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Abstract We show that if the equation mapping is 2-regular at a solution in some
nonzero direction in the null space of its Jacobian (in which case this solution is
critical; in particular, the local Lipschitzian error bound does not hold), then this
direction defines a star-like domain with nonempty interior from which the iterates
generated by a certain class of Newton-type methods necessarily converge to the
solution in question. This is despite the solution being degenerate, and possibly non-
isolated (so that there are other solutions nearby). In this sense, Newtonian iterates are
attracted to the specific (critical) solution. Those results are related to the ones due to
A.Griewank for the basicNewtonmethod but are also applicable, for example, to some
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methods developed specially for tackling the case of potentially non-isolated solutions,
including the Levenberg–Marquardt and the LP-Newton methods for equations, and
the stabilized sequential quadratic programming for optimization.

Keywords Newtonmethod ·Critical solutions · 2-Regularity · Levenberg–Marquardt
method · Linear-programming-Newton method · Stabilized sequential quadratic
programming

Mathematics Subject Classification 90C33 · 65K10 · 49J53

1 Introduction

We consider a nonlinear equation

Φ(u) = 0, (1)

where themappingΦ : Rp → R
p is smooth enough (precise smoothness assumptions

will be stated later as needed). This paper is concerned with convergence properties
of Newton-type methods for solving the Eq. (1) when it has a singular solution ū (i.e.
the matrix Φ ′(ū) is singular). Of particular interest is the difficult case when ū may be
a non-isolated solution of (1). Note that if ū is a non-isolated solution, it is necessarily
singular.

To describe the class of methods in question, we define the perturbed Newton
method (pNM) framework for Eq. (1) as follows. For the given iterate uk ∈ R

p, the
next iterate is uk+1 = uk + vk , with vk satisfying the following linear equation in v:

Φ(uk) +
(
Φ ′ (uk

)
+ Ω

(
uk

))
v = ω

(
uk

)
. (2)

In (2), the mappings Ω : Rp → R
p×p and ω : Rp → R

p are certain perturbation
terms which may have different roles, and individually or collectively define specific
methods within the general pNM framework. In particular, if Ω ≡ 0 and ω ≡ 0, then
(2) reduces to the iteration system of the basic Newton method. The most common
setting would be for Ω to characterize a perturbation of the iteration matrix of the
basic Newton method [i.e. the difference between the matrix a given method actually
employs, compared to the exact Jacobian Φ ′(uk)], and for ω to account for possible
inexactness in solving the corresponding linear system of equations. An example of
this setting within this paper, is the stabilized Newton–Lagrange method (stabilized
sequential quadratic programming for equality-constrained optimization), considered
in Sect. 3.3 below. However, we emphasize that our framework is not restricted to this
situation. In particular, subproblems of a given method need not even be systems of
linear equations, as long as they can be related to (2) a posteriori. One example is
the linear-programming-Newton (LP-Newton) method discussed in Sect. 3.2 below,
which solves linear programs, and for which the perturbation term ω is implicit (i.e.
it does not have an explicit analytical formula, but its properties are known). In this
respect, we also comment that the way we shall employ the perturbation mappings
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Critical solutions of nonlinear equations: local attraction 357

Ω and ω is somewhat unusual, in the following sense. They may describe a given
method not necessarily on the whole neighborhood of a solution of interest, but pos-
sibly only in some relevant star-like domain of convergence; see the discussion of the
Levenberg–Marquardt method in Sect. 3.1 and of the LP-Newton method in Sect. 3.2.
This, however, is exactly what is needed in the presented convergence analysis, as it
is shown that the generated iterates do in fact stay within the domain in question and,
within this set, Ω and ω that we construct do adequately represent the given algo-
rithms. Finally, we note that the specific methods that we consider in this paper have
been designed to tackle the difficult cases when (1) has degenerate/non-isolated solu-
tions, and in this sense the perturbation terms in (2) that describe these methods can
be regarded as “structural”, i.e. introduced intentionally for improving convergence
properties in the degenerate cases. The assumptions imposed on Ω and ω are only
related to their “size”, which allows ω to cover naturally precision control when the
subproblems are solved approximately. However, as already commented, the use of ω

can also be quite different. In the analysis of the LP-Newton method in Sect. 3.2, ω is
implicit and is not related to solving subporoblems approximately.

Our convergence results assume a certain 2-regularity property of the solution of
(1), which implies that this solution is “critical” in the sense of [15]. We next state the
relevant definitions, and discuss the relations between those concepts.

Recall first that ifΦ is differentiable at a solution ū of the Eq. (1), then it holds that

TΦ−1(0)(ū) ⊂ kerΦ ′(ū),

where Φ−1(0) is the solution set of (1), and by TS(u) we denote the contingent cone
to a set S ⊂ R

p at u ∈ S, i.e. the tangent cone as defined in [26, Definition 6.1]:

TS(u) = {v ∈ R
p | ∃ {tk} ⊂ R+ : {tk} → 0+, dist(u + tkv, S) = o(tk)}.

Recall that according to [26, Corollary 6.29] (see also [26, Definition 6.4] and the
original definition in [3, Definition 2.4.6]), assuming that a set S ⊂ R

p is closed near
u ∈ S, this set is Clarke-regular at u if the multifunction TS(·) is inner semicontinuous
at u relative to S (the latter meaning that for any v ∈ TS(u) and any sequence {uk} ⊂ S
convergent to u, there exists a sequence {vk} convergent to v such that vk ∈ TS(uk)
for all k).

The following notion was introduced in [15].

Definition 1 Assuming that Φ is differentiable at a solution ū of the Eq. (1), this
solution is referred to as noncritical if the set Φ−1(0) is Clarke-regular at ū, and

TΦ−1(0)(ū) = kerΦ ′(ū). (3)

Otherwise, the solution ū is referred to as critical.

Observe that according to the above definition, any isolated singular solution is
necessarily critical.

As demonstrated in [15], if Φ satisfies some mild and natural smoothness assump-
tions, then noncriticality of ū is equivalent to the local Lipschitzian error bound on the
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358 A. F. Izmailov et al.

distance to the solution set in terms of the natural residual of the equation (1):

dist
(
u, Φ−1(0)

)
= O(‖Φ(u)‖)

holds as u ∈ R
p tends to ū. Moreover, it is also equivalent to the upper-Lipschitzian

stability with respect to right-hand side perturbations of (1): any solution u(w) of the
perturbed equation

Φ(u) = w,

close enough to ū, satisfies

dist(u(w), Φ−1(0)) = O(‖w‖)

asw ∈ R
p tends to 0. Accordingly, criticality of ū means the absence of the properties

above.
The interest in critical/noncritical solutions of nonlinear equations originated from

the study of special Lagrange multipliers in equality-constrained optimization, also
called critical [13,14,18,19,22], [21, Chapter 7]. For the relations between critical
solutions of equations and critical multipliers in optimization, see [15]. It had been
demonstrated that criticalLagrangemultipliers tend to attract dual sequences generated
by a number of Newton-typemethods for optimization [18,19], [21, Chapter 7]. In this
paper, we show that critical solutions of nonlinear equations also serve as attractors,
in this case for methods described by the pNM framework (2).

