes. In Algorithm 3, the models mk and
mk−1 are entirely independent since a new regression set is drawn in each iteration.
Additionally, in the estimates calculation step, the computations of f 0k and f sk are
completely independent of the model mk . For these reasons, Algorithm 3 is more
in line with the theory analyzed in this paper than a sample average approximation
scheme like in Algorithm 2.

For each of the 53 problems, the best known value of the noiseless f (x) obtained by
a solver is recorded as f ∗. We recorded the number of function evaluations required
by a solver to obtain a function value f (xk) < f ′ such that

1 − τ <
f (x0) − f ′

f (x0) − f ∗ . (52)

This number was averaged over 10 runs for each problem. In the profiles shown in
Fig. 1 for the multiplicative noise case τ = 10−3. In all the experiments, a budget
of 1000(n + 1) noisy function evaluations was set. For the choice of initialization,
the same parameters were used in all of TR-SAA, TR-SAA-resample, and STORM-
unbiased: δmax = 10, δ0 = 1, γ = 2, η1 = 0.1, η2 = 0.001, pmin = 10.

Note that even though we have ignored the theoretical prescription derived in
the previous section that sample rate should scale with 1/δ4k , we note that STORM-
unbiased performs extremely well compared to the TR-SAA method. Although we
chose to sample at a rate so that pk was on the order of 1/δk , this particular sample
rate was chosen after testing various other rates on the same set of test functions, and
seemed to work relatively well for both STORM-unbiased and TR-SAA.

Function computation failures In these experiments, we used the same 53 sum of
squares problems as in the unbiased noise experiments described above, but introduced
biased noise. For each component in the sum in (49), if | fi (x)| < ε for some parameter
ε > 0, then fi (x) is computed as

fi (x) =
{
fi (x) w.p. 1 − σ

V w.p. σ

for some parameter σ > 0 and for some “garbage value” V . If fi (x) ≥ ε, then it
is deterministically computed as fi (x). This noise is biased, with bias depending on
x , and we should not expect any sort of averaging approximation to work well here.
This is indeed indicated in our experiments, where various levels of σ and ε are shown
below. There choice of V did not significantly affect the results, and in the experiments
illustrated below V = −10,000 was used. Obviously, the intention here is that such a
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Fig. 1 Performance profiles (τ = 10−3) comparing STORM-unbiased, TR-SAA, and TR-SAA-resample
on the testset

large negative value will cause STORM to see a trial step as promising, when it may,
in fact, yield an increase in function value if taken. We propose the version of STORM
presented as Algorithm 4 in the “Appendix”.

The key feature ofAlgorithm4 is that on each iteration, the interpolation set changes
minimally as in a typical DFO trust regionmethod, but the interpolated function values
are computed afresh. Intuitively, this is the right thing to do, since if a “garbage value”
is computed at some point in the algorithm to either construct a model or provide
a function value estimate, we do not want its presence to affect the computation of
models in subsequent iterations. No averaging is performed, as it can only cause harm
in the setting.

Since we are not aware of any other optimization algorithm that is designed for
this case of noise, we performed no comparisons, but experiment to discover how
the method works as a function of the probability of failure. On the test set of 53
problems, we ran Algorithm 4 30 times and report the average percentage of instances
that are solved in the sense of (52) with τ = 10−3 within a budget of 10,000(n + 1)
function evaluations, where f ∗ was computed by Algorithm 4 with σ = 0. In order
to standardize the probability of failure over the test set, we define the probability of
success ps and then take σ on a function with m component to be σ = 1 − p(1/m)

s .
The results are summarized in Fig. 2.
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Fig. 2 Average percentage of problems solved as a function of probability of success ps

This experiment suggests that the practical threshold at which STORM fails to
make progress may be looser than that suggested by theory. We will illustrate this idea
through a simple example. Consider the minimization of the simple quadratic function

f (x) =
n∑

i=1

(xi − 1)2. (53)

The minimizer uniquely occurs at the vector of all 1s. Now consider the mini-
mization of this function under our setting of computation failure where we vary the
probability parameter σ and fix ε = 0.1. Suppose on each iteration of STORM, the
interpolation set contains (n + 1)(n + 2)/2 points. Then, the probability of obtaining
the correct quadratic model in the worst case where for all i , |xi − 1| < ε is precisely

