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Abstract Recently, Buchheim and Klein (Discrete Appl Math 177:34-52, 2014) sug-
gested to study polynomial-time solvable optimisation problems with linear objective
functions combined with exactly one additional quadratic monomial. They concen-
trated on special quadratic spanning tree or forest problems. We extend their results to
general matroid optimisation problems with a set of nested monomials in the objective
function. We study polytopes arising from the standard linearisation of the monomi-
als. Our results provide insight on the polyhedral structure of matroid optimisation
problems with arbitrary polynomial objective function, with a focus on separation
algorithms and strengthened cutting planes. Extending results by Edmonds (Comb
Struct Appl, 69-87, 1970) for the matroid polytope we present a complete descrip-
tion for the linearised polytope. Indeed, apart from the standard linearisation one
needs appropriately strengthened rank inequalities satisfying certain non-separability
conditions. The separation problem of these extended rank inequalities reduces to a
submodular function minimisation problem. In the case of exactly one additional non-
linear monomial we completely characterise the facetial structure of the associated
polytope.
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1 Introduction

Some combinatorial optimisation problems are well-understood in the sense that they
can be solved in polynomial time and the complete description of the associated
polytope is known. Examples are the spanning tree problem, the optimisation over
matroids or over the intersection of two matroids as well as the matching problem,
see e.g., [10,11,27]. Combinatorial optimisation problems with general polynomial
objective functions are often solved by introducing new variables for each mono-
mial, see e.g., [13,15,16,21,29] and considering the associated linear problem, for
the quadratic unconstrained case see e. g., [25]. Recently, the polyhedral structure of
linearised unconstrained polynomial O—1 problems has been considered in more detail,
see e. g., [6,8]. Approaches for solving some kinds of non-linear matroid optimization
problem can be found, e. g., in [1,7,23].

In this paper we study a simpler but related problem with the aim to better under-
stand the structure of polytopes arising from linearisations. Instead of considering an
arbitrary polynomial objective function, we restrict to linear terms and a set of nested
monomials or in a special case one additional monomial of arbitrary degree. Study-
ing the polynomially-solvable matroid optimisation problem, we will show that the
corresponding problem with this particular polynomial objective function is solvable
in polynomial time (see Remark 2). But although the well-known “separation equals
optimisation” result [18] then implies that the separation problem for our problem can
be solved in polynomial time, we want to find the exact complete description of the
associated linearised polytope and combinatorial separation algorithms for the newly
derived cutting planes.

Our main motivation is that this study can also be helpful for (matroid) prob-
lems with general linearised polynomial objective functions because the strengthened
inequalities for the case with linearised nested monomials usually remain valid for
the general case and the respective separation algorithms can be used as well (but in
most cases the facet defining inequalities of the case with few linearised monomials
will not remain facet defining for the general case). One advantage of our approach
in comparison to general linearisation techniques, like the procedure of Sherali and
Adams [28,29], is that we strengthen the constraints of the original linear problem
without introducing new variables for non-linear monomials that are not explicitly
contained in the objective function.

Focusing on exactly one additional non-linear monomial has first been suggested
by Buchheim and Klein [3,4] for the quadratic case. Results for the spanning tree
and forest problem with exactly one additional quadratic monomial can be found
in [3,4,12]. Buchheim and Klein also showed that the use of strengthened cutting
planes can reduce the number of nodes of a branch-and-cut tree in the solution of
general quadratic spanning tree problems significantly. Furthermore, bipartite and
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general matching problems with exactly one quadratic term have been in the focus of
research, see [19,20,30]. In this paper we extend the results for the quadratic forest
problems to general matroid optimisation problems with one monomial of arbitrary
degree and to a set of nested monomials to be described below.

In the following we will describe our setting in more detail. We start with a short
review of matroids and their associated polytopes [24,31]. In 1970 Edmonds [10]
presented a complete description of the polytope Py associated with a matroid M =
(E, J) (the convex hull over all incidence vectors of independent sets) with finite set
E and a family J of subsets of E satisfying the three matroid properties

M1) ¥ e,
M2) Tel,SCT=Sel,
M3) S, T €J,|S|<|T|=3eecT\SwithSU{e} €.

A pair M = (E, J) satisfying only (M1) and (M2) is called independence system. We
denote by P(X) the power set of a finite set X. Then the rank functionr: P(E) — INy
of an independence system M = (E, J) is defined as r(T) = max{|B|: BC T, B €
J}. Forsome T C E aset Bwith B C T,B € Jand r(T) = |B]| is called basis (of
T). It is well known that the rank function of a matroid has the following properties
(seee.g., [24,31]):

(R1) subcardinality: ¥ X C E: r(X) < |X|,
(R2) monotonicity:¥X CY C E: r(X) <r(Y),
(R3) submodularity:VX,Y CE: r(XNY)+r(XUY) <r(X)+r).

Furthermore, we will often make use of the following well-known theorem.

Theorem 1 (Brualdi [2], also Strong Basis Exchange Theorem) Ler S, S’ be two
different bases of a matroid M. Then for any e € S\S' there is an f € S'\S so that
(S\{eH U {f}, (S\{f}) U {e} are both bases of M.

For further results on matroid theory we refer the reader to the excellent books [24,31].

Let M = (E,J) be a matroid with rank function r: P(E) — INg and E :=
{er,...,ex) € E,|E| > 2, be a set W_ith cardinality k. We set E,‘,j = {ei,....ej}
foralli,j € {1,...,k},i < j, and E1 := ¢. Throughout the paper we assume,
w. L. 0. g., that the following conditions are satisfied:

VecE: {e}e€J and E €. (D)

This will allow us to consider full-dimensional polytopes later on. In the following we
assume that M is given via a rank oracle where a rank oracle returns the rank r (X) for
arbitrary sets X C E. Furthermore, we use the following notation. Let §, T € E and
let e € E. If the meaning is clear from the context, we will often simply write S + T
and S — T instead of SUT and S\T as well as S + e and S — e instead of S U {e} and
S\{e}.

We can now state our optimisation problem. Given anindex set K := {k1, ..., k;} €
{2,...,k}, k1 < --- < kj = k, that contains the degrees of the (non-linear) nested
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Fig. 1 Visualisation of the structure of the objective function of (OPT-K). In this example we have E =
{fi,..., fys}Uler,...,eg}, E ={ey1,...,eg}aswellasl =4, K = {2, 5, 6, 8}. The elements contained
in each ellipse correspond to one of the four non-linear nested monomials

monomials and cost functions ¢: E — R and ¢: K — R we consider the maximi-
sation problem

kj

I
maximise { D cle) xe+ Y dlk)) - (l_[xei),x € Py N{0, 1}E} (OPT-K)

ecE j=l1 i=1

where Py is the polytope that is associated with the matroid M. So E contains all
elements of E that belong to some non-linear monomial. Furthermore we set ko := 0.
An important special case of (OPT-K) is the problem

k
maximise { Zc(e) - Xe + c(k) - (erl),x e Py N {0, I}E} (OPT-k)

eeE i=1

where K = {k} in (OPT-K) with exactly one non-linear monomial. A visualisation
of the structure of the objective function can be found in Fig. 1.

Although we are mainly interested in the structure of the associated polytopes, we
first note that these problems can be solved in polynomial time. This motivates us by
the “separation equals optimisation” result to detect the complete descriptions of the
associated linearised polytopes.

Remark 2 The optimisation problem (OPT-K) can be solved in polynomial time.

Proof We solve (OPT-K) with K = {ky, ..., k;} in two main steps. First, we consider
the [ cases that ]_[lj”‘:1 xe; = 0, but ];h;f xe; = 1forh € {1,...,1}. So the contri-
bution of the non-linear monomial is fixed in these cases. Foreach i € {1, ...,[} we

determine a solution X € J with E_‘lykh—l C X}, such thatnot all kj, —kj, | elements of
Ej,_,+1.k, are contained in X ;, and that has maximum objective value with respect to c.
This can be done by solving a matroid intersection problem of matroid M and a matroid
M, = (E,J,)with], ={X C E: | XNE,_ +1.k,| < kn —kn_1— l]}. "ll"he objective
value of problem (OPT-K) evaluated for X} equals ), X; c(e) + Z;;l ¢(k;) in this
case. Furthermore we solve one additional matroid optimisation problem in order to

. - k,
determine a set X;'\ | € J, E1, € X[\ (so Hjlzl Xe; = 1) such that ZEGX,*H c(e)
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Matroid optimisation with nested monomials 421

is maximised. The objective value of problem (OPT-K) evaluated for Xl*+ | is then

Yeexz,, €(€) + 3y é(k;). Atthe end we take a set Xj; with o € {1, 1+ 1) with
maximum objective value. O

Because (OPT-k) is a special case of (OPT-K) the problem (OPT-k) can be solved
by one matroid optimisation and one matroid intersection problem. Alternatively one
can solve (OPT-K) by comparing the optimal values of k 4+ 1 matroid optimisation
problems.
Our aim is to present a complete description of the linearised polytopes
_ k;
PAI,:;’K 1= conv {(x, y) € {0, I}EH(: x € Py, Y = nxei,j =1, ...,l},
i=1
k

Pﬁ’k ;= conv {(x, y) € {0, 1}E+k: x € Py,y= erl. }
i=1
Note, if K = {k}, we often simply write y instead of yj or yx,.
Starting point of our work is a result of Edmonds on the polytope P, associated
with a matroid M. Before repeating this result we need some notation. For any § C E
we define the characteristic vector x5 € {0, 1}£ by

s 1, ees,
Xe =
0, e¢sS,

(in slight abuse of notation, we often do not distinguish between the characteristic
vector of an independent set J € J and the set J). Then the polytope associated with
the matroid M is

PM=conv{XSe{0,1}E: SefJ].

