
Math. Program., Ser. B (2017) 165:71–111
DOI 10.1007/s10107-017-1132-9

FULL LENGTH PAPER

Two-stage stochastic variational inequalities:
an ERM-solution procedure

Xiaojun Chen1 · Ting Kei Pong1 ·
Roger J-B. Wets2

Received: 16 August 2015 / Accepted: 28 February 2017 / Published online: 14 March 2017
© Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2017

Abstract We propose a two-stage stochastic variational inequality model to deal with
random variables in variational inequalities, and formulate this model as a two-stage
stochastic programming with recourse by using an expected residual minimization
solution procedure. The solvability, differentiability and convexity of the two-stage
stochastic programming and the convergence of its sample average approximation are
established. Examples of this model are given, including the optimality conditions for
stochastic programs, a Walras equilibrium problem and Wardrop flow equilibrium.
We also formulate stochastic traffic assignments on arcs flow as a two-stage stochastic
variational inequality based onWardropflowequilibriumandpresent numerical results
of the Douglas–Rachford splitting method for the corresponding two-stage stochastic
programming with recourse.
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1 Introduction

All stochastic variational models involve inherently a “dynamic” component that takes
into account decisions taken over time, or/and space, where the decisions depend on
the information that will become available as the decision process evolves. So far, the
models proposed for stochastic variational inequalities have either bypassed or not
made explicit this particular feature(s). Various “stochastic” extensions of variational
inequalities have been proposed in the literature but so far relatively little concern
has been paid to the ‘dynamics’ of the decision, or solution, process that is germane
to all stochastic variational problems: stochastic programs, stochastic optimal con-
trol, stochastic equilibrium models in economics or finance, stochastic games, and
so on. The “dynamics” of the model considered here are of limited scope. What is
essential is that it makes a distinction between two families of variables: (i) those
that are of the “here-and-now” type and cannot depend on the outcome of random
events to be revealed at some future time or place and (ii) those that are allowed to
depend on these outcomes. Our restriction to the two-stage model allows for a more
detailed exposition and analysis as well as the development of computational guide-
lines, implemented here in a specific instance. By empathy with the terminology used
for stochastic programming models, one might be tempted to refer to such a class of
problems as stochastic variational inequalities with recourse but, as we shall see from
the formulation and examples, that would not quite catch the full nature of the vari-
ables, mostly because the decision-variables aren’t necessarily chosen sequentially.
We shall refer to this “short horizon” version as a two-stage stochastic variational
inequality. In principle, the generalization to a multistage model is not challenging,
at least conceptually, notwithstanding that a careful description of the model might
become rather delicate, involved and technically, not completely trivial; a broad view
of multistage models, as well as some of their canonical features, is provided in [59].

We consider the two-stage stochastic variational inequality: Given the (induced)
probability space (� ⊂ R

N ,A, P), find a pair
(
x ∈ R

n1 , u : � → R
n2 A-

measurable
)
, such that the following collection of variational inequalities is satisfied:1

−E[G(
ξ , x, uξξξ

)] ∈ ND(x)

−F
(
ξ , x, uξξξ

) ∈a.s.NCξξξ

(
H(x, uξξξ )

)

1 Bold face ξ is reserved to denote the random vector of parameters whereas ξ refers to a specific realization
of ξ .
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with

• G : (�,Rn1 ,Rn2) → R
n1 a vector-valued function, continuous with respect to

(x, u) for all ξ ∈ �, A-measurable and integrable with respect to ξ .
• ND(x) the normal cone to the nonempty closed-convex set D ⊂ R

n1 at x ∈ R
n1 .

• F : (�,Rn1 ,Rn2) → R
n2 a vector-valued function, continuous with respect to

(x, u) for all ξ ∈ � and A-measurable with respect to ξ .
• NCξ

(
v
)
the normal cone to the nonempty closed-convex set Cξ ⊂ R

n2 at v ∈ R
n2 ,

the random set Cξξξ is A-measurable.
• H : (Rn1,Rn2) → R

n2 a continuous vector-valued function.

The definition of the normal cone yields the following, somewhat more explicit, but
equivalent formulation:

find x̄ ∈ D and ū : � → R
n2 , A-measurable, such that H(x̄, ūξξξ ) ∈a.s. Cξξξ and

〈E[G(ξ , x̄, ūξξξ )], x − x̄〉 ≥ 0, ∀ x ∈ D,

〈F(ξ , x̄, ūξξξ ), v − H(x̄, ūξξξ )〉 ≥ 0, ∀v ∈ Cξξξ , P-a.s.

The model assumes that the uncertainty can be described by a random vector ξ with
known distribution P and a two-stage decision process: (i) x to be chosen before the
value ξ of ξ is revealed (observed) and (ii) u to be selected with full knowledge2 of
the realization ξ . From the decision-maker’s viewpoint, the problem can be viewed as
choosing a pair (x, ξ 	→ uξ ) where u depends on the events that might occur, or in
other words, isA-measurable. It is noteworthy that in our formulation of the stochastic
variational inequality this pair is present, in one way or another, in each one of our
examples. We find it advantageous to work here with this slightly more explicit model
where the first collection of inclusions suggest the presence of (expected) equilibrium
constraints; in [59], taking a somewhat more comprehensive approach, it is shown
how these “equilibrium constraints” can be incorporated in a global, possibly more
familiar, variational inequality of the same type as the second inclusion.

This paper is organized as follows. In Sect. 2, we devote a review on some fun-
damental examples and applications that are special cases of this model. In the last
two examples in Sect. 2, we concentrate our attention on the stochastic traffic flow
problems with the accent being placed on getting implementable solutions. To do this
we show how an alternative formulation, based on the Expected Residual Minimiza-
tion (ERM) might actually be more adaptable to coming up with solutions that are of
immediate interest to the initial design or capacity expansion of traffic networks. In
Sect. 3, we develop the basic properties of such a model, lay out the theory to justify
deriving solutions via a sample average approximation approach in Sect. 4 and finally,
in Sect. 5, describe an algorithm procedure based on the Douglas–Rachford splitting
method which is then illustrated by numerical experimentation involving a couple of
“classical-test” networks. One of the basic goals of this article was to delineate the
relationships between various formulations of stochastic variational inequalities as

2 A further refinement of the model would allow for the possibility that only partial observation is available
in which case one would have to changeA-measurability to measurability with respect to a sub-sigma field.
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well as to show how the solution-type desired might also lead us to work with some
variants that might not fit perfectly the canonical model.

2 Stochastic variational inequalities: examples

When ξ is discretely distributed with finite support, i.e., � is finite, one can write the
problem as:

find
(
x, (uξ , ξ ∈ �)

)
such that

{
−E[G(ξ, x, uξ )] ∈ ND(x)

−F(ξ, x, uξ ) ∈ NCξ
(H(x, uξ )),∀ ξ ∈ �.

When expressed in this form, we are just dealing with a, possibly extremely large,
deterministic variational inequality over the set X × �. How large will depend on the
cardinality |�| of the support and this immediately raises the question of the design of
solution procedures for large scale variational inequalities. The difficulty in finding a
solution might also depend on how challenging it is to compute E[G(ξ , x, uξ )], even
when G doesn’t depend on u.
Of course, both the choice of x and the realization ξ of the random components of the
problem influence the ‘upcoming’ environment so we can also think as the state of
the system being determined by the pair (ξ, x) and occasionally it will be convenient,
mostly for technical reasons, to view the u-decision as a function of the state, i.e.,
(ξ, x) 	→ u(ξ, x), cf. Sect. 3.
On the other hand, various generalizations are possible:

(a) One could also have D depend on ξ and x , in which case we are dealing with a
random convex-valued mapping: D : � × R

n1 →→ R
n1 and one would, usually,

specify the continuity properties of D with respect to ξ and x ; the analysis then
enters the domain of stochastic generalized equations and can get rather touchy
[45,46,63]. Here, we restrict our analysis to the case when D is independent of ξ

and x .
(b) Another extension is the case when there are further global type constraints on the

choice of the functions u, for example, constraints involvingE[uξ ] or equilibrium-
type constraints [9,47].

(c) The formulation can be generalized to a two-stage stochastic quasi variational
inequality or generalized Nash equilibrium. For example the second-stage varia-
tional inequality problem can be defined as follows:

−F
(
ξ , x, uξξξ

) ∈a.s. NCξξξ (x)(H(x, uξξξ )),

where the set Cξξξ depends on x [21]. However, the analysis of the generalization is
not trivial and deserves a separate analysis. In this paper, we restrict our analysis
to the case when Cξξξ is independent of x .

In order to illustrate the profusion of problems that are covered by this formulation we
are going to go through a series of examples including some that are presently under-
stood, in the literature, to fall under the “stochastic variational inequality” heading.
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Two-stage stochastic variational inequalities 75

2.1 One-stage examples

Example 2.1 Single-stage problems. This is by all means the class of problems that,
so far, has attracted the major interest in the literature. In terms of our notation, it reads

find x̄ ∈ D ⊂ R
n such that −E[G(ξ , x̄)] ∈ ND(x̄),

where D is a closed convex set, possibly bounded and often polyhedral, for all x ∈ D,
the vector-valued mapping ξ 	→ G(ξ, x) ∈ R

n is integrable and x 	→ E[G(ξ , x)] is
continuous. Especially in the design of solution procedures, it is convenient to rely on
the alternative formulation,

find x̄ ∈ D ⊂ R
n such that ∀ x ∈ D, 〈E[G(ξ , x̄)], x − x̄〉 ≥ 0.

Detail. It’s only with some hesitation that one should refer to this model as a “stochas-
tic variational equality.” Although, certain parameters of the problem are random
variables and the solution will have to take this into account, this is essentially a
deterministic variational inequality with the added twist that evaluating E[G(ξ , x)],
usually a multidimensional integral, requires relying on quadrature approximation
schemes. Typically, P is then approximated by a discrete distribution with finite
support, obtained via a cleverly designed approximation scheme or as the empiri-
cal distribution derived from a sufficiently large sample. So far, no cleverly designed
approximation scheme has been proposed although the approach used by Pennanen
and Koivu in the stochastic programming context might also prove to be effective
[48,49] in this situation. To a large extent the work has been focused on deriving
convergence of the solutions of approximating variational inequalities where P has
been replaced by a sequence of empirical probability measures Pν , generated from
independent samples of ξ : ξ1, ξ2, . . . ., ξ ν . The approximating problem:

find xν ∈ D ⊂ R
n such that −ν−1

ν∑

k=1

G(ξ k, xν) ∈ ND(xν).

Two basic questions then become:

(i) Will the solutions xν converge to a solution of the given problemwhen the number
of samples gets arbitrarily large?

(ii) Can one find bounds that characterize the error, i.e., can one measure the distance
between xν and the (set of) solution(s) to the given variational inequality?

There is a non-negligible literature devoted to these questions which provides
satisfactory answers under not too stringent additional restrictions, cf. [5,25,28,30–
32,35,38,40,41,61,66]. 
�

In [27] Gürkan, Özge and Robinson rely on solving a variational inequality of this
type to price an American call option with strike price K for an instrument paying
a dividend d at some time τ ≤ T . The expiration date comes down to calculating
the expectation of the option-value based on whether the option is exercised, or not,
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at time τ− just before the price of the (underlying) instrument drops by d which
otherwise follows a geometric Brownian motion, cf. [27, Section 3] and the references
therein. The authors rely on the first order optimality conditions, generating a one-stage
stochastic variational inequality where the vector-valuedmapping G(ξ, ·) corresponds
to the gradient of the option-value along a particular price-path. It turns out that
contrary to an approach based on a sample-path average approximation of these step
functions [27, Figure 1] the sample average approximation of their gradients is quite
well-behaved [27, Figure 2]. 
�
Example 2.2 Stochastic linear complementarity problem. The stochastic linear com-
plementarity version of the one-stage stochastic variational inequality,

0 ≤a.s. Mξ x + qξ ⊥a.s. x ≥ 0,

where some or all the elements of the matrix M and vector q are potentially stochas-
tic, was analyzed by Chen and Fukushima [8] suggesting in the process a solution
procedure based on “ERM: Expected Residual Minimization.”

Details. Their residual function can be regarded as a relative of the gap function
used by Facchinei and Pang to solve deterministic variational inequalities [21]. More
specifically,

E[‖�(ξ , x)‖2] with �(ξ, x) =
⎛

⎜
⎝

ϕ
(
(Mξ x + qξ )1, x1

)

...

