
Math. Program., Ser. A (2017) 166:327–367
DOI 10.1007/s10107-017-1123-x

FULL LENGTH PAPER

Integral simplex using decomposition with primal
cutting planes

Samuel Rosat1 · Issmail Elhallaoui1 ·
François Soumis1 · Andrea Lodi2

Received: 4 May 2015 / Accepted: 9 February 2017 / Published online: 13 March 2017
© Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2017

Abstract This paper concentrates on the addition of cutting planes to the integral
simplex using decomposition (ISUD) of Zaghrouti et al. (Oper Res 62(2):435–449,
2014). This method solves the set partitioning problem by iteratively improving an
existing feasible solution. We present the algorithm in a primal language and relate it
to existing augmentingmethods. The resulting theoretical properties, stronger than the
ones already known, simplify termination proofs and deepen the geometrical insights
on ISUD in particular. We show that primal cuts, that is, cutting planes that are tight
at the current feasible integer solution, can be used to improve the performance of the
algorithm, and further that such cutting planes are enough to solve each augmenta-
tion problem. We propose efficient separation procedures for well-known polyhedral
inequalities, namely primal clique and odd-cycle cuts. Numerical results demonstrate
the effectiveness of primal cutting planes; tests are performed on small and large-scale
set partitioning problems from aircrew and bus-driver scheduling instances up to 1600
constraints and 570,000 variables.

B Andrea Lodi
andrea.lodi@polymtl.ca

Samuel Rosat
samuel.rosat@polymtl.ca

Issmail Elhallaoui
issmail.elhallaoui@gerad.ca

François Soumis
francois.soumis@gerad.ca

1 GERAD and École Polytechnique de Montréal, C.P. 6079, Succ. Centre-ville, Montreal, QC
H3C 3A7, Canada

2 CERC and École Polytechnique de Montréal, C.P. 6079, Succ. Centre-ville, Montreal, QC H3C
3A7, Canada

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-017-1123-x&domain=pdf

328 S. Rosat et al.

Keywords {0, 1}-Programming · Integral simplex · Primal algorithms · Set
partitioning · Primal cutting-planes · Scheduling

1 Introduction

Introduced in 1969 by Garfinkel et al. [8], the Set Partitioning Problem (SPP) is a
well known model of integer linear programming. Its popularity mainly comes from
its simple expression, and the wide range of its applications. It can be expressed as1

SPP
Given a set X and a set of its subsets, X1, . . . ,Xn ⊆ X of
respective cost c1, . . . , cn , determine a partition ofX , using only
some of theXi , 1 ≤ i ≤ n, and of minimum (or maximum) cost.

Applications range from aircrew scheduling [4] to vehicle routing [2] and electricity
production planning [25], among others.

Primal methods for integer linear programming were introduced in the 1960s, at the
same time as most classical frameworks (e.g., branch and bound). These algorithms,
sometimes described as augmenting methods or all-integer algorithms, are based on
the following pattern: given a starting integer solution, improve it iteratively to obtain
a sequence of integer solutions with a better objective function value until optimality
is reached.2 Two of their main features are (i) to avoid the combinatorial exploration
of a branching tree and (ii) to take advantage of existing starting solutions. In turn,
a key feature of SPP is that it possesses the quasi-integral (or Trubin) property [34],
i.e., every edge of the convex hull of the feasible set is also an edge of the polytope
of the linear relaxation. Therefore, it is suitable for the implementation of all-integer
algorithms in which all improvements are obtained by performing simplex pivots;3

such algorithms are hence named integral simplex algorithms. One of the first attempt
in this direction is the seminal work of Balas and Padberg [1], who first proposed an
integral simplex algorithm specifically designed for the set partitioning problem.

One of the main drawbacks of algorithms based on simplex pivots is their inability
to perform well on degenerate problems. In mathematical programming, degeneracy
occurs when some basic variables are at one of their bounds, which is common in the
particular case of SPP. In this case, it is very much likely that the value of variable
entering the simplex basis cannot be modified without making the current solution
infeasible. The resulting degenerate pivot leads to no change in the solution, and no
improvement in the objective value. Recently, Zaghrouti et al. [37] proposed a new
algorithm for SPP, the Integral Simplex Using Decomposition (Isud) which is an
offspring of recent works conducted around the Improved Primal Simplex in [6,17,18,
33]. It is therefore designed to take advantage of degeneracy, rather than suffer from
it. Combined with (i) the canonically degenerate nature of the SPP, particularly in

1 A formulation of SPP as an integer linear programming problem is given in Sect. 2.2.
2 The above definition includes local search algorithms, whose analysis is, however, outside of the scope
of the present paper that is concerned with simplex-type algorithms that are able to prove optimality of the
solution.
3 More details on this feature and its implications are given in Sect. 2.2.