For a symmetric bilinear mapping B : Rp × R
p → R

p and an element v ∈ R
p,

we define the linear operator B[v] : Rp → R
p by B[v]u = B[v, u]. The notion of

2-regularity is a useful tool in nonlinear analysis and optimization theory; see, e.g.
the book [1], as well as [2,9,10,16,17] for some applications. The essence of the
construction is that when a mapping Φ is irregular at ū (Φ ′(ū) is singular), first-order
information is insufficient to adequately represent Φ around ū, and so second-order
information has to come into play. To this end, we have the following.

Definition 2 Assuming that Φ is twice differentiable at ū ∈ R
p, Φ is said to be

2-regular at the point ū in the direction v ∈ R
p if the p × p-matrix

�(ū; v) = Φ ′(ū) + ΠΦ ′′(ū)[v] (4)

is nonsingular, where Π is the projector in Rp onto an arbitrary fixed complementary
subspace of imΦ ′(ū), along this subspace.

In our convergence analysis of Newton-type methods described by (2), we shall
assume that Φ is 2-regular at a solution ū of (1) in some direction v ∈ kerΦ ′(ū)\{0}.
It turns out that this implies that the solution ū is necessarily critical in the sense of
Definition 1. We show this next.

Proposition 1 LetΦ be twice differentiable at a solution ū of the Eq. (1) and 2-regular
at this solution in some direction v ∈ kerΦ ′(ū)\{0}.

Then (3) does not hold and, in particular, ū is a critical solution of (1).
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Critical solutions of nonlinear equations: local attraction 359

Proof Let v ∈ kerΦ ′(ū)\{0}. Suppose that (3) holds. Then v ∈ TΦ−1(0)(ū). Thus,
there exist a sequence {tk} of positive reals and a sequence {rk} ⊂ R

p such that
{tk} → 0, rk = o(tk), and for all k it holds that

0 = Φ
(
ū + tkv + rk

)
= Φ ′(ū)rk + 1

2
t2k Φ ′′(ū)[v, v] + o

(
t2k

)
.

Therefore,

t2k Φ ′′(ū)[v, v] + o
(
t2k

)
∈ imΦ ′(ū),

which implies that

Φ ′′(ū)[v, v] ∈ imΦ ′(ū).

Hence,ΠΦ ′′(ū)[v, v] = 0, whereΠ is specified in Definition 2. Since alsoΦ ′(ū)v =
0, from (4) we conclude that v ∈ ker�(ū; v). As v 	= 0, this contradicts 2-regularity
(specifically, the nonsigularity of �(ū; v)). Thus, (3) cannot hold, and ū must be a
critical solution. 
�

In Sect. 2, we shall prove that if Φ is 2-regular at a (critical) solution ū of (1) in
some direction v ∈ kerΦ ′(ū)\{0}, then v defines a domain star-like with respect to
ū, with nonempty interior, from which the iterates that satisfy the pNM framework
(2) necessarily converge to ū. In this sense, the iterates are “attracted” specifically to
ū, even though there may be other nearby solutions. These results are related to [11],
where the pure Newton method was considered [i.e. (2) with Ω ≡ 0 and ω ≡ 0]. An
interesting extension of the results in [11] to the case when Φ is not necessarily twice
differentiable, but has a Lipschitz-continuous first derivative, has been proposed in
[25]. The latter reference also gives an application to smooth equation reformulations
of complementarity problems.

In Sect. 3, we demonstrate how the general results for the pNM framework (2)
apply to some specific Newton-type methods. These include the classical Levenberg–
Marquardt method [24, Chapter 10.2] and the LP-Newton method [6] for nonlinear
equations, and the stabilized Newton–Lagrange method for optimization (or stabilized
sequential quadratic programming) [7,12,20,28]; see also [21, Chapter 7].

We finish this section with some words about our notation. Throughout, 〈·, ·〉 is the
Euclidian inner product, and unless specified otherwise, ‖ · ‖ is the Euclidian norm,
where the space is always clear from the context. Then the unit sphere is S = {u |
‖u‖ = 1}. For a linear operator (a matrix) A, we denote by ker A its null space, and
by im A its image (range) space. The notation I stands for the identity matrix. A set
U is called star-like with respect to u ∈ U if t û + (1 − t)u ∈ U for all û ∈ U and all
t ∈ [0, 1].
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2 Local convergence of pNM iterates to a critical solution

Results of this section are related to those in [11], where the basic Newton method
was considered [i.e. pNM (2) with Ω ≡ 0 and ω ≡ 0]. To the best of our knowledge,
this is the only directly related reference, as it also allows for non-isolated solutions.
Other literature on the basic Newton method for singular equations uses assumptions
that imply that a solution, though possibly singular, must be isolated.

Let ū be a solution of the Eq. (1). Then every u ∈ R
p is uniquely decomposed into

the sum u = u1 +u2, with u1 ∈ (kerΦ ′(ū))⊥ and u2 ∈ kerΦ ′(ū). The corresponding
notation will be used throughout the rest of the paper.

We start with the following counterpart of [11, Lemma 4.1], which establishes that,
under appropriate assumptions, the pNM subproblem (2) has the unique solution for
all uk close enough to ū, in a certain star-like domain.

Lemma 1 Let Φ : Rp → R
p be twice differentiable near ū ∈ R

p, with its second
derivative Lipschitz-continuous with respect to ū, that is,

Φ ′′(u) − Φ ′′(ū) = O(‖u − ū‖)

as u → ū. Let ū be a solution of the Eq. (1), and assume that Φ is 2-regular at ū in
a direction v̄ ∈ R

p ∩ S. Let Π stand for the orthogonal projector onto (imΦ ′(ū))⊥.
Let Ω : Rp → R

p×p satisfy the following properties:

Ω(u) = O(‖u − ū‖) (5)

as u → ū, and for every Δ > 0 there exist ε > 0 and δ > 0 such that for every
u ∈ R

p\{ū} satisfying

‖u − ū‖ ≤ ε,

∥∥∥∥
u − ū

‖u − ū‖ − v̄

∥∥∥∥ ≤ δ, (6)

it holds that

‖ΠΩ(u)‖ ≤ Δ‖u − ū‖. (7)

Let ω : Rp → R
p satisfy

ω(u) = O
(
‖u − ū‖2

)
(8)

as u → ū.
Then there exist ε̄ = ε̄(v̄) > 0 and δ̄ = δ̄(v̄) > 0 such that for every u ∈ R

p\{ū}
satisfying

‖u − ū‖ ≤ ε̄,

∥∥∥∥
u − ū

‖u − ū‖ − v̄

∥∥∥∥ ≤ δ̄, (9)
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Critical solutions of nonlinear equations: local attraction 361

the Eq. (2) with uk = u has the unique solution v, satisfying

u1 + v1 − ū1 = O
(
‖u − ū‖2

)
, (10)

u2 + v2 − ū2 = 1

2
(u2 − ū2) + O(‖u1 − ū1‖)

+O
(
‖u − ū‖−1Πω(u)

)
+ O (‖ΠΩ(u)‖) + O

(
‖u − ū‖2

)

(11)

as u → ū.