Theorem 3 (Edmonds [10]) Let M be a matroid with rank function r: P(E) — Ny,
then

PMz{xeRE: erfr(T),TgE}.

ecT

The inequalities
xr <r(T), TCE @)

with x7 := )7 X, are often called rank constraints/inequalities. Together with the
non-negativity constraints x, > 0, e € E, they form a complete description of Py;.
Edmonds also characterised which sets T lead to facet defining inequalities of Py,
details are given in Sect. 3.

‘The paper is structured as follows. In Sect. 2 we present complete descriptions of

Pf,’k and P,S’K. A main part of the proof consists of showing that apart from the
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standard linearisation, i.e., all constraints that are needed in the unconstrained case
(0 = P(E)) as well, all coefficients of facet defining inequalities alx + ol y < bof

the polytopes are non-negative. We start with proving this result for Pfl’k and extend
this to PE’K with K = {2, ..., k}. Based on the complete description in this case,
we show that it is possible to derive a complete description of PA];:,’K for arbitrary sets

K C {2,...,k}. In Sect. 3 we study the facetial structure of PZS’K. So we have a
closer look at the so called rrivial facets and give some necessary conditions for some

specially lifted rank inequalities to be facet defining for PE’K . For Pfl’k we even fully

characterise all facets. In Sect. 4 we show that the separation problem for PfI’K can be
solved in strongly polynomial time by complete enumeration of the trivial facets and
by submodular function minimisation. Finally, in Sect. 5, we describe further possible
extensions of our results and give suggestions for future work. Some rather technical
proofs are deferred to the “Appendix”.

2 Complete description of PAI;’K

In this section we provide a complete description of P/f]’K for arbitrary sets K C
{2, ..., k}. Before we present a formulation of (OPT-K) we need some definitions.

Definition 4 Let T C E. The closure of set T is the set
c(T):=TU{eeE: r(T)=r(T +e)}.

The set T is called closed if T = cl(T).

Later we will need the following simple result that follows directly from the last
definition and the submodularity of the rank function:

Observation 5 Let T C E andlete € cI(T). Thenr(T 4+ S) = r(T + S + e) for all
SCE.

A proof of Observation 5 can be found in the “Appendix”.

We will present strengthened versions of the rank inequalities (2). In order to express
the coefficients of the y-variables corresponding to the linearised monomials we intro-
duce the following objects:

Definition 6 For a matroid M = (E, J) with rank function r we define a: P(E) —
]NS with «(T) = (1 (T), ..., ar(T)) for T C E where

o (T) :={e;\T|+r(T +E i) —r(T+E;), i=1,....k

Furthermore we set ap(T) := 0 and write «; ;(T) = Zn:i an(T) for i, j €
{1,...,k},i <.
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€4 1 €2 €4 1 e
QQ(T) 0 OQ(T) 1 QQ(T) 0 OQ(T) 1
(13(T) 1 Oég(T) 0 (13(T) 1 Ozg(T) 1
(14(T) 1 Oz4(T) 1 (14(T) 0 Oz4(T) 1

Fig. 2 Tllustration of a(-). We consider the graphical matroid on a complete graph G = (V, E) with six

nodes and E = {e], €3, e3, e4}. The edges of T C E are drawn solid and the edges of E are drawn with
dotted lines. All other edges are omitted in the picture for the sake of clarity. Note that a1 (7)) = 0 in all
four cases because 7 is closed

The «; (T) for some T C E can be interpreted in the following way. First, if¢; € T,
then «; (T) = 0, because T+El,,-,1 = T+E1,,-. Moreover, ife; ¢ T,thencw;(T) = 1
if and only ifr(T+El,i_1) = r(T+E_1,,<), i.e.,if and only if the rank does not increase
even if the second set strictly contains the first one. Figure 2 illustrates «; (T") for some
sets T C E for the graphical matroid on a complete graph G = (V, E) with six nodes
and E = {ey, e, e3, e4}. The edges of T C E are drawn solid and the edges of E are
drawn with dotted lines.
The following results follow directly from the definition of ¢; (-).

Observation7 Let T C E.

(A1) IfT is closed, a1 (T) = 0.

(A2) We have ay j(T) = |E1 \T|+r(T) —r(T + E\ ) forall j € {1,... k.
(A3) Leti € {1,...,k}and e € cI(T)\{e;}. Then o;(T) = o; (T + e).

(A4) Leti €{l,...,k}ande; € cI(T)\T. Then o;(T) =1 = o; (T +¢;) + 1.

We deferred the proof of this result to the “Appendix”.
Studying (OPT-K) we define for each set S € FE the vector yS = (yksl, R y,fl)
where the jth (linearised) monomial term of S is defined as

ylf _1L[XS_ {17 E_l,kj gSv
L= 6 = -
J i 0 El,kj g S,

)

for j € {1,...,1}. Note that for each j € {1,...,l}_,S C E,e € E, we have

S—e N S—e S 2 E.K .
Vi, = Vi, as well as Vi, = ife € Eg;41,k- S0 Py, can also be written as

PLK = conv{(xs, y$) e {0, 1EHK . 5 ¢ fJ} .

With these definitions we are able to give a formulation of (OPT-K):
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Lemma 8 A formulation of (OPT-K) is given by:

1
maximise Z c(e)x, + Z c(kj)yk;

ecE j=1
-y <0, 3)
ykj _ykj,I SO, ]6{2791}1 (4)
)CE‘H{1 — Vi <k —1, 5)
xEkj,1+1,kj+ykf—l —ij Skj_kj—lv jE{Z,...,l}, (6)
Xy <0, jell ) ie koL k), @
—x, <0, ecE\E, ®)
)
xr+ Y o1k, (Dyx, <r(T), T CE, ©)
j=1
(x.y) € {0, FHK (10)
Note, we often denote (yk,, ..., yi) by y.

Proof Constraints (3)—(7) are the standard linearisation of the non-linear monomials in
this case and (8) are the non-negativity conditions for the x-variables. By the integrality
conditions (10) and the complete description of the matroid polytope Py in Theorem 3
it remains to show the validity of the strengthened rank inequalities (9). Let T C E
be an arbitrary set and let S € J. If Eq, ¢ S, then the validity follows from the
validity of (2) for Pj; because y,fj =O0forall j € {1,...,1}. So let El‘ki C § for

somei € {1,...,[} with El,km 51 S in the case i < [. Then by (A2) we have

!

DX+ D ek (DY = 1SN TI+Ev \TI +r(T) = r(T U E1g,)

eeT j=1 =14, (T)

(by (SNT) N (Ey 4, \T) =) = (SN T) U (Ey g, \T)| — (T U Ey ;) +r(T)
(by S €3, Erg, C8) =r((SNT)U(E14\T)) = r(T UEj ) +r(T)

by (SNTYU(E1x\T)) ST U E1 ) < r(TUE k) — r(TUEy g,) 4+ r(T)=r(T).
]

Furthermore, we want to note that the non-negativity constraints of the x- and the
y-variables in (3) and (8) are implied by the integrality conditions (10). We included
them in the formulation because our aim is to prove that (3)—(9) completely describe
the associated polytope.

A visualisation of the extended rank inequalities (9) on the example of a graphical
matroid is given in Fig. 3.
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’61 e
-, ......... | T . . (s

fi fa 52; f3

T ={fi,f2, 3}, E ={e1,e2,e3,e4} T ={f1,f2}, E={e1, 2,3} T ={f1, f2, 3}, E = {e1, e2,e3}
case K = {4}: case K = {3}: case K = {2}:

Ty +xpy Ty 2ys <2 Tp +xpy +2ys <2 Tp +xp, fxp <3

case K = {3,4}: case K = {2,3}: case K = {2,3}:

xp ap, fap tys+ys <2 Tp txp Y2 +ys <2 Tyt T, T +yYs <3

Fig. 3 Visualisation of the extended rank inequalities (9). We consider the graphical matroid on an undi-
rected graph with six nodes with different sets K for a given E. The set T is visualised with bold lines, the
edges associated with E with dotted lines. All other edges are omitted in the pictures for the sake of clarity.
Note, all sets T are closed, see also Remark 10

Remark 9 With the last result the formulation of (OPT-k) reduces to

maximise Z cle)x, +ck)y

ecE
xg—y <I|E|-1, (11)
—Xe+y<0, eckE, (12)
x>0, y>0, (13)
xr +oa (T)y <r(T), T CE, (14)
X,y binary.