ϕ
(
(Mξ x + qξ )n, xn

)

⎞

⎟
⎠

is minimized for x ∈ R
n
+, where ϕ : R2 → R is such that ϕ(a, b) = 0 if and only

if (a, b) ∈ R
2+, ab = 0; for example, the min-function ϕ(a, b) = min

{
a, b

}
and

the Fisher–Burmeister function ϕ(a, b) = (a + b) − √
a2 + b2 satisfy these condi-

tions. Quite sharp existence results are obtained, in particular, when only the vector
q is stochastic. They are complemented by convergence result when the probability
measure P is replaced by discrete empirical measures generated via (independent)
sampling. The convergence of the stationary points is raised in [8, Remark 3.1].

The stochastic linear complementarity problem gets recast as a (stochastic) opti-
mization problem where one is confronted with an objective function defined as a
multi-dimensional integral. Convergence of the solutions of the discretized problems
can then be derived by appealing to the law of large numbers for random lsc (lower
semicontinuous) functions [2,37].

The solution provided by the ERM-reformulated problem

min
x≥0

E[‖�(ξ , x)‖2]

doesn’t, strictly speaking, solve the originally formulated complementarity problem
for every realization ξ ; this could only occur if the optimal value turns out to be 0, or
equivalently, if one could find a solution that satisfies for (almost) all ξ , the system
0 ≤a.s. Mξ x + qξ ⊥a.s. x ≥ 0.

123



Two-stage stochastic variational inequalities 77

The residual function ‖�(ξ, x)‖ can be considered as a cost function which mea-
sures the loss at the event ξ and decision x . The ERM formulation minimizes the
expected values of the loss for all possible occurrences due to failure of the equi-
librium. Recently Xie and Shanbhag construct tractable robust counterparts as an
alternative way to using the ERM approach [67]. 
�

2.2 Two-stage examples

Our first two examples in this subsection haven’t been considered, so far, in the litera-
ture but in some ways best motivates our formulation, cf. Sect. 1, in the same way that
optimality conditions for (deterministic) linear and nonlinear optimization problems
lead us to a rich class of variational inequalities [21].

Example 2.3 (Optimality conditions for a stochastic program) Not unexpectedly, the
optimality conditions for a stochastic program with recourse (two-stage) lead imme-
diately to a two-stage stochastic variational inequality. Here, we only develop this for
a well-behaved simple (linear) recourse problem; to deal with more general formu-
lations one has to rely on the full duality theory developed in [53,59]. The class of
stochastic programs considered are of the following (classical) type:

min 〈c, x1〉 + E[Q(ξ , x1)] subject to Ax1 ≥ b, x1 ≥ 0,

with

Q(ξ, x1) = inf
{〈qξ , x2〉 ∣∣Wξ x2 ≥ dξ − Tξ x1, x2 ≥ 0

}
,

where the matrices and vectors subscripted by ξ indicate that they depend on the
realization of a (global) random variable ξ with support �; for any fixed ξ : x1 ∈
R

n1 , x2ξ ∈ R
n2 , A ∈ R

m1×n1, b ∈ R
m1 , qξ ∈ R

n2 , Wξ ∈ R
m2×n2 , dξ ∈ R

m2 and
Tξ ∈ R

m2×n1 .

Detail. Let’s assume, relatively complete recourse: for all x1 satisfying the (explicit)
constraints C1 = {

x1 ∈ R
n1
∣
∣ Ax1 ≥ b, x1 ≥ 0

}
and all ξ ∈ �, one can always find

a feasible recourse x2ξ , i.e., Q(ξ, x1) < ∞ on � × C1, and

Strict feasibility: for some ε > 0, arbitrarily small, one can find x1 ∈ C1 and
x̃2 ∈ L∞

n2 such that x̃2 ≥a.s. 0 and for almost all ξ : Wξ x̃2ξ > ε̃ + dξ − Tξ x1, where ε̃

is simply an m2 dimensional vector of ε’s.
For a problem of this type,

(
x̄1, x̄2) ∈ R

n1+ × L∞
n2,+ is an optimal solution [52,54]

if and only if

(a) it is feasible, i.e., satisfies the constraints,
(b) ∃ multipliers (y1 ∈ R

m1 , y2 ∈ L1
m2

) such that

0 ≤ y1 ⊥ Ax̄1 − b ≥ 0, 0 ≤a.s. y2ξ ⊥a.s. Tξ x̄1 + Wξ x̄2ξ − dξ ≥a.s. 0,
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(c)
(
x̄1, x̄2) minimize

E[〈c − A�y1 − T �
ξ y2ξ , x1〉 + 〈qξ − W �

ξ y2ξ , x2ξ 〉]

for x1 ∈ R
n1+ and x2 ∈ L∞

n2,+.

This means that under these assumptions, the double pairs

(
x1, x2),

(
y1, y2) ∈ (

R
n1+ × L∞

n2,+
) × (

R
m1+ × L1

m2,+
)

must satisfy the stochastic variational inequality:

0 ≤ y1 ⊥ Ax1 − b ≥ 0,

0 ≤ x1 ⊥ c − A�y1 − E[T �
ξ y2ξ ] ≥ 0

and

0 ≤a.s. y2ξ ⊥a.s. Tξ x1 + Wξ x2ξ − dξ ≥a.s. 0,

0 ≤a.s. x2ξ ⊥a.s. qξ − W �
ξ y2ξ ≥a.s. 0.

In terms of our general formulation in Sect. 1, the first pair of inequalities define the
functionG and the set D = R

n1+ ×R
m1+ whereas the secondpair define F and the random

convex set Cξξξ with (x1, y1) corresponding to x and (x2, y2) corresponding to u; Cξ =
R

n2+ ×R
m2+ . Of course, this can also be viewed as a stochastic complementarity problem

albeit, in general, an infinite dimensional one. When, the probability distribution P
has finite support, one can remove the “a.s.” in the second pair of inequalities and it’s
a problem involving only a finite number of variables and inequalities but this finite
number might be truly considerable. 
�
Example 2.4 AWalras equilibrium problem. In some ways, this example is an exten-
sion of the preceding one except that it doesn’t lead to a stochastic complementarity
problem but to a stochastic variational inequality that might not have the wished-for
monotonicity properties for E[G(ξ , ·)] and F .

Detail.We consider a stripped down version of the GEI-model, (General Equilibrium
with IncompleteMarkets), but even this model has a variety of immediate applications
in finance, international commodity trading, species interaction in ecological models,
. . . . The major difference with the extensive (economic) literature devoted to the GEI-
model is the absence of a so-called financial market that allows agents to enter into
contracts involving the delivery of goods at some future date.

Again, ξ provides the description of the uncertainty about future events. We are
dealing with a finite number of (individual) agents i ∈ I. Each agent, endowed with
vectors of goods e1i ∈ R

L (here-and-now) and e2ξ,i (in the future), choose its con-

sumption plan, c1	 here-and-now and c2	ξ after observing ξ , so as to maximize their

expected utilities v1i (c1) + E[v2i (c2ξ )], where the utility functions (v1i , v2i ) are contin-

uous, concave functions in (c1, c2) on closed convex sets C1
i ⊂ R

n1+ and C2
i ⊂ R

n2+
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respectively and v2i isA-measurable with respect to ξ . One often refers to C1
i and C2

i
as agent-i’s survival sets; in some situations it would be appropriate to let C2

i also
depend on ξ , this wouldn’t affect significantly our ensuing development. Each agent
can also engage in here-and-now activities y ∈ R

mi that will use up a vector of goods
T 1

i y which, in turn, will generate, possibly depending on ξ , goods T 2
ξ,i y in the future;

a simple example could be the saving of some goods and a more elaborate one would
involve “home production.” The market process allows each agent to exchange their
(modified) endowments (e1i −T 1

i y, e2ξ,i +T 2
ξ,i y) for their consumption at the prevalent

market prices p1 in the here-and-now market and p2ξ in the future market. Thus, given

(p1, p2ξξξ ), each agent will aim, selfishly, to maximize its expected rewards taking only

into account its survival and budgetary limitations: choose
(
c1	i , (c2	ξ,i , ξ ∈ �)) that

solves the following stochastic program with recourse:

max v1i (c1) + E[v2i (c2ξξξ )]
subject to 〈p1, c1 + T 1

i y〉 ≤ 〈p1, e1i 〉,
〈p2ξξξ , c2ξξξ 〉 ≤a.s. 〈p2ξξξ , e2ξξξ,i + T 2

ξξξ,i y〉,
c1 ∈ C1

i , y ∈ R
mi
+ , c2ξξξ ∈a.s. C2

i , i ∈ I.

The Walras equilibrium problem is to find a (nonnegative) price system
(

p1, (p2ξ , ξ ∈
�)

)
that will clear the here-and-now market and the future markets, i.e., such that the

total demand does not exceed the available supply:

∑

i∈I
(e1i − c1	i ) ≥ 0,

∑

i∈I
(e2ξ,i − c2	ξ,i ) ≥ 0, ∀a.s. ξ ∈ �.

Since the budgetary constraints of the agents are positively homogeneous with respect
to the price system, up to eventual rescaling after a solution is found, one can, without
loss of generality, restrict the prices p1 and p2ξ for each ξ to the unit simplex, i.e., a
compact set.

At this point, by combining the optimality conditions associated with the individual
agents’ problems with the “clearing the market” conditions it’s possible to translate
the equilibrium problem in an equivalent two-stage stochastic variational inequality.
Unfortunately, so far, our assumptions don’t guarantee existence of a solution of this
variational inequality. At this stage, it’s convenient to proceed with following assump-
tions that are common in the extensive literature devoted to the GEI-model:

• the utility functions v1i and v2i are upper semicontinuous, strictly concave,
• the agents’ endowments are such that e1i ∈ int C1

i and, for all ξ ∈ �, e2ξ,i ∈ int C2
i ;

The GEI-literature makes these assumptions to be able to rely on differentiable
Topology-methodology to obtain a “generic” existence proof. It’s rather clear that
the implications of these assumptions are quite stiff. In particular, they imply that
every agent must be endowed, in all situations, with a minimal amount, potentially
infinitesimal, of every good and that this agent will be interested, possibly also min-
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imally, in acquiring some more of every good.3 Not only do these conditions yield
existence [34], and not just generic, but they also imply that Walras’ Law must be
satisfied, i.e., the following complementarity conditions involving equilibrium prices
and excess supply will hold:

p1 ⊥ e1i − c1	i − T 1
i y	

i ≥ 0

p2ξ ⊥ e2i + T 2
i y	

i − c2	ξ,i ≥ 0, ∀a.s. ξ ∈ �.

Moreover, it means that the agents’ problems are stochastic programs with relatively
complete recourse which means that their optimality conditions can be stated in terms
of L1-multipliers, refer to [53,55]; note that here we haven’t restricted ourselves to a
situation when the description of the uncertainty is limited to a finite number of events.

For any equilibrium price system
(

p1 ∈ 
, (p2ξ ∈ 
, ξ ∈ �)
)
with 


= {p | ∑L
i=1 pi ≤ 1, p ≥ 0} the unit simplex in R

L : the agents’ consumption plans
must satisfy the following optimality conditions: the pair

(
(c1	i , y	

i ), (c2	ξ,i , ξ ∈ �)
)
is

an optimal solution for agent-i if and only if

(a) it satisfies the budgetary constraints,
(b) ∃ multipliers

(
λ1i ∈ R, (λ2·,i ∈ L1)

)
such that

0 ≤ λ1i ⊥ 〈p1, e1i − T 1
i y	

i − c1	i 〉 ≥ 0,

0 ≤ a.s. λ
2
ξ,i ⊥a.s. 〈p2ξ , e2ξ,i + T 2

ξ,i y	
i − c2	ξ,i 〉 ≥a.s. 0,

(c) and

c1	i ∈ argmaxc1∈C1
i
v1i (c1) − λ1i 〈p1, c1〉,

c2	ξ,i ∈ argmaxc2∈C2
i
v2i (c2) − λ2ξ,i 〈p2ξ , c2〉, ∀a.s. ξ ∈ �,

y	
i ∈ argmaxy∈Rmi+

−λ1i 〈p1, T 1
i y〉 + E[λ2ξ,i 〈p2ξ , T 2

ξ,i y〉].

Assuming the utility functions are also differentiable, these last conditions can be
translated in terms of the first order optimality conditions for these programs:

(∇v1i (c1	i ) − λ1i p1
) ∈ NC1

i
(c1	i )

(∇v2i (c2	ξξξ,i ) − λ2ξξξ,i p2ξξξ
) ∈a.s. NC2

i
(c2	ξξξ,i )

0 ≤ y	
i ⊥ (

λ1i (T
1

i )� p1 − E[λ2ξξξ,i (T
2
ξξξ,i )

� p2ξξξ ]
) ≥ 0.