Proof Under the stated smoothness assumptions, without loss of generality we can
assume that ū = 0 and

Φ(u) = Au + 1

2
B[u, u] + R(u), (12)

where A = Φ ′(0) ∈ R
p×p, B = Φ ′′(0) is a symmetric bilinearmapping fromR

p×R
p

to Rp, and the mapping R : Rp → R
p is differentiable near 0, with

R(u) = O
(
‖u‖3

)
, R′(u) = O

(
‖u‖2

)
(13)

as u → 0.
Substituting the form of Φ stated in (12) into (2), and multiplying (2) be (I − Π)

and by Π , we decompose (2) into the following two equations:

(A + (I − Π)(B[u] + R′(u) + Ω(u)))v1

= −Au1 − (I − Π)

(
1

2
B[u, u] + R(u) − ω(u)

)

−(I − Π)(B[u] + R′(u) + Ω(u))v2, (14)

and

Π(B[u] + R′(u) + Ω(u))(v1 + v2) = −Π

(
1

2
B[u, u] + R(u) − ω(u)

)
. (15)

Let ε̄ > 0 and δ̄ > 0 be arbitrary and fixed for now. From this point on, we consider
only those u ∈ R

p\{0} that satisfy (9).
Define the family of linear operators A (u) : (ker A)⊥ → im A as the restriction

of (A + (I − Π)(B[u] + R′(u) + Ω(u))) to (ker A)⊥. Let ¯A : (ker A)⊥ → im A be
the restriction of A to (ker A)⊥. Then, taking into account (8) and (13), the equality
(14) can be written as

A (u)v1 = − ¯A u1 − (I − Π)(B[u] + R′(u) + Ω(u))v2 + O
(
‖u‖2

)
(16)
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362 A. F. Izmailov et al.

as u → 0. Evidently, ¯A is invertible, and according to (5) and (13),

A (u) = ¯A + O(‖u‖).

The latter implies that A (u) is invertible, provided ε̄ > 0 is small enough, and

(A (u))−1 = ( ¯A
)−1 + O(‖u‖)

as u → 0 (see, e.g. [21, Lemma A.6]). Therefore, (16) can be written as

v1 = −u1 + M
(
u)v2 + O(‖u‖2

)
, (17)

where M (u) : ker A → (ker A)⊥,

M (u) = −(A (u))−1(I − Π)(B[u] + R′(u) + Ω(u)) = O(‖u‖) (18)

as u → 0.
Substituting (17) into (15), and taking into account (13), we obtain that

Π(B[u] + R′(u) + Ω(u))(I + M (u))v2 = −Π

(
1

2
B[u, u] − ω(u)

)

+Π(B[u] + Ω(u))u1 + O(‖u‖3).
(19)

Define the family of linear operators B(u) : ker A → (im A)⊥ as the restriction of
Π(B[u] + R′(u) + Ω(u))(I +M (u)) to ker A. Let B̄(u) : ker A → (im A)⊥ be the
restriction of ΠB[u] to ker A. Then (19) can be written as

B(u)v2 = −1

2
B̄(u)u2 + Π

((
1

2
B[u] + Ω(u)

)
u1 + ω(u)

)
+ O

(
‖u‖3

)
(20)

as u → 0.
The 2-regularity of Φ at 0 in the direction v̄ means precisely that B̄(v̄) is non-

singular. Then, possibly after reducing δ̄ > 0, by [21, Lemma A.6] we obtain the
existence of C > 0 such that for every u ∈ R

p\{0} satisfying the second relation in
(9), B̄(u/‖u‖) is invertible, and

∥∥∥∥
(
B̄

(
‖u‖−1u

))−1
∥∥∥∥ ≤ C. (21)

According to (13), (5), (18), it holds that

B
(
‖u‖−1u

)
= B̄

(
‖u‖−1u

)
+ ‖u‖−1ΠΩ(u) + O(‖u‖).
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Critical solutions of nonlinear equations: local attraction 363

Choosing Δ > 0 small enough, and further reducing ε̄ > 0 and δ̄ > 0 if necessary, by
(7) and (21), and by [21, Lemma A.6], we now obtain that B

(‖u‖−1u
)
is invertible,

and

(
B

(
‖u‖−1u

))−1 =
(
B̄

(
‖u‖−1u

))−1 + O
(
‖u‖−1‖ΠΩ(u)‖

)
+ O(‖u‖).

Employing again (5), we further conclude that

(B(u))−1 = (
B̄(u)

)−1 + O
(
‖u‖−2‖ΠΩ(u)‖

)
+ O(1) = O

(
‖u‖−1

)
.

Therefore, (20) is uniquely solvable, and its unique solution has the form

v2 = −1

2
u2 + (B̄(u))−1Π

(
1

2
B[u, u1] + ω(u)

)
+ O(‖ΠΩ(u)‖) + O(‖u‖2)

= O(‖u‖) (22)

as u → 0, where the last estimate employs (5) and (8).
Substituting (22) into (17), and employing (18) again, we finally obtain that

v1 = −u1 + O
(
‖u‖2

)
(23)

as u → 0.
From (22) and (23), we have the needed estimates (10) and (11). 
�

Remark 1 From the proof of Lemma 1 it can be seen that under the assumptions of
this lemma (removing the assumptions on ω which are not needed for the following),
the values ε̄ = ε̄(v̄) > 0 and δ̄ = δ̄(v̄) > 0 can be chosen in such a way that
for every u ∈ R

p\{ū} satisfying (9), the matrix Φ ′(u) + Ω(u) is invertible, and
(Φ ′(u) + Ω(u))−1 = O(‖u − ū‖−1) as u → ū. When Ω ≡ 0, this result is a
particular case of [11, Lemma 3.1].

We proceed to establish convergence of the iterates satisfying the pNM framework
(2), from any starting point in the relevant domain. This result is a generalization of
[11, Lemma 5.1].

