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Abstract Recently, Buchheim and Klein (Discrete ApplMath 177:34–52, 2014) sug-
gested to study polynomial-time solvable optimisation problems with linear objective
functions combined with exactly one additional quadratic monomial. They concen-
trated on special quadratic spanning tree or forest problems. We extend their results to
generalmatroid optimisation problems with a set of nested monomials in the objective
function. We study polytopes arising from the standard linearisation of the monomi-
als. Our results provide insight on the polyhedral structure of matroid optimisation
problems with arbitrary polynomial objective function, with a focus on separation
algorithms and strengthened cutting planes. Extending results by Edmonds (Comb
Struct Appl, 69–87, 1970) for the matroid polytope we present a complete descrip-
tion for the linearised polytope. Indeed, apart from the standard linearisation one
needs appropriately strengthened rank inequalities satisfying certain non-separability
conditions. The separation problem of these extended rank inequalities reduces to a
submodular function minimisation problem. In the case of exactly one additional non-
linear monomial we completely characterise the facetial structure of the associated
polytope.
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1 Introduction

Some combinatorial optimisation problems are well-understood in the sense that they
can be solved in polynomial time and the complete description of the associated
polytope is known. Examples are the spanning tree problem, the optimisation over
matroids or over the intersection of two matroids as well as the matching problem,
see e. g., [10,11,27]. Combinatorial optimisation problems with general polynomial
objective functions are often solved by introducing new variables for each mono-
mial, see e. g., [13,15,16,21,29] and considering the associated linear problem, for
the quadratic unconstrained case see e. g., [25]. Recently, the polyhedral structure of
linearised unconstrained polynomial 0–1 problems has been considered inmore detail,
see e. g., [6,8]. Approaches for solving some kinds of non-linear matroid optimization
problem can be found, e. g., in [1,7,23].

In this paper we study a simpler but related problem with the aim to better under-
stand the structure of polytopes arising from linearisations. Instead of considering an
arbitrary polynomial objective function, we restrict to linear terms and a set of nested
monomials or in a special case one additional monomial of arbitrary degree. Study-
ing the polynomially-solvable matroid optimisation problem, we will show that the
corresponding problem with this particular polynomial objective function is solvable
in polynomial time (see Remark 2). But although the well-known “separation equals
optimisation” result [18] then implies that the separation problem for our problem can
be solved in polynomial time, we want to find the exact complete description of the
associated linearised polytope and combinatorial separation algorithms for the newly
derived cutting planes.

Our main motivation is that this study can also be helpful for (matroid) prob-
lems with general linearised polynomial objective functions because the strengthened
inequalities for the case with linearised nested monomials usually remain valid for
the general case and the respective separation algorithms can be used as well (but in
most cases the facet defining inequalities of the case with few linearised monomials
will not remain facet defining for the general case). One advantage of our approach
in comparison to general linearisation techniques, like the procedure of Sherali and
Adams [28,29], is that we strengthen the constraints of the original linear problem
without introducing new variables for non-linear monomials that are not explicitly
contained in the objective function.

Focusing on exactly one additional non-linear monomial has first been suggested
by Buchheim and Klein [3,4] for the quadratic case. Results for the spanning tree
and forest problem with exactly one additional quadratic monomial can be found
in [3,4,12]. Buchheim and Klein also showed that the use of strengthened cutting
planes can reduce the number of nodes of a branch-and-cut tree in the solution of
general quadratic spanning tree problems significantly. Furthermore, bipartite and
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Matroid optimisation with nested monomials 419

general matching problems with exactly one quadratic term have been in the focus of
research, see [19,20,30]. In this paper we extend the results for the quadratic forest
problems to general matroid optimisation problems with one monomial of arbitrary
degree and to a set of nested monomials to be described below.

In the following we will describe our setting in more detail. We start with a short
review of matroids and their associated polytopes [24,31]. In 1970 Edmonds [10]
presented a complete description of the polytope PM associated with a matroid M =
(E, I) (the convex hull over all incidence vectors of independent sets) with finite set
E and a family I of subsets of E satisfying the three matroid properties

(M1) ∅ ∈ I,
(M2) T ∈ I, S ⊂ T ⇒ S ∈ I,
(M3) S, T ∈ I, |S| < |T | ⇒ ∃ e ∈ T \S with S ∪ {e} ∈ I.

A pair M = (E, I) satisfying only (M1) and (M2) is called independence system. We
denote byP(X) the power set of a finite set X . Then the rank function r : P(E) → N0
of an independence system M = (E, I) is defined as r(T ) = max{|B| : B ⊆ T, B ∈
I}. For some T ⊆ E a set B with B ⊆ T, B ∈ I and r(T ) = |B| is called basis (of
T ). It is well known that the rank function of a matroid has the following properties
(see e. g., [24,31]):

(R1) subcardinality: ∀ X ⊆ E : r(X) ≤ |X |,
(R2) monotonicity: ∀ X ⊆ Y ⊆ E : r(X) ≤ r(Y ),
(R3) submodularity: ∀ X,Y ⊆ E : r(X ∩ Y ) + r(X ∪ Y ) ≤ r(X) + r(Y ).

Furthermore, we will often make use of the following well-known theorem.

Theorem 1 (Brualdi [2], also Strong Basis Exchange Theorem) Let S, S′ be two
different bases of a matroid M. Then for any e ∈ S\S′ there is an f ∈ S′\S so that
(S\{e}) ∪ { f }, (S′\{ f }) ∪ {e} are both bases of M.

For further results onmatroid theory we refer the reader to the excellent books [24,31].
Let M = (E, I) be a matroid with rank function r : P(E) → N0 and Ē :=

{e1, . . . , ek} ⊆ E , |Ē | ≥ 2, be a set with cardinality k. We set Ēi, j := {ei , . . . , e j }
for all i, j ∈ {1, . . . , k}, i ≤ j, and Ē1,0 := ∅. Throughout the paper we assume,
w. l. o. g., that the following conditions are satisfied:

∀ e ∈ E : {e} ∈ I and Ē ∈ I. (1)

This will allow us to consider full-dimensional polytopes later on. In the following we
assume that M is given via a rank oracle where a rank oracle returns the rank r(X) for
arbitrary sets X ⊆ E . Furthermore, we use the following notation. Let S, T ⊆ E and
let e ∈ E . If the meaning is clear from the context, we will often simply write S + T
and S − T instead of S ∪ T and S\T as well as S + e and S − e instead of S ∪ {e} and
S\{e}.

We can now state our optimisation problem.Given an index set K := {k1, . . . , kl} ⊆
{2, . . . , k}, k1 < · · · < kl = k, that contains the degrees of the (non-linear) nested
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Fig. 1 Visualisation of the structure of the objective function of (OPT-K ). In this example we have E =
{ f1, . . . , f8} ∪ {e1, . . . , e8}, Ē = {e1, . . . , e8} as well as l = 4, K = {2, 5, 6, 8}. The elements contained
in each ellipse correspond to one of the four non-linear nested monomials

monomials and cost functions c : E → R and c̄ : K → R we consider the maximi-
sation problem

maximise

{ ∑
e∈E

c(e) · xe +
l∑

j=1

c̄(k j ) ·
( k j∏

i=1

xei

)
, x ∈ PM ∩ {0, 1}E

}
(OPT-K )

where PM is the polytope that is associated with the matroid M . So Ē contains all
elements of E that belong to some non-linear monomial. Furthermore we set k0 := 0.
An important special case of (OPT-K ) is the problem

maximise

{ ∑
e∈E

c(e) · xe + c̄(k) ·
( k∏

i=1

xei

)
, x ∈ PM ∩ {0, 1}E

}
(OPT-k)

where K = {k} in (OPT-K ) with exactly one non-linear monomial. A visualisation
of the structure of the objective function can be found in Fig. 1.

Although we are mainly interested in the structure of the associated polytopes, we
first note that these problems can be solved in polynomial time. This motivates us by
the “separation equals optimisation” result to detect the complete descriptions of the
associated linearised polytopes.

Remark 2 The optimisation problem (OPT-K ) can be solved in polynomial time.

Proof We solve (OPT-K ) with K = {k1, . . . , kl} in two main steps. First, we consider
the l cases that

∏kh
j=1 xe j = 0, but

∏kh−1
j=1 xe j = 1 for h ∈ {1, . . . , l}. So the contri-

bution of the non-linear monomial is fixed in these cases. For each h ∈ {1, . . . , l} we
determine a solution X∗

h ∈ Iwith Ē1,kh−1 ⊆ X∗
h , such that not all kh−kh−1 elements of

Ēkh−1+1,kh are contained in X
∗
h and that hasmaximumobjective valuewith respect to c.

This can be done by solving amatroid intersection problemofmatroidM and amatroid
M ′

h = (E, I′h) with I′h = {X ⊆ E : |X ∩ Ēkh−1+1,kh | ≤ kh − kh−1 − 1}. The objective
value of problem (OPT-K ) evaluated for X∗

h equals
∑

e∈X∗
h
c(e) + ∑h−1

j=1 c̄(k j ) in this
case. Furthermore we solve one additional matroid optimisation problem in order to
determine a set X∗

l+1 ∈ I, Ē1,kl ⊆ X∗
l+1 (so

∏kl
j=1 xe j = 1) such that

∑
e∈X∗

l+1
c(e)
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Matroid optimisation with nested monomials 421

is maximised. The objective value of problem (OPT-K ) evaluated for X∗
l+1 is then∑

e∈X∗
l+1

c(e)+∑l
j=1 c̄(k j ). At the end we take a set X

∗
h with h ∈ {1, . . . , l +1} with

maximum objective value. ��
Because (OPT-k) is a special case of (OPT-K ) the problem (OPT-k) can be solved
by one matroid optimisation and one matroid intersection problem. Alternatively one
can solve (OPT-K ) by comparing the optimal values of k + 1 matroid optimisation
problems.

Our aim is to present a complete description of the linearised polytopes

P Ē,K
M := conv

{
(x, y) ∈ {0, 1}E+K : x ∈ PM , yk j =

k j∏
i=1

xei , j = 1, . . . , l

}
,

P Ē,k
M := conv

{
(x, y) ∈ {0, 1}E+k : x ∈ PM , y =

k∏
i=1

xei

}
.

Note, if K = {k}, we often simply write y instead of yk or yk1 .
Starting point of our work is a result of Edmonds on the polytope PM associated

with a matroid M . Before repeating this result we need some notation. For any S ⊆ E
we define the characteristic vector χ S ∈ {0, 1}E by

χ S
e =

{
1, e ∈ S,

0, e /∈ S,

(in slight abuse of notation, we often do not distinguish between the characteristic
vector of an independent set J ∈ I and the set J ). Then the polytope associated with
the matroid M is

PM = conv
{
χ S ∈ {0, 1}E : S ∈ I

}
.