In conjunction with Walras law, we can regroup these conditions so that they fit the
pattern of our two-stage formulation in Sect. 1: find x = (

(p1, c1i , yi , λ
1
i ), i ∈ I

)
and

uξξξ = (
(p2ξξξ , c2ξξξ,i , λ

2
ξξξ,i ), i ∈ I

)
such that for all i ∈ I:

3 More realistic assumptions are provided in [33] but it requires amore detailed elaboration of the underlying
model that would, at this point, distract us from our main goal of this example.
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〈p1, e1i − c1i − T 1
i yi 〉 ≥ 0 (feasibility)

0 ≤ λ1i ⊥ 〈p1, e1i − T 1
i yi − c1i 〉 ≥ 0 (multipliers complementarity)

(∇v1i (c1i ) − λ1i p1
) ∈ NC1

i
(c1i ) (c1-optimality)

0 ≤ yi ⊥ (
λ1i (T

1
i )� p1 − E[λ2ξξξ,i (T

2
ξξξ,i )

� p2ξξξ ]
) ≥ 0 (y-optimality)

0 ≤ e1i − c1i − T 1
i yi ⊥ p1 ∈ 
 (Walras’ law)

∑

i∈I
(e1i − c1i ) ≥ 0 (clearing the market)

and

〈p2ξξξ , e2ξξξ,i + T 2
ξξξ,i yi − c2ξξξ,i 〉 ≥a.s. 0 (feasibility)

0 ≤a.s. λ2ξξξ,i ⊥a.s. 〈p2ξξξ , e2ξξξ,i + T 2
ξξξ,i yi − c2ξξξ,i 〉 ≥a.s. 0 (multipliers complementarity)

(∇v2i (c2ξξξ,i ) − λ2ξξξ,i p2ξξξ
) ∈a.s. NC2

i
(c2ξξξ,i ) (c2 -optimality)

0 ≤a.s. e2ξ,i + T 2
ξξξ,i yi − c2ξ,i ⊥a.s. p2ξξξ ∈a.s. 
 (Walras’ law)

∑

i∈I
(e2ξξξ,i − c2ξξξ,i ) ≥a.s. 0. (clearing the market)

One approach in designing solution procedures for such a potentially whopping
stochastic variational inequality is to attempt a straightforward approach relying, for
example, on PATH Solver [18]. Notwithstanding, the capabilities of this excellent
package, it is bound to be quickly overwhelmed by the size of this problem even when
the number of agents and potential ξ -event is still quite limited.4 An approach based
on decomposition is bound to be indispensable. One could rely on a per-agent decom-
position first laid out in [24] and used in a variety of applications, cf. for example
[50]. Another approach is via scenarios (events) based decomposition, relying on the
Progressive Hedging algorithm [56,57] and an approximation scheme as developed
in [17]. Finally, one should also be able to expand on a splitting algorithm elaborated
in Sect. 5 to allow for an agent/scenario decomposition expected to be reasonably
competitive. 
�

The two last examples are stochastic variational inequalities that arise in connection
with transportation/communication problemswhose onemust take into account uncer-
tainties about some of the parameters of the problem. To fix terminology and notation,
we begin with a brief description of the deterministic canonical model, the so called
Wardrop equilibirum model; for excellent and thorough surveys of this model, see
[14,44] and as far as possible we follow their overall framework. There is no straight-
forward generalization to the “stochastic version”which is bound to verymuch depend
on the motivation, or in other words, on the type of solution one is interested in. Here,
we are going to be basically interested in problems where the uncertainty comes from

4 Also homotopy-continuation method [7,11,15,16] would also quickly run out of steam. A hybrid model,
where first and second-period decisions are chosen simultaneously, is considered in [60], which because of
its special structure attenuates to some extent the size issue and renders it computationally more accessible.
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the components of the underlying structure (network) or demand volume. Cominetti
[13] and the references therein consider an interesting set of alternative questions
primarily related to the uncertainty in the users’ information and behavior.
Given an oriented network N = (

G (nodes),A (arcs)
)
together with for ca ≥ 0

the maximum flow capacity for each arc (a) and demand hod for each origin(o)-
destination(d) pairs. Rod are all (acyclic) routes r connecting o to d with N being
the arcs(a)/routes(r ) incidence matrix, i.e., Na,r = 1 if arc a ∈ r . A route-flow
f = {

fr , r ∈ ∪od Rod
}
results in an arc-flow x = {

xa = 〈Na, f 〉, a ∈ A
}
. The

travel time on route r , assumed to be additive,
∑

a∈r ta(xa) where ta(·), a congestion
dependent function, specifies the travel time on arc a. Let

C =
{
(xa = 〈Na, f 〉 ≤ ca, a ∈ A)

∣∣∣ f ≥ 0,
∑

r∈Rod

fr = hod ∀ od-pairs
}

be the polyhedral set of the arc-flows satisfying the flow conservation constraints. One
refers to x	 = N f 	 ∈ C as a Wardrop equilibrium if

∀ od-pairs,∀ r ∈ Rod with f 	
r > 0,

∑

a∈r

ta(x	
a) is the minimal od -travel-time,

i.e., flow travels only on shortest routes. A minor variation, due to the capacity con-
straints on the arcs, of the authoritative argument of Beckmann et al. [4], shows that
these feasibility and equilibrium can be interpreted as the first order optimality con-
dition of the convex program

min
∑

a∈A

∫ xa

0
ta(z) dz, x = (xa, a ∈ A) ∈ C.

Indeed, x	 is optimal if and only if it satisfies the variational inequality:

∑

a∈A
ta(x	

a)(xa − x	
a) ≥ 0, ∀ x ∈ C.

Example 2.5 Prevailing flow analysis. The main motivation in [10], which by the
way is probably the first article to introduce a(n elementary) formulation of a two-
stage stochastic variational inequality, was to determine the steady flow f that would
prevail given an established network but where the origin(o)-destination(d) demand
as well as the arcs capacities are subject to (stochastic) perturbations. The individual
users would make adjustments to their steady-equilibrium routes, depending on these
perturbations ξ , by choosing a recourse decision uξ that ends up to be the “nearest
feasible” route to their steady-route. Although, one would actually like to place as
few restrictions as possible on the class of recourse functions (ξ, f ) 	→ u(ξ, f ),
from a modeling as well as a computational viewpoint, one might be satisfied with
some restrictions or the application might dictate these restrictions as being the only
really implementable “recourse” decisions; in [10] “nearest feasible” was interpreted
as meaning the projection on the feasible region.

123



Two-stage stochastic variational inequalities 83

Detail. Recasting the problem considered in [10] in our present notation, it would
read: find ( f, uξ ) such that for all ξ ∈ �,

−F(ξ, f, uξ ) ∈a.s. NCξ
(uξ ) with uξ = prjCξ

( f )

and

Cξ = {
u ∈ R

n2
∣∣ Au = bξ , u ≥ 0

}
.

This problem comes with no additional variational inequality, i.e., of the type
−E[G(·)] ∈ ND(·). Actually, in [10], it’s assumed that one can restrict the choice
of f to a set D ⊂ R

n
+ which will guarantee that for all ξ , one can find uξ so that

the corresponding variational inequality is solvable. This is a non-trivial assumption
and it is only valid if we expect the perturbations of both the od-demand and those
modifying the capacities to be relatively small, i.e., can essentially be interpreted as
“noise” affecting these uncertain quantities. 
�
Example 2.6 Capacity expansion. Arc capacity expansion,

(
ca → ca + xa, a ∈ A

)
, is

being considered for an existing, or to be designed, network (traffic, data transmission,
high-speed rail, . . . ). Only a limited pool of resources is available and thus, determine
a number of constraints on the choice of x . To stay in tunewith our general formulation
of the two-stage model and provide a wide margin of flexibility in the formulation of
these x-constraints, we express them as a variational inequality 〈G(x), x ′ − x〉 ≥ 0
for all x ′ ∈ D where D is a closed convex subset of RL , G : R

L → R
L is a

continuous vector-valued mapping and L = |A|. The overall objective is to determine
the arcs where capacities expansion will be most useful, i.e., will as well as possible
respond to the “average” needs of the users of this network (minimal travel times, rapid
connections, . . . ). We interpret this to mean that the network flow will be at, or at least
seek, aWardrop equilibrium based on the information available: each od-pair demand
and arcs’ capacity both of which are subject to stochastic fluctuations. Taking our clue
from the deterministic version described earlier, given a capacity expansion x and an
environment ξ ∈ � affecting both demands and capacities, a solution

(
u	

ξ,a, a ∈ A
)

of the following variational inequality would yield a Wardrop equilibrium:
∑

a∈A
ta(ξ, u	

ξ,a)(ua − u	
ξ,a) ≥ 0, ∀ u = (ua, a ∈ A) ∈ Cξ

with

Cξ =
{

u ≤ cξ

∣∣∣ u = N f, f ≥ 0,
∑

r∈Rod

fr = hξ,od ∀ od-pairs
}
.

Our two-stage stochastic variational inequality, cf. Sect. 1, would take the form:

find
(
x	, u	 : � × D → R

L ,A-measurable in ξ
)
such that

−G(x	) ∈ ND(x	)

−F(ξ , u	(ξ , x	)) ∈a.s. NCξξξ
(u	(ξ , x	)),
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where

F(ξ, u) = (
ta(ξ, u)

)
a∈A.

Detail.However, finding the solution to this particular stochastic variational inequality
might not provide us with a well thought out solution to the network design problem:
find optimal arc-capacities extension x that would result in expected minimal changes
in the traffic flow when there are arbitrary, possibly significant, perturbations in the
demand and the capacities. These concerns lead us to a modified formulation of this
problem which rather than simply asking for a (feasible) solution of the preceding
stochastic variational inequality wants to take into account a penalty cost associated
with the appropriate recourse decisions when users are confronted with specific sce-
narios ξ ∈ �. A “recourse cost” needs to be introduced. It’s then also natural, and
convenient computationally, to rely on an approach that allows for the possibility that
in unusual circumstances some of the preceding variational inequalities might actually
fail to be satisfied. This will be handled via a residual function. This application ori-
ented reformulation results in a recasting of the problem and brings it closer towhat has
been called an Expected Residual Minimization or ERM-formulation. The analysis
and the proposed solution procedure in the subsequent sections is devoted to this re-
molded problem. Although this ERM-reformulation, see (4) below and Sect. 5, might
usually5 only provide an approximate solution of the preceding variational inequality,
it provides a template for the design of optimal networks (traffic, communication,. . . )
comingwith both structural and demand uncertainties as argued in the next section. 
�

3 An expected residual minimization formulation

We proceed with an ERM-formulation that in some instances might provide a solution
which better suits the overall objective of the decision maker, cf. Sect. 5. Our focus
will be on a particular class of stochastic variational inequalities which, in particular,
include a number of traffic/communication problems (along the lines of Example 2.6):

find
(
x̄ ∈ R

n, ū : � × D → R
n, A-measurable in ξ

)
such that

− G(x̄) ∈ ND(x̄),

− F(ξ , ū(ξ , x̄)) ∈a.s. NCξξξ
(ū(ξ , x̄)),

where

∀ξ ∈ � : Cξ ⊂ R
n, closed, convex, ξ 	→ Cξ A-measurable,

D is closed and convex, and G : Rn → R
n and F : � × R

n → R
n , as in Sect. 1,

are continuous vector-valued functions in x and u respectively for all ξ ∈ �, and F is
A-measurable in ξ for each u ∈ R

n .

5 However, strict compliance can still be enforced in the ERM-reformulation by selecting the parameter λ

in the objective of (4), below, sufficiently large.
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The dependence of F on x is assimilated in u by letting it depend on the state of
the system determined by (ξ , x); it is thus convenient in the ensuing analysis to view
F as just a function of ξ and u. A convenient interpretation is to think of xa as the
“average” flow that would pass through arc a when uncertainties aren’t taken into
account whereas, when confronted with scenario ξ , the actual flow would turn out to
be uξ,a . Let’s denote by yξ = (

yξ,a = uξ,a − xa, a ∈ A
)
the “recourse” required

to adapt xa to the events/scenario ξ , this will come at an expected cost (time delay)
to the users. Since x̄ is conceivably a Wardrop equilibrium, these adjustments will
usually result in less desirable solutions. Such flow adjustments will come at a cost,
say 1

2 〈yξ , H yξ 〉, i.e. a generalized version of a least square cost proportional to the
recourse decisions. This means that H , usually but not necessarily a diagonal matrix,
would be positive definite. So, rather than viewing our decision variables as being uξ ,
we can equivalently formulate the recourse decisions in terms of the yξ , but now at
some cost, and define uξ = x + yξ . In fact, let us go one step further and enrich our
model by treating these yξ as activities6 that result in a flow adjustment W yξ and,
hence, uξ = x + W yξ ; whenever W = I , the yξ just compensate for deviations from
x .
When dealing with a deterministic variational inequality −G(x) ∈ ND(x), it is well
known that its solution can be found by solving the following optimization problem

min θ(x) subject to x ∈ D,

where θ is a residual (gap-type) function, i.e., such that θ ≥ 0 on D and θ(x) = 0
if and only if x ∈ D solves the variational inequality. In this article, we work with
the following residual function, to which one usually refers as the regularized gap
function [26]

θ(x) = maxv∈D〈x − v, G(x)〉 − α

2
‖x − v‖2 (1)

for someα > 0. In terms of the overall framework of Sect. 1, this residual function-type
will be attached to the inclusion−G(x) := −E[G(ξ, x)] ∈ ND(x). The corresponding
optimization problem reads

min
x∈D

[
θ(x) = max

v∈D
〈x − v,E[G(ξ, x)]〉 − α

2
‖x − v‖2]. (2)

When dealing with the second inclusions −F(ξ, u(ξ, x)) ∈ NCξ (u(ξ, x)) for
P-almost all ξ ∈ �, one could similarly introduce a collection of residual functions
θ̃ (ξ, u) whose properties would be similar to those of θ and ask that with probabil-
ity 1, θ̃ (ξ, u(ξ, x)) = 0 if and only if the function (ξ, x) 	→ u(ξ, x) satisfies the
corresponding stochastic variational inequality. This certainly might be appropriate in
certain instances, but in a variety of problems onemightwant to relax this condition and
replace it by a weaker criterion, namely that the Expected ResidualE[θ̃ (ξ, u(ξ, x))] be
minimal. A somewhat modified definition of a residual function will be more appro-

6 Regulations introduced by the transportation-authority, the closing of certain links, etc.
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priate when dealing with this “collection of variational inequalities”, we adopt here
the one introduced in [10].