Theorem 1 Let Φ : Rp → R
p be twice differentiable near ū ∈ R

p, with its second
derivative being Lipschitz-continuous with respect to ū, that is,

Φ ′′(u) − Φ ′′(ū) = O(‖u − ū‖)

as u → ū. Let ū be a solution of the Eq. (1), and assume that Φ is 2-regular at ū in
a direction v̄ ∈ kerΦ ′(ū) ∩ S. Let Ω : Rp → R

p×p and ω : Rp → R
p satisfy the

estimates (5), (8), as well as

ΠΩ(u) = O(‖u1 − ū1‖) + O
(
‖u − ū‖2

)
(24)
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and

Πω(u) = O(‖u − ū‖‖u1 − ū1‖) + O
(
‖u − ū‖3

)
(25)

as u → ū.
Then for every ε̄ > 0 and δ̄ > 0, there exist ε = ε(v̄) > 0 and δ = δ(v̄) > 0 such

that any starting point u0 ∈ R
p\{ū} satisfying

‖u0 − ū‖ ≤ ε,

∥∥∥∥
u0 − ū

‖u0 − ū‖ − v̄

∥∥∥∥ ≤ δ (26)

uniquely defines the sequence {uk} ⊂ R
p such that for each k it holds that vk =

uk+1 − uk solves (2), uk2 	= ū2, the point u = uk satisfies (9), the sequence {uk}
converges to ū, the sequence {‖uk − ū‖} converges to zero monotonically,

‖uk+1
1 − ū1‖

‖uk+1
2 − ū2‖

= O
(
‖uk − ū‖

)
(27)

as k → ∞, and

lim
k→∞

‖uk+1
2 − ū2‖

‖uk2 − ū2‖
= 1

2
. (28)

Proof We again assume that ū = 0, and Φ is given by (12) with R satisfying (13).
Considering that v̄1 = 0, observe first that if u ∈ R

p\{0} satisfies the second
condition in (6) with some δ ∈ (0, 1), then

‖u1‖
‖u‖ =

∥∥∥∥
u1
‖u‖ − v̄1

∥∥∥∥ ≤
∥∥∥∥

u

‖u‖ − v̄

∥∥∥∥ ≤ δ.

This implies that

‖u1‖ ≤ δ‖u‖, (29)

and hence,

‖u‖ ≤ ‖u1‖ + ‖u2‖ ≤ δ‖u‖ + ‖u2‖,

so that

(1 − δ)‖u‖ ≤ ‖u2‖. (30)

Then
∥∥∥∥

u2
‖u2‖ − v̄

∥∥∥∥ ≤
∥∥∥∥
u2
‖u‖ − v̄2

∥∥∥∥ +
∥∥∥∥

u2
‖u2‖ − u2

‖u‖
∥∥∥∥
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≤
∥∥∥∥

u

‖u‖ − v̄

∥∥∥∥ + ‖u‖ − ‖u2‖
‖u‖

≤ δ + 1 − ‖u2‖
‖u‖

≤ 2δ, (31)

where the second inequality employs the fact that u2/‖u‖ is the metric projection of
u/‖u‖ onto ker A.

From (24) and (29) it evidently follows that Ω satisfies the corresponding assump-
tions in Lemma 1. Therefore, according to this lemma, there exist ε̄ > 0 and δ̄ > 0
such that for every u ∈ R

p\{ū} satisfying (9), the Eq. (2) with uk = u has the unique
solution v, and

u1 + v1 = O
(
‖u‖2

)

and

u2 + v2 = 1

2
u2 + O(‖u1‖) + O

(
‖u‖2

)

as u → 0, where (24) and (25) were again taken into account.
In what follows, we use these values ε̄ and δ̄, with the understanding that if we

prove the assertion of the theorem for these specific values of ε̄ and δ̄, it will also be
valid for any larger values of those constants. At the same time, since Lemma 1 allows
for these ε̄ and δ̄, it certainly allows for any smaller values.

Therefore, there exists C > 0 such that

‖u1 + v1‖ ≤ C‖u‖2, (32)∥∥∥∥u2 + v2 − 1

2
u2

∥∥∥∥ ≤
∥∥∥∥u + v − 1

2
u2

∥∥∥∥ ≤ C
(
‖u1‖ + ‖u‖2

)
, (33)

and hence,

1

2
‖u2‖ − C

(
‖u1‖ + ‖u‖2

)
≤ ‖u2 + v2‖ ≤ ‖u + v‖

≤ 1

2
‖u2‖ + C

(
‖u1‖ + ‖u‖2

)
. (34)

From (9), (29) and (30) with δ = δ̄, and from (34), we further derive that

(
1 − δ̄

2
− C(δ̄ + ε̄)

)
‖u‖ ≤ ‖u2 + v2‖ ≤ ‖u + v‖ ≤

(
1

2
+ C(δ̄ + ε̄)

)
‖u‖.

Reducing ε̄ > 0 and δ̄ > 0 if necessary, so that

δ̄

2
+ C(δ̄ + ε̄) <

1

2
,
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and setting

q− = 1 − δ̄

2
− C(δ̄ + ε̄), q+ = 1

2
+ C(δ̄ + ε̄),

we then obtain that

q−‖u‖ ≤ ‖u2 + v2‖ ≤ ‖u + v‖ ≤ q+‖u‖, (35)

where

0 < q− < q+ < 1. (36)

By (33), the right inequality in (34), and the left inequality in (35), we have that

∥∥∥∥
u + v

‖u + v‖ − u2
‖u2‖

∥∥∥∥ = ‖(u + v)‖u2‖ − u2‖u + v‖‖
‖u2‖‖u + v‖

≤ 2C
(‖u1‖ + ‖u‖2)
q−‖u‖

= 2C

q−

(‖u1‖
‖u‖ + ‖u‖

)
, (37)

∥∥∥∥
u2 + v2

‖u2 + v2‖ − u2
‖u2‖

∥∥∥∥ = ‖(u2 + v2)‖u2‖ − u2‖u2 + v2‖‖
‖u2‖‖u2 + v2‖

≤ 2C
(‖u1‖ + ‖u‖2)
q−‖u‖

= 2C

q−

(‖u1‖
‖u‖ + ‖u‖

)
. (38)

Now choose ε ∈ (0, ε̄], δ ∈ (0, δ̄] satisfying

2δ + 2C

q−

(
δ +

(
C

q−
+ 1

)
ε

1 − q+

)
≤ δ̄, (39)

and assume that (26) holds for u0 ∈ R
p\{0}. Suppose that u j ∈ R

p\{0}, satisfy (2)
and (9) with u = u j for all j = 1, . . . , k. Then by the choice of ε̄ > 0 and δ̄ > 0,
there exists the unique uk+1 satisfying (2), and by (29), (31), (32), (35), (36), (37),
(38), it holds that

0 < ‖uk+1‖ ≤ q+‖uk‖ ≤ q2+‖uk−1‖ ≤ · · · ≤ qk+1+ ‖u0‖ ≤ qk+1+ ε ≤ ε ≤ ε̄,
∥∥∥∥

uk+1

‖uk+1‖ − v̄

∥∥∥∥ ≤
∥∥∥∥∥

uk2
‖uk2‖

− v̄

∥∥∥∥∥ +
∥∥∥∥∥

uk+1

‖uk+1‖ − uk2
‖uk2‖

∥∥∥∥∥

≤
∥∥∥∥∥

uk−1
2

‖uk−1
2 ‖ − v̄

∥∥∥∥∥ +
∥∥∥∥∥

uk2
‖uk2‖

− uk−1
2

‖uk−1
2 ‖

∥∥∥∥∥ +
∥∥∥∥∥

uk+1

‖uk+1‖ − uk2
‖uk2‖

∥∥∥∥∥
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≤ . . .