Theorem 3 (Edmonds [10]) Let M be a matroid with rank function r : P(E) → N0,
then

PM =
{
x ∈ RE+ :

∑
e∈T

xe ≤ r(T ), T ⊆ E

}
.

The inequalities

xT ≤ r(T ), T ⊆ E (2)

with xT := ∑
e∈T xe are often called rank constraints/inequalities. Together with the

non-negativity constraints xe ≥ 0, e ∈ E , they form a complete description of PM .
Edmonds also characterised which sets T lead to facet defining inequalities of PM ,
details are given in Sect. 3.

The paper is structured as follows. In Sect. 2 we present complete descriptions of

P Ē,k
M and P Ē,K

M . A main part of the proof consists of showing that apart from the
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standard linearisation, i. e., all constraints that are needed in the unconstrained case
(I = P(E)) as well, all coefficients of facet defining inequalities aT x + αT y ≤ b of

the polytopes are non-negative. We start with proving this result for P Ē,k
M and extend

this to P Ē,K
M with K = {2, . . . , k}. Based on the complete description in this case,

we show that it is possible to derive a complete description of P Ē,K
M for arbitrary sets

K ⊆ {2, . . . , k}. In Sect. 3 we study the facetial structure of P Ē,K
M . So we have a

closer look at the so called trivial facets and give some necessary conditions for some

specially lifted rank inequalities to be facet defining for P Ē,K
M . For P Ē,k

M we even fully

characterise all facets. In Sect. 4 we show that the separation problem for P Ē,K
M can be

solved in strongly polynomial time by complete enumeration of the trivial facets and
by submodular function minimisation. Finally, in Sect. 5, we describe further possible
extensions of our results and give suggestions for future work. Some rather technical
proofs are deferred to the “Appendix”.

2 Complete description of P Ē,K
M

In this section we provide a complete description of P Ē,K
M for arbitrary sets K ⊆

{2, . . . , k}. Before we present a formulation of (OPT-K ) we need some definitions.

Definition 4 Let T ⊆ E . The closure of set T is the set

cl(T ) := T ∪ {e ∈ E : r(T ) = r(T + e)} .

The set T is called closed if T = cl(T ).

Later we will need the following simple result that follows directly from the last
definition and the submodularity of the rank function:

Observation 5 Let T ⊆ E and let e ∈ cl(T ). Then r(T + S) = r(T + S + e) for all
S ⊆ E.

A proof of Observation 5 can be found in the “Appendix”.
Wewill present strengthened versions of the rank inequalities (2). In order to express

the coefficients of the y-variables corresponding to the linearised monomials we intro-
duce the following objects:

Definition 6 For a matroid M = (E, I) with rank function r we define α : P(E) →
Nk

0 with α(T ) = (α1(T ), . . . , αk(T )) for T ⊆ E where

αi (T ) := |{ei }\T | + r(T + Ē1,i−1) − r(T + Ē1,i ), i = 1, . . . , k.

Furthermore we set α0(T ) := 0 and write αi, j (T ) := ∑ j
m=i αm(T ) for i, j ∈

{1, . . . , k}, i ≤ j .
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Matroid optimisation with nested monomials 423

Fig. 2 Illustration of α(·). We consider the graphical matroid on a complete graph G = (V, E) with six
nodes and Ē = {e1, e2, e3, e4}. The edges of T ⊂ E are drawn solid and the edges of Ē are drawn with
dotted lines. All other edges are omitted in the picture for the sake of clarity. Note that α1(T ) = 0 in all
four cases because T is closed

The αi (T ) for some T ⊆ E can be interpreted in the following way. First, if ei ∈ T ,
then αi (T ) = 0, because T + Ē1,i−1 = T + Ē1,i . Moreover, if ei /∈ T , then αi (T ) = 1
if and only if r(T + Ē1,i−1) = r(T + Ē1,i ), i. e., if and only if the rank does not increase
even if the second set strictly contains the first one. Figure 2 illustrates αi (T ) for some
sets T ⊆ E for the graphical matroid on a complete graph G = (V, E) with six nodes
and Ē = {e1, e2, e3, e4}. The edges of T ⊂ E are drawn solid and the edges of Ē are
drawn with dotted lines.

The following results follow directly from the definition of αi (·).
Observation 7 Let T ⊆ E.

(A1) If T is closed, α1(T ) = 0.
(A2) We have α1, j (T ) = |Ē1, j\T | + r(T ) − r(T + Ē1, j ) for all j ∈ {1, . . . , k}.
(A3) Let i ∈ {1, . . . , k} and e ∈ cl(T )\{ei }. Then αi (T ) = αi (T + e).
(A4) Let i ∈ {1, . . . , k} and ei ∈ cl(T )\T . Then αi (T ) = 1 = αi (T + ei ) + 1.

We deferred the proof of this result to the “Appendix”.
Studying (OPT-K ) we define for each set S ⊆ E the vector yS = (ySk1 , . . . , y

S
kl
)

where the j th (linearised) monomial term of S is defined as

ySk j :=
j∏

i=1

χ S
ei =

{
1, Ē1,k j ⊆ S,

0, Ē1,k j � S,

for j ∈ {1, . . . , l}. Note that for each j ∈ {1, . . . , l}, S ⊂ E, e ∈ Ē, we have

yS−e
k j

≤ ySk j as well as y
S−e
k j

= ySk j if e ∈ Ēk j+1,kl . So P Ē,K
M can also be written as

P Ē,K
M = conv

{
(χ S, yS) ∈ {0, 1}E+K : S ∈ I

}
.

With these definitions we are able to give a formulation of (OPT-K ):
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Lemma 8 A formulation of (OPT-K ) is given by:

maximise
∑
e∈E

c(e)xe +
l∑

j=1

c̄(k j )yk j

− ykl ≤ 0, (3)

yk j − yk j−1 ≤ 0, j ∈ {2, . . . , l}, (4)

xĒ1,k1
− yk1 ≤ k1 − 1, (5)

xĒk j−1+1,k j
+ yk j−1 − yk j ≤ k j − k j−1, j ∈ {2, . . . , l}, (6)

− xei + yk j ≤ 0, j ∈ {1, . . . , l}, i ∈ {k j−1 + 1, . . . , k j }, (7)

− xe ≤ 0, e ∈ E\Ē, (8)

xT +
l∑

j=1

αk j−1+1,k j (T )yk j ≤ r(T ), T ⊆ E, (9)

(x, y) ∈ {0, 1}E+K . (10)

Note, we often denote (yk1 , . . . , ykl ) by y.

Proof Constraints (3)–(7) are the standard linearisation of the non-linearmonomials in
this case and (8) are the non-negativity conditions for the x-variables. By the integrality
conditions (10) and the complete description of thematroid polytope PM in Theorem 3
it remains to show the validity of the strengthened rank inequalities (9). Let T ⊆ E
be an arbitrary set and let S ∈ I. If Ē1,k1 � S, then the validity follows from the
validity of (2) for PM because ySk j = 0 for all j ∈ {1, . . . , l}. So let Ē1,ki ⊆ S for

some i ∈ {1, . . . , l} with Ē1,ki+1 � S in the case i < l. Then by (A2) we have

∑
e∈T

χ S
e +

l∑
j=1

αk j−1+1,k j (T )ySk j = |S ∩ T | + |Ē1,ki \T | + r(T ) − r(T ∪ Ē1,ki )︸ ︷︷ ︸
=α1,ki (T )

(by (S ∩ T ) ∩ (Ē1,ki \T ) = ∅) = |(S ∩ T ) ∪ (Ē1,ki \T )| − r(T ∪ Ē1,ki ) + r(T )

(by S ∈ I, Ē1,ki ⊆ S) = r((S ∩ T ) ∪ (Ē1,ki \T )) − r(T ∪ Ē1,ki ) + r(T )

(by ((S ∩ T ) ∪ (Ē1,ki \T )) ⊆ T ∪ Ē1,ki ) ≤ r(T∪Ē1,ki ) − r(T∪Ē1,ki ) + r(T )=r(T ).

��

Furthermore, we want to note that the non-negativity constraints of the x- and the
y-variables in (3) and (8) are implied by the integrality conditions (10). We included
them in the formulation because our aim is to prove that (3)–(9) completely describe
the associated polytope.

A visualisation of the extended rank inequalities (9) on the example of a graphical
matroid is given in Fig. 3.
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Fig. 3 Visualisation of the extended rank inequalities (9). We consider the graphical matroid on an undi-
rected graph with six nodes with different sets K for a given Ē . The set T is visualised with bold lines, the
edges associated with Ē with dotted lines. All other edges are omitted in the pictures for the sake of clarity.
Note, all sets T are closed, see also Remark 10

Remark 9 With the last result the formulation of (OPT-k) reduces to

maximise
∑
e∈E

c(e)xe + c̄(k)y

xĒ − y ≤ |Ē | − 1, (11)

− xe + y ≤ 0, e ∈ Ē, (12)

x ≥ 0, y ≥ 0, (13)

xT + α1,k(T )y ≤ r(T ), T ⊆ E, (14)

x, y binary.

Remark 10 In the formulation and the complete description of P Ē,K
M and P Ē,k

M it
is sufficient to restrict to closed sets T ⊆ E for the extended rank inequalities (9)
and (14), respectively, i. e.,

xT +
l∑

j=1

αk j−1+1,k j (T )yk j ≤ r(T ), T ⊆ E, cl(T ) = T, (15)

for arbitrary sets K and in the case K = {k} we can restrict to

xT + α1,k(T )y ≤ r(T ), T ⊆ E, cl(T ) = T . (16)

For proving this results, let T ⊆ E be an arbitrary set. Then we define T̄ := cl(T )\T .
By (A3) and (A4) we get αi (T ) = αi (cl(T )) + |{ei }\T̄ | for all i = 1, . . . , k. For this,
note that for some arbitrary i ∈ {1, . . . , k}we have αi (T ) = αi (T +e) for some e ∈ E
as long as e �= ei and αi (T ) = 1 if ei ∈ T̄ . Let (x̄, ȳ) be a point that satisfies (3)–(8)
as well as (15), then
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x̄T +
l∑

j=1

αk j−1+1,k j (T )ȳk j

≤ x̄T + x̄T̄∩Ē −
l∑

j=1

∣∣T̄ ∩ Ēk j−1+1,k j

∣∣ ȳk j
︸ ︷︷ ︸

≥0 by (7)

+
l∑

j=1

αk j−1+1,k j (T )ȳk j

≤ x̄T + x̄T̄∩Ē + x̄T̄ \Ē︸︷︷︸
≥0 by (8)

+
l∑

j=1

αk j−1+1,k j (cl(T ))︸ ︷︷ ︸
=αk j−1+1,k j (T )

−|T̄∩Ēk j−1+1,k j |

ȳk j

≤ x̄cl(T ) +
l∑

j=1

αk j−1+1,k j (cl(T ))ȳk j
(15)≤ r(cl(T )) = r(T ).