123

Integral simplex using decomposition with primal cutting… 329

the industrial applications, and (ii) the observation that primal algorithms experience
troubles with degeneracy, particularly when primal cutting planes are used (e.g., [16]),
the previous observations on the advantageous way that Isud copes with degeneracy
show its potential to embody the next generation of primal algorithms. Furthermore, it
seems natural to apply primal cutting planes techniques within an “anti-degeneracy”
framework since degeneracy is reported as the main trouble experienced when adding
cuts in primal methods.

From the applicative point of view, and as shown in the last part of this paper, Isud
proves highly efficient for reoptimization. This key feature makes it a very promis-
ing method in two particularly important cases which are reoptimization of existing
solutions, and all-integer column generation. First, the need to quickly reoptimize an
existing solution (a schedule) in case of unforeseen events is fundamental in many
practical cases. Take for instance the example of airline crew scheduling (see [31]):
The manpower planned schedule must often be modified to react to day-to-day oper-
ational constraints such as schedule disruptions, aircraft substitutions, crew absences,
strikes or even volcanic eruptions! Second, consider the all-integer column genera-
tion process. Column generation is an optimization technique used to solve very large
problems. When solving problems with integer variables, it is usually embedded in
a branch-and-price framework. As for standard integer programming, the exploration
of the branching tree can turn to be a very long process. In the same way that primal
algorithms are an alternative to branch and bound, all-integer column generation is
an alternative to branch and price. In all-integer column generation, a subset of the
columns of the constraint matrix is generated in the beginning, and the optimal solu-
tion to this program, called restricted master problem, is found. Then, subproblems
generate new columns to be appended to the matrix, and the new optimal solution for
the extended matrix must be determined. One then iterates the process until no column
can be generated, that improves the solution. Obviously, solving the extended problem
from scratch (branch and bound) results in a loss of information and a probable lack of
efficiency, while using the previous solution as a warm-start could give the algorithm
a substantial advantage (primal algorithms). Hence, any efficient all-integer column
generation code requires a good reoptimization method, since the global process is
based on successive updates of an integral solution. Thus, Isud is an excellent can-
didate for the reoptimization of the optimal solution of the restricted master problem
every time it is extended.

This paper is organized as follows. A literature review on primal algorithms, primal
cutting planes and integral simplex methods, as well as some notation, problem defini-
tions and contribution statement are given in Sect. 2. The Isud algorithm is presented
in an innovative way, and new theoretical results are discussed in Sect. 3. Primal cut-
ting planes are discussed in Sect. 4, new separation procedures are described, and we
show that the search space of the separation can be restricted without preventing from
finding these cutting planes. Numerical results are displayed in Sect. 5, which show
the potential of adding primal cuts to Isud, and conclusions are drawn in Sect. 6. An
extended abstract of this work was published in [24].

123

330 S. Rosat et al.

2 Literature review and contribution statement

In this paper, lower-case bold symbols are used for column vectors and upper-case
bold symbols denote matrices. For subsets X ⊆ {1, . . . ,m} of row indices and Y ⊆
{1, . . . , n} of column indices, the submatrix of Awith rows indexed byX and columns
indexed by Y is denoted as AXY . Similarly, AX · is the set of rows of A indexed by
X , while A·Y is the set of columns of A indexed by Y , and for any vector v ∈ Rn , vY
is the subvector of all vy , y ∈ Y . The vector of all zeros (resp. ones) with dimension
dictated by the context is denoted by 0 (resp. e), and AT is the transpose of A. Finally,
the linear span of all columns of any matrix M, also called image of M, is denoted as
Span (M).

2.1 Primal algorithms for integer linear programs

Before addressing the SPP, a general introduction on primal algorithms for ILP is
given here. We consider a generic integer linear program

z�ILP = min
x∈Rn

{
cT x | Ax = b , x ≥ 0 and x is integer

}
, (ILP)

where A ∈ Nm×n , b ∈ Nm and c ∈ Nn , with N the set of natural integers. Ax = b
are called the linear constraints and x ≥ 0 the nonnegativity constraints. The set of
all feasible solutions of ILP is denoted by FILP. z�ILP is called the optimal value of
ILP and any feasible solution x� ∈ FILP such that cT x� = z�ILP is called an optimal
solution of ILP. The linear relaxation of ILP, denoted as ILPLR is the linear program
obtained by relaxing the integrality constraints of ILP. Its feasible domain and optimal
value are resp. denoted as FILPLR and z�

ILPLR
.

As noted byLetchford andLodi [14], algorithms for integer linear programming can
be divided into three classes: dual fractional, dual integral, and primal methods.Dual
fractional algorithms maintain optimality and linear-constraint feasibility at every
iteration, and they stop when integrality is reached. They are typically standard cutting
plane procedures such as Gomory’s algorithm [10]. The classical branch-and-bound
scheme is also based on a dual-fractional approach, in particular for the determination
of lower bounds. Dual integral methods maintain integrality and optimality, and they
terminate once the (primal) linear constraints are satisfied. Letchford and Lodi give the
sole exampleof another algorithmofGomory [11]. Finally,primal algorithmsmaintain
feasibility (including integrality) throughout the process and stop when optimality
is reached. These are in fact descent algorithms for which the improving sequence
(xk)k=1...K satisfies the conditions

C1 xk ∈ FILP;
C2 xK is optimal;
C3 cT xk+1 < cT xk .