≤
∥∥∥∥∥

u02
‖u02‖

− v̄

∥∥∥∥∥ +
k∑
j=1

∥∥∥∥∥
u j
2

‖u j
2‖

− u j−1
2

‖u j−1
2 ‖

∥∥∥∥∥ +
∥∥∥∥∥

uk+1

‖uk+1‖ − uk2
‖uk2‖

∥∥∥∥∥

≤ 2δ +
k∑
j=1

2C

q−

(
‖u j−1

1 ‖
‖u j−1‖ + ‖u j−1‖

)
+ 2C

q−

(
‖uk1‖
‖uk‖ + ‖uk‖

)

≤ 2δ + 2C

q−

k∑
j=0

(
‖u j

1‖
‖u j‖ + ‖u j‖

)

≤ 2δ + 2C

q−

⎛
⎝‖u01‖

‖u0‖ +
k∑
j=1

C‖u j−1‖
q−

+
k∑
j=0

‖u j‖
⎞
⎠

≤ 2δ + 2C

q−

⎛
⎝δ + C

q−

k∑
j=1

q j−1
+ ε +

k∑
j=0

q j
+ε

⎞
⎠

≤ 2δ + 2C

q−

(
δ + C

q−
ε

1 − q+
+ ε

1 − q+

)

≤ 2δ + 2C

q−

(
δ +

(
C

q−
+ 1

)
ε

1 − q+

)

≤ δ̄,

where the last inequality is by (39). Therefore, (9) holds with u = uk+1.
We have thus established that there exists the unique sequence {uk} ⊂ R

p such
that for each k the point uk satisfies (2) and (9) with u = uk . By (35) and (36), it then
follows that uk 	= ū for all k, and {uk} converges to 0.

According to (32) and (35), it holds that

‖uk+1
1 ‖

‖uk+1
2 ‖ ≤ C

q−
‖uk‖

for all k. This yields (27).
Furthermore, according to (34),

1

2
− C

‖uk1‖ + ‖uk‖2
‖uk2‖

≤ ‖uk+1
2 ‖

‖uk2‖
≤ 1

2
+ C

‖uk1‖ + ‖uk‖2
‖uk2‖

,

where by (27) both sides tend to 1/2 as k → ∞. This gives (28). 
�

Remark 2 In Theorem 1, by the monotonicity of the sequence {‖uk − ū‖}, for every
k large enough it holds that ‖uk+1

2 − ū2‖ ≤ ‖uk+1 − ū‖ ≤ ‖uk − ū‖. Therefore, (27)
implies the estimates
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‖uk+1
1 − ū1‖

‖uk+1 − ū‖ = O
(
‖uk − ū‖

)

and

‖uk+1
1 − ū1‖ = O

(
‖uk − ū‖2

)
(40)

as k → ∞.
Furthermore,

‖uk+1
2 − ū2‖

‖uk1 − ū1‖ + ‖uk2 − ū2‖
≤ ‖uk+1

2 − ū2‖
‖uk − ū‖ ≤ ‖uk+1

2 − ū2‖
‖uk2 − ū2‖

,

where by (27) and (28) both sides tend to 1/2 as k → ∞. Therefore,

lim
k→∞

‖uk+1
2 − ū2‖

‖uk − ū‖ = 1

2
. (41)

Finally,

‖uk+1
2 − ū2‖ − ‖uk+1

1 − ū1‖
‖uk − ū‖ ≤ ‖uk+1 − ū‖

‖uk − ū‖ ≤ ‖uk+1
1 − ū1‖

‖uk − ū‖ + ‖uk+1
2 − ū2‖

‖uk − ū‖
where by (40) and (41) both sides tend to 1/2 as k → ∞. Therefore,

lim
k→∞

‖uk+1 − ū‖
‖uk − ū‖ = 1

2
.

Theorem 1 establishes the existence of a set with nonempty interior, which is star-
like with respect to ū, and such that any sequence satisfying the pNM relation (2)
and initialized from any point of this set, converges linearly to ū. Moreover, if Φ is
2-regular at ū in at least one direction v̄ ∈ kerΦ ′(ū), then the set of such v̄ is open and
dense in kerΦ ′(ū) ∩ S: its complement is the null set of the nontrivial homogeneous
polynomial det B̄(·) considered on kerΦ ′(ū)∩S. The union of convergence domains
coming with all such v̄ is also a star-like convergence domain with nonempty interior.
In the case whenΦ ′(ū) = 0 (full degeneracy), this domain is quite large. In particular,
it is “asymptotically dense”: the only excluded directions are those in which Φ is not
2-regular at ū, which is the null set of a nontrivial homogeneous polynomial. Beyond
the case of full degeneracy, the convergence domain given by Theorem 1 is at least
not “asymptotically thin”. Though it is also not “asymptotically dense”.

For the (unperturbed) Newton method, the existence of “asymptotically dense”
star-like domain of convergence was established in [11, Theorem 6.1]. Specifically, it
was demonstrated that one Newton step from a point u0 in this domain leads to the
convergence domain coming with the appropriate v̄ = π(u0)/‖π(u0)‖, where

π(u0) = 1

2

(
u02 − ū2

)
+ 1

2

(
B̄(u0 − ū)

)−1
ΠB

[
u0 − ū, u01 − ū1

]
;
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see (22) above. Deriving a result like this for the pNM scheme (2) is hardly possible in
general, at least without rather restrictive assumptions on perturbation terms. Perhaps
results along those lines can be derived for specificmethods, rather than for the general
pNM framework, but such developments are not known at this time.

3 Applications to some specific algorithms

In this section we show how our general results for the pNM framework (2) can
be applied to some specific methods. In particular, we consider the following algo-
rithms, all developed for tackling the difficult case of non-isolated solutions: the
Levenberg–Marquardt method and the LP-Newton method for equations, and the sta-
bilized Newton–Lagrange method for optimization.

We start with observing that the assumptions (5), (8), (24) and (25) on the pertur-
bations terms in Theorem 1 hold automatically if

Ω(u) = O(‖Φ(u)‖), ω(u) = O(‖u − ū‖‖Φ(u)‖) (42)

as u → ū. Indeed, this readily follows from the relation

Φ(u) = Φ ′(ū)(u1 − ū1) + O
(
‖u − ū‖2

)

as u → ū.
Thus, to apply Theorem 1, in the part of perturbations properties it is sufficient to

verify (42).