So all extended rank inequalities (9) for non-closed sets T ⊆ E are implied by (3)–(8)
and (15).

In the remaining section we will prove that (3)–(8) and (15) are a complete descrip-

tion of P Ē,K
M and therefore that (11)–(13) and (16) are a complete description of

P Ē,k
M . The proof for P Ē,K

M consists of three steps. First, we consider the special case
K = {2, . . . , k}. Indeed one can show that then each facet defining inequality of

P Ē,K
M that is not a positive multiple of one of (3)–(8) is an inequality of the type

aT x + αT y ≤ b with a ≥ 0, α ≥ 0. This result then allows to derive the complete

description of P Ē,K
M in this special case. Finally, we consider the complete description

of P Ē,K
M for arbitrary sets K ⊆ {2, . . . , k}. In the special case of l = 2 and I = P(E)

(then we have an unconstrained polynomial 0–1 problem) our linearisation of the non-
linear monomials leads to a complete description of the associated polytope, which
can be found in [6] as well.

We start with an observation about the structure of facet defining inequalities aT x+
αT y ≤ b of P Ē,K

M that are not a positive multiple of one of (3)–(8). Note, (7) of
the standard linearisation and the non-negativity constraints (8) will suffice to prove
the desired structural property. Nonetheless will always refer to the whole standard
linearisation (and the non-negativity constraints).

Observation 11 Let aT x + αT y ≤ b be a facet defining inequality of P Ē,K
M that is

not a positive multiple of one of (3)–(8). Then a ≥ 0.

Before proving this result we want to mention that in several proofs throughout the
paperwe use the followingwell-known result frompolyhedral combinatorics. Suppose

that aT x + αT y ≤ b is a facet-defining inequality of P Ē,K
M that is not a positive

multiple of the valid inequality ãT x + α̃T y ≤ b̃. Then there exists an S ∈ I such that
aTχ S + αT yS = b, but ãTχ S + α̃T yS < b̃.
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Proof Let aT x +αT y ≤ b be a facet defining inequality of P Ē,K
M that is not a positive

multiple of one of (3)–(8). We consider two cases.

1. a(e) < 0 for some e ∈ E\Ē : Because aT x+αT y ≤ b is not a positivemultiple
of xe ≥ 0 (8), there exists a set S ∈ I with e ∈ S and aTχ S + αT yS = b.
Assumption e /∈ Ē implies ySki = yS−e

ki
for all i ∈ {1, . . . , l}, thus b = aTχ S +

αT yS < aTχ S−e + αT yS−e. This contradicts the validity of aT x + αT y ≤ b.
2. a(e) < 0 for some e = ei ∈ Ē : Because aT x + αT y ≤ b is not a positive

multiple of ykm ≤ xei for m ∈ {1, . . . , l} such that i ∈ {km−1 + 1, . . . , km}
[see (7)], there exists some S ∈ I with e ∈ S, ySkm = 0 and aTχ S +αT yS = b.

With 0 = ySk j = yS−e
k j

for all j ∈ {m, . . . , l} and ySk j = yS−e
k j

for all j ∈
{1, . . . ,m − 1} by the choice of e ∈ Ēkm−1+1,km , this implies b = aTχ S +
αT yS < aTχ S−e + αT yS−e, again a contraction to validity. ��

Next, we consider the coefficients of the y-variables of facet defining inequalities

aT x +αT y ≤ b. Although the result for P Ē,k
M will be implied by the results for P Ē,K

M
we will present next the proof in detail because it is much shorter than in the general
case and already shows the main ideas.

Lemma 12 Each facet defining inequality aT x+αy ≤ b of P Ē,k
M that is not a positive

multiple of one of (11)–(13) satisfies α ≥ 0.

Proof Let aT x + αy ≤ b be a facet defining inequality of P Ē,k
M that is not a positive

multiple of one of (11)–(13). By Observation 11 we may assume a ≥ 0. Because
aT x + αy ≤ b is not a positive multiple of xĒ − y ≤ |Ē | − 1 [(see (11)] there

exists an S ∈ I with |Ē\S| ≥ 2 (so (χ Ē )Tχ S
Ē

− yS < |Ē | − 1) and aTχ S = b.

Similarly, because aT x + αy ≤ b is not a positive multiple of y ≥ 0 [see (13)], there
exists an S′ ∈ I with Ē ⊆ S′ (so yS > 0) and aTχ S′ + αyS

′ = aTχ S′ + α = b.
Set T := {e ∈ E\Ē : ae > 0} ∪ (S ∩ Ē). We may assume S ⊆ T (otherwise we
can use the set S ∩ T instead of S because a ≥ 0 implies ae = 0 for all e ∈ S\T
and so aTχ S + αyS = aTχ S = aTχ S∩T = b in this case) and r(S) = r(T )

(otherwise there would be an e ∈ T \S (and so e /∈ Ē) with S + e ∈ I, implying
aTχ S+e + αyS+e = aTχ S+e = aTχ S + ae > aTχ S = b, a contradiction to the
validity of aT x+αy ≤ b). Analogouslywemay assume S′ ⊆ T∪ Ē (similarly to above
we could otherwise use S′∩(T∪Ē) instead of S′) aswell as r(S′) = r(T∪Ē) (similarly
to above we would otherwise get a contradiction to the validity of aT x +αy ≤ b). We
distinguish two cases.

1. r(T ) < r(T ∪ Ē). Then there exists an e ∈ Ē\T with r(T +e) > r(T ) = r(S),
so S+e ∈ Iwith Ē � (S+e) by the choice of S. Therefore aTχ S+e ≤ bwhile
aTχ S = b. With ae ≥ 0 we get ae = 0. But since yS

′ = 1 and e ∈ Ē ⊆ S′,
this implies yS

′−e = 0 and so aTχ S′ = aTχ S′−e ≤ b = aTχ S′ + α. This
proves α ≥ 0.

2. r(T ) = r(T ∪ Ē). By assumption S, S′ are both bases of T ∪ Ē .Wemay assume
that |S ∩ S′| is maximum. By Theorem 1 there exists for each f ∈ S′\S an
e ∈ S\S′ so that S − e + f, S′ + e − f ∈ I. Because yS−e+ f = 0 and
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aTχ S−e+ f ≤ b = aTχ S we get ae ≥ a f . We choose f ∈ (S′\S) ∩ Ē �= ∅,
then yS

′+e− f = 0 and so aTχ S′+e− f ≤ b = aTχ S′ +α implying ae ≤ a f +α.
This proves α ≥ 0. ��

Now, we extend the previous result to P Ē,K
M in the case K = {2, . . . , k}. This is

done in three main steps, which make use of the following observation. For further
details and the complete, rather technical proofs we refer to the “Appendix”.

Observation 13 Let aT x + αT y ≤ b be a facet defining inequality of P Ē,K
M with

K = {2, . . . , k} and let S be a root of it, i. e., the incidence vector χ S associated with
S satisfies aTχ S + αT yS = b. Let X ⊆ E. We define

lhs(X) := aTχ X + αT yX and ã(X, e) := lhs(X) − lhs(X − e), e ∈ X.

Then the following conditions are satisfied:

(i) for all e ∈ S : ã(S, e) ≥ 0,
(ii) for all e /∈ S with S + e ∈ I : ã(S + e, e) ≤ 0,
(iii) for all e ∈ S, f /∈ S with S − e + f ∈ I : ã(S, e) ≥ ã(S − e + f, f ).

Proof Immediately clear because otherwise aT x + αT y ≤ b would not be valid for
the sets S − e, S + e or S − e + f , respectively. ��

First one can show that for each facet defining inequality of P Ē,K
M (K = {2, . . . , k})

there exists a root with a certain structure.

Lemma 14 Let aT x + αT y ≤ b be a facet defining inequality of P Ē,K
M with K =

{2, . . . , k} that is not a positive multiple of one of (3)–(8) and let m ∈ {2, . . . , k}.
Then there exists a root S of aT x + αT y ≤ b with the structure

Ē1,m\{e j , em} = S ∩ Ē1,m for some j ∈ {1, . . . ,m − 1} .

Lemma 14 implies the non-negativity of particular sums of coefficients of facet defin-
ing inequalities satisfying certain structures:

Lemma 15 Let aT x + αT y ≤ b be a facet defining inequality of P Ē,K
M with K =

{2, . . . , k} that is not a positive multiple of one of (3)–(8). Let m ∈ {2, . . . , k} so that
there is a root S of aT x + αT y ≤ b satisfying S ∩ Ē1,m = Ē1,m\{e j , em} for some
j ∈ {1, . . . ,m − 1}. Then αm + · · · + αh ≥ 0 for all h ∈ {m, . . . , k} with h = k or
with eh+1 /∈ S.

This leads to the following result.

Lemma 16 Let aT x + αT y ≤ b be a facet defining inequality of P Ē,K
M with K =

{2, . . . , k} that is not a positive multiple of one of (3)–(8). Then αm + · · · + αh ≥ 0
for all m, h ∈ {2, . . . , k}, m ≤ h.

The following corollary summarises Observation 11, Lemmas 15 and 16.
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Corollary 17 Let aT x + αT y ≤ b be a facet defining inequality of P Ē,K
M with K =

{2, . . . , k}, that is not a positive multiple of one of (3)–(8). Then a ≥ 0 and α ≥ 0.

Proof Let aT x+αT y ≤ b be a facet defining inequality of P Ē,K
M with K = {2, . . . , k}

satisfying the requirements. Then a ≥ 0 follows from Observation 11 and α ≥ 0
follows from Lemma 16 for m = h. ��

This allows us to prove our main result for P Ē,K
M in the case K = {2, . . . , k}.

Theorem 18 The inequalities (3)–(8) and (15) are a complete description of P Ē,K
M ,

K = {2, . . . , k}.

Proof Let aT x + αT y ≤ b be a facet defining inequality of P Ē,K
M , K = {2, . . . , k},

that is not a positive multiple of one of (3)–(8) and (15). Then Corollary 17 implies
a ≥ 0 and α ≥ 0. Let T ′ := {e ∈ E : ae > 0} and T := cl(T ′).

If we can prove for some S ∈ Iwith aTχ S+αT yS = b that there exists an e ∈ T ′\S
so that S+ e ∈ I, then aTχ S+e +αT yS+e > aTχ S +αT yS = b, hence the inequality
would not be valid, a contradiction. We distinguish two cases.