Definition 3.1 (SVI-Residual function) Given a closed, convex set D ⊂ R
n and the

random vector ξ defined on (�,A, P), let us consider the following collection of
variational inequalities (SVI):

find
(
x̄ ∈ R

n, ū : � × D → R
n, A-measurable in ξ

)
such that

−F
(
ξ , ū(ξ , x̄)

) ∈a.s. NCξ
(ū(ξ , x̄)).

A function r : �×R
n → R+ is a residual function for these inclusions if the following

conditions are satisfied:

(i) P-almost all ξ ∈ �, r(ξ, u) ≥ 0 for all u ∈ Cξ ,
(ii) For any u : � × D → R

n A-measurable, it holds that

−F
(
ξ, u(ξ, x)

) ∈a.s. NCξ (u(ξ, x)) ⇔ r(ξ, u(ξ, x)) =a.s. 0 and u(ξ, x) ∈a.s. Cξ .

The stochastic variational inequality in this definition is in line with the second a.s.-
inclusion in Example 2.6. We will work with a concrete example of SVI-residual
functions: the regularized gap residual function with α > 0,

r(ξ, u) = max
v∈Cξ

{
〈u − v, F(ξ, u)〉 − α

2
‖u − v‖2

}
; (3)

We will show in Theorem 3.3 that the above function satisfies the two conditions
in Definition 3.1. The use of residual functions leads us to seeking a solution of the
stochastic program

minx∈D θ(x) + λE[r(ξ, u(ξ, x)) + Q(ξ, x)]
where u(ξ, x) = x + W y∗

ξ , Q(ξ, x) = 1
2 〈y∗

ξ , H y∗
ξ 〉, ∀a.s. ξ ∈ �,

y∗
ξ = argmin

{ 1
2 〈y, H y〉 ∣∣ x + W y ∈ Cξ

}
.

(4)

With the positive definite property of H and the convexity of Cξ , u(ξ, x) is uniquely
defined by the unique solution y∗

ξ of the second stage optimization problem in (4).
Moreover, with the residual functions θ and r defined in (1) and (3), respectively, the
positive parameter λ in (4) allows for a further adjustment of the weight to ascribe to
the required recourse decisions and residuals; with λ relatively large, and adjusting
H � 0 correspondingly, one should end up with a solution that essentially avoids any
violation of the collection (SVI) of variational inequalities.7

7 Problem (4) includes the expected value (EV) [28,32,41,62] and the expected residual minimization
(ERM) [1,8,10,12,22,42,70] for stochastic variational VI and stochastic complementarity problems as
special cases. In particular, if we set λ = 0, then problem (4) is equivalent to the problem: find x∗ ∈ D
such that

〈(x − x∗),E[G(ξ, x∗)]〉 ≥ 0, ∀ x ∈ D.
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Assumption 3.2 Assume

(i) W has full row rank;
(ii) for almost all ξ , Cξ ⊂ C†, a compact convex set.

For almost all ξ , since Cξ is convex and compact, it is easy to show that for these ξ ,
u 	→ r(ξ, u) is continuous. On the other hand, for each fixed u, it follows from [58,
Theorem 14.37] that ξ 	→ r(ξ, u) is measurable. This means that r is a Carathéodory
function. In addition, consider for each ξ ∈ �,

v(ξ, u) = prjCξ

(
u − 1

α
F(ξ, u)

)
. (5)

Recall that v(ξ, u) attains the maximum in (3). Clearly, u 	→ v(ξ, u) is continuous,
and for each fixed u, the measurability of ξ 	→ v(ξ, u) again follows from [58,
Theorem 14.37]. Consequently, also v is a Carathéodory function.

Theorem 3.3 (Residual function) When Assumption 3.2 is satisfied, r is a residual
function for our collection (SVI) and for any x ∈ D and almost every ξ ∈ �, the
function r(ξ, u(ξ, x)) + Q(ξ, x) in (4) is finite, nonnegative with

v(ξ, u(ξ, x)) = prjCξ

(
u(ξ, x) − 1

α
F(ξ, u(ξ, x))

)
(6)

as the unique maximizer of the maximization problem in (3).

Proof Let x ∈ D and u : � × D → R
n be A-measurable in ξ . We now check the

two conditions in Definition 3.1. First of all, we see that r(ξ, u) is nonnegative for
all u ∈ Cξ from the definition. Moreover, from the property of the regularized gap
function for VI, we have r(ξ, u(ξ, x)) = 0 and u(ξ, x) ∈ Cξ if and only if u(ξ, x)

solves the (deterministic) variational inequality −F(ξ, u(ξ, x)) ∈ NCξ (u(ξ, x)) for
fixed ξ ∈ �. Thus, it follows that r is a residual function of this collection of variational
inequalities −F(ξ, u(ξ, x)) ∈a.s. NCξ (u(ξ, x)), ξ ∈ �.

We next show that for any x ∈ D, the y∗
ξ in (4) is, in fact, uniquely defined. To

this end, consider y = W �(W W �)−1(prjCξ
x − x), where W W � is invertible by

Assumption 3.2. Then W y = prjCξ
x − x and W y + x ∈ Cξ which means that the

feasible set of the second stage optimization problem in (4), i.e.,
{

y
∣∣ x + W y ∈ Cξ

}
,

is nonempty. Moreover, for almost all ξ ∈ �, this set is closed and convex since Cξ is
compact and convex. Consequently, the second stage optimization problem in (4) has
a strongly convex objective and a nonempty closed convex feasible set. Therefore, it
has a unique minimizer y∗

ξ , and ξ 	→ y∗
ξ is measurable thanks to [58, Theorem 14.37].

Footnote 7 continued
On the other hand, if our variational inequality only involves inclusions of the (second) type−F(ξ , x) ∈a.s.
NC (x) with C = C† independent of ξ , then problem (4) reduces to the (pure) ERM-formulation

minx∈D=C† E[r(ξ , x)];

for complementarity problems one has C† ≡ R
n+.
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Finally, for u(ξ, x) = x + W y∗
ξ , we recall the well-known fact that the problem

max
v∈Cξ

〈u(ξ, x) − v, F(ξ, u(ξ, x))〉 − α

2
‖u(ξ, x) − v‖2

has a solution, with the unique maximizer given by the projection (6). Thus, the
function r(ξ, u(ξ, x)) in (4) is also finite-valued. Furthermore, since H is positive
definite and r is nonnegative, r(ξ, u(ξ, x)) + Q(ξ, x) has a finite nonnegative value
at any x ∈ D for almost every ξ ∈ �. This completes the proof. 
�
Theorem 3.3 means that under Assumption 3.2, problem (4) is a stochastic program
with complete recourse, that is, for any x and almost all ξ , the second stage optimization
problem in (4) has a solution. In general, this is not an innocuous assumption but in
the context that we are considering it only means that the set D has singled-out a
set of possible traffic network layouts that will guarantee that traffic will proceed,
possibly highly disturbed and arduously, whatever be the perturbations resulting from
the stochastic environment ξ .
We need the following to guarantee the objective of (4) is finite-valued:

Assumption 3.4 The functions F(ξ, ·) and G(·) are continuously differentiable for
all ξ ∈ � and ∇F is A-measurable. Moreover, for any compact set �, there are
functions d, ρ : � → R+ such that

‖F(ξ, u)‖ ≤ dξ and ‖∇F(ξ, u)‖ ≤ ρξ

for all u ∈ �, where d ∈ L∞
1 and ρ ∈ L1

1.

Lemma 3.5 Suppose Assumptions 3.2 and 3.4 hold. Then for almost all ξ , r is con-
tinuously differentiable and its gradient is given by

∇r(ξ, u) = F(ξ, u) − (∇F(ξ, u) − α I )(v(ξ, u) − u). (7)

Moreover, for any measurable uξ ∈a.s. Cξ , both ξ 	→ r(ξ, uξ ) and ξ 	→ ∇r(ξ, uξ )

are not only measurable but actually integrable uniformly in uξ . In particular, this
means that the objective function in (4) is well defined at any x ∈ D, and the optimal
value of (4) is finite.

Proof From Theorem 3.2 in [26], we know that r(ξ, ·) is continuously differentiable
and its gradient is given by (7). Moreover, notice that r(ξ, u) and its gradients with
respect to u are both Carathéodory functions. Hence, the measurability of r(ξ, uξ )

and ∇r(ξ, uξ ) for any measurable function uξ follows. We now establish uniform
integrability.

Since C† is compact, for a u ∈ C†, ‖u‖ ≤ γ for some γ > 0. This together with
Assumption 3.4 yields r(ξ, uξ ) ≤ 2γ dξ + α

2 (2γ )2 and

‖∇r(ξ, uξ )‖ ≤ ‖F(ξ, uξ )‖ + ‖∇F(ξ, uξ ) − α I‖‖v(ξ, uξ ) − uξ‖
≤ dξ + 2γ (ρξ + α) =: dr

ξ .

This proves uniform integrability.
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Finally, let x be feasible for (4) and consider the corresponding y∗
ξ (exists and ismea-

surable according to the proof of Theorem 3.3). Set ŷ = W �(W W �)−1(prjCξ
x − x).

Then W ŷ + x ∈ Cξ and hence we have from the definition of y∗
ξ and C† that

〈y∗
ξ , H y∗

ξ 〉 ≤ 〈ŷ, H ŷ〉 ≤ c for some constant c > 0 (that depends on x but is indepen-
dent of ξ ). Hence

θ(x) + λE[r(ξ, u(ξ, x)) + Q(ξ, x)] ≤ θ(x) + 2λγE[dξ ] + 2λαγ 2 + λc

2
,

which implies the well-definedness of the objective in (4) and the finiteness of the
optimal value. This completes the proof. 
�
Lemma 3.5 establishes the differentiability of r and the finiteness of optimal value
of (4). However, the objective function of problem (4) involves minimizers of con-
strained quadratic programs for ξ ∈ � and is not necessarily differentiable even when
the sample is finite, despite the fact that the function r(ξ, ·) in (3) is continuously
differentiable for almost all ξ ∈ �.
Below, we adopt the strategy of the L-shaped algorithm for two-stage stochastic opti-
mization problems [6,36,65] to obtain a relaxation of (4), whose objective function
will be smooth when the sample is finite. We start by rewriting the recourse program.
First, observe that the second stage problem is the same as

min
1

2
〈y, H y〉 subject to W y = u − x, u ∈ Cξ .