3.1 Levenberg–Marquardt method

An iteration of the classical Levenberg–Marquardt method [24, Chapter 10.2] consists
in solving the following subproblem:

minimize
1

2
‖Φ

(
uk

)
+ Φ ′ (uk

)
v‖2 + 1

2
σ

(
uk

)
‖v‖2, v ∈ R

p, (43)

where uk ∈ R
p is the current iterate and σ : Rp → R+ defines the regularization

parameter.
In [29], it was established that under the Lipschitzian error bound condition [i.e.

being initialized near a noncritical solution ū of (1)], the method described by (43)
with σ(u) = ‖Φ(u)‖2 generates a sequence which is quadratically convergent to a
(nearby) solution of (1). For analysis under the Lipschitzian error bound condition of
a rather general framework that includes the Levenberg–Marquardt method, see [5,8].
Our interest here is the case of critical solutions, when the error bound does not hold.
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First, note that the unique (if σ(uk) > 0)minimizer of the convex quadratic function
in (43) is characterized by the linear system

(
Φ ′ (uk

))T
Φ

(
uk

)
+

(
(Φ ′ (uk

)
)TΦ ′ (uk

)
+ σ

(
uk

)
I
)

v = 0. (44)

We next show how (44) can be embedded into the pNM framework (2). In particular,
we construct the perturbation terms for which the conditions (42) hold, and hence
Theorem 1 is applicable, and which correspond to (44) on the relevant domain of
convergence. As a result, we obtain the following convergence assertions.

Corollary 1 Let Φ : Rp → R
p be twice differentiable near ū ∈ R

p, with its second
derivative Lipschitz-continuous with respect to ū. Let ū be a solution of the Eq. (1),
and assume that Φ is 2-regular at ū in a direction v̄ ∈ kerΦ ′(ū) ∩ S.

Then for any τ ≥ 2, there exist ε = ε(v̄) > 0 and δ = δ(v̄) > 0 such that any
starting point u0 ∈ R

p\{ū} satisfying (26) uniquely defines the sequence {uk} ⊂ R
p

such that for each k it holds that vk = uk+1 − uk solves (43) with σ(u) = ‖Φ(u)‖τ ,
uk2 	= ū2, the sequence {uk} converges to ū, the sequence {‖uk − ū‖} converges to
zero monotonically, and (27) and (28) hold. Moreover, if Φ ′(ū) = 0, then the same
assertion is valid with any τ ≥ 3/2.

Proof Define ε̄ = ε̄(v̄) > 0 and δ̄ = δ̄(v̄) > 0 according to Remark 1, where we set
Ω ≡ 0. Define the set

K = K (v̄) = {u ∈ R
p\{ū} | (9) holds}. (45)

Then Φ ′(u) is invertible for all u ∈ K , and (Φ ′(u))−1 = O(‖u − ū‖−1) as u → ū
(this can also be concluded directly from [11, Lemma 3.1], with an appropriate choice
of ε̄ > 0 and δ̄ > 0).

We next define the mappingsΩ and ω. First, we setΩ(u) = 0 and ω(u) = 0 for all
u ∈ R

p\K . Of course, those vanishing perturbation terms for u /∈ K have no relation
to (44). The point is that we next show that with the appropriate definitions for u ∈ K ,
we obtain Ω and ω satisfying (42). Then Theorem 1 ensures that if the starting point
satisfies (26) with appropriate ε > 0 and δ > 0, it follows that the subsequent iterates
are well defined and remain in the set K . Finally, in K , the constructed Ω and ω do
correspond to (44).

Let u ∈ K . Considering (44) with uk = u, and multiplying both sides of this
relations by the matrix (((Φ ′(uk))T)−1 = (((Φ ′(uk))−1)T, we obtain that

Φ
(
uk

)
+

(
Φ ′ (uk

)
+ σ

(
uk

)((
Φ ′ (uk

))−1
)T

)
v = 0,

which is the pNM iteration system (2) with the perturbation terms given by

Ω(u) = σ(u)
(
(Φ ′(u))−1

)T
, ω(u) = 0, u ∈ K .
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Then

Ω(u) = O
(
‖u − ū‖−1σ(u)

)
.

Therefore, the needed first estimate in (42) would hold if

σ(u) = O(‖u − ū‖‖Φ(u)‖) (46)

as u ∈ K tends to ū.
Let σ(u) = ‖Φ(u)‖τ with τ > 0. Then (46) takes the form

‖Φ(u)‖τ−1 = O(‖u − ū‖),

and since Φ(u) = O(‖u − ū‖), the last estimate is satisfied as u → ū if τ ≥ 2.
Moreover, in the case when Φ ′(ū) = 0 (full singularity) it holds that Φ(u) =

O(‖u− ū‖2) as u → ū, and hence, in this case, the appropriate values are all τ ≥ 3/2.
The construction is complete. As the exhibited Ω and ω satisfy (42) as u → ū

(regardless of whether u stays in K or not), Theorem 1 is applicable. In particular,
it guarantees that for appropriate starting points all the iterates stay in K . In this
set, the perturbation terms define the Levenberg–Marquardt iterations (44). Thus, the
assertions follow from Theorem 1. 
�

The following example is taken from DEGEN test collection [4].

Example 1 (DEGEN20101) Consider the equality-constrained optimization problem

minimize x2

subject to x2 = 0.

Stationary points and associatedLagrangemultipliers of this problemare characterized
by the Lagrange optimality system which has the form of the nonlinear equation (1)
with

Φ : R2 → R
2, Φ(u) =

(
2x(1 + λ), x2

)
, u = (x, λ).

The unique feasible point (hence, the unique solution, and the unique stationary point)
of this problem is x̄ = 0, and the set of associated Lagrange multipliers is the entire
R. Therefore, the solution set of the Lagrange system (i.e. the primal–dual solution
set) is {x̄} × R. The unique critical solution is ū = (x̄, λ̄) with λ̄ = −1, the one for
which Φ ′(ū) = 0 (full singularity).

In Figs. 1 and 2, the vertical line corresponds to the primal–dual solution set. These
figures show some iterative sequences generated by theLevenberg–Marquardtmethod,
and the domains from which convergence to the critical solution was detected. Using
zoom in, and taking smaller areas for starting points, does not significantly change
the picture in Fig. 1, corresponding to τ = 1. At the same time, such manipulations
with Fig. 2a, b put in evidence that for τ = 3/2, the domain of convergence is in
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Fig. 1 Levenberg–Marquardt method with τ = 1 for Example 1. a Iterative sequences, b Domain of
attraction to the critical solution
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Fig. 2 Levenberg–Marquardt method with τ = 3/2 for Example 1. a Iterative sequences, b Domain of
attraction to the critical solution, c Iterative sequences, d Domain of attraction to the critical solution

fact asymptotically dense (see Fig. 2c, d). These observations are in agreement with
Theorem 1.