We consider the constraint (15) associated with T . Because aT x + αT y ≤ b is
not a positive multiple of this constraint, there exists an S ∈ I with

∑
e∈T χ S

e +∑l
j=1 αk j−1+1,k j (T )ySk j < r(T ) and aTχ S + αT yS = b. In particular, r(S ∩ T ) =∑
e∈T χ S

e implies

r(S ∩ T ) +
l∑

j=1

αk j−1+1,k j (T )ySk j < r(T ). (17)

Let ı̂ ∈ {1, . . . , k} be maximum so that yi = 1 ⇔ i ≤ ı̂ (ı̂ = 1 means that
Ē1,2 � S). Note that ı̂ > 1 implies Ē1,ı̂ ⊆ S and ı̂ < k implies Ē1,ı̂+1 � S as well.
We first consider the case ı̂ > 1. Then we may assume S ⊆ T ′ ∪ Ē1,ı̂ (otherwise

use S̄ := S ∩ (T ′ ∪ Ē1,ı̂ ) with aTχ S̄ + αT yS̄ = aTχ S + αT yS = b). Note that
αT yS = α1,ı̂ (T ), so (17) and (A2) imply r(S ∩ T ) < r(T ∪ Ē1,ı̂ ) − |Ē1,ı̂\T |.
Therefore

r(S) = r(S ∩ T ) + |S\T | < r(T ∪ Ē1,ı̂ )−|Ē1,ı̂\T | + |S\T |︸ ︷︷ ︸
=0 by Ē1,ı̂⊆S⊆T∪Ē1,ı̂

= r(T ∪ Ē1,ı̂ ) = r(T ′ ∪ Ē1,ı̂ ).

Here the last equation follows from Observation 5. So there exists an e ∈ (T ′ ∪
Ē1,ı̂ )\S = T ′\S with S + e ∈ I, which contradicts the validity of aT x + αT y ≤ b.

It remains to consider the case ı̂ = 1.But then yS = 0 andweknowwith S′ := S∩T ′
that r(S′) ≤ r(S ∩ T ) < r(T ) = r(T ′) by (17). Hence there exists an e ∈ T ′\S′ with
S′ + e ∈ I, a contradiction. ��
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Remark 19 If we consider (OPT-k), i. e., (OPT-K ) with K = {k}, the proof of The-
orem 18 in combination with Lemma 12 also shows that (11)–(13) and (16) define a

complete description of P Ē,k
M because setting ı̂ = k implies α1,k(T ) = ∑ı̂

j=1 α j (T ).

In our last step we extend the previous results to the complete description of P Ē,K
M

with arbitrary K = {k1, . . . , kl} ⊆ {2, . . . , k}.
Theorem 20 Inequalities (3)–(8) and (15) are a complete description for P Ē,K

M with
arbitrary set K = {k1, . . . , kl} ⊆ {2, . . . , k}.
Proof We prove this result by induction.We know that (3)–(8) and (15) are a complete

description for P Ē,K
M if K = {2, . . . , k}.

Let j ∈ {1, . . . , l} so that either j ≥ 2 and k j − k j−1 ≥ 2 or j = 1 and k1 > 2. Set

k̂ :=
{
k j−1 + 1, j ≥ 2,

2, j = 1.

It will be convenient throughout the proof to identify formally ȳ1 := xe1 . We show
that the complete description for K can be derived from the complete description for

P Ē,K ′
M with K ′ = K ∪ {k̂}. For this note that our aim is to prove that a point (x̄, ȳ)

satisfying (3)–(8) as well as (15) for (OPT-K ) can be written as a convex combination
of incidence vectors (x- and y-part) of independent sets ofM . The idea is now to extend
(x̄, ȳ) by one entry that corresponds to the one extra variable in K ′. If the enlarged
vector is feasible for P Ē,K ′

M , then the complete description for P Ē,K ′
M yields a convex

combination of incidence vectors (x- and y-part) of independent sets.Deleting the extra

component of these vectors then yields the desired convex combination for P Ē,K
M .

Let (x̄, ȳ) be a point that satisfies (3)–(8) as well as (15) for (OPT-K ). We
want to extend (x̄, ȳ) by component ȳk̂ in order to get a feasible point (x̄, ŷ) :=
(x̄, ȳk1 , . . . , ȳk j−1 , ȳk̂, ȳk j , . . . , ȳkl ) ∈ P Ē,K ′

M . Indeed, we prove next that ȳk̂ =
max{ȳk j , ȳk̂−1 + x̄ek̂ − 1} leads to a feasible point.
Case 1 If ȳk̂−1 + x̄ek̂ ≤ 1 + ȳk j we set ȳk̂ := ȳk j . Then (6) is satisfied. It remains to

check if the point (x̄, ŷ) is feasible for P Ē,K ′
M , because then the desired state-

ment immediately follows from the complete description of the known case.
Constraints (3)–(8) are satisfied by assumption, by the feasibility of (x̄, ȳ) for
(OPT-K ) and by the fact that x̄e ≤ 1, e ∈ E [by (15)]. For (15) with T ⊆ E , T
closed, we just split αk̂,k j

(T )ȳk j into αk̂,k̂(T )ȳk̂ + αk̂+1,k j
(T )ȳk j (note, in the

case k̂ = 2 the coefficient of ȳk̂ is α1,k̂(T ), but T closed implies α1(T ) = 0
and so α1,k̂(T ) = αk̂,k̂(T )).

Case 2 Otherwise we set ȳk̂ := ȳk̂−1 + x̄ek̂ − 1 > ȳk j . Then the point (x̄, ŷ) might

possibly violate (15) of the formulation of P Ē,K ′
M . All other constraints of the

formulation of P Ē,K ′
M [(3)–(8)] remain satisfied by this definition of ȳk̂ , either

trivially or because
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k j∑
i=k̂+1

x̄ei + x̄ek̂+ȳk̂−1︸ ︷︷ ︸
=ȳk̂+1

≤ ȳk j +k j−k j−1 ⇔
k j∑

i=k̂+1

x̄ei + ȳk̂ ≤ ȳk j + (k j − k̂).

Let T ⊆ E , cl(T ) = T , (see also Remark 10) be a closed set and consider
the associated rank constraint (15). If αk̂(T ) = 0, then the validity of this

rank constraint for P Ē,K ′
M follows directly from the validity of the associ-

ated rank constraint for P Ē,K
M . So we may assume αk̂(T ) = 1. This implies

r(T + Ē1,k̂−1) = r(T + Ē1,k̂) and with T ′ := T + ek̂

α1,m(T ′)−α1,m(T ) = 1−r(T ′ + Ē1,m) + r(T+Ē1,m) ≥ 0,m = 1, . . . , k̂ − 1,

α1,k̂−1(T
′)−α1,k̂−1(T )=1−r(T+Ē1,k̂)+r(T+Ē1,k̂−1)=1. (18)

Let us define γi := ȳki − ȳki+1 ≥ 0 for i = 1, . . . , j − 2. Then we can write

ȳki = ȳk̂−1 + ∑ j−2
m=i γm by the definition of k̂ and using the method of differ-

ences. Using these relations we get for the rank constraint associated with T
for K ′

x̄T +
j−1∑
i=1

αki−1+1,ki (T )ȳki + αk̂(T )︸ ︷︷ ︸
=1

ȳk̂ + αk̂+1,k j
(T )︸ ︷︷ ︸

=αk̂+1,k j
(T ′)

ȳk j +
l∑

i= j+1

αki−1+1,ki (T )︸ ︷︷ ︸
=αki−1+1,ki (T

′)

ȳki

= x̄T + α1,k̂−1(T )︸ ︷︷ ︸
=α1,k̂−1(T

′)−1

ȳk̂−1 +
j−2∑
i=1

α1,ki (T )︸ ︷︷ ︸
≤α1,ki (T

′)

γi + ȳk̂ + αk̂+1,k j
(T ′)︸ ︷︷ ︸

=αk̂,k j
(T ′)

ȳk j

+
l∑

i= j+1

αki−1+1,ki (T
′)ȳki

and using ȳk̂ = −ȳk̂−1 + x̄ek̂ − 1 and the definition of the γ•

≤ x̄T ′ +
l∑

i=1

αki−1+1,ki (T
′)ȳki − 1

≤ x̄cl(T ′) +
l∑

i=1

αki−1+1,ki (cl(T
′))ȳki − 1 ≤ r(cl(T ′)) − 1 = r(T ).

For the last step we used that each rank constraint associated with T ′ is always
dominated by the rank constraint associated with cl(T ′) by Remark 10. So the

result follows again by the known complete description of P Ē,K ′
M . ��

So the complete description of P Ē,K
M for arbitrary sets K ⊆ {2, . . . , k} can easily be

derived from the complete description of P Ē,K ′
M with K ′ = {2, . . . , k} by adapting the
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constraints of the standard linearisation andby adjusting the extended rank inequalities.
Indeed, the coefficient of yk j , k j ∈ K , equals the sum of the coefficients of variables
yi , i = k j−1+1, . . . , k j , in the problemwith K ′. Although feasibility of the extended
rank inequalities is trivially preserved by this approach, it is remarkable that we even

get the complete description of P Ē,K
M in this way.

3 Facetial structure of P Ē,K
M and P Ē,k

M

The polytope PM of some matroid M is well-understood. In 1970 Edmonds [10]
presented a complete description of PM and characterised its facetial structure, see

also [17]. We will extend these results to the polytopes P Ē,k
M and P Ē,K

M and study their
facetial structures in more detail. This includes the dimension of the polytopes as well
as results on the facetness of the constraints of the standard linearisation. Furthermore,
we have a closer look at the extended rank inequalities (9). If a closed set T does not
satisfy certain non-separability conditions (to be defined below) the associated rank

inequality cannot be facet defining for P Ē,K
M . For P Ē,k

M we even exactly characterise
the facet defining inequalities and provide a minimal description.

We start with studying the dimension and the trivial facets of P Ē,K
M . One can easily

prove the following result:

Observation 21 Under the assumptions (1) the polytope P Ē,K
M is full-dimensional.

The inequalities (3)–(8) define facets of P Ē,K
M .

Details of the proof are deferred to the “Appendix”. Recent studies on the facial
structure of linearisations of unconstrained 0–1 polynomial optimisation problems
can be found, e. g., in [6,8].

In the next stepweconsider the extended rank inequalities (14). These are extensions
of the rank inequalities (2). Before repeating results on the facetness of (2) for PM we
need a definition, which will be extended to our setting later on.

Definition 22 Let T ⊆ E . A set T is called separable if there exists a partition
T1, T2 � T, T1 ∪ T2 = T, T1 ∩ T2 = ∅ such that r(T1) + r(T2) = r(T ), otherwise it
is called non-separable.