Primalmethods—sometimes classified as augmenting algorithms –were first intro-
duced simultaneously by Ben-Israel and Charnes [3] and Young [35] and improved
by Young [36] and Glover [9]. In Young’s method [35,36], at iteration k, a simplex

123

Integral simplex using decomposition with primal cutting… 331

pivot is considered: if it leads to an integer solution, it is performed; otherwise, cuts
are generated and added to the problem, thereby changing the underlying structure
of the constraints. Young also developed the concept of a augmenting (or improving)
vector at xk , i.e., a vector z ∈ Rn such that xk + z is integer, feasible, and of lower
cost than xk . From this notion comes the integral augmentation problem (iAUG) that
involves finding such a direction if it exists or asserting that xk is optimal.

iAUG
Find an improving vector z ∈ Zn such that (xk + z) ∈ FILP and
cT z < 0 or assert that xk is optimal for ILP.

Remark 1 Traditionally, papers on constraint aggregation and integral simplex algo-
rithms deal with minimization problems, whereas authors usually present generic
primal algorithms for maximization problems. We therefore draw the reader’s atten-
tion to the following: to retain the usual classification, we call the improving direction
problem iAUG, although it supplies a decreasing direction. In the same way, an
improvement (general term) is, in our case, a decrease. For the same reasons, we
still call it an augmentation.

For the sake of readability, in this paper, we will differentiate iAUG (above) from
the fractional augmentation fAUG. The latter is the relaxation of the former in which
z may be fractional and xk + z needs only be a solution of the linear relaxation ILPLR.

In the end of the 1990s, there has been a renewed interest in primal integer algo-
rithms, inspired by Robert Weismantel as mentioned in [15]. Many recent works
specifically concern {0,1}-LP (integer programming problems for which the variables
can only take values 0 or 1). However, only a few papers have addressed the practical
solution of iAUG, most of them considering it as an oracle. As a matter of fact, most
of the rare computational work since 2000 on primal algorithms concerns the primal
separation problem, defined as

P-SEP
Given a feasible solution xk ∈ FILP and an infeasible point x�,
find a hyperplane that separates x� from FILP and that is tight at
xk or assert that none exists.

In the general case, there is no guarantee that a primal separation hyperplane exists,
and no particular conclusion can be drawn if none is found. In our case, however, x�

is typically an adjacent vertex of the feasible domain of the linear relaxation FILPLR

obtained by performing one or several simplex pivots from xk , which guarantees
that such an hyperplane exists (see Sects. 3 and 4). An example of primal separation
hyperplanes is given in Fig. 1.

In 2003, Eisenbrand et al. [5] proved that the primal separation problem is, from the
theoretical point of view, as difficult as the integral optimization problem for {0,1}-LP.

It is therefore expected to be a “complicated” problem because {0,1}-LP is
NP-hard. Letchford and Lodi [14,16] and Eisenbrand et al. [5] adapt well-known
algorithms for the standard separation problem to primal separation. To the best of our
knowledge, only few papers present computational experiments using primalmethods.
Best examples are those of Salkin and Koncal [26], Letchford and Lodi [14], Haus et
al. [12], and Stallmann and Brglez [30]. All these papers present results on small to

123

332 S. Rosat et al.

(H)

•

•

•

•

•

•

•x
k

x
Conv (FILP)

FILPLR

Fig. 1 Example of primal separation. (H) is a primal cut separating x� from Conv (FILP), and tight at
xk . The dark area represents the feasible domain of the linear relaxation FILPLR . The feasible domain of
ILP is a finite set represented by bullets (•) and its convex hull Conv (FILP) is the light grey polyhedron

mid-size instances. Haus et al. [12] describe a solid framework and their implementa-
tion is certainly the most complete one. Letchford and Lodi [14] present results for an
algorithm using primal cutting planes and, interestingly, they stated that degeneracy
prevented them from solving larger instances. As was already mentioned above, the
Isud algorithm was originally designed to cope with degeneracy and therefore seems
a promising answer to these computational limits of primal algorithms.

For further information on primal algorithms, the reader is referred to the more
extensive review of Spille et al. [29].