3.2 LP-Newton method

TheLP-Newtonmethodwas introduced in [6]. For theEq. (1), the iteration subproblem
of this method has the form
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minimize γ

subject to ‖Φ(uk) + Φ ′(uk)v‖ ≤ γ ‖Φ(uk)‖2,
‖v‖ ≤ γ ‖Φ(uk)‖,
(v, γ ) ∈ R

p × R.

(47)

The subproblem (47) always has a solution if Φ(uk) 	= 0 (naturally, if Φ(uk) = 0 the
method stops). If the l∞-norm is used, this is a linear programming problem (hence
the name). As demonstrated in [5,6] (see also [8]), local convergence properties of the
LP-Newton method (under the error bound condition, i.e. near noncritical solutions)
are the same as for the Levenberg–Marquardt algorithm. Again, our setting is rather
that of critical solutions.

The proof of the following result is again by placing (47)within the pNMframework
(2). It is interesting that in this case Ω ≡ 0, while ω(·) is defined implicitly: there is
no analytic expression for it.

Corollary 2 Under the assumptions of Corollary 1, there exist ε = ε(v̄) > 0 and
δ = δ(v̄) > 0 such that for any starting point u0 ∈ R

p\{ū} satisfying (26) the
following assertions are valid:

(a) There exists a sequence {uk} ⊂ R
p such that for each k the pair (vk, γk+1) with

vk = uk+1 − uk and some γk+1 solves (47).
(b) For any such sequence, uk2 	= ū2 for each k, the sequence {uk} converges to ū, the

sequence {‖uk − ū‖} converges to zero monotonically, and (27) and (28) hold.

Proof By the second constraint in (47), the equality (2) holds for Ω ≡ 0 and some
ω(·) satisfying

‖ω(u)‖ ≤ γ (u)‖Φ(u)‖2, (48)

where γ (u) is the optimal value of the subproblem (47) with uk = u. Note that ω(·)
would satisfy (42), and thus the assumptions of Theorem 1, if

γ (u) = O
(
‖Φ(u)‖−1‖u − ū‖

)
(49)

as u → ū. Indeed, from the first constraint in (47) we then obtain that

‖Φ(u) + Φ ′(u)v‖ ≤ γ (u)‖Φ(u)‖2 = O(‖u − ū‖‖Φ(u)‖),

which implies the second estimate in (42).
We thus have to establish (49) on the relevant set. In this respect, the construction

is similar to what had been done in Sect. 3.1 above.
Define ε̄ = ε̄(v̄) > 0 and δ̄ = δ̄(v̄) > 0 according to Lemma 1 applied with

Ω ≡ 0 and ω ≡ 0, and define the set K according to (45). Then the step v(u) of the
(unperturbed) Newton method from any point u ∈ K exists, it is uniquely defined,
and by (10) and (11), it holds that v(u) = O(‖u − ū‖).
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Fig. 3 LP-Newton method for Example 1. a Iterative sequences, b Domain of attraction to the critical
solution, c Iterative sequences, d Domain of attraction to the critical solution

We now define the mappings Ω and ω. Similarly to the case of the Levenberg–
Marquardt method, we first set them identically equal to zero on R

p\K . Let u ∈ K .
Then the point (v, γ ) = (v(u), ‖v(u)‖/‖Φ(u)‖) is feasible in (47), and hence,

γ (u) ≤ γ = ‖Φ(u)‖−1‖v(u)‖ = O
(
‖Φ(u)‖−1‖u − ū‖

)

as u ∈ K tends to ū.
As in the proof of Corollary 1, we note that the constructed Ω and ω satisfy (42)

as u → ū. Therefore, Theorem 1 ensures that for appropriate starting points all the
iterates stay in K , and in this set the perturbation terms defined hereby correspond to
(47). In particular, the assertions then follow from Theorem 1. 
�

Observe that for theLP-Newtonmethod, the values ofω(·) are defined in a posteriori
manner, after vk is computed. For this reason, Theorem 1 cannot yield uniqueness of
the iterative sequence: the next iterate can be defined by any ω(·) satisfying (48) for
u = uk , and different choices of appropriate ω(·) may give rise to different next
iterates.

Figure3 shows the same information for the LP-Newton method as Fig. 2 for the
Levenberg–Marquardt algorithm, with the same conclusions.

123



Critical solutions of nonlinear equations: local attraction 375

3.3 Equality-constrained optimization and the stabilized Newton–Lagrange
method

We next turn our attention to the origin of the critical solutions issues, namely, to the
equality-constrained optimization problem

minimize f (x) subject to h(x) = 0, (50)

where f : Rn → R and h : Rn → R
l are smooth. The Lagrangian L : Rn ×R

l → R

of this problem is given by

L(x, λ) = f (x) + 〈λ, h(x)〉.

Then stationary points and associated Lagrange multipliers of (50) are characterized
by the Lagrange optimality system

∂L

∂x
(x, λ) = 0, h(x) = 0,

with respect to x ∈ R
n and λ ∈ R

l .
The Lagrange optimality system is a special case of nonlinear equation (1), corre-

sponding to setting p = q = n + l, u = (x, λ),

Φ(u) =
(

∂L

∂x
(x, λ), h(x)

)
. (51)

The stabilized Newton–Lagrange method (or stabilized sequential quadratic pro-
gramming)was developed for solving the Lagrange optimality system (or optimization
problem) when the multipliers associated to a stationary point need not be unique
[7,12,20,28]; see also [21, Chapter 7]. For the current iterate uk = (xk, λk) ∈ R

n×R
l ,

the iteration subproblem of this method is given by

minimize 〈 f ′(xk), ξ 〉 + 1

2

〈
∂2L

∂x2
(xk, λk)ξ, ξ

〉
+ σ(uk)

2
‖η‖2

subject to h(xk) + h′(xk)ξ − σ(uk)η = 0,

where the minimization is in the variables (ξ, η) ∈ R
n ×R

l , and σ : Rn ×R
l → R+

now defines the stabilization parameter. Equivalently, the following linear system
(characterizing stationary points and associated Lagrange multipliers of this subprob-
lem) is solved:

∂L

∂x

(
xk, λk

)
+ ∂2L

∂x2

(
xk, λk

)
ξ +

(
h′ (xk

))T
η = 0,

h
(
xk

)
+ h′ (xk

)
ξ − σ

(
uk

)
η = 0. (52)
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With a solution (ξ k, ηk) of (52) at hand, the next iterate is given by uk+1 = (xk +
ξ k, λk + ηk). Note that if σ ≡ 0, then (52) becomes the usual Newton–Lagrange
method, i.e. the basic Newton method applied to the Lagrange optimality system.

For a given Lagrange multiplier λ̄ associated with a stationary point x̄ of problem
(50), define the linear subspace

Q(x̄, λ̄) =
{
ξ ∈ ker h′(x̄)

∣∣∣∣
∂2L

∂x2
(x̄, λ̄)ξ ∈ im

(
h′(x̄)

)T }
.