Indeed, all closed and non-separable sets T ⊆ E lead to facet defining rank inequali-
ties (2) of PM [10,17]. The next proposition shows that they also lead to facet defining

inequalities (9) of P Ē,K
M whenever αk j−1+1,k j (T ) > 0 for all j ∈ {1, . . . , l}.

Proposition 23 Let T ⊆ E be a closed and non-separable set associated with a facet
defining inequality (2) of PM. If αk j−1+1,k j (T ) > 0 for all j ∈ {1, . . . , l}, then the

inequality (9) is facet defining for P Ē,K
M , too.

Proof Because xT ≤ r(T ) is facet defining for PM there exist d := dim PM affinely
independent Si ∈ I, Si ⊆ T with r(Si ) = r(T ) for i = 1, . . . , d. By our assumption
αk j−1+1,k j (T ) > 0 for all j ∈ {1, . . . , l}, we know Ēk j−1+1,k j � T for all j ∈
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{1, . . . , l}, hence Ēk j−1+1,k j � Si for all i ∈ {1, . . . , d}, j ∈ {1, . . . , l}. If we choose
for each j ∈ {1, . . . , l} a set Ŝ j ∈ I satisfying the two properties Ē1,k j ⊆ Ŝ j ⊆
T + Ē1,k j and |Ŝ j | = r(Ŝ j ) = r(T + Ē1,k j ) (such a set exists because we can extend
Ē1,k j to a basis of T + Ē1,k j for each j ∈ {1, . . . , l}), the left-hand side of

χ
Ŝ j
T +

l∑
ı̂=1

αkı̂−1+1,kı̂ (T )y
Ŝ j
kı̂

≤ r(T )

computes to

r(Ŝ j ∩ T ) + α1,k j (T ) = r(T + Ē1,k j ) − |Ŝ j\T | + α1,k j (T )

= r(T + Ē1,k j ) − |Ē1,k j \T | + α1,k j (T ) = r(T )

by (A2). So there exist d + l affinely independent sets that are roots of (9), which
proves the statement. ��

Considering the first type of extended subtour elimination constraints (constraints
(5) in [4]) for the spanning forest problem with one linearised quadratic monomial in
[4], the facetness of these inequalities follows directly from the previous result. But
as already observed by Buchheim and Klein [4] for this problem (see constraints (6)

in [4]), not all facet defining inequalities of P Ē,K
M are directly related to facet defining

inequalities of PM . So we need further properties that allow us to describe the facetial

structure of P Ē,K
M .

Definition 24 Let T ⊆ E be closed and K = {k1, . . . , kl} ⊂ {2, . . . , k}. A set T is
called (Ē, K )-separable if there exists a partition T1, T2 � T , T1∩T2 = ∅, T1∪T2 = T
with

r(T ) = r(T1) + r(T2), and αk j−1+1,k j (T ) = αk j−1+1,k j (T1) + αk j−1+1,k j (T2),

j = 1, . . . , l, (19)

otherwise it is called (Ē, K )-non-separable.

Note, the definition of separability by Edmonds [10] only included the first equation
of the last definition (see Definition 22). A visualisation of the new setting is given in
Fig. 4.

A closed set T ⊆ E that is (Ē, K )-separable does not lead to a facet defining rank

inequality (9) of P Ē,K
M .

Observation 25 Let (9) be a facet defining inequality of P Ē,K
M associated with a

closed set T ⊆ E. Then T is (Ē, K )-non-separable.
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Fig. 4 Visualisation of (Ē, K )-(non)-separability. We consider the graphical matroid on an undirected
graph with four nodes. Although set T (bold lines) is the same on both sides, depending on Ē (dotted lines),
it is (Ē, {2})-separable or not. Note, T is separable with T1 = { f1}, T2 = { f2} by Definition 22

Proof Let T ⊆ E be closed and assume that T is (Ē, K )-separable with partition
T1, T2 � T, T1 ∩ T2 = ∅, T1 ∪ T2 = T satisfying (19). Then we can derive (9) by
adding the two rank inequalities (9) for T1, T2:

xT1 + xT2︸ ︷︷ ︸
=xT

+
l∑

j=1

(αk j−1+1,k j (T1) + αk j−1+1,k j (T2))︸ ︷︷ ︸
=αk j−1+1,k j (T )

yk j ≤ r(T ).

So the extended rank inequality associated with T does not define a facet of P Ē,K
M . ��

However, not all (Ē, K )-non-separable sets T ⊆ E lead to facet defining rank
inequalities (9). This may depend on the structure of K as well. If, for instance,
k j−1, k j ∈ K with k j−1 + 1 = k j , then the inequality xek j ≤ 1 can be derived by

adding −yk j−1 + yk j ≤ 0 and yk j−1 + xek j − yk j ≤ 1 [see also property (P1k) to be
defined below for the case K = {k}].

In the following we will fully characterise the facetial structure of P Ē,k
M . We start

with some easy results that follow directly from the definition of (Ē, {k})-separability.
The proofs of all three following observations can be found in the “Appendix”.

Observation 26 Let T ⊆ E be a closed set with |T | ≥ 2.

1. If T ⊆ Ē , then T is (Ē, {k})-separable.
2. If α1,k(T \Ē) = 0 and Ē ∩ T �= ∅, then T is (Ē, {k})-separable.

In addition to closedness and (Ē, {k})-non-separability it will turn out that a set
T ⊆ E leading to facet defining extended rank inequalities (14) has to satisfy the
following properties:

Definition 27 Let T ⊆ E be a closed and (Ē, {k})-non-separable set. We say it
satisfies properties

(P1k) if Ē � T and if in the case |Ē | = 2 additionally T �= {e}, e ∈ Ē ,
(P2k) if Ē ⊆ T and α1,k(T \Ē) ≥ 2.

These properties are necessary conditions that a set T ⊆ E leads to a facet defining

rank inequality (14) of P Ē,k
M .
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Observation 28 Let T ⊆ E be a closed and (Ē, {k})-non-separable set. If the rank
inequality associated with T is facet defining for P Ē,k

M , then it satisfies either (P1k)
or (P2k).

Next we will prove that for a set T ⊆ E closedness, (Ē, {k})-non-separability and
properties (P1k), (P2k) lead to facetness of the associated inequality (14). In the proof
of this result we need the following observation:

Observation 29 Let T ⊆ E be a closed set with Ē ⊆ T . If α1,k(T \Ē) ≥ 2, then
there exists a basis B of T such that |B ∩ Ē | ≤ |Ē | − 2.

Lemma 30 Let T ⊆ E be a closed and (Ē, {k})-non-separable set satisfying prop-

erties (P1k) or (P2k). Then the extended rank inequality (14) defines a facet of P Ē,k
M .

Proof Let T ⊆ E be a closed, (Ē, {k})-non-separable set satisfying (P1k) or (P2k).

Further we assume that aT x + ā y ≤ b is a facet defining inequality of P Ē,k
M so that

aTχ S + ā yS = b whenever S is a root of xT + α1,k(T )y ≤ r(T ), the extended rank
constraint associated with T . We will show that in this case aT x+ ā y ≤ b is a positive
multiple of xT + α1,k(T )y ≤ r(T ). Our proof consists of four main steps.

Claim 1 Under the given assumptions the constraints (14) are not implied by the
constraints of the standard linearisation (see Observation 21).

Proof of Claim 1 In order to prove that xT +α1,k(T )y ≤ r(T ) is not implied by (11)–
(13) we can easily determine in each of the cases an independent set J ∈ I such that J
is a root of the rank inequality (14), but J is not a root of one of (11)–(13). Technical
details can be found in the “Appendix”.

So by Lemma 12 we know that a ≥ 0, ā ≥ 0. Next we prove the following:

Claim 2 A coefficient ae, e ∈ E, or ā is zero if the corresponding coefficient in
xT + α1,k(T )y ≤ r(T ) is zero.

Proof of Claim 2 Assume, for a contradiction, ae > 0 for some e /∈ T . Let S be a basis
of T . Then S is a root of xT + α1,k(T )y ≤ r(T ) and consequently of aT x + ā y ≤ b,
too. Because T is closed S + e ∈ I, but S + e violates aT x + ā y ≤ b, a contradiction.

Now assume the coefficient α1,k(T ) of y is zero in xT + α1,k(T )y ≤ r(T ), i. e.,

r(T ) + |Ē\T | = r(T + Ē) (20)

by (A2). First, if Ē � T , we choose a basis B of T with (T ∩ Ē) ⊆ B. Then by (20) we
know B+ (Ē\T ) ∈ I and this independent set is also a root of xT +α1,k(T )y ≤ r(T ).
However, because yB+(Ē\T ) = 1 it follows ā = 0. Second, let Ē ⊂ T . Let B̄
be a basis of T with Ē ⊆ B̄. Furthermore, by assumption (P2k) we may apply
Observation 29, and find a basis B of T with |B ∩ Ē | ≤ |Ē | − 2. So there exist
two elements ei , e j ∈ (B̄\B) ∩ Ē, i �= j . Because M is a matroid there exists an
fi ∈ B\B̄ ⊆ B\Ē with B̄ − ei + fi ∈ I and an f j ∈ B\(B̄ − ei + fi ) ⊆ B\Ē with
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B̄−ei −e j + fi + f j ∈ I. Note that all three sets B̄, B̄−ei + fi , B̄−ei −e j + fi + f j
are bases of T and define roots of xT + α1,k(T )y ≤ r(T ). In particular, this implies
aei + ā = a fi and ae j = a f j . Submodularity gives

r(B̄ − e j )︸ ︷︷ ︸
=r(T )−1

+ r(B̄ − e j + fi + f j )︸ ︷︷ ︸
=r(T )

≤ r(B̄ − e j + f j ) + r(B̄ − e j + fi ),

so at least one of B̄ − e j + f j , B̄ − e j + fi is a basis of T . If B̄ − e j + f j is a basis
then comparing with B̄ − ei − e j + fi + f j shows aei = a fi , hence ā = 0. Otherwise,
if B̄ − e j + f j is not a basis but B̄ − e j + fi is a basis, we have similarly aei = a f j
and submodularity implies

r(B̄ − ei − e j + f j )︸ ︷︷ ︸
=r(T )−1

+ r(B̄ + f j )︸ ︷︷ ︸
=r(T )

≤ r(B̄ − ei + f j ) + r(B̄ − e j + f j )︸ ︷︷ ︸
=r(T )−1

,

hence B̄−ei + f j is a basis and so a fi = ae j . Together we have aei = a f j = ae j = a fi
and again ā = 0. This proves Claim 2.