With the substitution z = H
1
2 y, the above problem is equivalent to

min
1

2
‖z‖2 subject to W H− 1

2 z = u − x, u ∈ Cξ . (8)

Observe that for each fixed u and x , the minimizer of min
{ 1
2‖z‖2 ∣∣W H− 1

2 z = u − x
}

is
z = H− 1

2 W � B(u − x) where B = (W H−1W �)−1. (9)

Plugging this expression back in (8), the second stage problem is further equivalent
to

min
1

2
〈u − x, B(u − x)〉 subject to u ∈ Cξ ,

whose unique solution u∗
ξ can be interpreted as a weighted projection of x onto Cξ for

each ξ ∈ �. From this and (9), for each ξ ∈ �, the unique solution y∗
ξ of the second

stage problem is given by

y∗
ξ = argmin

{
1

2
〈y, H y〉 ∣∣ x + W y ∈ Cξ

}
= H−1W � B(u∗

ξ − x). (10)
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Combining the preceding reformulation of the second stage problem with the idea
of the L-shaped algorithm, we are led to the following problem, whose objective is
smooth when the sample is finite:

min θ(x) + λE[r(ξ, uξ ) + 1
2 〈uξ − x, B(uξ − x)〉]

subject to x ∈ D, uξ ∈a.s. Cξ .
(11)

It is not hard to see that the optimal value of (11) is smaller than that of (4) since fewer
restrictions are imposed on uξ , or, equivalently on yξ in (10). Hence, it follows from
Lemma 3.5 that the optimal value of (11) is also finite.
Unlike (4) which only depends explicitly on the finite dimensional decision variable x ,
problem (11) depends also explicitly on the measurable function ξ 	→ uξ . However,
notice that (11) can be equivalently rewritten as

min
x∈D

{
θ(x) + λ min

u∈L∞
n

E

[
r(ξ, uξ ) + 1

2
〈uξ − x, B(uξ − x)〉 + δCξ (uξ )

]}
, (12)

where δCξ is the indicator function of the set Cξ which is zero inside the set and is
infinity otherwise. We next recall the following result, which allows interchange of
minimization and integration. This is a consequence of the finiteness of the optimal
value of the inner minimization in (12) (thanks to Lemma 3.5), Exercise 14.61 and
Theorem 14.60 (interchange of minimization and integration) in [58].

Lemma 3.6 Under Assumptions 3.2 and 3.4, for any fixed x ∈ D, we have

min
u∈L∞

n

E[�(ξ, uξ )] = E[min
u∈Rn

�(ξ, u)], (13)

where

�(ξ, u) = r(ξ, u) + 1

2
〈u − x, B(u − x)〉 + δCξ (u).

Moreover, for ū ∈ L∞
n ,

ū ∈ argmin
u∈L∞

n

E[�(ξ, uξ )] ⇔ ūξ ∈ argmin
u∈Rn

�(ξ, u), ξ ∈ �, a.s. (14)

Using the above result, one can further reformulate (11) equivalently as

min
x∈D

ϕ(x) := θ(x) + λE[ψ(ξ, x)]
ψ(ξ, x) := min

u∈Cξ

r(ξ, u) + 1

2
〈u − x, B(u − x)〉, (15)

which is an optimization problem that depends only explicitly on the finite dimensional
decision variable x . Moreover, for each x ∈ D, from (14), we have u∗ ∈ L∞

n attaining
theminimum of the inner minimization problem in (12) if and only if its value at ξ , i.e.,
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u∗
ξ , is a minimizer of the minimization problem defining ψ(ξ, x) for almost all ξ ∈ �.

We note that ψ(ξ, x) is also a Carathéodory function: the measurability with respect
to ξ for each fixed x follows from [58, Theorem 14.37], while the continuity with
respect to x for almost all ξ follows from the compactness of Cξ and the continuity of
(u, x) 	→ r(ξ, u) + 1

2 〈u − x, B(u − x)〉. In addition, thanks to Lemma 3.5, it is not
hard to check that the objective in (15) is finite at any x ∈ D under Assumptions 3.2
& 3.4.
We show next that both (4) and (11) (and hence (15)) are solvable, and discuss their
relationship.

Theorem 3.7 (Solvability) Suppose Assumptions 3.2 and 3.4 hold. Then problems (4)
and (11) are solvable. Let ν1 and ν2 be the optimal values of (4) and (11), respectively.
Then ν1 ≥ ν2. Moreover, if for any x ∈ D and x + W y, x + W z ∈ Cξ , we have

|r(ξ, x + W y) − r(ξ, x + W z)| ≤ 1

2
|〈y, H y〉 − 〈z, H z〉|, ξ ∈ �, a.s. (16)

then the two problems have the same optimal values.

Proof According to Lemma 3.5 and the preceding discussions, the optimal value of
both problems (4) and (11) are finite. We show that the values are attained.

We first show that the optimal value of problem (4) is attained. To this end, consider
‖x‖ → ∞. Then from the boundedness ofC† ⊇ Cξ , it follows that ‖y∗

ξ ‖ in (4)must go
to ∞ uniformly in ξ except for a set of measure zero, which implies that E[Q(ξ, x)]
goes to ∞ in (4). This together with the nonnegativity of r and θ shows that the
objective function of (4), as a function of x , is level bounded. Next, we show that
the objective is lower semicontinuous. To this end, consider a sequence xk → x0.
From the discussions in (8) to (10) and using the continuity of weighted projections,
we see that u(ξ, xk) → u(ξ, x0) for almost all ξ ∈ �. This implies the continuity of
x 	→ r(ξ, u(ξ, x)) + Q(ξ, x), which is a nonnegative function, and Fatou’s lemma
gives the lower semicontinuity ofE[r(ξ, u(ξ, x))+Q(ξ, x)]. The lower semicontinuity
of the objective of (4) now follows upon recalling that θ(x) is continuous. Hence (4)
has a solution x∗, from which one can easily construct the second stage solution y∗

ξ .
We now show that the optimal value of problem (11) is attained. Note that from

the discussion preceding this lemma, one can equivalently consider problem (15). For
this latter problem, observe that

ϕ(x) ≥ λE[ψ(ξ, x)] ≥ λ

2
E[minu∈Cξ 〈u − x, B(u − x)〉] ≥ λ

2
minu∈C†〈u − x, B(u − x)〉,

where the first two inequalities follow from the nonnegativity of the residual functions,
and the third inequality follows from Cξ ⊆ C†. The above relation together with the
positive definiteness of B and the compactness of C† shows that the objective function
of (15) is level bounded.Wenote also that the objective is lower semicontinuous,which
is a consequence of the continuity of θ(x), the continuity of ψ(ξ, x) in x and Fatou’s
lemma. Hence an optimal solution x∗ exists, from which the corresponding u∗

ξ that
minimizes the subproblem defining ψ(ξ, x) can be obtained easily. From this and the
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relationship between the solutions of (11) and (15), one concludes that a solution of
problem (11) exists.
Next, we consider the relationship between the optimal values of (4) and (11), which
we denote by ν1 and ν2, respectively. Obviously, ν1 ≥ ν2.

Suppose in addition that (16) holds, then ν1 = ν2. To prove it, let (x2, u2
ξ ) be a

solution of (11) and x1 be a solution of (4). Set

y2∗ξ = argmin

{
1

2
〈y, H y〉

∣∣
∣∣ x2 + W y ∈ Cξ

}

and y2ξ = H−1W � B(u2
ξ − x2). Since u2

ξ = x2 + W y2ξ ∈ Cξ , we have

〈y2∗ξ , H y2∗ξ 〉 − 〈y2ξ , H y2ξ 〉 ≤ 0.

Using this inequality, condition (16) and 〈y2ξ , H y2ξ 〉 = 〈u2
ξ − x2, B(u2

ξ − x2)〉 yield

ν1 = θ(x1) + λE[r(ξ, u(ξ, x1)) + Q(ξ, x1)]
≤ θ(x2) + λE[r(ξ, u(ξ, x2)) + Q(ξ, x2)]
= θ(x2) + λE[r(ξ, x2 + W y2∗ξ ) + 1

2
〈y2∗ξ , H y2∗ξ 〉]

≤ θ(x2) + λE[r(ξ, u2
ξ ) + 1

2
〈y2ξ , H y2ξ 〉]

+ λE[|r(ξ, x2 + W y2∗ξ ) − r(ξ, x2 + W y2ξ )| − 1

2
|〈y2∗ξ , H y2∗ξ 〉 − 〈y2ξ , H y2ξ 〉|]

≤ θ(x2) + λE[r(ξ, u2
ξ ) + 1

2
〈u2

ξ − x2, B(u2
ξ − x2)〉] = ν2.

Therefore, problems (4) and (11) have the same optimal values. 
�

Similarly to Lemma 3.5, we now study the differentiability of the objective function
of problem (11). Let

f (ξ, x, u) = r(ξ, u) + 1

2
〈u − x, B(u − x)〉,

where r is given by (3). The proof of the following lemma is similar to that of
Lemma 3.5 and will thus be omitted.

Proposition 3.8 Suppose that Assumptions 3.2 and 3.4 hold. Then for almost all ξ , f
is continuously differentiable and its gradient is given by

∇ f (ξ, x, u) =
(∇u f (ξ, x, u)

∇x f (ξ, x, u)

)
=
(∇r(ξ, u) + B(u − x)

B(x − u)

)
. (17)
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Two-stage stochastic variational inequalities 93

Moreover, f (ξ, x, uξ ) and ∇ f (ξ, x, uξ ) are measurable in ξ . Furthermore, for any

compact set D̄ ⊆ D, there are d f , ρ f ∈ L1
1 such that ‖ f (ξ, x, uξ )‖ ≤ d f

ξ and

‖∇ f (ξ, x, uξ )‖ ≤ ρ
f
ξ whenever uξ ∈ Cξ and x ∈ D̄.

In general, a two-stage stochastic VI cannot be reformulated as a convex two-stage
stochastic optimization problem. Below, we show that convexity is inherited partially
in f from a linear two-stage stochastic optimization problem. This proposition will
be used in the next section to establish, for this particular class of problems, a stronger
convergence result for linear two-stage stochastic optimization problems.

Proposition 3.9 Under Assumptions 3.2 and 3.4, if for ξ ∈ �, F(ξ, x) = Mξ x + qξ

and infξ∈� λmin(B+Mξ +M�
ξ ) > α, then f (ξ, x, ·) is strongly convex for each x ∈ D,

with a strong convexity modulus independent of x and ξ . Moreover, if infξ∈� λmin(Mξ+
M�

ξ ) ≥ α, then f (ξ, ·, ·) is convex.

Proof For a fixed ξ , notice that the function

f (ξ, x, u) = max
v∈Cξ

〈u − v, Mξ u + qξ 〉 − α

2
‖u − v‖2 + 1

2
〈u − x, B(u − x)〉

is convex in u if the function

ϕ(ξ, x, u, v) = 〈u − v, Mξ u + qξ 〉 − α

2
‖u − v‖2 + 1

2
〈u − x, B(u − x)〉

is convex in u for any fixed v ∈ R
n and x ∈ R

n . Since

∇2
uuϕ(ξ, x, u, v) = Mξ + M�

ξ − α I + B

is positive definite, ϕ(ξ, x, ·, v) and thus f (ξ, x, ·) is convex. The independence of
the modulus on x can be seen from the fact that ∇2

uuϕ(ξ, x, u, v) does not depend on
x , while the independence on ξ can be seen from the assumption on the eigenvalue.
Finally, when infξ∈� λmin(Mξ +M�

ξ ) ≥ α, the convexity of f (ξ, ·, ·) in (x, u) follows
from the positive semi-definiteness of the matrix

(
∇2

uuϕ(ξ, x, u, v) ∇2
uxϕ(ξ, x, u, v)

∇2
xuϕ(ξ, x, u, v) ∇2

xxϕ(ξ, x, u, v)

)

=
(

Mξ + M�
ξ − α I + B −B
−B B

)
∈ R

2n×2n .

This completes the proof. 
�
Remark 3.10 In [1], Agdeppa, Yamashita and Fukushima defined a convex ERM for-
mulation for the stochastic linear VI by using the regularized gap function under the
assumption that infξ∈� λmin(Mξ + M�

ξ ) > α. In [10], Chen, Wets and Zhang defined
a convex ERM formulation for the stochastic linear VI by using the gap function under
a weaker assumption that E[Mξ + M�

ξ ] is positive semi-definite. In this paper, Lemma
3.9 shows that for any stochastic linear VI, we can choose a positive definite matrix B
to define a convex optimization problem in the second stage of the generalized ERM
formulation (11).
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94 X. Chen et al.

To end this section, we include a corollary concerning the entire objective function of
(11).

Corollary 3.11 Suppose that Assumptions 3.2 and 3.4 hold. Then the objective func-
tion θ(x)+λE[ f (ξ, x, uξ )] is well defined at any x ∈ D and any measurable function
uξ ∈ Cξ . Moreover, if G(x) = E[Mξ ]x +E[qξ ], then the objective function is convex
under all the assumptions of Proposition 3.9.

4 Convergence analysis

In this section, we discuss a sample average approximation (SAA) for (15) (and hence,
equivalently, (11)) and derive its convergence. Let G(x) = E[F(ξ, x)] and ξ1, . . . , ξ ν

be iid (independent and identically distributed) samples of ξ and

Gν(x) = 1

ν

ν∑

i=1

F(ξ i , x)

θν(x) = max
v∈D

〈x − v, Gν(x)〉 − α

2
‖x − v‖2

ψ(ξ i , x) = minu∈C
ξ i r(ξ i , u) + 1

2
〈u − x, B(u − x)〉.