Recall that the multiplier λ̄ is called critical if Q(x̄, λ̄) 	= {0}; see [13,18]. Otherwise
λ̄ is noncritical.

As demonstrated in [20], if initialized near a primal–dual solution with a noncritical
dual part, the stabilized Newton–Lagrange method with σ(u) = ‖Φ(u)‖, where Φ is
given by (51), generates a sequence which is superlinearly convergent to a (nearby)
solution. Again, of current interest is the critical case.

Evidently, the iteration (52) fits the pNM framework (2) for Φ defined in (51),
taking

Ω(u) =
(
0 0
0 −σ(u)I

)
, ω ≡ 0.

These perturbations satisfy the assumptions in Theorem 1 if, e.g. σ(u) = ‖Φ(u)‖τ ,
τ ≥ 1. We thus conclude the following.

Corollary 3 Let f : Rn → R and h : Rn → R
l be three times differentiable near

a stationary point x̄ ∈ R
n of problem (50), with their third derivatives Lipschitz-

continuous with respect to x̄ , and let λ̄ ∈ R
l be a Lagrange multiplier associated to x̄ .

Assume that the mapping Φ defined in (51) is 2-regular at ū = (x̄, λ̄) in a direction
v̄ ∈ kerΦ ′(ū) ∩ S.

Then for any τ ≥ 1, there exist ε = ε(v̄) > 0 and δ = δ(v̄) > 0 such that
any starting point u0 = (x0, λ0) ∈ (Rn × R

l)\{ū} satisfying (26) uniquely defines
a sequence {(xk, λk)} ⊂ R

n × R
l such that for each k it holds that (ξ k, ηk) =

(xk+1 − xk, λk+1 − λk) solves (52) with σ(u) = ‖Φ(u)‖τ , uk2 	= ū2, the sequence
{uk} converges to ū, the sequence {‖uk − ū‖} converges to zero monotonically, and
(27) and (28) hold.

It is worth to mention that the above results and discussion can be extended to
variational problems (of which optimization is a special case), see [7], [21, Chapter 7].

We proceed with some further considerations. A multiplier is said to be critical of
order one if dim Q(x̄, λ̄) = 1. The following was established in [15].

Proposition 2 Let f : Rn → R and h : Rn → R
l be three times differentiable at

a stationary point x̄ ∈ R
n of problem (50), and let λ̄ ∈ R

l be a Lagrange multiplier
associated to x̄ . Let Q(x̄, λ̄) be spanned by some ξ̄ ∈ R

n\{0}, i.e. λ̄ is a critical
multiplier of order one.

If rank h′(x̄) = l − 1, then kerΦ ′(ū) contains elements of the form v = (ξ̄ , η)

with some η ∈ R
l , and Φ is 2-regular at ū in every such direction if and only if

h′′(x̄)[ξ̄ , ξ̄ ] /∈ im h′(x̄).
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Table 1 Cases of convergence
to λ̄ = −1 in Example 1 (%)

ε L–M L–M L–M LP-N sN–L N–L
τ = 1 τ = 3/2 τ = 2

1 38 44 56 54 42 83

0.5 34 52 68 55 57 86

0.25 36 57 79 58 73 86

0.1 38 68 86 73 83 90

0.01 38 84 86 86 88 86

−2 0 2 4 6 8
−4

−3

−2

−1

0

1

2

3

4

λ1

λ2

Fig. 4 Critical multipliers in Example 2

If rank h′(x̄) ≤ l−2, thenΦ cannot be 2-regular at ū in any direction v ∈ kerΦ ′(ū).
If h′(x̄) = 0, and l ≥ 2 or h′′(x̄)[ξ̄ , ξ̄ ] = 0, then Φ cannot be 2-regular at ū in any

direction v ∈ kerΦ ′(ū).

In the last two cases specified in the proposition above, Theorem 1 is not appli-
cable; these cases require special investigation. In the last case, when l ≥ 2 but
h′′(x̄)[ξ̄ , ξ̄ ] 	= 0, allowing for non-isolated critical multipliers, the effect of attraction
of the basic Newton–Lagrange method to such multipliers had been studied in [23]
for fully quadratic problems.

On the other hand, if, e.g. l = 1, h′(x̄) = 0, and h′′(x̄)[ξ̄ , ξ̄ ] 	= 0, then Theorem 1
is applicable with v̄ = (ξ̄ , η) for every η ∈ R. Taking here η = 0 recovers the
results in [27] for the basic Newton–Lagrange method and the fully quadratic case.
Moreover, this is exactly the situation that we have in Example 1. Table1 reports on
the percentage of detected cases of dual convergence to the unique critical multiplier
λ̄ = −1 in Example 1, for the algorithms discussed above, depending on the size ε of
the region for starting points around (x̄, λ̄). In the table, L–M refers to the Levenberg–
Marquardt method (with different values for the power τ that defines the regularization
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Table 2 Cases of convergence
to λ̄ = (1,

√
3) in Example 2

(%)

ε L–M L–M L–M LP-N sN–L N–L
τ = 1 τ = 3/2 τ = 2

1 21 26 31 42 4 65

0.5 21 27 37 45 7 75

0.25 23 29 47 48 15 82

0.1 23 33 63 55 26 91

0.01 24 60 89 82 59 97

parameter), LP-N refers to the LP-Newton method, N–L to the Newton–Lagrange
method (i.e. (52) with σ ≡ 0), and sN–L to the stabilized Newton–Lagrange method.

The case when dim Q(x̄, λ̄) ≥ 2 (i.e. when λ̄ is critical of order higher than 1)
opens wide possibilities for 2-regularity in the needed directions, and such solutions
are often specially attractive for Newton-type iterates.

Example 2 (DEGEN20302) Consider the equality-constrained optimization problem

minimize x21 − x22 + 2x23

subject to −1

2
x21 + x22 − 1

2
x23 = 0, x1x3 = 0.

Here, x̄ = 0 is the unique solution, h′(x̄) = 0, and the set of associated Lagrange
multipliers is the entire R2. Critical multipliers are those satisfying λ1 = 1 or (λ1 −
3)2 − λ22 = 1. In Fig. 4, critical multipliers are those forming the vertical straight line
and two branches of the hyperbola.

According to Proposition 2, the 2-regularity property cannot hold for Φ defined in
(51), at (x̄, λ) for any direction v ∈ kerΦ ′(ū), for all critical multipliers λ, except
for λ̄ = (1, ±√

3), which are the two intersection points of the vertical line and the
hyperbola.One can directly check that themappingΦ is indeed 2-regular at ū = (x̄, λ̄)

in some directions v ∈ kerΦ ′(ū).
Table2 reports on the percentage of detected cases of dual convergence to λ̄ =

(1,
√
3), for the algorithms discussed above, depending on the size ε of the region for

starting points around (x̄, λ̄).
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