2.2 The set partitioning problem

The Set Partitioning Problem (SPP) is a particular case of {0,1}-LP, presented in the
introduction. In a mathematical programming form, it reads as

min
x∈Rn

{
cT x | Ax = e , 0 ≤ x ≤ e and x is integer

}
, (SPP)

where A ∈ {0, 1}m×n is a {0,1}-matrix, and c ∈ Nn is any integer cost vector. Obvi-
ously, given the bounds (0 and e) and the integrality constraints, FSPP only contains
{0,1}-vectors. The set of indices of the rows is denoted asR = {1, . . . ,m}. Moreover,
given a current solution x0 ∈ FSPP, the indices {1, . . . , n} of its components can be
partitioned into sets P = { j |x0j = 1}, which is the set of positive-valued variables,

and Z = { j |x0j = 0}, which is the set of null variables. Submatrix A·P is referred
to as the working basis, and so is P by extension. Its indices and the variables of xP
are respectively referred to as basic indices and basic variables, and p = |P| denotes
the cardinality of this working basis. The working basis is different from a standard
simplex basis because it only contains linearly independent positive-valued variables
(no degenerate variables). In the rest of this paper, the terms basis, basic, etc. refer to
the working basis P .

123

Integral simplex using decomposition with primal cutting… 333

As proved in 1969 by Trubin [34], the SPP is quasi-integral, i.e., every edge of
the convex hull of the feasible set Conv (FSPP) is also an edge of the polytope of the
linear relaxationFSPPLR . A consequence of this property is the existence of a decreas-
ing sequence of integer solutions of SPP leading to an optimal solution, such that
two consecutive solutions are adjacent vertices of FSPPLR [easily proven by applying
the simplex algorithm over Conv (FSPP)]. When working on the SPP, the following
condition C4 can therefore be added to C1–C3 to transform a primal algorithm into
an integral simplex without preventing the procedure to reach optimality.

C4 xk+1 is a neighbor of xk in FSPPLR .

These methods, first introduced in 1975 by Balas and Padberg [1], yield a sequence of
improving all-integer solutions, obtained by only performing simplex pivots. Since this
seminal paper, other integral simplexmethods have been proposed (seeThompson [32]
and Saxena [27]). Amongst contemporary work conducted parallel to ours, the most
interesting one to mention is that conducted by Rönnberg and Larsson (see [21,22]).
Finally, note that the SPP is by nature highly degenerate. Hence it seems relevant to
apply that kind of “anti-degeneracy” techniques in this case.

2.3 Contribution statement

With the concepts introduced in Sect. 2, we can describe the contributions of Sects. 3
and 4 more clearly. In Sect. 3, we present the Isud algorithm in a primal way, and
relate it to the augmentation problems iAUG and fAUG. We formulate fAUG as a
linear program, and iAUG as a nonlinear one of which fAUG is the linear relaxation.
Each of these problems is decomposed into two subproblems. We reduce the number
of constraints of both decomposed subproblems, and give a geometrical interpretation
of these row-reduced problems. We also provide a simple characterization of integer
directions. Section 4 addresses the improvement of the linear relaxation of iAUG with
cutting planes.We demonstrate that every valid inequality for iAUG can be obtained as
the linear transformation of a primal cut of SPP.We prove that such a primal cut always
exists and that the characterization of integer directions given in Sect. 3 remains correct
after the addition of cutting planes. Finally, we introduce two new P-SEP procedures
for primal clique and odd-cycle cuts, and show that the search space for the cuts can
be reduced to a small number of variables without changing the outcome of P-SEP.

3 The integral simplex using decomposition (ISUD)

This section aims to present the Integral Simplex Using Decomposition (Isud) of
Zaghrouti et al. [37] from a purely primal point of view, so as to make the link with
primal algorithms straightforward, and simplify some proofs aswell as the geometrical
interpretation of the process. Section 3.1 concentrates on fAUG, while Sect. 3.2 also
considers integrality and tackles iAUG.

Hereinafter, suppose a decreasing sequence of solutions of SPP ending at xk is
known, and iAUG must now be solved. For the sake of readability, we always denote
the current (binary) solution as x0. We want to determine a direction d ∈ Rn and a

123

334 S. Rosat et al.

step r > 0 such that x1 = x0 + rd ∈ FSPP and of lower cost than x0 or to assert that
x0 is optimal. The set of positive-valued variables is denoted as P0 = { j |x0j = 1},
and that of null variables as Z0 = { j |x0j = 0}. For the sake of readability, P , Z , d,
and r (and later other objects) will not be indexed on the index of the current solution
(k or 0) although they depend on x0 (or xk).

3.1 Fractional augmentation fAUG and phase decomposition

In this section, the sole problem of a fractional augmentation, fAUG, is considered.
However, for the sake of clarity, x0 ∈ FSPP is still supposed to be integer. This section
extends the work done by Omer et al. [18], and Rosat et al. [23] and details it in the
case of the SPP.