Remark 10 In the formulation and the complete description of PAI:‘;’K and P{j}’k it
is sufficient to restrict to closed sets 7 C E for the extended rank inequalities (9)
and (14), respectively, i.e.,

I
xr+ Y a1k, (D, <r(T), T CE (T)=T, (15)
Jj=1

for arbitrary sets K and in the case K = {k} we can restrict to
xr+a1 (My <r(T), TCE,c(T)=T. (16)

For proving this results, let 7 C E be an arbitrary set. Then we define 7 := cl(T)\T.
By (A3) and (A4) we get ; (T) = o; (cl(T)) + |{e;}\T| foralli = 1, ..., k. For this,
note that for some arbitrary i € {1, ..., k} wehave o; (T) = o; (T +e¢) forsomee € E
aslongase #¢; and o; (T) = 1l if ¢; € T.Let (%, y) be a point that satisfies (3)—(8)
as well as (15), then

@ Springer



426 A. Fischer et al.

!
Fr+ ) a1k (T3
j=1
! !
S X7+ Xfag — Z |T N Ex;_ 14| 35, + Zak_,-_.ﬂ,k_,-(T)?k,-
j=1 =1

=0by (7)
!
=Xt +Xppt+ Xp e+ Zak,-,lﬂ,k,- (cl(T)) ¥k,
N — j:l —_—
>0by (8) =ok;_ 1k (T)
—ITﬁEk_,_|+1,kj\
!
_ _ (15
< Xay + ) ok, (T, < r(el(T) = r(T).
j=1

So all extended rank inequalities (9) for non-closed sets T € E are implied by (3)—(8)
and (15).

In the remaining section we will prove that (3)~(8) and (15) are a complete descrip-
tion of PAI;:I’K and therefore that (11)—(13) and (16) are a complete description of
Pfl’k. The proof for Pfl’K consists of three steps. First, we consider the special case
K = {2,...,k}. Indeed one can show that then each facet defining inequality of
PA];:,’K that is not a positive multiple of one of (3)—(8) is an inequality of the type
a’x +a’y < bwitha > 0, > 0. This result then allows to derive the complete
description of P,g’ K in this special case. Finally, we consider the complete description
of Plfl’K for arbitrary sets K C {2, ..., k}. In the special case of [ = 2 and J = P(E)
(then we have an unconstrained polynomial 0—1 problem) our linearisation of the non-
linear monomials leads to a complete description of the associated polytope, which

can be found in [6] as well.
We start with an observation about the structure of facet defining inequalities a” x +

aly < bof P,fl’K that are not a positive multiple of one of (3)—(8). Note, (7) of
the standard linearisation and the non-negativity constraints (8) will suffice to prove
the desired structural property. Nonetheless will always refer to the whole standard
linearisation (and the non-negativity constraints).

Observation 11 Let a’ x + a”y < b be a facet defining inequality of PJS’K that is
not a positive multiple of one of (3)—(8). Then a > 0.

Before proving this result we want to mention that in several proofs throughout the
paper we use the following well-known result from polyhedral combinatorics. Suppose

that a”x + Ty < b is a facet-defining inequality of PL’X that is not a positive

multiple of the valid inequality @’ x + &’ y= b. Then there exists an S € J such that
al xS +alyS =b,buta” x5 +a’lyS < b.
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Proof Leta® x+a”y < b be afacet defining inequality of PE’K that is not a positive
multiple of one of (3)—(8). We consider two cases.

1. a(e) < Oforsomee € E\E:Becausea’ x+a”y < bisnota positive multiple
of x, > 0 (8), there exists a set S € J with e € S and aTxS + ocTyS = b.
Assumption e ¢ E implies y,f; = y,fi_e foralli € {1,...,[},thusb =a” x5+
alyS < a® x57¢ + ol yS—¢. This contradicts the validity of a’ x +aTy < b.

2. a(e) < 0 for some e = ¢; € E: Because a’ x + o’y < b is not a positive
multiple of yi, < x, form € {1,... I} suchthati € {ky—1 +1,...,ky}
[see (7)], there exists some S € J withe € S, y,fm =0anda’ xS +alyS =b.

With 0 = y,fj = y,fj—f forall j € {m,...,I} and y,fj = y,fj—f forall j €

{1,...,m — 1} by the choice of e € Ekm,l-s-l,km, this implies b = aTXS +
alyS < aT x57¢ + T y5=¢, again a contraction to validity. O

Next, we consider the coefficients of the y-variables of facet defining inequalities

a”x+a’y < b. Although the result for P will be implied by the results for Pi*
we will present next the proof in detail because it is much shorter than in the general
case and already shows the main ideas.

Lemma 12 Each facet defining inequality a” x +ay < b of Pﬁk;’k that is not a positive
multiple of one of (11)—(13) satisfies a > 0.

Proof Let al x + ay < b be a facet defining inequality of P,g*k that is not a positive
multiple of one of (11)—(13). By Observation 11 we may assume a > 0. Because
a’x + ay < b is not a positive multiple of Xp—y =< |E| — 1 [(see (11)] there
exists an § € J with |E\S| > 2 (so (XE)TXg —yS < |E| =1 and a” x5 = b.
Similarly, because alx + ay < b is not a positive multiple of y > 0 [see (13)], there
existsan &’ € Jwith E € 8" (so y$ > 0)and a” x5 + oy’ = aT x5 +a = b.
SetT := {e € E\E: a, > 0} U (SN E). We may assume S € T (otherwise we
can use the set S N T instead of S because a > 0 implies a, = O for all e € S\T
and so aTxS + ocyS = aTXS = aTXSﬂT = b in this case) and r(S) = r(T)
(otherwise there would be an ¢ € T\S (and so ¢ ¢ E) with S 4+ ¢ € J, implying
al x5t 4 aySte = aT x5t = aT xS + a, > a” x5 = b, a contradiction to the
validity of a” x+ay < b). Analogously we may assume S’ € TUE (similarly to above
we could otherwise use S'N(TUE) instead of $") as well as r(S') = r(TUE) (similarly
to above we would otherwise get a contradiction to the validity of a” x +ay < b). We
distinguish two cases.

1. #(T) < r(TUE). Thenthere existsane € E\T withr(T +e) > r(T) = r(S),
s0S+e € Jwith E g (S+e) by the choice of S. Therefore aTXSJre < b while
aTXS = b. With a, > 0 we get a, = 0. But since ys/ =landec EC S,
this implies y5 ¢ = 0 and so a” x5 = a” x5 < b = a” x5 + . This
proves o > 0.

2. r(T) = r(TUE). By assumption S, S’ are both bases of 7U E. We may assume
that |S N S| is maximum. By Theorem 1 there exists for each f € S’\S an
eec S\Ssothat S—e+ f, S +e— f € J. Because yS—¢tf = 0 and
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al xS=etf < b =a" xS we geta, > ar. We choose f € (S'\S)NE # @,
g f

then y$ ¢~/ = 0andsoa” x5 *+~/ < b =a” x% +aimplyinga, < ay+a.

This proves o > 0. O

Now, we extend the previous result to PAI,:;’K in the case K = {2, ..., k}. This is
done in three main steps, which make use of the following observation. For further
details and the complete, rather technical proofs we refer to the “Appendix”.

Observation 13 Let a’ x + oy < b be a facet defining inequality of PA]f;’K with
K =1{2,...,k} andlet S be aroot of it, i. e., the incidence vector XS associated with
S satisfies a x5 +al yS = b. Let X C E. We define

Ihs(X) :=a’ ¥ +a”y* and a(X,e):=1hs(X) —lhs(X —¢), ¢ € X.

Then the following conditions are satisfied.:

(1) foralle € S: a(S,e) >0,
(ii) foralle ¢ SwithS+ee€J: a(S+e,e) <0,
(iii) foralle e S, f ¢ SwithS —e+ f €J: a(S,e) >a(S—e+ f, f).

Proof Immediately clear because otherwise a’ x + a’ y < b would not be valid for
the sets S —e, S +eor S — e + f, respectively. O

First one can show that for each facet defining inequality of Pﬁ’ K (K =1{2,...,k})
there exists a root with a certain structure.

Lemma 14 Let a’ x + o’y < b be a facet defining inequality of PE’K with K =
{2,...,k} that is not a positive multiple of one of (3)—(8) and let m € {2,...,k}.
Then there exists a root S of a’ x +aly < b with the structure

E_l,m\{ej,em} =85N El,mforsomej efl,....m—1}.

Lemma 14 implies the non-negativity of particular sums of coefficients of facet defin-
ing inequalities satisfying certain structures:

Lemma 15 Let a’ x + o’y < b be a facet defining inequality of PAIf;’K with K =
{2, ..., k} that is not a positive multiple of one of (3)—(8). Letm € {2, ..., k} so that
there is a root S ofaTx + aTy < b satisfying S N El,m = El,m\{ej, em) for some
je{l,....m— 1} Thenay, +---+ oy > 0forallh € {m,...,k} withh = k or
with ep41 ¢ S.

This leads to the following result.
Lemma 16 Letr a”x + aTy < b be a facet defining inequality of PA},;;’K with K =
{2, ..., k} that is not a positive multiple of one of (3)—(8). Then oy, +--- + 0, > 0
forallm,h e {2,...,k},m <h.

The following corollary summarises Observation 11, Lemmas 15 and 16.
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Corollary 17 Let a’ x + aTy < b be a facet defining inequality of PAI,;;’K with K =
{2, ..., k}, that is not a positive multiple of one of (3)—~(8). Then a > 0 and o > 0.