α = ((1 − σ)n)
(n+1)(n+2)

2 . Likewise, the probability of obtaining the correct function
evaluation for F0 and Fs on each iteration in the worst case is β = ((1− σ)n)2. Now,
supposing we initialize STORMwith the zero vector in Rn , it is reasonable to assume
that all iterates will occur near the unit cube [0, 1]n , and so we can use simple calculus
to estimate a Lipschitz constant of the function over the relevant domain as 2

√
n, and

the Lipschitz constant of the gradient is constantly 2. These also serve as reasonable
estimates of κe f and κeg , respectively. Using parameter choices γ = 2, η1 = 0.1,
η2 = 1, we can use the bounds in (40) and (41) to solve for the smallest allowable
(1 − σ) for which our algorithm can guarantee convergence. For n = 2, our theory
suggests that we can safely lower bound (1−σ) > 0.9592 (which implies α ≈ 0.6069
and β ≈ 0.8467), and for n = 10, we can lower bound (1 − σ) > 0.9990 (which
implies α ≈ 0.5233 and β ≈ 0.9806).

In Fig. 3 for n = 2, 10, we plot an indicated level of (1−σ) on the x-axis against the
proportion of 100 randomly seeded instances with that level of (1−σ) that Algorithm
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Fig. 3 Minimizing a simple quadratic function (dimension n = 2 in the left, n = 10 in the right) where
with probability 1 − σ , a coordinate is computed incorrectly

4 managed to find a solution x∗ satisfying f (x∗) < 10−5 within 104 many function
evaluations using the discussed parameter choices. The red line shows the level of
(1 − σ) that our theory predicted in the previous paragraph. As we can see, (1 − σ)

can be quite smaller than predicted by our theory before the failure rate becomes
unsatisfactory. As a particular example, in the n = 10 case, when (1 − σ) = .998,
the corresponding probabilities are α ≈ 0.266782 and β ≈ 0.960751, and yet 100%
of the instances were solved to the required level of accuracy. In other words, even
though the models are eventually only accurate on roughly 27% of the iterations, we
still see satisfactory performance.

6.2 Stochastic gradient based method comparison

In this subsection, we show how STORM applies to empirical risk minimization in
machine learning. Consider a training dataset of N samples, {(xi , yi )}i=1...N , where
xi ∈ R

m is a vector of m real-valued and yi ∈ {−1, 1} indicates a positive or negative
label respectively. We will train a linear classifier and bias term (w, β) ∈ R

m+1 by
minimizing the smooth (convex) regularized logistic loss

f (w, β) = 1

N

N∑

i=1

fi (w, β) + λ‖w‖2

= 1

N

N∑

i=1

log(1 + exp(−yi (w
T xi + β))) + λ‖w‖2.

As in the typical machine learning setting, we will assume that N >> m and
computing f (w, β) as well as∇ f (w, β) and∇2 f (w, β) is prohibitive. Hence wewill
only compute estimates of these quantities by considering a sample I ⊂ {1, . . . , N }
of size |I | = n << N , yielding
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Fig. 4 Trajectory of training logistic loss on four datasets

f I (w, β) = 1

|I |
∑

i∈I
fi (w, β) + λ‖w‖2, ∇ f I (w, β) = 1

|I |
∑

i∈I
∇ fi (w, β) + 2λw,

∇2 f I (w, β) = 1

|I |
∑

i∈I
∇2 fi (w, β) + 2λIn .

Thus we can construct models based on sample gradient and Hessians information
and we present the appropriate variant of STORM as Algorithm 5 in the “Appendix”.

We compare Algorithm 5 with the well-known implementation of Adagrad
described in [11] from the Ada-whatever package. We compare against this partic-
ular solver because it is a well-understood stochastic gradient method used by the
machine learning community that, like our algorithm, takes adaptive step sizes, but
unlike our algorithm, does not compute estimates of the loss function, but only com-
putes averaged stochastic gradients. For the choice of initialization in Algorithm 5, the
following parameters were used: δmax = 10, δ0 = 1, x0 = 0, γ = 2, η1 = 0.1, η2 =
0.001, pmin = m + 2, pmax = N . Adagrad was also given the same initial point and
an initial step size of δ0 = 1.