Note that Gν and θν are continuous P-a.s. for all ν, and recall thatψ is a Carathéodory
function; cf. the discussion following (15). We consider the following SAA of (15)
(and hence, equivalently, (11)):

minx∈D ϕν(x) := θν(x) + λ

ν

ν∑

i=1

ψ(ξ i , x). (18)

Let X∗ and Xν be the solution sets of problems (15) and (18). We will give sufficient
conditions for that X∗ and Xν to be nonempty and bounded, and for any cluster point
of a sequence {xν}xν∈Xν to be in X∗.

Lemma 4.1 Under Assumptions 3.2 and 3.4, X∗ and Xν are nonempty P-a.s. for all
ν. Moreover, there exists a compact convex set D̄ ⊆ D so that X∗ ⊆ D̄ and Xν ⊆ D̄
P-a.s. for all ν.

Proof From the nonnegativity of r(ξ, u), we have for almost all ξ ∈ �,

ψ(ξ, x) = minu∈Cξ r(ξ, u) + 1

2
〈u − x, B(u − x)〉

≥ minu∈Cξ

1

2
〈u − x, B(u − x)〉

≥ λB

2
minu∈C† ‖u − x‖2

= λB

2
‖ prjC† x − x‖2,
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Two-stage stochastic variational inequalities 95

where λB > 0 is the smallest eigenvalue of the matrix B. On the other hand, recall
from Assumption 3.2 that there exists τ > 0 so that ‖u‖ ≤ τ for all u ∈ C†, and from
Assumption 3.4 that ‖F(ξ, u)‖ ≤ dξ for some d ∈ L∞

1 . Hence, for a fixed x0 ∈ D,
we have

ψ(ξν, x0) ≤ sup
u∈C†

r(ξν, u) + ‖B‖
2

(τ + ‖x0‖)2

≤ 2τdξν + α

2
(2τ)2 + ‖B‖

2
(τ + ‖x0‖)2 ≤ γ1

for some constant γ1 P-a.s. for all ν, since d ∈ L∞
1 . Furthermore, we have

θν(x0) =
〈
x0 − prjD

(
x0 − 1

α
Gν(x0)

)
, Gν(x0)

〉

−α

2

∥∥
∥∥x0 − prjD

(
x0 − 1

α
Gν(x0)

)∥∥
∥∥

2

≤ γ2

P-a.s.for all ν, since F(·, x0) ∈ L∞
1 .

Hence we have

{x ∈ D | ϕν(x) ≤ ϕν(x0)} ⊆
{

x ∈ D

∣∣∣∣
λ

ν

ν∑

i=1

ψ(ξ i , x) ≤ ϕν(x0)

}

⊆
{

x ∈ D

∣∣∣∣
λ

ν

ν∑

i=1

ψ(ξ i , x) ≤ λγ1 + γ2

}

⊆ {x ∈ D | λ · λB‖ prjC† x − x‖2 ≤ 2(λγ1 + γ2)}

(19)

P-a.s. for all ν, and that

{x ∈ D | ϕ(x) ≤ ϕ(x0)} ⊆ {x ∈ D | λ · λB‖ prjC† x − x‖2 ≤ 2ϕ(x0)}. (20)

These, together with the boundedness ofC†, imply that the level sets of ϕν(·) and ϕ(·),
are bounded and are included in a compact set that is independent of ξ , P-a.s. for all
ν. Moreover, the objective functions of (15) and (18) are all lower semicontinuous,
and θ , θν , ψ(ξ, x) are nonnegative. Hence X∗ and Xν are nonempty P-a.s. for all ν.
Finally, from (19) and (20), one can choose for D̄ = {x ∈ D | λ ·λB‖ prjC† x − x‖2 ≤
2max{ϕ(x0), λγ1 + γ2}}. 
�
Theorem 4.2 (Convergence theorem) Suppose Assumptions 3.2 and 3.4 hold. Then
ϕν converges to ϕ a.s.-uniformly on the compact set D̄ specified in Lemma 4.1. Let
{xν} be a sequence of minimizers of problems (18) generated by iid samples. Then
{xν} is P-a.s. bounded and any accumulation point x∗ of {xν} as ν → ∞ is P-a.s. a
solution of (15).
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Proof From Lemma 4.1, the convex compact set D̄ ⊆ D is such that X∗ ⊆ D̄,

minx∈D̄ ϕ(x) = minx∈D ϕ(x) = minx∈Rn ϕ(x) + δD(x)

and for P-a.s. all ν,

minx∈D̄ ϕν(x) = minx∈D ϕν(x) = minx∈Rn ϕν(x) + δD(x).

Note that ϕν(x) = θν(x) + λ
ν

∑ν
i=1 ψ(ξ i , x). To analyze the convergence, we first

show that θν(x) converges to θ(x) P-a.s. uniformly on D̄. Since D̄ is a nonempty
compact subset ofRn , F(ξ, ·) is continuous at x for almost every ξ ∈ �, ‖F(ξ, x)‖ ≤
dξ for some d ∈ L∞

1 due to Assumption 3.4, and the sample is iid, we can apply
Theorem 7.48 in [62] to claim that Gν(x) converges to G(x) a.s.-uniformly on D̄, that
is, for any ε > 0, there is ν̂ such that for any ν ≥a.s. ν̂, one has

supx∈D̄ |G(x) − Gν(x)| < ε.

Moreover, from the definition of θ in (1), we have

θ(x) = 〈x − v(x), G(x)〉 − α

2
‖x − v(x)‖2

θν(x) = 〈x − vν(x), Gν(x)〉 − α

2
‖x − vν(x)‖2,

where

v(x) = prjD

(
x − 1

α
G(x)

)
and vν(x) = prjD

(
x − 1

α
Gν(x)

)
.

Obviously, one has for ν ≥a.s. ν̂,

supx∈D̄ ‖v(x) − vν(x)‖ ≤ supx∈D̄
1

α
‖G(x) − Gν(x)‖ <

ε

α
.

From the boundedness of D̄ and the continuity of G, there is γ > 0 such that
max{‖z‖, ‖v(z)‖, ‖G(z)‖} ≤ γ for any z ∈ D̄. Hence we obtain for ν ≥a.s. ν̂,
that ‖vν(z)‖ ≤ γ + ε

α
for any z ∈ D̄ and

supx∈D̄ |θ(x) − θν(x)| ≤ supx∈D̄(‖vν(x) − x‖‖G(x) − Gν(x)‖
+‖v(x) − vν(x)‖‖G(x)‖
+α

2
(‖x − v(x)‖ + ‖x − vν(x)‖)‖v(x) − vν(x)‖)

< (4 + 1

α
)γ ε + 3ε2

2α
.
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Hence, θν(x) converges to θ(x) a.s.-uniformly on D̄. Similarly, again by using The-
orem 7.48 in [62], we can show that 1

ν

∑ν
i=1 ψ(ξ i , x) → E[ψ(ξ, x)] a.s.-uniformly

on D̄. Consequently, ϕν converges to ϕ a.s.-uniformly on D̄ as claimed.
Combining the convergence result with Theorem 7.11, Theorem 7.14 and Theorem

7.31 in [58], we obtain further that

lim sup
ν→∞

argminx∈D̄ϕν(x) ⊆ argminx∈D̄ϕ(x).

Since D̄ is compact, we conclude further that {xν} is a.s. bounded and any accumu-
lation point of {xν}, as ν → ∞, is a.s. a solution x∗ of (15). 
�

It is worth noting that the function

ϕ(x) = (
max
v∈D

〈x − v,E[F(ξ, x)]〉 − α

2
‖x − v‖2) + λE[ψ(ξ, x)]

is the sum of an EV formulation for the first stage and an ERM formulation for the
second stage of the two stage stochastic VI. The convergence analysis of SAA for the
EV formulation of a single stage stochastic VI in [62] cannot be directly applied to
ϕν .

We next present a result in the presence of convexity: when F(ξ, ·) is an affine
mapping, we can obtain further results if a first-order growth condition is satisfied.
For the same reason explained above, the corresponding results in [62] cannot be
directly applied.

Theorem 4.3 (Convergence theorem for the convex problem) In addition to Assump-
tions 3.2 and 3.4, suppose that for ξ ∈ �, F(ξ, u) = Mξ u + qξ . Let θ(x) be defined
by (1) with G(x) = E(F(ξ, x)) and infξ∈� λmin(Mξ + M�

ξ ) > α. Then ϕ and ϕν are
strongly convex P-a.s. for all ν. Let {xν} be a sequence of minimizers of problems (18)
and the samples be iid. Then ϕν converges to ϕ a.s.-uniformly on the compact set D̄
specified in Lemma 4.1. Moreover, let x∗ be the unique solution of (15) such that

ϕ(x) ≥ ϕ(x∗) + c‖x − x∗‖, ∀ x ∈ D̄, (21)

where c > 0 is a constant.8 Then a.s., we have xν = x∗ for all sufficiently large ν.

Proof FromTheorem 3.2 in [26], the functions θ and θν defined by the regularized gap
function are strongly convex and continuously differentiable P-a.s. for all ν.Moreover,
we also have the convexity of ψ(ξ, ·) and ψν(ξ, ·) from the second conclusion in
Proposition 3.9. Hence ϕ and ϕν are strongly convex P-a.s. for all ν.

The a.s.-uniform convergence of ϕν to ϕ on D̄ is obtained from Theorem 4.2.
Alternatively, we have a much simpler proof thanks to the presence of convexity:
since ϕν(x) → ϕ(x) at each x ∈ D̄ a.s., we have ϕν(x) → ϕ(x) for every x in any

8 The solution x∗ is called a sharp solution in [62, Definition 5.22]. A sufficient condition for (21) is that
min1≤i≤n |∇ϕ(x∗)|i > c and min1≤i≤n(∇ϕ(x∗))i (x − x∗)i ≥ 0, ∀ x ∈ D̄.
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countable dense subset of D̄ a.s., and consequently, using Theorem 10.8 from [51],
we can also conclude that ϕν converges to ϕ a.s.-uniformly on D̄.

Next, assume in addition that (21) holds at the unique solution x∗ of (15). We first
recall from [62, Theorem 7.54] that using the convexity and the differentiability of
ϕν(·) and ϕ(·), we have ∇ϕν(x∗) converging to ∇ϕ(x∗) a.s.-uniformly on the unit
sphere. Combining this with (21), we have for large enough ν

〈∇ϕν(x∗), h〉 ≥ c

2
‖h‖, ∀ h ∈ TD̄(x∗),

where T is the tangent cone to D̄ at x∗. This implies that x∗ is the unique minimizer
of ϕν on D̄ and hence xν = x∗. 
�

We close this section with the following result concerning a Lipschitz continu-
ity property of ψ when F(ξ, ·) is affine. The conclusion might be useful for future
sensitivity analysis.

Proposition 4.4 In addition to Assumptions 3.2 and 3.4, if for ξ ∈ �, F(ξ, u) =
Mξ u + qξ and infξ∈� λmin(B + Mξ + M�

ξ ) > α, then for any arbitrary compact set

D̄ ⊆ D, there is a measurable function κ : � → R+ with κ ∈ L1
1 such that for any

x, z ∈ D̄ ⊆ D, we have

|ψ(ξ, x) − ψ(ξ, z)| ≤ κ(ξ)‖x − z‖.

Proof Let D̄ ⊆ D be an arbitrary compact set. For any x , z ∈ D, and ξ ∈ �, let

ū = argminu∈Cξ f (ξ, x, u) and w̄ = argminw∈Cξ f (ξ, z, w). (22)

In particular, we have from the definition of ψ that

ψ(ξ, x) = r(ξ, ū)+1

2
〈ū−x, B(ū−x)〉 and ψ(ξ, z) = r(ξ, w̄)+1

2
〈w̄−z, B(w̄−z)〉.

(23)
From Proposition 3.9, f (ξ, x, ·) is strongly convex. Using this, Proposition 3.8,

(22) and the first-order optimality conditions, we have

〈∇r(ξ, ū) + B(ū − x), w̄ − ū〉 ≥ 0 and 〈∇r(ξ, w̄) + B(w̄ − z), ū − w̄〉 ≥ 0.

Adding these two inequalities, we obtain that

−〈∇r(ξ, ū) − ∇r(ξ, w̄) + B(ū − w̄), ū − w̄〉 + 〈x − z, B(ū − w̄)〉 ≥ 0.