Proof Letal x +aTy < b be afacet defining inequality of PE’K withK ={2,...,k}
satisfying the requirements. Then a > 0 follows from Observation 11 and ¢ > 0
follows from Lemma 16 for m = h. O

This allows us to prove our main result for PA]f;’K in the case K = {2, ..., k}.

Theorem 18 The inequalities (3)—(8) and (15) are a complete description of PE’K,
K=1{2,...,k}.

Proof Let alx + aTy < b be a facet defining inequality of PAI,’;’K, K ={2,...,k},
that is not a positive multiple of one of (3)—(8) and (15). Then Corollary 17 implies
a>0anda >0.LetT :={e € E: a, >0}and T := cl(T").

If we can prove for some S € Jwitha” x5 +a” yS = bthatthereexistsane € 7'\ S
sothat S +e € I, thenal x5t +al ySt¢ > 4T xS +aTyS = b, hence the inequality
would not be valid, a contradiction. We distinguish two cases.

We consider the constraint (15) associated with 7. Because a’ x + aTy <bis
not a positive multiple of this constraint, there exists an S € J with }_,.; x5 +

lezl akj_ﬁl,kj(T)y,fj < r(T) and a” x5 + «?yS = b. In particular, /(SN T) =
Y oeeT Xf implies

1
FSNT) + Y oy 41Dy < r(D). (17)
j=1

Let7 € {1,...,k} be maximum so that y; = 1 < i < 1 (I = | means that
Ei2 € S). Note that 7 > 1 implies E;; € Sand i < k implies £y ;,; ¢ S as well.
We first consider the case 7 > 1. Then we may assume S € 7' U E 1.; (otherwise
use § == SN (T'UE;) withal x5 +alyS = al x5 + Ty = b). Note that
alyS = a;;(T), so (17) and (A2) imply r(SNT) < r(T U Ey;) — |E;;\T|.
Therefore

r(S) =r(SNT)+|S\T| < r(T UE;)—|E|;\T| + [S\T]

=Oby El,igSETUEI_i
=r(TUE ;) =r(T'"UE}).

Here the last equation follows from Observation 5. So there exists an e € (7' U
E;)\S = T'\S with S + e € J, which contradicts the validity of a’ x + «”y < b.
It remains to consider the case 7 = 1. Butthen y$ = 0and we know with §’ := SNT’
that r(S") < r(SNT) < r(T) = r(T’) by (17). Hence there exists an e € T'\ S’ with
S’ + e € J, a contradiction. O
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Remark 19 If we consider (OPT-k), i.e., (OPT-K) with K = {k}, the proof of The-
orem 18 in combination Wlth Lemma 12 also shows that (11)—(13) and (16) define a

complete description of P ¥ because setting I = k implies o) x (T') = Z —1a;(T).

In our last step we extend the previous results to the complete description of PE‘K
with arbitrary K = {ky, ..., k} S {2,...,k}.

Theorem 20 Inequalities (3)—(8) and (15) are a complete description for PAI,::[’K with
arbitrary set K = {ky, ..., k} C{2,...,k}.

Proof We prove this result by induction. We know that (3)—(8) and (15) are a complete
description for PE’K if K =1{2,...,k}.
Let j € {1,...,l}sothateither j > 2andk; —k;_1 > 2or j = l and k1 > 2. Set

kii+1,  j=2,
2, j=1.

It will be convenient throughout the proof to identify formally y; = x.,. We show
that the complete description for K can be derived from the complete description for
PA];:,’K/ with K’ = K U {12}. For this note that our aim is to prove that a point (x, y)
satisfying (3)—(8) as well as (15) for (OPT-K) can be written as a convex combination
of incidence vectors (x- and y-part) of independent sets of M. The idea is now to extend

(x, y) by one entry that corresponds to the one extra variable in K " If the enlarged

vector is feasible for PM , then the complete description for P ylelds a convex
combination of incidence vectors (x- and y-part) of independent sets. Deleting the extra

component of these vectors then yields the desired convex combination for PA‘,EI’K
Let (x,y) be a point that satisfies (3)—(8) as well as (15) for (OPT-K). We

want to extend (X, y) by component y; in order to get a feasible point (X, y) :=

(X, Yhys o oes ykj_l, )7]2, yk‘,, .o YK) € PAlf;’K/. Indeed, we prove next that )'1]2 =

max{yk;, y;_; + Xep — 1} leads to a feasible point.

Casel If Vi, + i"zz <1+ yk‘,. we set y; 1= yk_,.. Then (6) is satisfied. It remains to

check if the point (X, y) is feasible for PE’K,, because then the desired state-
ment immediately follows from the complete description of the known case.
Constraints (3)—(8) are satisfied by assumption, by the feasibility of (x, y) for
(OPT-K) and by the fact thatx, < 1,e € E [by (15)]. For (15)withT C E, T

closed, we just split o k_(T)yk,. into o ((T)y; + oG k_(T)ykj (note, in the
sKj g ) ]

case k = 2 the coefficient of Vi is ) p(T), but T' closed implies o (T) = 0
and so o) ¢ (T) = ap ;(T)).

Case 2 Otherwise we set y; 1= y;_| + Xep — 1 > Ji,. Then the point (X, y) might
possibly violate (15) of the formulation of PAI;:,’K/. All other constraints of the

formulation of PAI,;;‘K/ [(3)—(8)] remain satisfied by this definition of y;, either
trivially or because
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kj k;

J J
D Kot Ee ATy < Stki—kio1 & Y Fe 3 <k, + kj— k).
i=k+1 =fkj+1 i=k+1

Let T C E,cl(T) = T, (see also Remark 10) be a closed set and consider
the associated rank constraint (15). If az(7) = 0, then the validity of this

rank constraint for P}S’K follows directly from the validity of the associ-

ated rank constraint for P,E’K. So we may assume o3 (7)) = 1. This implies
r(T+E ; )=r(T+E pandwithT :=T +¢;

(T )=t w(T) = 1=r(T" + E ) + r(T+E1 ) > 0,m=1,..., k-1,
@) i (TH=ay j (D=1=r(T+E, )+r(T+E ;_=L1. (18)

Let us define y; := y; — Yk, = 0fori =1,..., j — 2. Then we can write

Ve =YVt 2;1;2[ Vm by the definition of k and using the method of differ-
ences. Using these relations we get for the rank constraint associated with T
for K’

Jj—1 l
T+ ) etk (DI + () Fp o (D 5k + Y o416 (T T,
N

i=1 —_— =l T
=1 :a]2+11kj 1) :ak’;lﬂ‘ki(T)
j—2
=Fr+ o (1) 5poy ) ek (D i+ 5 o, (T) 3,
—_— i=1 T —_—
=0 (T)-1 s (1) =ap (T
)

I
+ Z ok +1.4 (T Ik,
i=j+1

and using y; = —y;_; + Xep — 1 and the definition of the y,

1
)ZT/ + Zaki_1+l,ki(T/)yki -1

i=1

IA

[
= Xeurr + foki_lﬂ,k; TNy — 1 < r(el(T) =1 =r(T).

i=1

For the last step we used that each rank constraint associated with 7”7 is always
dominated by the rank constraint associated with cI(T”) by Remark 10. So the

result follows again by the known complete description of PE’K B O

So the complete description of PE’ K for arbitrary sets K C {2, ..., k} caneasily be

derived from the complete description of Pfl’K/ with K’ = {2, ..., k} by adapting the
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constraints of the standard linearisation and by adjusting the extended rank inequalities.
Indeed, the coefficient of yy;, kj € K, equals the sum of the coefficients of variables
Yi,i =kj_1+1,..., kj, inthe problem with K ’. Although feasibility of the extended
rank inequalities is trivially preserved by this approach, it is remarkable that we even

get the complete description of PE’K in this way.

3 Facetial structure of Pﬁ’K and Pﬁ’k

The polytope Py of some matroid M is well-understood. In 1970 Edmonds [10]
presented a complete description of Py and characterised its facetial structure, see

also [17]. We will extend these results to the polytopes P,g’k and PA‘,EI’K and study their
facetial structures in more detail. This includes the dimension of the polytopes as well
as results on the facetness of the constraints of the standard linearisation. Furthermore,
we have a closer look at the extended rank inequalities (9). If a closed set 7' does not
satisfy certain non-separability conditions (to be defined below) the associated rank

inequality cannot be facet defining for PE’K. For P,g’k we even exactly characterise
the facet defining inequalities and provide a minimal description.

We start with studying the dimension and the trivial facets of Pfl’K . One can easily
prove the following result:

Observation 21 Under the assumptions (1) the polytope PA];:;’K is full-dimensional.
The inequalities (3)—(8) define facets of PIEI’K.

Details of the proof are deferred to the “Appendix”. Recent studies on the facial
structure of linearisations of unconstrained 0—1 polynomial optimisation problems
can be found, e. g., in [6,8].

In the next step we consider the extended rank inequalities (14). These are extensions
of the rank inequalities (2). Before repeating results on the facetness of (2) for Py; we
need a definition, which will be extended to our setting later on.

Definition 22 Let T C E. A set T is called separable if there exists a partition
WT, ST, TYUT, =T,T N T, = @ such that r(T7) + r(T2) = r(T), otherwise it
is called non-separable.