It remains to prove that all coefficients ae, e ∈ T , have the same value and that the
coefficient ā of y has the correct value. We start with the first statement.

Claim 3 All coefficients ae, e ∈ T , have the same value.

Proof of Claim 3 Wedefine the simple undirected graphG = (T, A)with set of nodes
T and set of edges

A := {{e, f } : ∃ B ⊆ T, e, f ∈ T \B, B + e, B + f bases of T }
∪ {{e, f } : ∃ B ⊆ T + Ē, e, f ∈ T \B, Ē ⊆ B, B + e, B + f bases of T + Ē

}
.

We prove the statement in two steps.

Claim 3.1 If {e, f } ∈ A, then we have ae = a f .

Proof of Claim 3.1 Let {e, f } ∈ A. If, on the one hand, there exists B ⊆ T , e, f ∈
T \B, with B + e, B + f bases of T , then both bases define roots of xT +α1,k(T )y ≤
r(T ) and consequently

∑
e′∈B+e ae′ + ā yB+e = ∑

e′∈B+ f ae′ + ā yB+ f , hence ae +
ā yB+e = a f + ā yB+ f . If Ē � T , then yB+e = yB+ f = 0, otherwise α1,k(T ) =
r(T ) + |Ē\T | − r(T + Ē) = r(T ) + 0 − r(T ) = 0 by (A2) implying ā = 0, so
ae = a f follows. On the other hand, if there exists B ⊆ T + Ē , e, f ∈ T \B, with
Ē ⊆ B and B + e, B + f bases of T + Ē , then yB+e = yB+ f = 1. Furthermore

|(B + e) ∩ T | + α1,k(T )yB+e = |(B + e) ∩ T | + r(T ) + |Ē\T | − r(T + Ē)

= |(B + e) ∩ T | + r(T ) + |(B + e)\T | − r(T + Ē)

= r(T + Ē) + r(T ) − r(T + Ē) = r(T )
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by (A2), so B + e defines a root of xT +α1,k(T )y ≤ r(T ) (and, analogously, B + f ).
As above we conclude ae = a f and Claim 3.1 follows. Therefore, if we can prove
that G is connected, all coefficients ae, e ∈ T , must be equal.

Claim 3.2 Graph G is connected.

Proof of Claim 3.2 Assume, for a contradiction, that G is not connected, i. e., there
exist T1, T2 ⊆ T , T1, T2 �= ∅, T1∩T2 = ∅ and T1∪T2 = T such that there do not exist
edges between T1 and T2. First assume r(T ) < r(T1) + r(T2) and let B ′ be a basis of
T with r(T1) = r(B ′ ∩ T1). Then r(T2) > r(B ′ ∩ T2), so there exists an e ∈ T2\B ′ so
that (B ′ ∩ T2) + e ∈ I. However, B ′ + e /∈ I (B ′ basis), but because M is a matroid
there exists an f ∈ (T1∩B ′) so that B ′ +e− f is a basis of T . Consequently, choosing
B := B ′ − f proves {e, f } ∈ A, a contradiction.

Secondly, if r(T ) = r(T1) + r(T2) then (Ē, {k})-non-separability and (A2) imply
|Ē | + r(T + Ē) < r(T1 + Ē) + r(T2 + Ē). Let B ′ be a basis of T + Ē with Ē ⊆ B ′
and r(B ′ ∩ (T1 + Ē)) = r(T1 + Ē). Consequently,

r(B ′ ∩ (T2 + Ē)) = |Ē | + |B ′ ∩ (T2\Ē)|
< r(T1 + Ē) + r(T2 + Ē) − r(T + Ē) + |B ′ ∩ (T2\Ē)|
= |B ′ ∩ (T1 + Ē)| + r(T2 + Ē) − r(T + Ē) + |B ′ ∩ (T2\Ē)|
= |B ′| + r(T2 + Ē) − r(T + Ē) = r(T2 + Ē).

Hence there exists an e ∈ T2\B ′ so that (B ′ + e) ∩ (T2 + Ē) ∈ I, but B ′ + e /∈ I.
Because M is a matroid there exists an f ∈ T1 such that B ′ + e − f is a basis of T ,
too. Consequently, choosing B := B ′ − f proves {e, f } ∈ A, a contradiction. So G
is connected and this proves Claim 3.2 and so Claim 3. Finally, it remains to prove:

Claim 4 The coefficient ā of y has the correct value.

Proof of Claim 4 ByClaim 2we know that ā = 0 if α1,k(T ) = 0. So, e. g., in the cases
T ⊆ Ē or Ē ⊆ T the statement follows. So assume T � Ē , Ē � T and α1,k(T ) > 0.
Let B be a basis of T + Ē with r(B ∩ (T ∩ Ē)) = r(T ∩ Ē) and r(B ∩ T ) = r(T ).
Then Ē\B �= ∅ because

|Ē\B| = |B ∩ T | + |Ē\T | − |B| = r(T ) + |Ē\T | − r(T + Ē) = α1,k(T ) > 0.

In particular, yB = 0. Let B ′ be a basis of T + Ē with Ē ⊆ B ′. Then B, B ′ are roots
of xT + α1,k(T )y ≤ r(T ) and so of aT x + ā y ≤ b. Therefore, with ã := ae being the
value of all coefficients ae, e ∈ T , we get∑

e∈B∩T
ae + ā yB︸︷︷︸

=0

=
∑

e∈B′∩T
ae + ā yB

′
︸︷︷︸
=1

,

so by the choice of B ′

ā = (|B ∩ T | − |B ′ ∩ T |) · ã = (|B ∩ T | − |B ′| + |B ′\T |) · ã
= (|B ∩ T | − |B| + |Ē\T |) · ã = α1,k(T )ã.
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Consequently Claim 4 follows. In total, this proves that aT x + ā y ≤ b is a positive
multiple (with factor ã) of xT + α1,k(T )y ≤ r(T ). ��

The following theorem summarises the results on the facetial structure of P Ē,k
M .

Theorem 31 All facet defining inequalities of P Ē,k
M are given by (11) and (12), xe ≥

0, e ∈ E\Ē, y ≥ 0 and all extended rank inequalities (14)

xT + α1,k(T )y ≤ r(T ), T ⊆ E, T closed, (Ē, {k})-non-separable and
T satisfies property (P1k) or (P2k).

4 Separation

By the well-known “optimisation equals separation” result [18] we know that the sep-

aration problem for the polytope P Ē,K
M can be solved in polynomial time because the

corresponding optimisation problem can be solved in polynomial time. But the proof
of the next result shows how to separate the extended rank inequalities more directly.
Note, all inequalities of the standard linearisation (3)–(7) as well as the non-negativity
constraints (8) can be separated in polynomial time by complete enumeration.

Theorem 32 Let K = {k1, . . . , kl} ⊂ {2, . . . , k}. Given a point (x̄, ȳ) the separation
problem for the extended rank inequalities (9) of P Ē,K

M can be solved in (strongly)
polynomial time if ȳk j ≥ ȳk j+1 for all j = 1, . . . , l − 1, as well as ȳk1 ≤ 1, ȳkl ≥ 0.

Proof Let (x̄, ȳ) be a point that satisfies all requirements. Then we want to find a set
T ⊆ E such that (9) evaluated for (x̄, ȳ) is violated or we want to prove that there
does not exist such a set T . Therefore we define the function d : P(E) → R,

d(T ) := r(T ) − x̄T −
l∑

j=1

αk j−1+1,k j (T )ȳk j .

Our separation problem is then equivalent to the problem to decidewhether the optimal
value of

min
T⊆E

d(T )

is negative or not. Using (A2) we can write d(T ) as:

d(T ) = r(T ) · (1 − ȳk1)︸ ︷︷ ︸
≥0

+
l−1∑
j=1

⎛
⎜⎝r(T ∪ Ē1,k j ) · (

ȳk j − ȳk j+1

)
︸ ︷︷ ︸

≥0

⎞
⎟⎠ + r(T ∪ Ē1,kl ) · ȳkl︸︷︷︸

≥0

− x̄T − |Ē1,k1\T |ȳk1 −
l∑

j=2

(|Ēk j−1+1,k j \T | · ȳk j
)
.
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Fig. 5 Visualisation of the four different graphs in Examples 33–35

So, d(T ) is submodular by the submodularity of the rank function r(·) and our separa-
tion problem reduces to minimising the submodular function d(T ), which can be done
in strongly polynomial time [14,22], e. g., using a combinatorial algorithm [26,27]. ��

5 Extensions and future work

A natural question is if it is possible to extend the previous results to related problems.
For instance, Edmonds [10] also provided a complete description for the polytope that
is associated with the intersection of two matroids. However, the following example
shows that even in the case with exactly one additional quadratic monomial there exist
facet defining inequalities aT x + ā y ≤ b of the associated linearised polytope that are
not a positive multiple of the standard linearisation but with a ≥ 0 and ā < 0. Thus,
it might be necessary to extend the line of arguments in Sect. 2 significantly.

Example 33 We consider the directed graph G = (V, E) in Fig. 5I with four nodes
and four arcs E = {e1, e2, f1, f2} and the branching problem [9] (intersection of
two matroids) with Ē = {e1, e2}. Then one can check by direct computations that
the inequality x f1 + x f2 + xe1 + xe2 − ye1e2 ≤ 2 is facet defining for the associated
linearised polytope although the coefficient of ye1e2 is −1. Note, the inequality above
is of the form

xT + xe1 + xe2 − ye1e2 ≤ r(T ),

with T ⊆ E, r(T ) = r(T + e1) = r(T + e2) = r(T + e1 + e2) − 1 (r denotes
the minimum of the rank of T for M1 and M2) where in our example T = { f1, f2}.
Furthermore, considering the branching problem in Fig. 5II the inequality 2xe1 +
xe2 + x f1 + x f2 − ye1e2 ≤ 2 is facet defining. So, also coefficients of the x-variables
larger than one may appear. This is a large contrast to the results by Edmonds for
the polytope associated with the intersection of two matroids [10]. Indeed, given two
matroids M1 = (E, I1), M2 = (E, I2) with rank functions ri : E → N0, i = 1, 2,
the convex hull of all sets I ⊆ E with I ∈ I1, I ∈ I2 can be described by the
non-negativity constraints and the rank inequalities for the two single matroids [10].

To the best of our knowledge the only matroid intersection problem combined
with one non-linear monomial that has been considered in the literature before is
the bipartite matching problem. Recently, Walter [30] proved a conjecture in [20]
on the complete description of the linearised polytope in this case. In comparison
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to the branching problem coefficients of two for x-variables do not appear there. So
the situation is a bit easier. It remains for future work to study which other matroid
intersection problems can be treated with the approach in [30]. Unfortunately, this
approach cannot easily be extended to larger sets of monomials.