Combining this with the strong convexity of f with respect to u established in Propo-
sition 3.9, we have further that

σ‖ū − w̄‖2 ≤ 〈∇r(ξ, ū) − ∇r(ξ, w̄) + B(ū − w̄), ū − w̄〉 ≤ ‖B‖‖x − z‖‖ū − w̄‖,
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where σ > 0 is independent of x , z and ξ . Hence, we obtain that the solution is
Lipschitz continuous, that is,

‖ū − w̄‖ ≤ ‖B‖
σ

‖x − z‖, (24)

whenever x , z ∈ D. Next, by the definition of r and Theorem 3.3, we have

r(ξ, u) =
〈
u − prjCξ

(
u − 1

α
F(ξ, u)

)
, F(ξ, u)

〉

−α

2

∥∥∥
∥u − prjCξ

(
u − 1

α
F(ξ, u)

)∥∥∥
∥

2

.

Since the projection and F are Lipschitz continuous, ‖F(ξ, u)‖ ≤ dξ and
‖∇F(ξ, u)‖ ≤ ρξ for some d ∈ L∞

1 and ρ ∈ L1
1, and Cξ ⊆ C† for almost all

ξ ∈ �, there is κ1 ∈ L1
1 such that whenever u, w ∈ Cξ ,

|r(ξ, u) − r(ξ, w)| ≤ κ1(ξ)‖u − w‖. (25)

Finally, since D̄ and C† are bounded, there is L > 0 such that for any y ∈ D̄ ∪ C†,
we have ‖y‖ ≤ L/2.

Combining this with (23), (24) and (25), we obtain the following Lipschitz conti-
nuity property of ψ for any x , z ∈ D̄:

|ψ(ξ, x) − ψ(ξ, z)| ≤
[
κ1(ξ)

‖B‖
σ

+ L‖B‖
(
1 + ‖B‖

σ

)]
‖x − z‖.

This completes the proof. 
�
Proposition 4.4 provides sufficient conditions for the Lipschitz continuity ofψ with

modulus κ(ξ), which can be used for deriving convergence rate. As an illustration,
suppose in addition that D is compact. Then, under the assumptions of Proposition 4.4,
we have for any x1, x2, v1, v2 ∈ D and all ξ ∈ � that

|〈x1 − v1, F(ξ, x1)〉 − 〈x2 − v2, F(ξ, x2)〉|
= |〈x1 − v1, F(ξ, x1) − F(ξ, x2)〉 + 〈(x1 − x2) − (v1 − v2), F(ξ, x2)〉|
= |〈x1 − v1, Mξ (x1 − x2)〉 + 〈(x1 − x2) − (v1 − v2), Mξ x2 + qξ 〉|
≤ 2rD‖Mξ‖‖x1 − x2‖ + (rD‖Mξ‖ + ‖qξ‖)(‖x1 − x2‖ + ‖v1 − v2‖)
≤ (3rD‖Mξ‖ + ‖qξ‖)(‖x1 − x2‖ + ‖v1 − v2‖)
≤ ζ(ξ)‖(x1 − x2, v1 − v2)‖,

where rD := supx∈D ‖x‖ and ζ(ξ) := √
2(3rD‖Mξ‖ + ‖qξ‖).

Thus, if we further assume that

E[et (ζξ +λκξ )] < ∞ for all t close to 0, (26)

123



100 X. Chen et al.

and for any x , v ∈ D,

E[et (〈x−v,F(ξ,x)〉+λψ(ξ,x)−E[〈x−v,F(ξ,x)〉+λψ(ξ,x)])] < ∞ for all t close to 0, (27)

then for any ε > 0, there exist positive constants c(ε) and β(ε) such that

Prob

(
sup
x∈D

∣
∣∣∣ϕ

ν(x) − ϕ(x)

∣
∣∣∣ ≥ ε

)

= Prob

(

sup
x∈D

∣
∣∣∣∣
max
v∈D

{〈

x − v,
1

ν

ν∑

i=1

F(ξ i , x)

〉

− α

2
‖x − v‖2

}

+ λ

ν

ν∑

i=1

ψ(ξ i , x)

− max
v∈D

{
〈x − v, G(x)〉 − α

2
‖x − v‖2

}
− λE[ψ(ξ, x)]

∣∣
∣∣ ≥ ε

)

≤ Prob

(

sup
x,v∈D

∣∣∣∣∣

〈

x−v,
1

ν

ν∑

i=1

F(ξ i , x) − G(x)

〉

+ λ

ν

ν∑

i=1

ψ(ξ i , x)−λE[ψ(ξ, x)]
∣∣∣∣∣

≥ ε) ≤ c(ε)e−νβ(ε)

for all ν, where the first inequality follows from the elementary relation that
|maxv∈D g(v) − maxv∈D h(v)| ≤ maxv∈D |g(v) − h(v)| for any functions g and h,
and we refer the readers to [62, Theorem 7.65] for reference for the second inequality.

A further convergence statement can be made if we assume in addition thatE[(〈x −
v, F(ξ, x)〉 − α

2 ‖x − v‖2 + λψ(ξ, x))2] is finite for some (x, v) ∈ D × D and that
infξ∈� λmin(Mξ + MT

ξ ) ≥ α. To see this, note that problem (15) can be written as a
minimax stochastic problem

min
x∈D

max
v∈D

ϕ̂(x, v) = E[〈x − v, F(ξ, x)〉 − α

2
‖x − v‖2 + λψ(ξ, x)]. (28)

Thus, we may use [62, Theorem 5.10] to obtain the following convergence rate of
optimal values √

ν(ϕν(xν) − ϕ(x∗)) −→d z, (29)

where −→d denotes convergence in distribution and z is a random number having
normal distribution with zero mean and variance σ 2 = V ar [F(x∗, v∗, ξ)], where
(x∗, v∗) is the unique solution of (28).

Finally, we note that under the assumptions of Theorem 4.3 and the linear growth
condition (21), we have that xν = x∗ for all sufficient large ν, which gives the finite
convergence rate of the SAA solutions.

5 Implementation and experimentation

Webeginwith amore detailed reformulation ofExample 2.6,more compatiblewith our
computational approach, in particular it provides a more explicit version of the flow-
conservation equations; in the traffic transportation community all possible node pairs
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are implicitly included in the od-collection even those with d = o and hoo = 0 when
the o-node is simply a transhipment node. We follow the Ferris-Pang multicommodity
formulation [23] which associates a (different) commodity with each destination node
d ∈ D ⊂ N . In their formulation, a commodity is associated with each destination
node in D ⊆ N and x j ∈ R

|A| representing the flows of the commodities j =
1, 2, . . . , |D| with x j

a denoting the flow of commodity j on arc a ∈ A.
Let V = (vi j ) denote the node-arc incidence matrix with entries vi j = 1 if node i has
outgoing flows on arc j , vi j = −1 if node i has incoming flows on arc j , and vi j = 0
otherwise. The following condition represents conservation of flows of commodities,

V x j = d j , x j ≥ 0, j ∈ D, (30)

where d j
i is demand at node i ∈ N for commodity j .

Let

A =
⎛

⎜
⎝

V
. . .

V

⎞

⎟
⎠ ∈ R

|D||N |×|D||A|,

x =
⎛

⎜
⎝

x1

...

x |D|

⎞

⎟
⎠ ∈ R

|D||A|, b =
⎛

⎜
⎝

d1

...

d |D|

⎞

⎟
⎠ ∈ R

|D||N |.

Then (30) can be written as

Ax = b, x ≥ 0.

Ifwe add the constraints on capacity ca of travel flowson each arca, then the constraints
on the arc flows are presented as follows

Ax = b, 0 ≤ x, Px ≤ c,

where P = (I, . . . , I ) ∈ R
|A|×|D||A| and I is the |A| × |A| identity matrix.

Traffic equilibrium models are built based on travel demand, travel capacity on each
arc and travel flows via nodes. The demand and capacity depend heavily on various
uncertain parameters, such as weather, accidents, etc. Let � ⊆ R

N denote the set of
uncertain factors. Let (d j

ξ )i > 0 denote the stochastic travel demand at the i th node
for commodity j and (cξ )a denote the stochastic capacity of arc a.

For a realization of random vectors d j
ξ ∈ R

|N | and cξ ∈ R
|A|, ξ ∈ �, an assignment

of flows to all arcs for commodity j is denoted by the vector u j
ξ ∈ R

|A|, whose
component (u j

ξ )a denotes the flow on arc a for commodity j .
The network in Fig. 1 from [68] has 5 nodes, 7 arcs and 2 destination nodes {4, 5}.
The node-arc matrix for the network in Fig. 1 is given as follows.
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Fig. 1 The 7-links, 6-paths
network

V =

⎛

⎜⎜⎜⎜
⎝

0 0 1 1 0 0 0
1 0 −1 0 1 0 1
0 1 0 −1 0 1 −1

−1 0 0 0 0 −1 0
0 −1 0 0 −1 0 0

⎞

⎟⎟⎟⎟
⎠

and the matrices and vectors are as follows

A =
(

V 0
0 V

)
∈ R

10×14, uξ ∈ R
14, bξ ∈ R

10, cξ ∈ R
7.

For a forecast robust arc flows x , let the feasible set for each realization ξ be

Cξ = {uξ | Auξ = bξ , 0 ≤ uξ , Puξ ≤ cξ },

where Puξ = ∑|D|
j=1 u j

ξ is the total travel flows.

The arc travel time function h(ξ, ·) : R|D||A| → R
|A| is a stochastic vector and each

of its entries ha(ξ, uξ ) is assumed to follow a generalized Bureau of Public Roads
(GBPR) function,

ha(ξ, uξ ) =
(
ηa + τa

( (Puξ )a

(γξ )a

)na
)
, a = 1, . . . , |A|, (31)

where ηa, τa, (γξ )a and na are given positive parameters, and (Puξ )a is the total travel
flows on each arc a ∈ A. Let

F(ξ, uξ ) = PT h(ξ, uξ ).

Then

∇u F(ξ, uξ ) = PT diag
(
τana

(Puξ )
na−1
a

(γξ )
na
a

)
P,

which is symmetric positive semi-definite for any uξ ∈ Cξ ⊆ R
|D||A|
+ . One commonly

considered special case is when na = 1, for all a ∈ A. In this case, F(ξ, uξ ) =
Mξ uξ + q, where
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Mξ = PT diag

(
τa

(γξ )a

)
P and q = PT (η1, . . . , η|A|)T . (32)

Here, we have rank(P) = |A|, and for any ξ ∈ �, Mξ ∈ R
|D||A|×|D||A| is a positive

semi-definite matrix. Thus, E[Mξ ] is positive semi-definite. Another commonly con-
sidered case is when na = 3, for all a ∈ A; see [23] and our numerical experiments
in Sect. 5.2.
To define a here-and-now solution x , let

D = {x | Ax = E[bξ ], 0 ≤ x, Px ≤ E[cξ ]}

and G(x) = PT h̄(x) where the components of h̄ is defined by

h̄a(x) = ηa + τa(Px)na
a E[(γξ )

−na
a ], a = 1, . . . , |A|.

The deterministic VI formulation for Wardrop’s user equilibrium, seeks a forecast arc
flows x ∈ D satisfying

− G(x) ∈ ND(x). (33)

On the other hand, the stochastic VI formulation forWardrop’s user equilibrium, seeks
an equilibrium arc flow uξ ∈ Cξ for a known event ξ ∈ �, such that

− F(ξ, uξ ) ∈a.s. NCξ (uξ ). (34)

In general, the solution sets of the variational inequalities (33) and (34) can have
multiple solutions. Naturally, a here-and-now solution x should have minimum total
distances to the solution set of (34) for almost all observations ξ ∈ �. It can be written
as a mathematical programming with equilibrium constraints [43] as the following

min E[‖uξ − x‖2]
subject to −G(x) ∈ ND(x), −F(ξ, uξ ) ∈a.s. NCξ (uξ ), ξ ∈ �.

(35)

Recalling the definitions of the residual functions induced by the regularized gap
function given in §3, we have

−G(x) ∈ ND(x) ⇔ θ(x) = 0 and x ∈ D,

−F(ξ, uξ ) ∈ NCξ (uξ ) ⇔ r(ξ, uξ ) = 0 and uξ ∈ Cξ .

Note that θ(x) ≥ 0, r(ξ, uξ ) ≥ 0 for x ∈ D and uξ ∈ Cξ , and they are continuously
differentiable. It is natural to consider the following l1 penalty problem which trades
off optimization of total distance and the violation of the constraints in (35):

min 1
λρ

θ(x) + 1
ρ
E[r(ξ, uξ )] + E[‖uξ − x‖2]

subject to x ∈ D, uξ ∈a.s. Cξ , ξ ∈ �,
(36)
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for some positive numbers λ and ρ. Notice that this is a special case of (11), which
was derived in §3 as a relaxation of (4). Our discussion above provided an alternative
interpretation of this problem as an l1 penalty problem.