3.1.1 Generic fractional augmentation

To practically address fAUG, it must be formulated in such a way that it can algo-
rithmically be solved. It consists in finding a direction d ∈ Rn such that it is feasible
(∃ρ > 0|xk + ρd ∈ FSPPLR) and augmenting (cT d < 0). The set of all feasible
directions at x0 is the cone

Γ = {
d ∈ Rn | Ad = 0 , dP ≤ 0 , dZ ≥ 0

}
, (1)

from which we will only consider a section,

Δ = Γ ∩
{
d ∈ Rn | eT dZ = 1

}
. (2)

The linear constraint eT dZ = 1 is called the normalization constraint. A geometric
interpretation of Γ and Δ is given in Fig. 2. Note that, since A is nonnegative and
because of the sign constraints, any nonzero feasible direction d ∈ Γ has nonzero
terms in both dP and dZ . Hence, the normalization constraint defines a proper section
of the cone and Δ is a (bounded) polytope.

It is easy to see that at least one feasible direction is augmenting if and only if the
program

z�Mima = min
d∈Rn

{
cT d |d ∈ Δ

}
(Mima)

satisfies z�Mima < 0. On the one hand, any optimal solution of Mima yields a solution
to fAUG; on the other hand, if z�Mima is nonnegative, no feasible augmenting direction
exists and x0 is optimal for SPP. Finally, since Δ is a polytope, Mima is a bounded
linear program. The nameMima stands forMaximum Incoming Mean Augmentation:
The normalization constraint only concerns incoming variables, so the objective is a
mean over a reduced subset of the variables. The choice of this normalization constraint
follows that of the original algorithm of Zaghrouti et al. [37].

123

Integral simplex using decomposition with primal cutting… 335

eT d = 1

FSPPLR

Δ

• Ext (FSPPLR)

Ext (Δ)

•x0 •

•

•

•

Fig. 2 Geometric description of Δ and Γ . The cone Γ of all feasible directions at x0 is defined by the
three arrowed lines. The grey area represents Δ, the set of normalized feasible directions

Remark 2 The normalization constraint eT dZ can be replaced with any other equality
of the form wT d = 1, as long as Δ defines a proper section of Γ . On the theoretical
side, this does not change the nature of the results presented in Sects. 3 and 4. In
particular, the algorithm does not change, and neither do the separation algorithms.
On the practical side, the choice of the normalization influences the performances
of the algorithm. We use the aformentionned specific constraint in this paper for the
following reasons: (1) it has been used in the original version of the algorithm [37]
and therefore makes the comparison with it fairer and (2) most proofs are significantly
more readable with this constraint than with a generic one. For a detailed study of the
influence (both theroretical and practical) of the choice of the normalization in Isud,
the reader is referred to [23].

Once an optimal solution d� to Mima has been found, the idea of an aug-
mentation algorithm is to follow that direction as far as possible while remaining
feasible. The maximal feasible step alongside direction d is thus defined as r(d) =
max

{
ρ > 0 | x0 + ρd ∈ FSPPLR

}
. From x0, fractional augmentation can therefore be

performed as x1 = x0 + r(d)d.

3.1.2 Incompatibility degree of the nonbasic variables

To decomposeMima into smaller problems, both in terms of number of variables and
constraints, the notion of incompatibility degree introduced by Elhallaoui et al. [7]
must be presented here. Given a column A· j of the constraint matrix, a row r ∈ R
is said to be covered by that column if Ar j = 1. For each column A· j of A, let
R j = {

r ∈ R | Ar j = 1
}
be the set of rows covered by that column. By definition,

the sets of the rows covered by the columns of P , i.e., {Rl}l∈P , form a partition ofR
(see Fig. 3). Assume that a total order � is known over the indices of the rowsR. For
any j , that order is extended to R j , and the elements of R j are written according to
� as

123

336 S. Rosat et al.

P Z

A =

1 0 1 1 1 1 1
1 0 0 1 1 1 1
0 1 0 0 1 1 1
0 1 0 0 0 1 1
1 0 0 0 0 0 1

ιPj 0 0 1 1 2 1 2

P Z

Â =

0 1 0 0 1 1 1
0 1 0 0 0 1 1
1 0 0 1 1 1 1
1 0 0 0 0 0 1
1 0 1 1 1 1 1

ιPj 0 0 1 2 3 2 0

Fig. 3 Incompatibility degree with respect toP on a 5-rows example for two different ordering of the rows
of the same matrix, namely (1, 2, 3, 4, 5) in matrix A, and (3, 4, 2, 5, 1) in matrix Â

R j : r j
1 � r j

2 � · · · � r j
|R j | .

Definition 1 (Incompatibility degree) The incompatibility degree of a column A· j ,
j ∈ {1, . . . , n}, with respect to the working basis P is computed as

ιPj =
∑
l∈P

|Rl |−1∑
t=1

κ t
l j , (3)

where κ t
l j = 1 if A· j covers r j

t or r j
t+1 but not both, 2 if A· j covers r j

t and r j
t+1 but

not consecutively, 0 otherwise. Here, r j
t and r j

t+1 denote two rows covered by column
l that are performed consecutively within that column. An example is given in Fig. 3.