We implemented two versions of Algorithm 5: one which uses stochastic Hessians,
and a second where we do not compute stochastic Hessians, effectively setting Hk = 0
on each iteration, yielding a trivial subproblem in the step calculation.
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We set the maximum budget of data evaluations for each solver equal to the size of
the training set, thus comparing various solvers’ performance with a budget of roughly
one full pass through the dataset. For the two implementations of STORM, we plot
in Fig. 4 the true training loss function value at the end of each successful iteration,
while for Adagrad, we simply plot the true training loss function value over an evenly
spaced array of function value counts.

Notice that, as expected, the true function values produced by Adagrad can vary
widely over this horizon, but implementations of STORM tend to yield fairly stable
decreasing trajectories over its successful iterations.

Appendix

See Algorithms 2, 3, 4 and 5.

Algorithm 2: TR-SAA
1 (Initialization): Choose an initial point x0 and an initial trust-region radius δ0 ∈ (0, δmax) with

δmax > 0. Choose constants γ > 1, η1 ∈ (0, 1), η2 ∈ (0, ∞), pmax = (n + 1)(n + 2)/2,
pmin ≥ n + 1. Set k ← 0. Select some initial interpolation set Y0 ⊂ B(xk , δk ) so that |Y0| ≤ pmax
and x0 ∈ Y0. Compute an averaged function value estimate f̄ (y) = 1

pmin

∑pmin
i=1 f̃ (y, ωi ) at each

y ∈ Y0.
2 while true do
3 (Update sample rate): Set sample rate pk = max{pmin + k, 1/δ2}.
4 (Update interpolation value estimates): For each y ∈ Yk ∩ Yk−1, compute

f̄ (y) = 1
pk

[∑pk
i=pk−1+1 f̃ (y, ωi ) + pk−1 f̄ (y)] and for each y ∈ Yk \ Yk−1, compute

f̄ (y) = 1
pk

∑pk
i=1 f̃ (y, ωi ) .

5 (Model building): Build a quadratic model mk (xk + s) = fk + g

k s + s
Hks with s = x − xk

that interpolates f̄ (y) at the points of Yk .
6 (Step calculation): Compute sk = arg min

s:‖s‖≤δk
mk (s) (approximately) so that sk satisfies (3).

7 (Estimate calculation): Compute new estimate f sk = 1
pk

∑pk
i=1 f̃ (xk + sk , ωi ) of f (xk + sk ).

Denote the current estimate of f (xk ) by f 0k .

8 (Acceptance of the trial point): Compute ρk = f 0k − f sk
mk (xk ) − mk (xk + sk )

.

9 If ρk ≥ η1 and ‖gk‖ ≥ η2δk , then xk+1 ← xk + sk ; otherwise, xk+1 ← xk .

10 (Trust-region radius update): If ρk ≥ η1, δk+1 ← min{γ δk , δmax}; otherwise δk+1 ← γ −1δk .
11 (Interpolation set update): Augment Yk with xk + sk . If |Yk | > pmax, remove the point of Yk

furthest from xk+1.
12 (Iterate): k ← k + 1.
13 end
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Algorithm 3: STORM for unbiased noise
1 (Initialization): Choose an initial point x0 and an initial trust-region radius δ0 ∈ (0, δmax) with

δmax > 0. Choose constants γ > 1, η1 ∈ (0, 1), η2 ∈ (0, ∞), pmin; Set k ← 0. Select a regression
set Y0 ⊂ B(xk , δk ) satisfying |Y0| = pmin.

2 while true do
3 (Update sample rate): Choose a sample rate pk = max{pmin + k, 1/δ2}.
4 (Regression set update): Uniformly sample a regression set Yk ⊂ B(xk , δk ) satisfying

|Yk | = pk .
5 (Compute new regression value estimates): For each y ∈ Yk , compute a single estimate

f̃ (y, ω).
6 (Model building): Build a quadratic model mk (xk + s) = fk + g


k s + s
Hks with s = x − xk
that regresses f̃ (y) at the points of Yk .

7 (Step calculation): Compute sk = arg min
s:‖s‖≤δk

mk (s) (approximately) so that sk satisfies (3).