Indeed, all closed and non-separable sets 7 C E lead to facet defining rank inequali-
ties (2) of Py [10,17]. The next proposition shows that they also lead to facet defining
inequalities (9) of PAE,;’K whenever a; 41k;(T) > Oforall j € {1,...,1}.
Proposition 23 Let T C E be a closed and non-separable set associated with a facet
defining inequality (2) of Py. If ok, +1k;(T) > O forall j € {1,...,1}, then the
inequality (9) is facet defining for PfI’K, too.

Proof Because xy < r(T) is facet defining for Py, there exist d := dim Py, affinely
independent S; € J, S; C T with r(S;) = r(T) fori =1, ..., d. By our assumption

ak;_+14;(T) > 0 forall j e {I,...,1}, we know Ekj_1+1,k_,- ¢ T forall j €
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{1,...,1}, hence Ekj,1+1,kj ,@ S; foralli € {1,...,d},j €{l,...,1}. If we choose
for each j € {1,...,l} aset S; € J satisfying the two properties Elykj cs§; c
T+ Eq and |S;| =r(S;) =r(T + El’kj) (such a set exists because we can extend
Eyx; to abasis of T + Evk; foreach j € {1, ...,[}), the left-hand side of

1 A
S; M
X7+ ik (Dy <r(T)

i=l
computes to

r($jNT) +ar(T) =r(T + Eyg) — IS\T| + a1 4,(T)
=r(T + El,kj) - |E_1,kj\T| + o (1) =rT)

by (A2). So there exist d + [ affinely independent sets that are roots of (9), which
proves the statement. O

Considering the first type of extended subtour elimination constraints (constraints
(5) in [4]) for the spanning forest problem with one linearised quadratic monomial in
[4], the facetness of these inequalities follows directly from the previous result. But
as already observed by Buchheim and Klein [4] for this problem (see constraints (6)

in [4]), not all facet defining inequalities of Pﬁ’K are directly related to facet defining
inequalities of Py. So we need further properties that allow us to describe the facetial

E.K
structure of P, .

Deﬁniti(_)n 24 LetT C Ebeclosedand K = {ky,...,k} C {2,...,k}. Aset T is
called (E, K)-separableifthereexists apartition 71, 7o C T, T1NT, = B3, T1UT, =T
with

r(T) =r(T) +r(T2), and ok;_+14;(T) = ag;_ 41,4, (T1) + k;_+1.4; (T2),
=1, (19)

otherwise it is called (E, K)-non-separable.

Note, the definition of separability by Edmonds [10] only included the first equation
of the last definition (see Definition 22). A visualisation of the new setting is given in
Fig. 4.

A closed set T C E thatis (E, K)-separable does not lead to a facet defining rank

inequality (9) of Pﬁ’K .

Observation 25 Let (9) be a facet defining inequality of PAI,;;’K associated with a
closed set T C E. Then T is (E, K)-non-separable.
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.......... Lo, SRSt
fi 62 """" f2 fi f2
ot ()]
({e1,e2}, {2})-separable ({e1,e2}, {2})-non-separable

Fig. 4 Visualisation of (E, K)-(non)-separability. We consider the graphical matroid on an undirected
graph with four nodes. Although set T' (bold lines) is the same on both sides, depending on E (dotted lines),
itis (E, {2})-separable or not. Note, T is separable with 71 = {f1}, T» = { f>} by Definition 22

Proof Let T C E be closed and assume that 7 is (E, K)-separable with partition
W, ST, T1NT, =@, T UT, = T satisfying (19). Then we can derive (9) by
adding the two rank inequalities (9) for T, T>:

l

xry +x7, + Z (oth; 1,k (T1) + otk 41,k (T2)) yi; < r(T).
—— j=1

=T =ak; g +1.4; (T)

So the extended rank inequality associated with 7' does not define a facet of Pﬁ’K. O

However, not all (E , K)-non-separable sets 7 C E lead to facet defining rank
inequalities (9). This may depend on the structure of K as well. If, for instance,
kj_1,k; € K with k; | + 1 = kj, then the inequality Xe, = 1 can be derived by
adding —Ykj_ + Yk < 0 and Ykj_ + Xey, = Yk < 1 [see also property (Plk) to be
defined below for the case K = {k}]. )

In the following we will fully characterise the facetial structure of P}f,’k. We start

with some easy results that follow directly from the definition of (E, {k})-separability.
The proofs of all three following observations can be found in the “Appendix”.

Observation 26 Let T C E be a closed set with |T| > 2.
1. IfT CE, then T is (E,_{k})-separable. B
2. Ifa1 k) (T\E) =0and ENT # @, then T is (E, {k})-separable.

In addition to closedness and (E, {k})-non-separability it will turn out that a set
T C E leading to facet defining extended rank inequalities (14) has to satisfy the
following properties:

Definition 27 Let 7 C E be a closed and (E, {k})-non-separable set. We say it
satisfies properties

(P1¥) if E ¢ T and if in the case | E| = 2 additionally T # {e}, e € E,
(P2X) if E C T and o) 4 (T\E) > 2.

These properties are necessary conditions that a set 7 C E leads to a facet defining
rank inequality (14) of P,f[’k.
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Observation 28 Let T C E be a closed and (E , {k}_)—non—separable set. If the rank

inequality associated with T is facet defining for PEX then it satisfies either (P1%)
or (P25).

Next we will prove that for a set 7 C E closedness, (E, {k})-non-separability and
properties (P1¥), (P2F) lead to facetness of the associated inequality (14). In the proof
of this result we need the following observation:

Observation 29 Let T C E be a closed set witi_l ECT. Ifozl’k(T\E) > 2, then
there exists a basis B of T such that |B N E| < |E| — 2.

Lemma 30 Let T C E be a closed and (E, {k})-non-separable set satisfying prop-
erties (Plk) or (PZk). Then the extended rank inequality (14) defines a facet of Pfl’k.

Proof Let T C E be a closed, (E, {k})-non-separable set satisfying (Plk)_or (P25).

Further we assume that a” x 4+ ay < b is a facet defining inequality of Pfl’k so that
aTXS + EzyS = b whenever S is a root of x7 4 o1 x(T)y < r(T), the extended rank
constraint associated with 7'. We will show that in this case a” x +-ay < b is a positive
multiple of x7 + a1 x(T)y < r(T). Our proof consists of four main steps.

Claim 1 Under the given assumptions the constraints (14) are not implied by the
constraints of the standard linearisation (see Observation 21).

Proof of Claim 1 In order to prove that x7 + a1 x(T)y < r(T) is not implied by (11)-
(13) we can easily determine in each of the cases an independent set J € J such that J
is a root of the rank inequality (14), but J is not a root of one of (11)—(13). Technical
details can be found in the “Appendix”.

So by Lemma 12 we know that a > 0, a > 0. Next we prove the following:

Claim 2 A coefficient a.,e € E, or a is zero if the corresponding coefficient in
xr + ok (T)y < r(T) is zero.

Proof of Claim 2 Assume, for a contradiction, a, > 0 forsomee ¢ T.Let S be abasis

of T. Then S is aroot of x7 + a1 x(T)y < r(T) and consequently of alx + ay < b,

too. Because 7 is closed S + e € 7, but S + e violates a” x + ay < b, a contradiction.
Now assume the coefficient 1 x(T") of y is zero in x7 + a1 x(T)y < r(T), i.e.,

r(T) + |E\T| = r(T + E) (20)

by (A2). First, if E g T, we choose a basis B of T with (TN E) € B. Then by (20) we
know B + (E\T) € J and this independent set is also a root of x7 + a1, (T)y < r(T).
However, because yB+(E\T) = 1 it follows @ = 0. Second, let E C T. Let B
be a basis of T with E C B. Furthermore, by assumption (P2¥) we may apply
Observation 29, and find a basis B of T with |[B N E| < |E| — 2. So there exist
two elements ¢;, e; € (B\B) N E,i # j.Because M is a matroid there exists an
fi € B\B < B\E with B—¢; + fi € Jand an f; € B\(B — ¢; + f;) € B\E with
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B—e —e;+ fi+ f; € J. Note that all three sets B,B—e¢i+ fi,B—e¢; —ej+fi+fi
are bases of 7" and define roots of x7 + a1 x(T)y < r(T). In particular, this implies
ae; +a = ay, and a.; = ay;. Submodularity gives

r(B—ej)+r(B—ej+ fi+fj)<r(B—ej+f))+r(B—e;+ f),
N’
=r(T)-1 =r(T)

so at least one of B —ej+ fj B—ej+ fiisabasisof T.If B —e; + f; is a basis
then comparing with B —e; —ej + fi + fj shows a,; = ay,, hence a = 0. Otherwise,
if B—e; + fjisnotabasis but B —e; + f; is a basis, we have similarly a., = ay;
and submodularity implies

r(B—e—ej+ f)+r(B+f)) <r(B—e+ fj)+r(B—e;+ [,
——— —_————

=r(T)—1 =r(T) =r(T)—1

hence B —e¢; + fjisabasisandsoay = ae;. Together we have a,, = ay;, = a.; = ay,
and again a = 0. This proves Claim 2.

It remains to prove that all coefficients a,, e € T, have the same value and that the
coefficient a of y has the correct value. We start with the first statement.