Remark 3 Any ordering of the rows can be used with these definitions. In scheduling
applications, the rows correspond to tasks to carry out. It is therefore intuitive to order
them by starting time and an incompatibility will correspond to the breaking of a
succession of tasks that are performed consecutively in the current solution x0.

For the sake of clarity, we will always consider that the nonzero entries of a column
of the current solution are consecutive withinR, i.e., given any pair of different indices
i, j ∈ P , either ∀r ∈ Ri ,∀r ′ ∈ R j , ri � r ′

j , or ∀r ∈ Ri ,∀r ′ ∈ R j , r ′
j � ri . Note

that this is not the case of the left part of Fig. 3. With ιPj as defined in Formula (3),

A· j is said to be ιPj -incompatible. 0-incompatible columns are called compatible and
the others are called incompatible. These notions extend to the index of the column
and to the corresponding variable.

Observation 1 All columns from the working basis are compatible;

Observation 2 An incompatible column is one that breaks the partition of the rows
{Rl}l∈P .

Given a solution x0, we define the following subsets of nonbasic variables Z as

C =
{
j ∈ Z | ιPj = 0

}
and I ι =

{
j ∈ Z | 1 ≤ ιPj ≤ ι

}
,∀1 ≤ ι ≤ kmax . (4)

123

Integral simplex using decomposition with primal cutting… 337

Then, C is called the compatible set and the corresponding indices and variables are
called compatible. Thus, I ι is called the at most ι-incompatible set and the corre-
sponding indices and variables are said to be at most ι-incompatible. By definition,
I1 ⊆ I2 ⊆ . . . ⊆ I ιmax = I. I is called the incompatible set, and its elements and the
corresponding variables are called incompatible. Finally, (P, C, I) form a partition
of {1, . . . , n}.
Lemma 1 Given j ∈ Z , the following statements are equivalent:

(i) A· j is compatible;
(ii) ∃P j ⊆ P | A· j = ∑

l∈P j
A·l ;

(iii) A· j ∈ Span
(
A·P

)
.

Lemma 1 does not apply to the left part of the example given in Fig. 3 because
the rows are not ordered properly in that case. The notion of compatible/incompatible
column is extended to all vectors ofRm , namely w ∈ Rm is compatible if and only if
w ∈ Span

(
A·P

)
. In the theoretical part of this paper, we will consider the partition

of {1, . . . , n} into (P, C, I) . However it is algorithmically efficient to look first for an
augmenting direction over C, and then, successively I1, I2, . . ., until I.

3.1.3 The IPS decomposition

With P̄ = {1, . . . ,m} \ P and reordering the rows and columns of A so that R is
partitioned into (P, P̄), we can write

A =
[

I p APC API
AP̄P AP̄C AP̄I

]
, (5)

where I p is the p× p identity matrix. Given d ∈ Δ, from the constraints Ad = 0, one
can easily see that the aggregation of all columns corresponding to increasing variables
(for which d j ≥ 0) w = A·Z dZ is compatible. As in a reduced-gradient algorithm,
we are in fact looking for an aggregate column w that can enter the working basis and
take a positive value by lowering only some variables ofP .We introduce the following
problems, respectively called Restricted-Mima and Complementary-Mima):

z�R- Mima = min
d∈Rp+|C|

{
cTP dP + cTC dC | A·P dP + A·CdC = 0 , eTC dC = 1 , dC ≥ 0

}

(R- Mima)

z�C- Mima = min
d∈Rp+|I|

{
cTP dP + cTI dI | A·P dP + A·IdI = 0 , eTI dI = 1 , dI ≥ 0

}
.

(C- Mima)

Theorem 1 z�Mima = min
{
z�R- Mima, z

�
C- Mima

}
.

123

338 S. Rosat et al.

Proof Let d = (dP , dC, dI) be an optimal solution of Mima. If dC = 0 or dI = 0,
d is respectively a solution of C- Mima or R- Mima and the result clearly holds.

Suppose now that dC �= 0 and dI �= 0. We first prove that d can be written as a
convex combination of u′, a solution of R- Mima, and v′, a solution of C- Mima. By
Lemma 1-(i i), the surrogate column A·C dC can be written as a linear combination of
columns ofP , A·CdC = −A·Pu′

C , u
′
P ≤ 0. Let u = (u′

P , dC, 0), and v = d−u. Let
αu = ‖dC‖1 = ∑

j∈C d j and αv = ‖dI‖1 = ∑
j∈I d j . Moreover, let u′ = u/αu and

v′ = v/αv be the corresponding normalized directions. Thus, 0 < αu, αv and, since
d is a solution of Mima, the normalization constraint yields αu + αv = 1 because
d ∈ FMima. Therefore, d = αuu′ + αvv

′ is a convex combination of u′ a solution of
R- Mima and v′ a solution of C- Mima.