Furthermore, it is interesting to extend the results to two or more monomials that
are not necessarily nested. But again, this might lead to facet defining inequalities
containing variables with negative coefficients apart from the standard linearisation.
We start with an example where the two monomials are in pairwise conflict.

Example 34 Weconsider the undirected graphG = (V, E) in Fig. 5IIIwith four nodes
and five edges E = { f1, e1, e2, e3, e4} and the optimisation problem over the graphical
matroid with the two additional monomials xe1xe2 , xe3xe4 . Then the inequality x f1 +
ye1e2 + xe3 + xe4 − ye3e4 ≤ 2 is facet defining. So one of the coefficients of the
linearised variables is negative although the inequality does not belong to the standard
linearisation in this case.

One might think that the problem in Example 34 arises because {ei : i =
1, . . . , 4} /∈ I. But even if the union of all elements contained in the additional mono-
mials is an independent set and none of the elements e ∈ E appears in more than one
of these non-linear monomials, facet defining inequalities can contain variables with
negative coefficients apart from the standard linearisation.

Example 35 We consider the undirected graphG = (V, E) in Fig. 5IV with six nodes
and set of edges E = { f1, f2, f3, e1, e2, e3, e4} and the optimisation problem over the
graphicalmatroidwith the two additionalmonomials xe1 xe2 , xe3xe4 and {e1, . . . , e4} ∈
I. Then the inequality x f1 + x f2 + x f3 + ye1e2 + xe3 + xe4 − ye3e4 ≤ 4 is facet defining
for the associated polytope.

Let, in general, a matroid M = (E, I) be given and let xe1xe2 , xe3xe4 , {e1, e2} ∩
{e3, e4} = ∅, denote the two additional quadratic monomials with associated variables
ye1e2 , ye3e4 . Then inequalities

xT + ye1e2 + xe3 + xe4 − ye3e4 ≤ r(T ) + 1,

T ⊂ E\{e1, e2, e3, e4}, r(T + e3 + e4) > r(T ) + 1, (T + e1 + e2 + ei ) /∈ I, i = 3, 4,
are valid for the associated linearised polytope. The facet defining inequalities in
Examples 34 and 35 are exactly of this type with T = { f1} and T = { f1, f2, f3},
respectively.

Extending our results to problems with objective functions with more than one
non-linear monomial, a good starting point might be to consider the three quadratic
monomials xe1xe2 , xe1xe3 , xe2xe3 and the associated cubic monomial xe1xe2xe3 on the
three elements e1, e2, e3 ∈ E with {e1, e2, e3} ∈ I or {e1, e2, e3} forming a circuit. In
both mentioned cases the monomials then satisfy some kind of up- and downwards
compatibility, see [5]. Furthermore, it remains for future work to extend the results
to (integral) polymatroids [10], see also [14,27]. Here, the setting might be quite
different because the variables are not necessarily binary. One possible way might
be to transform the integral polymatroid to a matroid by the standard transformation,
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but then even a single quadratic monomial leads to several quadratic monomials in
the extended problem. So a better understanding of the multiple monomial case is
essential.

Acknowledgements We thank two anonymous referees for their valuable comments and suggestions that
helped to improve the paper.

Appendix

In the followingwe present several detailed, rather technical proofs of the results stated
in the main part of this paper.

Proof of Observation 5 Let e ∈ cl(T ), then r(T + e) = r(T ).

r(T+S)+r(T )
(R2)≤ r(T+S+e)+r((T+S) ∩ (T + e))

(R3)≤ r(T + S) + r(T + e)

= r(T + S) + r(T ). ��

Proof of Observation 7 Let T ⊆ E .

(A1) Let T be closed. By the definition of αi (·) we can assume that ei /∈ T . Then
α1(T ) = 1 + r(T ) − (r(T ) + 1) = 0.

(A2) Let j ∈ {1, . . . , k}. Then α1, j (T ) = ∑ j
i=1(|{ei }\T |+ r(T + Ē1,i−1)− r(T +

Ē1,i )) = |Ē1, j\T | + r(T + Ē1,0) − r(T + Ē1, j ) = |Ē1, j\T | + r(T ) − r(T +
Ē1, j ).

(A3) Let i ∈ {1, . . . , k}. If e ∈ T , the statement is clear. So let e ∈ (cl(T )\T )\{ei }.
Then αi (T ) = |{ei }\T | + r(T + Ē1,i−1) − r(T + Ē1,i ) = |{ei }\(T + e)| +
r(T + e + Ē1,i−1) − r(T + e + Ē1,i ) = αi (T + e) by Observation 5.

(A4) Let i ∈ {1, . . . , k} and ei ∈ cl(T )\T . Then Observation 5 and the definition
of αi (·) show αi (T ) = |{ei }\T | + r(T + Ē1,i−1) − r(T + Ē1,i ) = 1+ r(T +
ei + Ē1,i−1) − r(T + Ē1,i ) = 1 = αi (T + ei ) + 1. ��

Proof of Lemma 14 Let aT x + αT y ≤ b be a facet defining inequality of P Ē,K
M ,

K = {2, . . . , k}, satisfying the requirements. For m = 2 the existence of a set S with
the desired properties follows directly from the fact that aT x + αT y ≤ b is not a
positive multiple of (5). For m > 2 there exists a root S of aT x + αT y ≤ b with
em /∈ S and Ē1,m−1 � S because aT x + αT y ≤ b is not a positive multiple of (6). So
we may assume that

μ := |S ∩ Ē1,m−1| is maximum. (21)

If |S ∩ Ē1,m | = |Ē1,m | − 2, then S satisfies the requirements. Otherwise there must
exist two elements ei , e j /∈ S with i < j < m and Ē1, j−1\{ei } ⊆ S. Let S j−1 be a root
of aT x+αT y ≤ bwith Ē1, j−1 ⊆ S j−1 and e j /∈ S j−1 (exists because aT x+αT y ≤ b
is not a positive multiple of (4) or of (7) in the case j = 2).
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Now assume in addition that S and S j−1 are chosen so that

|S ∩ Ē1,m−1| = μ and |S ∩ S j−1| is maximum. (22)

1. If r(S) < r(S j−1), then there exists an e ∈ S j−1\S so that e + S ∈ I.
By Observation 13 we get ã(S + e, e) ≤ 0 ≤ ã(S j−1, e). If e �= ei , then
e /∈ Ē1, j and so ã(S j−1, e) = ae = ã(S + e, e) proving ae = 0. Thus
S + e is also a root of aT x + αT y ≤ b contradicting (22). Otherwise we have
ã(S j−1, e) = ae +αi + · · ·+α j−1 = ã(S + e, e) = 0. As before S + e is also
root of aT x + αT y ≤ b, a contradiction to (21).

2. If r(S) > r(S j−1), then there exists an e ∈ S\S j−1 so that S j−1 + e ∈ I.
Certainly e /∈ Ē1, j , so as above it follows ae = 0. So S, (S j−1 + e) contradict
to assumption (22).

3. If r(S) = r(S j−1), thenwe know by Theorem 1 that there exists an e ∈ S\S j−1
so that S − e+ ei , S j−1 + e− ei ∈ I. Note, e /∈ Ē1, j , which implies ã(S, e) =
ae = ã(S j−1 + e − ei , e) as well as ã(S j−1, ei ) = aei + αi + · · · + α j−1 =
ã(S−e+ei , ei ). ApplyingObservation 13 twice then shows ã(S−e+ei , ei ) ≤
ã(S, e) = ã(S j−1+e−ei , e) ≤ ã(S j−1, ei ) = ã(S−e+ei , ei ) and so S−e+ei
is also a root of aT x + αT y ≤ b, contradicting (21). ��

Proof of Lemma 15 Let aT x + αT y ≤ b be a facet defining inequality of P Ē,K
M

with K = {2, . . . , k} that is not a positive multiple of one of (3)–(8). Assume, for
a contradiction, the assertion is false. Then there must exist an m ∈ {2, . . . , k} and
a minimum h ∈ {m, . . . , k} so that αm + · · · + αh < 0 and there exists a root S of
aT x+αT y ≤ b satisfying Ē1,m\{e j , em} = S∩ Ē1,m , j < m, and h = k or eh+1 /∈ S.
Furthermore, there exists a root Sh with Ē1,h ⊆ Sh and h = k or eh+1 /∈ S because
aT x + αT y ≤ b is not a positive multiple of (4). We may assume that

|S ∩ Sh | is maximum. (23)

1. If r(S) < r(Sh), then there exists an e ∈ Sh\S so that S + e ∈ I. We consider
four cases depending on e and apply Observation 13.
• If e /∈ Ē1,h , then ã(S+e, e) = ae and ã(Sh, e) = ae. Observation 13 shows
that ae = 0, so S + e is also a root of aT x + αT y ≤ b, contradicting (23).

• If e = em , then 0 ≥ ã(S+ em, em) = aem and 0 ≤ ã(Sh, em) = aem +αm +
· · · + αh , hence αm + · · · + αh ≥ 0, a contradiction.

• If e = e j , then we similarly get 0 ≥ ã(S+ e j , e j ) = ae j +α j +· · ·+αm−1
and 0 ≤ ã(Sh, e j ) = ae j + α j + · · · + αh , hence αm + · · · + αh ≥ 0, a
contradiction.

• If e = ei , m < i ≤ h, then 0 ≥ ã(S + ei , ei ) = aei and 0 ≤ ã(Sh, ei ) =
aei + αi + · · · + αh , hence we derive αi + · · · + αh ≥ 0. Because ei /∈ S
we know by minimality of h that αm + . . . + αi−1 ≥ 0. Together we have
αm + · · · + αh ≥ 0, a contradiction.

2. If r(S) > r(Sh), then there exists an e ∈ S\Sh so that Sh + e ∈ I. Note that
e /∈ Ē1,h+1 (if h < k), so by Observation 13 0 ≥ ã(Sh + e, e) = ae ≥ 0.
Therefore Sh + e is also a root of aT x + αT y ≤ b, contradicting (23).
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3. If r(S) = r(Sh), then by Theorem 1 there exists an e ∈ S\Sh so that S −
e + em, Sh + e − em ∈ I. By assumption h = k or e /∈ Ē1,h+1, thus we have
ã(S, e) = ae = ã(Sh + e− em, e) as well as ã(Sh, em) = aem +αm +· · ·+αh

and ã(S − e + em, em) = aem . We know by Observation 13 that aem = ã(S −
e+em, em) ≤ ã(S, e) = ã(Sh−em+e, e) ≤ ã(Sh, em) = aem +αm+· · ·+αh ,
so αm + · · · + αh ≥ 0, a contradiction. ��

Proof of Lemma 16 Let aT x + αT y ≤ b be a facet defining inequality of P Ē,K
M ,

K = {2, . . . , k}, satisfying the requirements defined above. Fix some m ∈ {2, . . . , k}
and suppose that the claim is false. Then there exists a maximum h ∈ {m, . . . , k} so
that αm + · · · + αh < 0. Choose a root S with Ē1,m\{e j , em} = S ∩ Ē1,m (exists
by Lemma 14) and a root Sh with Ē1,h ⊆ Sh , h = k or eh+1 /∈ Sh [exists because
aT x +αT y ≤ b is not a positive multiple of (3) and (4)] so that |S ∩ Sh | is maximum.
If eh+1 /∈ S or h = k, then the claim follows from Lemma 15, so we may assume
eh+1 ∈ S. We use similar arguments as in the previous proof.