Claim 3 All coefficients a., e € T, have the same value.

Proof of Claim 3 We define the simple undirected graph G = (T, A) with set of nodes
T and set of edges

A:={le, f}: ABCT,e, f e T\B,B+e¢, B+ f basesof T}
Ul{fe.f}: IBST+E,e,feT\B,ECB,B+e,B+ fbasesof T + E}.

We prove the statement in two steps.
Claim 3.1 If {e, f} € A, then we have a, = ay.

Proof of Claim 3.1 Let {e, f} € A.If, on the one hand, there exists B C T, ¢, f €
T\B, with B+ e, B 4 f bases of T, then both bases define roots of x7 + a1 x(T)y <
r(T) and consequently 3", icp, @ +ay?™ =3, cp, ras +ay®*/, hence a, +
ayBt¢ = ay +ayPt/ I E ¢ T, then yB+¢ = yBT/ = 0, otherwise a1 4(T) =
r(T) + |E\T| — r(T + E) = r(T) + 0 — r(T) = 0 by (A2) implying @ = 0, so
a. = ay follows. On the other hand, if there exists B C T + E, e, f € T\B, with
E C Band B +e, B+ f bases of T + E, then y8+¢ = yB+f — . Furthermore

(B4+e)NT|+ai(T)y2 = |(B+e)NT|+r(T)+|E\T| —r(T + E)
=|(B+e)NT|+r(T)+|(B+e)\T|—r(T +E)
=r(T+E)+r(T)—r(T +E)=r(T)
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by (A2), so B + e defines aroot of x7 + o1 x(T)y < r(T) (and, analogously, B + f).
As above we conclude a, = ay and Claim 3.1 follows. Therefore, if we can prove
that G is connected, all coefficients a,, ¢ € T, must be equal.

Claim 3.2 Graph G is connected.

Proof of Claim 3.2 Assume, for a contradiction, that G is not connected, i.e., there
existT1, T, CT,T1, T, # 0, TiNT, = #and T1 UT, = T such that there do not exist
edges between T and T». First assume r(T) < r(Ty) + r(T>) and let B’ be a basis of
T with r(Ty) = r(B'NTy). Then r(T5) > r(B' N T3), so there exists an e € T>\ B’ so
that (B’ N T») + e € J. However, B’ + ¢ ¢ J (B’ basis), but because M is a matroid
there exists an f € (71N B’) so that B’ +e¢ — f is a basis of T. Consequently, choosing
B := B’ — f proves {e, f} € A, a contradiction.

Secondly, if r(T') = r(T1) + r(12) then (E, {k})-non-separability and (A2) imply
|E|+r(T+E) < (T + E) +r (T + E).Let B’ be abasis of T + E with E C B’
and r(B' N (T) + E)) = r(T} + E). Consequently,

r(B'N (T2 + E)) = |E| + |B' N (T2\E)|
<r(T+E)+r(Th + E)—r(T + E) + |B' N (TL\E)|
=|B'N(T\+E)|+r(Th+ E)—r(T + E) + |B' N (\E)|
= |B|4+r(Th + E) —r(T + E) =r(T» + E).

Hence there exists an e € T>\B’ so that (B’ +¢e) N (I» + E) € I, but B + ¢ ¢ J.
Because M is a matroid there exists an f € T such that B’ 4+ ¢ — f is a basis of T,
too. Consequently, choosing B := B’ — f proves {e, f} € A, a contradiction. So G
is connected and this proves Claim 3.2 and so Claim 3. Finally, it remains to prove:

Claim 4 The coefficient a of y has the correct value.

Proof of Claim 4 By Claim 2 we know thata = Oif o1 x(7) = 0. So, e. g., in the cases
T C E or E C T the statement follows. So assume T ¢ E, E ¢ T and a; x(T) > 0.
Let B l_)e abasisof T + E withr(BN(TNE)=r(TNE)and r(BNT) = r(T).
Then E\B # ) because

|E\B| = |BNT|+ |E\T| —|B| =r(T)+|E\T| — r(T + E) = a1 1(T) > 0.

In particular, y® = 0. Let B’ be a basis of T 4+ E with E C B’. Then B, B’ are roots
of x7 + a1 x(T)y < r(T) and so of a’x +ay < b. Therefore, with @ := a, being the
value of all coefficients a,, e € T, we get

Zat—i—ay Zat—i—ay

eeBNT =() eeB'NT

so by the choice of B’

a=(BNT|—|BNT))-a=(BNT|—|B'|+|B\T)|) -a
=(BNT|—|B|+|E\T))-a=a,(T)a.
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Consequently Claim 4 follows. In total, this proves that a” x + ay < b is a positive
multiple (with factor a) of x7 + o1 x (T)y < r(T). O

The following theorem summarises the results on the facetial structure of Plg’k.

Theorem 31 All facet defining inequalities of Pg’k are given by (11) and (12), x, >
0,e € E\E, y > 0 and all extended rank inequalities (14)

xr+a1x(T)y <r(T), T CE,T closed, (E, {k})-non-separable and
T satisfies property P1%) or (P25).

4 Separation

By the well-known “optimisation equals separation” result [18] we know that the sep-
aration problem for the polytope PE’K can be solved in polynomial time because the
corresponding optimisation problem can be solved in polynomial time. But the proof
of the next result shows how to separate the extended rank inequalities more directly.
Note, all inequalities of the standard linearisation (3)—(7) as well as the non-negativity
constraints (8) can be separated in polynomial time by complete enumeration.

Theorem 32 Let K = {ky, ..., k} C {2,...,k}. Given a point (X, y) the separation
problem for the extended rank inequalities (9) of PE’K can be solved in (strongly)
polynomial time if yi; = yk;,, forall j =1,...,1 =1, aswell as yi, <1, yi, = 0.

Proof Let (x, y) be a point that satisfies all requirements. Then we want to find a set
T C E such that (9) evaluated for (x, y) is violated or we want to prove that there
does not exist such a set 7. Therefore we define the function d: P(E) — R,

l
d(T) :=r(T) = %1 — Y _ ax;_11.4; (T ;-
Jj=1

Our separation problem is then equivalent to the problem to decide whether the optimal
value of

min d(T)
TCE

is negative or not. Using (A2) we can write d(T) as:

-1
d(T)=r(T)-(1—§k1)+Z r(TUELL) (5 — k) | +r(TUELL) - i
—— = —_——— ~——

>0 >0 >0

l

— % = |Ev i \T15k — Y (1Ex; e 6\T1 - 5;) -
j=2
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Fig. 5 Visualisation of the four different graphs in Examples 33-35

So, d(T) is submodular by the submodularity of the rank function () and our separa-
tion problem reduces to minimising the submodular function d(7"), which can be done
in strongly polynomial time [14,22], e. g., using a combinatorial algorithm [26,27]. O

5 Extensions and future work

A natural question is if it is possible to extend the previous results to related problems.
For instance, Edmonds [10] also provided a complete description for the polytope that
is associated with the intersection of two matroids. However, the following example
shows that even in the case with exactly one additional quadratic monomial there exist
facet defining inequalities a” x +ay < b of the associated linearised polytope that are
not a positive multiple of the standard linearisation but with @ > 0 and a < 0. Thus,
it might be necessary to extend the line of arguments in Sect. 2 significantly.

Example 33 We consider the directed graph G = (V, E) in Fig. 5I with four nodes
and four arcs E = {ey, e2, f1, fo} and the branching problem [9] (intersection of
two matroids) with E = {ej, e2}. Then one can check by direct computations that
the inequality x 7, + X, + Xe; + Xey — Yeje, < 2 is facet defining for the associated
linearised polytope although the coefficient of y,,., is —1. Note, the inequality above
is of the form

XT +xel +xez — Yejep =< r(T)7

with T C E,r(T) = r(T +e1) = r(T +e) = r(T + e1 + e2) — 1 (r denotes
the minimum of the rank of 7' for M| and M3) where in our example 7' = { f, f>}.
Furthermore, considering the branching problem in Fig. 5II the inequality 2x,, +
Xey +Xf +Xf, — Yeje, < 2 1s facet defining. So, also coefficients of the x-variables
larger than one may appear. This is a large contrast to the results by Edmonds for
the polytope associated with the intersection of two matroids [10]. Indeed, given two
matroids M; = (E,Jy), M, = (E, J) with rank functions r;: E — INg,i = 1, 2,
the convex hull of all sets I/ € E with I € J;1,1 € J, can be described by the
non-negativity constraints and the rank inequalities for the two single matroids [10].

To the best of our knowledge the only matroid intersection problem combined
with one non-linear monomial that has been considered in the literature before is
the bipartite matching problem. Recently, Walter [30] proved a conjecture in [20]
on the complete description of the linearised polytope in this case. In comparison
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to the branching problem coefficients of two for x-variables do not appear there. So
the situation is a bit easier. It remains for future work to study which other matroid
intersection problems can be treated with the approach in [30]. Unfortunately, this
approach cannot easily be extended to larger sets of monomials.

Furthermore, it is interesting to extend the results to two or more monomials that
are not necessarily nested. But again, this might lead to facet defining inequalities
containing variables with negative coefficients apart from the standard linearisation.
We start with an example where the two monomials are in pairwise conflict.