Looking at the objective function, the convex combination reads cT d = αu(cT u′)+
αv(cT v′). Either cT d ≥ cT u′ or cT d ≥ cT v′. However, since every solution of R-
Mima andC- Mima is also a solution ofMima and d is optimal forMima, cT d ≤ cT u′
and cT d ≤ cT v′. One of the two inequalities is thus an equality and the second follows
from cT d = αu(cT u′) + αv(cT v′). Therefore, cT d = cT u′ = cT v′, and since d is an
optimal solution of Mima, z�Mima = z�R- Mima = z�C- Mima. �

In the previous works on IPS by Elhallaoui et al. [6], a weaker version of Theo-
rem 1 stated that z�Mima and min

{
z�R- Mima, z

�
C- Mima

}
have the same sign. Theorem 1

strengthens this result andmakes the justification of most subsequent procedures more
straightforward. This purely primal interpretation of their less-intuitive dual approach
allows us to state a precise decomposition of Mima into R- Mima and C- Mima. As
a consequence of Theorem 1, we will consider the pair of problems R- Mima and
C- Mima instead of the more complicatedMima, and we will solve them sequentially.
In particular, C- Mima will not be solved if z�R- Mima < 0 because an improving direc-
tion is already known. In the next sections, we discuss how to reduce the number of
rows in R- Mima and C- Mima to ease their solution. Recall that, for the moment,
x1 = x0 + r(d)d may be fractional.

3.1.4 Row-reduction of R- Mima

The practical solution of the restriction of fAUG to the compatible variables only is
based on the following proposition. Recall that for all i ∈ C, Pi ⊆ P is defined as in
Lemma 1-(i i), i.e., it is the unique subset of P such that A·i = ∑

j∈Pi
A· j .

Proposition 1 Given j ∈ C, the minimal direction associated with j is the vector
δ j ∈ Rp+|C| defined as

∀i ∈ P ∪ C , δ
j
i =

⎧⎨
⎩

−1 if i ∈ P j ,
1 if i = j ,
0 otherwise.

(6)

For any j ∈ C, δ j is feasible and the set of all extreme points ofFR- Mima is exactly the
set of theminimal directions associatedwith variables of C, i.e.,

{
δ j | j ∈ C

}
. Moreover,

the maximal feasible step alongside direction δ j is r(δ j) = 1.

123

Integral simplex using decomposition with primal cutting… 339

Proof First, let j ∈ C. By definition of δ j and FR- Mima, δ
j is obviously feasible for

R- Mima.
Second, let d� = (d�

P , d�
C) ∈ FR- Mima be a feasible solution of R- Mima. We

will show that d is a convex combination of one or several minimal solutions. Let
u = ∑

j∈C d�
j δ

j . By construction, uC = d�
C . Because all δ j are in FR- Mima, then

the linearity constraints apply to their combination u. Hence, A·PuP = −A·CuC =
−A·Cd�

C = A·P d�
P . The columns of the working basis A·P are linearly independent,

therefore, uP = d�
P and d� = u.

Moreover, d ∈ FR- Mima satisfies the normalization constraint eT d�
C = ∑

i∈C d�
i =

1. Thus, d� = u = ∑
j∈C d�

j δ
j is a convex combination ofminimal directions. Finally,

given the current solution x0, for any j ∈ C and ρ > 0,

∀i ∈ P ∪ C ,
[
x0 + ρδ j

]
i
=

⎧
⎨
⎩
1 − ρ if i ∈ P j ,
ρ if i = j ,
x0i otherwise.

Therefore, considering the bounds 0 ≤ (x0 + ρd) ≤ e, the maximum possible value
for ρ is r(d0) = 1. �

Corollary 1 There exists j ∈ P such that δ j is an optimal solution of R- Mima.

As a consequence of Proposition 1 and Corollary 1, solvingR- Mima and following
the optimal direction until a bound is reached is equivalent to pivoting the correspond-
ing compatible variable into the working basis. These pivots are guaranteed to be
nondegenerate, as proven in the following proposition.

Proposition 2 Compatible variables are exactly those that yield nondegenerate pivots
when inserted in the working basis.

Proof For SPP,when inserted in theworking basis, a nonbasic variable yields a nonde-
generate pivot iff it can be written as a nonnegative linear combination of the variables
in P (x0P = 0 and 0 ≤ x ≤ 1). By Lemma 1-(i i i), compatible columns are exactly
those that can be written as a linear combination of the columns of A·P . Therefore,
if a column yields a nondegenerate pivot, it must be compatible. As proven in Propo-
sition 1 pivoting a compatible variable x j in the working basis can be interpreted as
following direction δ j . Since the corresponding maximal step is positive (r(δ j) = 1),
the pivot is nondegenerate and compatible variables all yield nondegenerate pivots. �

Proposition 3 R- Mima is equivalent to the minimization program

z�R- Mima = z�RP = min
j∈C

{
c̄ j

}
, (RP)

called reduced problem, where c̄ = c− cTP AP· is the reduced costs vector. Moreover,
given an optimal solution j ∈ C, the corresponding direction is δ j .