1. If r(S) < r(Sh), then there is an e ∈ Sh\S so that S + e ∈ I. If additionally
e �= ei , m < i ≤ h, then all arguments of the previous proof apply (in
particular, we do not require the assumption of h beingminimal).We only have
to consider the case e = ei , m < i ≤ h. Then we get ã(S + ei , ei ) = aei and
ã(Sh, ei ) = aei +αi+· · ·+αh . So byObservation 13we haveαi+· · ·+αh ≥ 0.
Note that ei /∈ S by construction, so we may apply Lemma 15 with this S, j
and m and h = i − 1 to derive αm + · · · + αi−1 ≥ 0. Hence, we conclude that
αm + · · · + αh ≥ 0, a contradiction.

2. If r(S) > r(Sh), then there is an e ∈ S\Sh so that Sh + e ∈ I. The case
e �= eh+1 works as in the previous proof, so it remains e = eh+1. Then
ã(Sh + eh+1, eh+1) = aeh+1 + αh+1 + . . . + αo for some o ∈ {h + 1, . . . , k}
and ã(S, eh+1) = aeh+1 . Therefore, applying Observation 13 yields αh+1 +
· · ·+αo ≤ 0. Bymaximality of h we know αm+· · ·+αo ≥ 0 and can conclude
αm + · · · + αh ≥ 0, a contradiction.

3. If r(S) = r(Sh), then by Theorem 1 there exists an e ∈ S\Sh so that S −
e + em, Sh + e − em ∈ I. Note that e /∈ Ē1,h . We have ã(S, e) = ae =
ã(Sh−em+e, e), ã(Sh, em) = aem +αm+· · ·+αh and ã(S−e+em, em) = aem .
Observation 13 shows aem = ã(S − e + em, em) ≤ ã(S, e) = ã(Sh + e −
em, e) ≤ ã(Sh, em) = aem + αm + · · · + αh . This implies αm + . . . + αh ≥ 0,
a contradiction. ��

Proof of Observation 21 The polytope P Ē,K
M is full-dimensional with dimension

|E | + l. We prove this by explicitly constructing |E | + l + 1 independent sets whose
incidence vectors are affinely independent. Indeed, the sets ∅ ∈ I, {e} ∈ I for all e ∈ E
and {e1, . . . , ek j } ∈ I for all j = {1, . . . , l} have affinely independent incidence vec-
tors.

Similarly for the facet defining inequalities, we explicitly present the |E |+l respec-
tive sets.

• ykl ≥ 0 (3): We can use the independent sets of the dimension proof except for
{e1, . . . , ekl }.
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• yk j −yk j−1 ≤ 0, j = 2, . . . , l (4):We can use the independent sets of the dimension
proof except for {e1, . . . , ek j−1}.

• xĒ1,k1
− yk1 ≤ k1 − 1 (5): We use Ē1,k j for all j = 1, . . . , l, and Ē1,k1\{e} for

all e ∈ Ē1,k1 . By assumption (1) we know that for each e ∈ E\Ē1,k1 there exists
an f ∈ Ē1,k1 such that (Ē1,k1 + e) − f ∈ I. So we use one such set for each
e ∈ Ē\Ē1,k1 .

• xĒk j−1+1,k j
+ yk j−1 − yk j ≤ k j − k j−1, j = 2, . . . , l, (6): We use the independent

sets Ēk j−1+1,k j , Ēk j−1+1,k j + e for all e ∈ Ē1,k j−1 , and Ēk j−1+1,k j + Ē1,km for
all m ∈ {1, . . . , j − 2}, as well as Ē1,k j − e for all e ∈ Ēk j−1+1,k j . For each
e ∈ E\Ē1,k j there exists an f ∈ Ē1,k j such that Ē1,k j + e − f ∈ I. We use
one such set for each e ∈ E\Ē1,k j . Furthermore we take all the sets Ē1,km with
m ∈ { j, . . . , l}.

• −xei + yk j ≤ 0, j = 1, . . . , l, i = k j−1 + 1, . . . , k j , (7): We can use the indepen-
dent sets of the dimension proof except for {ei }.

• xe ≥ 0, e ∈ E\Ē (8): We can use the independent sets of the dimension proof
except for {e}.

Further note, constraints −xe ≤ 0, e ∈ Ē , are implied by (3), (4) and (7). ��
Proof of Observation 26 1. Let T ⊆ Ē . Then T is (Ē, {k})-separable with T1 =

T \{e} �= ∅ and T2 = {e} for each e ∈ T .
2. Let T ⊆ E, Ē ∩ T �= ∅ and α1,k(T \Ē) = 0. If T ⊆ Ē , we are in case 1.

Otherwise α1,k(T \Ē) = 0 and (A2) imply r(T \Ē) + |Ē | = r(T + Ē), hence
r(T \Ē) + |T ∩ Ē | = r(T ) (by r(T ) ≤ r(T \Ē) + r(T ∩ Ē) = r(T + Ē) + r(T ∩
Ē) − |Ē | ≤ r(T )). Furthermore, this implies α1,k(T ) = 0 as well. Consequently
T is (Ē, {k})-separable with T1 = T \Ē �= ∅ and T2 = T ∩ Ē . ��

Proof of Observation 28 We will prove this result by showing that if (P1k) and (P2k)
are not satisfied, we can easily derive the inequality as a combination of other inequali-
ties. So let T ⊆ E be a closed and (Ē, {k})-non-separable set that satisfies neither (P1k)
nor (P2k). Then either |Ē | = 2 and T = {e} for some e ∈ Ē or Ē ⊆ T and
α1,k(T \Ē) ≤ 1.

In the first case, because T is closed and (Ē, {k})-non-separable, the rank inequality
associated with T can be derived by adding the two constraints xĒ − y ≤ 1 and
−xē + y ≤ 0 for {ē} = Ē\{e}. In the second case, we can assume α1,k(T \Ē) = 1 by
Observation 26. Thenwe can derive (14) for T by adding (11) and (14) for T ′ := T \Ē .

��
Proof of Observation 29 Let T ⊆ E be a closed set with Ē ⊆ T and α1,k(T \Ē) =
r(T \Ē) + |Ē | − r(T ) ≥ 2 (by (A2)). Then we take a basis B of T \Ē and extend B
to a basis of T by adding elements of Ē . By the assumption on α1,k(T \Ē) at most
r(T ) − r(T \Ē) ≤ |Ē | − 2 elements are added to B. ��
Proof of Claim 1 in the Proof of Lemma 30 We want to prove that inequalities xT +
α1,k(T )y ≤ r(T ) for a closed and (Ē, {k})-non-separable set T ⊆ E satisfying (P1k)
or (P2k) are not implied by (12)–(13). For this, we determine in each of the cases an
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independent set J ∈ I such that J is a root of (14), but J is not a root of the considered
other constraint out of (11)–(13).

• xĒ − y ≤ |Ē | − 1 (11): We consider three cases.
|T ∩ Ē | < |Ē | − 1: Let B be a basis of T . Then we set J := B.
|T ∩ Ē | = |Ē | − 1: Observation 26 and (P1k) imply T � Ē and |T | ≥ 2.
Choose f ∈ T ∩ Ē , then r(T − f ) = r(T ) because otherwise T would be
(Ē, {k})-separable with T1 = { f } and T2 = T − f . Let B be a basis of T − f ,
then B is also a basis of T with |B ∩ Ē | ≤ |Ē | − 2. So we set J := B.
Ē ⊆ T : In this case, by (P2k) and Observation 29, there exists a basis B of T
such that |B ∩ Ē | ≤ |Ē | − 2. Then we set J := B.

• y − xe ≤ 0, e ∈ Ē (12): We consider four cases:
e ∈ T, Ē � T : Let B be a basis of T with e ∈ T . Then we have that
yB = 0, χ B

e = 1 and
∑

e∈T χ B
e + 0 = r(T ). So we use J := B.

e ∈ T, Ē ⊆ T : In this case we know by (P2k) and Observation 29 that there
exists a basis B of T with |B ∩ Ē | ≤ |Ē | − 2. If e ∈ B, we set J := B,
otherwise there exists an f ∈ B such that B + e − f ∈ I is a basis of T and
so we use J := B + e − f (note yB+e− f = 0).
e /∈ T, Ē � T + e: Let B be a basis of T . Then B + e =: J ∈ I because T is
closed.
e /∈ T, Ē ⊆ T + e: Observation 26 and (P1k) imply T � Ē , in particular
|T | ≥ 2. Choose f ∈ T ∩ Ē , then r(T − f ) = r(T ) because otherwise T
would be (Ē, {k})-separable with T1 = { f } and T2 = T − f . Let B be a basis
of T − f , then B is also a basis of T , and because T is closed we can use
J := B + e, which is a basis of T + e with Ē � J by the choice of f .

• −xe ≤ 0, e ∈ E\Ē (13): First, we consider the case e /∈ T . Let B be a basis of
T . By T closed we know B + e ∈ I and set J := B + e. Second, if e ∈ T , there
exists a basis B of T with e ∈ B and we can use J := B.

• −y ≤ 0 (13): We consider two cases. If Ē ⊆ T , there exists a basis B of T with
Ē ⊆ B (note Ē ∈ I) and so we use J := B. If, otherwise, Ē � T , let B be a basis
of T∪ Ē with Ē ⊂ B. Then by

∑
e∈T χ B

e +|Ē\T | = |B∩T |+|Ē\T | = |((B\Ē)∩
T )∪ Ē | = r(B) = r(T ∪ Ē)we get

∑
e∈T χ B

e +r(T )+|Ē\T |−r(T ∪ Ē) = r(T ).
So B is a root of xT + α1,k(T )y ≤ r(T ) and we can set J := B.

So xT + α1,k(T )y ≤ r(T ) is not a positive multiple of one of (11)–(13). This proves
Claim 1 in Lemma 30. ��
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