Example 34 We consider the undirected graph G = (V, E) in Fig. SIII with four nodes
and fiveedges E = { f1, e1, €2, €3, e4} and the optimisation problem over the graphical
matroid with the two additional monomials X, Xe, , Xe;Xe,. Then the inequality x 7, +
Veres + Xey + Xey — Yesey, < 2 is facet defining. So one of the coefficients of the
linearised variables is negative although the inequality does not belong to the standard
linearisation in this case.

One might think that the problem in Example 34 arises because {e;: i =
1,...,4} ¢ J. But even if the union of all elements contained in the additional mono-
mials is an independent set and none of the elements e € E appears in more than one
of these non-linear monomials, facet defining inequalities can contain variables with
negative coefficients apart from the standard linearisation.

Example 35 We consider the undirected graph G = (V, E) in Fig. 5IV with six nodes
and setof edges E = { f1, f2, f3, e1, €2, €3, e4} and the optimisation problem over the
graphical matroid with the two additional monomials x, X, , Xe;Xe, and {eg, ..., es} €
J. Then the inequality X f; + X f, + X f5 + Yejep + Xes + Xey — Yeseq < 4 1is facet defining
for the associated polytope.

Let, in general, a matroid M = (E, J) be given and let x,,Xe,, Xe3Xe,, {€1, €2} N
{e3, ea} = 0, denote the two additional quadratic monomials with associated variables
Yeies> Yesey- Then inequalities

XT + Yeqen +xe3 +xe4 — Yesey =< r(T) + 17

T C E\{e1,ez,e3,e4},r(TH+ezs+es) >r(T)+1,(T+e1+er+e) ¢J,i =3,4,
are valid for the associated linearised polytope. The facet defining inequalities in
Examples 34 and 35 are exactly of this type with T = {f1} and T = {fi, f2, f3},
respectively.

Extending our results to problems with objective functions with more than one
non-linear monomial, a good starting point might be to consider the three quadratic
monomials X¢, Xe,, Xe; Xes» XeyXey and the associated cubic monomial x,, X, xe; on the
three elements eq, 2, e3 € E with {e], e, e3} € J or {e], e>, e3} forming a circuit. In
both mentioned cases the monomials then satisfy some kind of up- and downwards
compatibility, see [5]. Furthermore, it remains for future work to extend the results
to (integral) polymatroids [10], see also [14,27]. Here, the setting might be quite
different because the variables are not necessarily binary. One possible way might
be to transform the integral polymatroid to a matroid by the standard transformation,
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but then even a single quadratic monomial leads to several quadratic monomials in
the extended problem. So a better understanding of the multiple monomial case is
essential.

Acknowledgements We thank two anonymous referees for their valuable comments and suggestions that
helped to improve the paper.

Appendix

In the following we present several detailed, rather technical proofs of the results stated
in the main part of this paper.

Proof of Observation 5 Lete € cI(T), then r (T + e) = r(T).

FT4S)4r(T) & F(T4+S1e)+r(T+8) N (T + &) " +(T + $) + (T + o)
=r(T+S)+r(T). O

Proof of Observation 7 Let T C E.

(A1) Let T be closed. By the definition of «;(-) we can assume that e¢; ¢ 7. Then
a(T)=1+r(T)—r(T)+1)=0.

(A2) Letj e{l,...,k}. Thenoy ;(T) = ‘l.’zl(l{e,'}\Tl+r(T+E1,,'_1) —r(T+
Ey ) =EV\T|+r(T+Eo0)—r(T+E ) =|Ei \T|+r(T)—r(T+
Ey ).

(A3) Letji €{l,....k}.If e € T, the statement is clear. So let e € (cI(T)\T)\{e;}.
Then o;(T) = {ei \T| +r(T + E1i—1) —r(T + E1;) = H{e:}\(T +e)| +
r(T+e+E1i—1) —r(T +e+ Ey;) =a;(T + e) by Observation 5.

(A4) Leti € {1,...,k}and e¢; € cI(T)\T. Then Observation 5 and the definition
of ; (-) show o; (T) = |[{e;\T | +r(T + Eyi—1) —r(T + Ey;) = 1 +r(T +
ei+El,,’_1)—r(T+E1,i)=lzai(T+€l‘)+1. O

Proof of Lemma 14 Let a’x + a’y < b be a facet defining inequality of Pfl’K ,
K = {2, ..., k}, satisfying the requirements. For m = 2 the existence of a set § with
the desired properties follows directly from the fact that a’ x + «’y < b is not a
positive multiple of (5). For m > 2 there exists a root S of a’ x + a’y < b with
em ¢ S and El,m_l Q S because a”x + aTy < b is not a positive multiple of (6). So
we may assume that

wi=15N E1,m,1| is maximum. 201
If SN E Lml = |E L.m| — 2, then S satisfies the re_quirements. Otherwise there must
existtwoelementse;, ¢; ¢ Swithi < j <mand E; j_1\{e;} < S.LetS;_; bearoot

ofaTx+ozTy <bwithEy;j 1 C S;_1ande; ¢ S; 4 (existsbecauseaTx—i-aTy <b
is not a positive multiple of (4) or of (7) in the case j = 2).

@ Springer



442 A. Fischer et al.

Now assume in addition that S and S;_; are chosen so that
ISNEim_1l=p and |SNS;_;| is maximum. (22)

L. If r(8) < r(Sj—1), then there exists an e € S;_(\S so that e + § € J.
By Observation 13 we get a(S +e,e) < 0 < a(Sj—i1,e). If e # ¢;, then
e ¢ Eijand so a(Sj—1,e) = a, = a(S + e, e) proving a, = 0. Thus
S +eisalsoaroot of a’ x +a’y < b contradicting (22). Otherwise we have
a(Sj_1,e) =a.+o;+---+aj_1 =a(S+e,e) =0. As before S + e is also
root of a’ x + 'y < b, a contradiction to (21).

2. If r(S) > r(S;—1), then there exists an e € S\S;_| sothat S; | +e € J.
Certainly e ¢ E1 ;, so as above it follows a, = 0. So S, (S| + e) contradict
to assumption (22).

3. If r(S) = r(Sj-1), then we know by Theorem 1 that there existsane € S\S;_;
sothat S —e+e¢;,Sj_1+e—e; €J. Note,e ¢ ELJ-, which implies a(S, e) =
a.=a(Sj_1+e—ej,e)aswellasa(S;_1,e;)) =ap; +o; +--+aj_| =
a(S—e+e;, e;). Applying Observation 13 twice then shows a(S —e+e¢;, ¢;) <
a(S,e) =a(Sj_1+e—e;,e) <a(Sj_1,e;) =a(S—e+e;, e;)andso S—e+te;
is also a root of a” x + aTy < b, contradicting (21). O

Proof of Lemma 15 Let a’x + a’y < b be a facet defining inequality of PA];’K
with K = {2, ..., k} that is not a positive multiple of one of (3)—(8). Assume, for
a contradiction, the assertion is false. Then there must exist an m € {2, ..., k} and
a minimum h € {m, ..., k} so that o, + - - - + &, < 0 and there exists a root S of
alx+aly < bsatisfying E1 u\{ej, em} = SNEim, j <m,andh =korepi1 ¢ S.
Furthermore, there exists a root S;, with El,h C Spand h = korepq ¢ S because
a’x 4+ aTy < bis not a positive multiple of (4). We may assume that

|S N Sy is maximum. (23)

1. If r(S) < r(Sy), then there exists an e € S;\S so that S + e € J. We consider

four cases depending on e and apply Observation 13.

o Ife ¢ El,h, thena(S+e, ¢) = a, and a(Sy, ¢) = a,. Observation 13 shows
that a, = 0, so S + e is also a root of alx + aTy < b, contradicting (23).

o Ife =¢,,then0 > a(S+ey, en) = ae, and 0 < a(Sy, en) = ae,, + oty +
--- 4 ap, hence a,, + - - - + ap > 0, a contradiction.

o Ife = ¢, then we similarly get0 > a(S+ej, e;) = ap; +oj+- -+ am—1
and 0 < a(Sp, ej) = ac; +aj+---+ap hence ay + -+ +ap = 0,2
contradiction.

e lfe=e¢,m<i <h,then0 > a(S+e;,e) =ae and0 < a(S,,e;) =
ae; + o + - - + oy, hence we derive o; + - -- +a, > 0. Because ¢; ¢ S
we know by minimality of & that o, 4 ... 4+ oj—1 > 0. Together we have
oy + - - -+ o > 0, a contradiction.

2. If r(S) > r(Sp), then there exists an e € S\Sj, so that S, + ¢ € J. Note that

e ¢ E_l,h+1 (if h < k), so by Observation 13 0 > a(S;, + e,¢) = a. > 0.