8 (Estimates calculation): Compute new estimates f 0k = ∑pk
i=1 f̃ (xk , ωi ) and

f sk = ∑pk
i=1 f̃ (xk + sk , ωi ) of f (xk ) and f (xk + sk ).

9 (Acceptance of the trial point): Compute ρk = f 0k − f sk
mk (xk ) − mk (xk + sk )

.

10 If ρk ≥ η1 and ‖gk‖ ≥ η2δk , then xk+1 ← xk + sk ; otherwise, xk+1 ← xk .

11 (Trust-region radius update): If ρk ≥ η1, δk+1 ← min{γ δk , δmax}; otherwise δk+1 ← γ −1δk .
12 (Iterate): k ← k + 1.
13 end

Algorithm 4: STORM for unbiased noise
1 (Initialization): Choose an initial point x0 and an initial trust-region radius δ0 ∈ (0, δmax) with

δmax > 0. Choose constants γ > 1, η1 ∈ (0, 1), η2 ∈ (0, ∞), p0 ≥ n + 1,
pmax = (n + 1)(n + 2)/2. Set k ← 0. Select an interpolation set Y0 ⊂ B(xk , δk ) satisfying
|Y0| = p0.

2 while true do
3 (Compute new interpolation value estimates): For each y ∈ Yk , compute a (new) estimate

f̃ (y, ω).
4 (Model building): Build a quadratic model mk (xk + s) = fk + g


k s + s
Hks with s = x − xk
that interpolates f̃ (y) at the points of Yk .

5 (Step calculation): Compute sk = arg min
s:‖s‖≤δk

mk (s) (approximately) so that sk satisfies (3).

6 (Estimates calculation): Compute new estimates f 0k = f̃ (xk , ωi ) and f sk = f̃ (xk + sk , ωi ) of
f (xk ) and f (xk + sk ).

7 (Acceptance of the trial point): Compute ρk = f 0k − f sk
mk (xk ) − mk (xk + sk )

.

8 If ρk ≥ η1 and ‖gk‖ ≥ η2δk , then xk+1 ← xk + sk ; otherwise, xk+1 ← xk .

9 (Trust-region radius update): If ρk ≥ η1, δk+1 ← min{γ δk , δmax}; otherwise δk+1 ← γ −1δk .
10 (Interpolation set update): Augment Yk with xk + sk . If |Yk | > pmax, remove the point of Yk

furthest from the new trust region center xk+1.
11 (Iterate): k ← k + 1.
12 end
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Algorithm 5: STORM for minimizing logistic loss
1 (Initialization): Choose an initial point x0 = (w0, β0) and an initial trust-region radius

δ0 ∈ (0, δmax) with δmax > 0. Choose constants γ > 1, η1 ∈ (0, 1), η2 ∈ (0, ∞), p0, pmax; Set
k ← 0.

2 while true do
3 (Determine sample rate): Choose a sample rate pk . In our implementation, we will use

pk = min{pmax,max{100 ∗ k + p0, �1/δ2k �}}.
4 (Model building): Uniformly (without replacement) draw a sample Ik ⊂ {1, . . . , N }. Compute

a stochastic gradient gk = ∇ f Ik (w, β) and stochastic Hessian Hk = ∇2 f Ik (w, β). Define a

quadraticmodel mk (s) = gTk s + 1
2 s

T Hks. and stochastic Hessian
5 (Step calculation): Compute sk = arg min

s:‖s‖≤δk
mk (s) (approximately) so that sk satisfies (3).

6 (Estimates calculation): Draw new samples I 0k , I sk and compute estimates f 0k = f I0k
(xk ) and

f sk = f I sk
(xk + sk ) of f (xk ) and f (xk + sk ), respectively.

7 (Acceptance of the trial point): Compute ρk = f 0k − f sk
mk (xk ) − mk (xk + sk )

.

8 If ρk ≥ η1 and ‖gk‖ ≥ η2δk , then xk+1 ← xk + sk ; otherwise, xk+1 ← xk .

9 (Trust-region radius update): If ρk ≥ η1, δk+1 ← min{γ δk , δmax}; otherwise δk+1 ← γ −1δk .
10 (Iterate): k ← k + 1.
11 end
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