Using Lemma 3.6, we see that (36) is further equivalent to the following problem

minx∈D θ(x) + λE[ψ(ξ, x)]
where ψ(ξ, x) = minuξ ∈Cξ r(ξ, uξ ) + ρ‖uξ − x‖2. (37)

In this problem, for each ξ ∈ �, the decisions uξ are dependent on a forecast arc flows
x . The two-stage stochastic program (37) uses x as the first stage decision variable,
and uξ as the second stage variable.
In a stochastic environment, ξ belongs to a set � representing future states of knowl-
edge. The stochastic optimization approach (36) (equivalently, (37)) is to find a vector
x∗ which minimizes the expected residual values with recourse cost. The main role
of traffic model is to provide a forecast for future traffic states. The solution of the
stochastic optimization approach (36) is a “here-and-now” solution which provides a
robust forecast and has advantages over other models for long term planning. Stochas-
tic traffic assignment on path flow has been formulated as stochastic complementarity
problems and stochastic variational inequalities in [1,10,70]

5.1 The Douglas–Rachford splitting method

In this section, we focus on problem (36), which is a special case of (11) with B = 2ρ I

and D = {x ∈ R
|D||A|
+ | Ax = E[bξ ], Px ≤ E[cξ ]}. We will discuss an algorithm for

solving the following SAA of problem (36), for any fixed ν:

min θ(x) + λ
ν

∑ν
i=1

[
r(ξ i , uξ i ) + ρ‖uξ i − x‖2]

subject to x ∈ D, uξ i ∈ Cξ i ∀ i = 1, . . . , ν,
(38)

where
{
ξ1, . . . , ξ ν

}
is an iid sample of � of size ν.

Notice that the objective of (38) is highly structured: the decision variables are only
related due to the quadratic term λρ

ν

∑ν
i=1 ‖uξ i −x‖2; if this quadratic termwas absent,

then the problem would be decomposed into ν + 1 smaller independent optimization
problems that can be solved in parallel. This observation leads us to consider splitting
methods in which the objective is decoupled into two parts and minimized separately.
One such method is the Douglas–Rachford (DR) splitting method. This method was
first proposed in [19] for solving feasibility problems and has been extensively studied
in the convex scenario; see, for example, [3,20,29]. Moreover, the global convergence
of the method for some class of problems with nonconvex objectives has been recently
studied and established in [39].
To apply the DR splitting method, we first note that (38) can be equivalently written
as a minimization problem that minimizes the sum of the following two functions:
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f (U, x) := λρ

ν

ν∑

i=1

‖uξ i − x‖2,

g(U, x) := θ(x) + δD(x) + λ

ν

ν∑

i=1

(r(ξ i , uξ i ) + δC
ξ i (uξ i )), (39)

where g is a proper closed function and f is a quadratic function whose Lipschitz
continuity modulus is 2λρ

(
1 + 1

ν

)
, andU is the vector inRν|D||A| formed by stacking

uξ i , i.e.,

U =
[
uT

ξ1
· · · uT

ξν

]T
.

Each iteration of the DR splitting method then involves solving regularized optimiza-
tion problems related to f , g and the current iterates, as well as updating the “dual”
variables. The DR splitting method applied to solving (38) is presented in (40), where
we denote by V (resp., Z ) the vector in Rν|D||A| formed by stacking vi (resp., zi ) for
notational convenience, i.e.,

V = [
vT
1 · · · vT

ν

]T
, Z = [

zT
1 · · · zT

ν

]T
.

Douglas–Rachford splitting method for (38)

Step 0. Input 0 < μ < ν
ν+1

√
1.5−1
2λρ and {ζ 0, Z0}. The upper bound ofμ is chosen

according to Theorems 1 and 4 in [39] to guarantee convergence.
Step 1. Set

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(V k+1, yk+1) = argmin
V,y

{
1
2μ‖V − Zk‖2 + 1

2μ‖y − ζ k‖2 + λρ
ν

ν∑

i=1
‖vi − y‖2

}

xk+1 ∈ argmin
x∈D

{
θ(x) + 1

2μ‖2yk+1 − ζ k − x‖2
}

For i = 1, . . . , ν,

uk+1
ξ i ∈ argmin

u
ξ i ∈C

ξ i

{
λ
ν

r(ξ i , uξ i ) + 1
2μ‖2vk+1

i − zk
i − uξ i ‖2

}
,

ζ k+1 = ζ k + (xk+1 − yk+1),

Zk+1 = Zk + (U k+1 − V k+1).

(40)

Step 2. If a termination criterion is not met, go to Step 1.

The global convergence of the sequence generated by this method to stationary
points of (38) follows immediately from [39, Theorem 1], [39, Theorem 4] and our
choice of step-size parameter μ. However, notice that the subproblems for the (U, x)-
update are nonconvex in general. Consequently, in practice, it is hard to compute
global minimizers for these subproblems and typical optimization solvers are only
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guaranteed to return a stationary point satisfying the first-order optimality conditions.
Fortunately, a closer look at the proofs of [39, Theorem 1] and [39, Theorem 4] reveals
that, for the convergence proofs to remain valid, one only needs to update (U, x) so
that

1. (U k+1, xk+1) is a first-order stationary point of the subproblems in the kth iteration;
and

2. the subproblem objective values in the kth iteration at (U k+1, xk+1) are smaller
than those at (U k, xk).

Thus, in practice, one can apply any optimization solver that employs a descent algo-
rithm for solving the nonconvex subproblems corresponding to the (U, x)-update
approximately. On the other hand, the (V, y)-updates for this algorithm can be solved
explicitly and efficiently by exploiting the arrow-shaped structure of the Hessian of
the quadratic optimization problem.
Finally, we discuss a possible termination criterion for the algorithm. To this end,
observe from the definitions of f and g in (39) and the optimality conditions for the
(V, y) and (U, x)-subproblems in (40) that

0 = ∇ f (V k+1, yk+1) + 1

μ
[(V k+1, yk+1) − (Zk, ζ k)],

0 ∈ ∂g(U k+1, xk+1) + 1

μ
[(U k+1, xk+1) − 2(V k+1, yk+1) + (Zk, ζ k)].

From these, it is not hard to deduce that

− 1

μ
[(U k, xk) − (V k, yk)] + (∇ f (U k, xk) − ∇ f (V k, yk)) (41)

is an element of ∇ f (U k, xk) + ∂g(U k, xk). The algorithm can thus be terminated
with an approximate stationary point (U k, xk) when the quantity in (41) is small in
norm. For instance, one can terminate when

(
L + 1

μ

) ‖(U k, xk) − (V k, yk)‖
max{‖(U k, xk)‖, ‖(V k, yk)‖, 1} < tol (42)

for some tol > 0; here, L stands for the Lipschitz continuity modulus of ∇ f .

5.2 Numerical simulations

We now report simulation results based on the networks described at the beginning of
this section. All codes were written in MATLAB and run in MATLAB R2011b.

We consider the case when na = 3 and compare the solution of our model against
the solution of the EV formulation (2). The latter problem is a nonlinear programming
problem with the smooth objective (1). In our experiments below, we choose α = 10
in (1) for the EV formulation and solve the problem approximately by the MATLAB
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function fmincon9 using the default tolerance, initialized at the projection of the
origin onto the feasible set. The projections onto D (as well as Cξ considered below)
are computed approximately by the MATLAB function lsqlin,10 using the default
tolerance.
For our model, we choose α = 10 in (3), λ = 20 and ρ = 5. To initialize the
algorithm, we set {z0i } to be the approximate solutions to minu

ξ i ∈C
ξ i r(ξ i , uξ i ) for

each i = 1, . . . , ν and ζ 0 to be the approximate solution to (2); these problems are
solved approximately by fmincon using the same settings as described above. On the
other hand, we terminate when

(
2λρ

ν + 1

ν
+ 1

μ

) ‖(U k, xk) − (V k, yk)‖
max{‖(U k, xk)‖, ‖(V k, yk)‖, 1} < tol, (43)

for some tol > 0. This termination criterion is motivated by (42). To speed up the
convergence, we use the same kind of heuristic for choosing μ as described in [39,

Remark 4] and [64, Remark 2.3]: we set μ = 150μ0, where μ0 := 0.99ν
ν+1

√
1.5−1
2λρ , and

update μ = max{μ0, μ/2} when either ‖(V k, yk)‖ > 1010 or

‖(V k, yk) − (V k−1, yk−1)‖ >
106

k
.

In our experiment below, we use the same free travel time η in (31) as in [68], i.e.,

η = [
6 4 3 5 6 4 1

]T
,

and τ = 0.15η. The demand vector and the link capacity both have a beta
distribution, as in [10, Example 4.1]. The lower bound for link capacity γξ is
[
10 10 20 20 10 10 10

]T with a mean of γ := [
15 15 30 30 15 15 15

]T , and the
parameters for the beta distribution are (α, β) = (2, 2). We then set cξ in Cξ to be
10γ , independent of ξ ∈ {

ξ1, . . . , ξ ν
}
. For the demand vector bξ , the lower bound

b is
[
150 180

]T and we set bξ = b + [
120 96

]T ◦ beta(α, β), with the first entry
corresponding to the OD pair 1 → 4. The corresponding parameters for the beta dis-
tribution are (α, β) = (5, 1) in this case. Furthermore, we set tol = 5 × 10−5 in (43)
in our experiments for this network.
The computational results are given in Table 1, where we present results for sample
sizes ν = 50, 100 and 150. We denote by x∗ the approximate solution to our model
obtained from the DR splitting method and xEV the solution to (2). For these solutions,
we compute their projectionswξ ontoCξ for a larger sampleϒν of size 20×ν that con-
tains

{
ξ1, . . . , ξ ν

}
, and report vio := 1

20ν

∑
ξ∈ϒν

maxv∈Cξ (Pwξ − Pv)T h(ξ, wξ ),11

the CVaR given by

9 In the options, we set optimset(‘Display’,‘off’,‘Algorithm’,‘interior-point’,‘GradObj’,‘on’).
10 In the options, we set optimset(‘Display’,‘off’,‘LargeScale’,‘off’).
11 The maximum value in the summand is computed using MATLAB function linprog, with the option set
to be optimset(‘Display’,‘off’,‘Algorithm’,‘active-set’).
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Table 1 Computational result for the network from [68]

Size x∗ xEV

ν vio α∗ CVaR vio α∗ CVaR

50 1.834e4 3.259e4 4.046e4 1.821e4 3.207e4 3.994e4

100 1.856e4 3.409e4 4.138e4 1.913e4 3.520e4 4.326e4

150 1.791e4 3.162e4 3.934e4 1.833e4 3.290e4 4.079e4

4
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5

12

6 7 8

9 10 11

13

1

1
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Origin

Origin
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Fig. 2 Nguyen and Dupuis Network with 19 links and 25 paths

CVaR = inf
α

α + 1

2ν

∑

ξ∈ϒν

[
max
v∈Cξ

(Pwξ − Pv)T h(ξ, wξ ) − α

]

+
,

and the corresponding minimizer α∗ at which the above infimum is attained. Clearly,
the smaller these three quantities are, the closer wξ is to being optimal for the corre-
sponding instance. Our computational results show that the wξ constructed from our
x∗ are better optimal solutions on average for ξ ∈ ϒν .

We next consider the Nguyen and Dupuis network, which contains 13 nodes, 19
arcs, 2 destinations. See Fig. 2.
We use the same free travel time η in (31) as in [69, Table 1], i.e.,

η = [ 7 9 9 12 3 9 5 13 5 9 9 10 9 6 9 8 7 14 11 ]T ,

and τ = 0.15η.Also, as in [10,Example4.2], our demandvector has a beta distribution.
The lower bound b for the demand vector is

[
300 700 500 350

]T , which corresponds
to the OD pairs 1 → 2, 1 → 3, 4 → 2 and 4 → 3. The parameters for the beta
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Table 2 Computational result for the Nguyen and Dupuis network

Size x∗ xEV

ν vio α∗ CVaR vio α∗ CVaR

50 7.126e3 1.689e4 1.759e4 9.176e3 2.594e4 2.643e4

100 7.628e3 1.829e4 1.894e4 1.076e4 3.086e4 3.110e4

150 7.139e3 1.682e4 1.755e4 9.059e3 2.520e4 2.557e4

distribution are (α, β) = (50, 10). The demand vector bξ is then generated according
to b + 120 beta(α, β). On the other hand, we generate the link capacity γξ exactly
as in [10, Example 4.2]. We also set cξ in Cξ to be 10γ , where γ is the mean of the
three possible link capacities in [10, Example 4.2] with the probability specified there,
independent of ξ . Furthermore, we set tol = 5 × 10−4 in (43) in our experiments for
this network.
The computational results are given in Table 2, where we present results for various
sample sizes ν = 50, 100 and 150 as before. We also report the same quantities as
in Table 1: vio, the CVaR and the corresponding α∗. Our computational results again
show that the wξ constructed from our x∗ are better optimal solutions on average for
ξ ∈ ϒν .
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