Therefore Sj, + e is also a root of a” x + aTy < b, contradicting (23).
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3. If r(§) = r(Sy), then by Theorem 1 there exists an e € S\S;, so that § —
e+en,Sp+e—ey €. Byassumption h =k ore ¢ El,h+1, thus we have
a(S,e) =a. =a(Sp+e—ep,e)aswellasa(Sy, ey) = de,, +am+---+ay
and a(S — e + ey, ey) = ae, . We know by Observation 13 that a,,, = a(S —
eten,en) <a(S,e) =a(Sp—en+e,e) <a(Sy, en) = de, +p+---+ay,
SO oy, + -+ - + o > 0, a contradiction. 0O

Proof of Lemma 16 Let a’x + a’y < b be a facet defining inequality of Pf,’K,
K ={2, ..., k}, satisfying the requirements defined above. Fix some m € {2, ..., k}
and suppose that the claim is false. Then there exists a maximum A € {m, ..., k} so
that o, + -+ + a5, < 0. Choose a root S with El,m\{ej, em} = SN El,m (exists
by Lemma 14) and a root S;, with El,h C Sy, h =korepy) ¢ Sy [exists because
alx+ ocTy < b is not a positive multiple of (3) and (4)] so that |[S N S;,| is maximum.
If ep41 ¢ S or h = k, then the claim follows from Lemma 15, so we may assume
en+1 € S. We use similar arguments as in the previous proof.

1. If r(S) < r(Sp), then there is an e € S,\S so that S + e € J. If additionally
e # ej, m < i < h, then all arguments of the previous proof apply (in
particular, we do not require the assumption of 4 being minimal). We only have
to consider the case e = ¢;, m < i < h. Then we geta(S + ¢;, ¢;) = a,, and
a(Sp, ;) = ae;+a;+- - -+ay. Soby Observation 13 we have o; +- - -+, > 0.
Note that ¢; ¢ S by construction, so we may apply Lemma 15 with this S, j
andm and h =i — 1 to derive o, + - - - + @j—1 > 0. Hence, we conclude that
oy + - - -+ ap > 0, a contradiction.

2. If r(S) > r(Sy), then there is an e € S\Sy, so that S, + ¢ € J. The case
e # ep41 works as in the previous proof, so it remains ¢ = ep41. Then
a(Sp + eny1,eny1) =aey, +pr1+...+a, forsomeo € (h+1,...,k}
and a(S, ep41) = ae,,,- Therefore, applying Observation 13 yields a1 +
-+, < 0.Bymaximality of &7 we know o, 4 - -+, > 0 and can conclude
oy + -+ -+ ap > 0, a contradiction.

3. If r(S) = r(Sy), then by Theorem 1 there exists an e € S\S;, so that § —
e+ ey, S, +e — ey, € J. Note that e ¢ El,h. We have a(S,e) = a, =
a(Sp—em+e,e),a(Sh, en) = ap, +am~+- - -+opanda(S—e+ep, e) = a,,.
Observation 13 shows a,,, = a(S —e + en,en) < a(S,e) = a(Sp +e —
em,e) < a(Sh, em) = ae,, +m + -+ ap. This implies o, + ... +ap > 0,
a contradiction. O

Proof of Observation 21 The polytope Pjg’K is full-dimensional with dimension
|E| + L. We prove this by explicitly constructing |E| + [/ + 1 independent sets whose
incidence vectors are affinely independent. Indeed, the sets @ € J, {e} € Jforalle € E
and {ef, ..., e j} € Jforall j = {1, ...,/} have affinely independent incidence vec-
tors.

Similarly for the facet defining inequalities, we explicitly present the | E| 41 respec-
tive sets.

e Vi, > 0 (3): We can use the independent sets of the dimension proof except for
{61, P ek,}.
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® yk;—Ykj_; =0,j=2,...,1(4): Wecanuse the independent sets of the dimension
proof except for {e1, ..., ex; ,}-
® Xg, — Y =k —1(5): Weuse Eyy; forall j =1,....1 and E1 4, \{e} for

alle € E 1.k, - By assumption (1) we know that for each e € E \E; .k, there exists
an f € E; k; such that (E; k + € — f € 7. So we use one such set for each
e e E\El,kl

+ Yk — Yk < kj—kj—1,j=2,...,1,(6): We use the independent

xEkj 1+1kj
sets Ek] 1+1kj s Ek +1k; Teforalle € El,k,-,l, and Ekj,1+1,kj + El,km for
allm € {1,...,j — 2}, as well as Elgkj —eforall e € EkjflJr],kj. For each
e € E\El,kj there exists an f € El,kj such that El,kj +e— f € J. We use
one such set for each e € E\E| ;- Furthermore we take all the sets Ei, with
mel{j, ..., [}

o —x¢ + Yk = 0,j=1,....1,i =kj_1+1,...,kj, (7): We can use the indepen-

dent sets of the dimension proof except for {e; }.

e x, >0,e € E \E (8): We can use the independent sets of the dimension proof
except for {e}.

Further note, constraints —x, < 0, e € E, are implied by (3), (4) and (7). O

Proof of Observation 26 1. Let T C E. Then T is (E, {k})-separable with T; =
T\{e} # 0@ and T; = {e} foreache € T.

2.LletT € E,ENT # @andalk(T\E) = 0.If T C E, we are in case 1.
Otherwise o k(T\E) = 0 and (A2) imply r(T\E) + |E| = r(T + E), hence
r(T\E) +ITNE|=r(T)(byr(T) <r(T\E)+r(TNE)=r(T+E)+r(TN
E) — |E | < r(T)). Furthermore, this implies «; x(T) = 0 as well. Consequently
T is (E, {k})-separable with T = T\E # @#and T» = T N E. O

Proof of Observation 28 We will prove this result by showing that if (P1¥) and (P2%)
are not satisfied, we can easily derive the inequality as a combination of other inequali-
ties. Solet T C E beaclosedand (E, {k})-non-separable set that satisfies neither (P15)
nor (P2k) Then either |[E| = 2 and T = {e} for some ¢ € E or E € T and
a1 (T\E) < 1.

In the first case, because T is closed and (E, {k})-non-separable, the rank inequality
associated with T can be derived by adding the two constraints x; — y < 1 and
—x; +y < 0 for {¢} = E\{e}. In the second case, we can assume al,k(T\E) = 1by
Observation 26. Then we can derive (14) for T by adding (11) and (14) for 7" := T\ E.

O

Proof of Observation 29 Let T C E be a closed set with E C T and oy k(T\E)

r(T\E) + |E| — r(T) > 2 (by (A2)). Then we take a basis B of T\ E and extend B
to a basis of 7' by adding elements of E. By the assumption on o/ k(T\E ) at most
r(T) — r(T\E) < |E| — 2 elements are added to B. O

Proof of Claim 1 in the Proof of Lemma 30 We want to prove that inequalities x7 +

a1 x(T)y < r(T) for aclosed and (E, {k})-non-separable set T C E satisfying (Plk)
or (P2¥) are not implied by (12)—(13). For this, we determine in each of the cases an
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independent set J € J such that J is aroot of (14), but J is not a root of the considered
other constraint out of (11)—(13).

= —y < |E| — 1 (11): We consider three cases.
|T ﬁE| < |E| — 1: Let B be a basis of T. Then we set J := B.
|T N E| = |E| — 1: Observation 26 and (P1%) imply T g_ E and |T| > 2.
Choose f € T N E, then r(T — f) = r(T) because otherwise 7" would be
(E, {k})-separable with 71 = {f}and T» = T — f.Let Bbe abasisof T — f,
then B is also a basis of 7 with |[BN E| < |E| — 2. So we set J := B.
E C T: In this case, by (P2k) and Observation 29, there exists a basis B of T
such that |[B N E| < |E| — 2. Then we set J := B.

e y—x,<0,ee E (12): We consider four cases:

e e T,E SZ T: Let B be a basis of T with ¢ € T. Then we have that
B —, xe =1land ) ,.; x2 +0=r(T).Soweuse J := B.

e e T, E C T: In this case we know by (P2k ) and Observation 29 that there

exists a basis B of T with [BNE| < |E| —2.Ife € B, we set J := B,

otherwise there exists an f € B such that B + e — f € Jis a basis of T and

soweuse J := B +e— f (note yBTe—/ = 0).

e ¢ T, E Q T + e:Let Bbeabasisof T. Then B + e =: J € Jbecause T is

closed.

e ¢ T,E C T + e: Observation 26 and (P1%) imply T ¢ E, in particular

|T| > 2. Choose f € T NE, then r(T — f) = r(T) because otherwise T

would be (E, {k})-separable with 71 = {f}and 7>, = T — f. Let B be a basis

of T — f, then B is also a basis of T, and because T is closed we can use

J := B + e, which is a basis of T + e with E Q J by the choice of f.

o —x, <0,e € E\E (13): First, we consider the case e ¢ T. Let B be a basis of

T.By T closed we know B 4+ ¢ € Jand set J := B + e. Second, if e € T, there
exists a basis B of T with ¢ € B and we can use J := B.

—y =< 0(13): We consider two cases. If E C T, there exists a basis B of T with
ECB ' (note E € J)and so we use J := B.If, otherwise, E ¢ T, let B be a basis
of TUE with E C B. Thenbyzeer Xe +|E\T| |BﬂT|—|—|E\T| = |((B\E)ﬂ
TYUE| =r(B) = r(TUE) wegety ,or xc +r(T)+|E\T|—r(TUE) = r(T).
So Bisarootof xp 4+ o1 4 (T)y < r(T) and we can set J := B.

Soxr 4+ a1 x(T)y < r(T) is not a positive multiple of one of (11)—(13). This proves
Claim 1 in Lemma 30. O
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