123

340 S. Rosat et al.

Proof Given an index j ∈ C, the cost of the corresponding minimal direction in R-
Mima is cT δ j = cTPδ

j
P + cTC δ

j
C . With Eq. (5), the linear constraints of R- Mima

become
{
I pδ

j
P + APCδ

j
C = 0

AP̄Pδ
j
P + AP̄Cδ

j
C = 0

,

and, with Eq. (6), the first row gives δ
j
P = −AP j , and thus, cT δ j = c j − cTP AP j .

Because the extreme points of FR- Mima are the δ j for j ∈ C, the result holds. �
Note that the previous result can be extended for any choice of normalization

weights. Namely, if the normalization constraint reads aswT d = 1, then c̄ j is replaced
by c̄ j/w j in equation (RP) and the result holds (see, [23] for more details).

The term of row-reduction refers to the following two facts. First, the linear program
becomes a simple reduced-cost determination. Second, the computation of the whole
improving direction is made without any matrix multiplication since δ

j
P = −AP j .

This is in the spirit of a standard simplex pivot in which a reduced-cost analysis is
performed, and then a system must be solved to determine the future solution xk+1.
As in Proposition 3, in practice, the determination of j ∈ C is made as a reduced-
cost analysis and exactly reproduces what a simplex pivot would be. Namely, the
nonbasic variable of lowest reduced-cost z�R- Mima is determined, and then, if it satisfies
z�R- Mima < 0, a pivot is performed by inserting that variable into the working basis.
However, if z�R- Mima ≥ 0, it becomes necessary to consider C- Mima to determine an
augmenting direction. This process is the topic of the following section.

3.1.5 Row-reduction of C- Mima

In this section, we suppose that the compatible variables yield no improvement, or
equivalently that C = ∅. The first p constraints of C- Mima read dP = −APIdI .
As in a reduced gradient algorithm (e.g., [13]), the modification of the basic variables
is inferred via a linear transformation of the increasing nonbasic variables dZ , or in
the case of C- Mima, dI . Hence, we reduce C- Mima to an equivalent problem over
the nonbasic variables of I only. For the sake of clarity, denote as ΔI the feasible
domain of C- Mima, i.e., all elements of Δ that satisfy dC = 0, and define q = |I|.
That domain can be defined by less linear constraints and variables than Δ as shown
by Proposition 4.

Proposition 4 With Δ̄I =
{
dI ∈ Rq | ĀP̄IdI = 0 , eT dI = 1 , dI ≥ 0

}
, then

ΔI = {
d = TdI | dI ∈ Δ̄I

}
, (7)

where T = [−API Iq
]
and ĀP̄I = −AP̄P API + AP̄I = AP̄·T .

Proof Let d ∈ Rn such that dC = 0. Then,

d ∈ ΔI ⇔ A·P dP + A·IdI = 0 , eT dI = 1 , dP ≤ 0 , dI ≥ 0

123

Integral simplex using decomposition with primal cutting… 341

⇔

⎧⎪⎪⎨
⎪⎪⎩

dP + APIdI = 0
AP̄P dP + AP̄IdI = 0
eT dI = 1
dP ≤ 0, dI ≥ 0

⇔

⎧⎪⎪⎨
⎪⎪⎩

dP = −APIdI(−AP̄P API + AP̄I
)
dI = 0

eT dI = 1
dI ≥ 0

⇔ d = TdI and dI ∈ Δ̄I .

Hence, the proposition holds. �
The cost of such a direction can be computed as cT d = cT TdI . Define c̄T =

cT T = cTI − cTP API , and C- Mima is equivalent to the following program, called the
complementary problem:

z�C- Mima = z�CP = min
{
c̄T dI | dI ∈ Δ̄I

}
. (CP)

The cost vector of CP is the reduced-costs vector associated with all incompatible
variables, i.e., their own cost (cTI) minus the marginal impact they have on the values
of the variables of P if they enter the reduced-basis (−cTP API).

Remark 4 In Proposition 1, for j ∈ C, we called δ j a minimal direction. This denom-
ination can be extended to directions of Δ̄I (while still applying to those of Δ̄C) as
follows: d ∈ Δ̄I is a minimal direction iff there exists no other direction whose sup-
port is strictly contained in that of d. In that sense, the set of minimal directions of Δ̄

is exactly Ext
(
Δ̄C

)∪Ext
(
Δ̄I

)
(see [23] for more details on the geometrical structure

of Δ and Δ̄).

3.2 Integral augmentation iAUG

The previous section provides a method to find a fractional augmentation. If z�RP < 0
or z�CP < 0, then the corresponding solution of negative reduced cost d ∈ Δ yields
a new solution x1 = x0 + r(d)d ∈ FSPPLR . However, nothing guarantees that x1 is
integral. In this section, we characterize directions that lead to an integral solution x1.
Such directions are called integral directions as opposed to fractional directions. The
set of all integral directions within Δ is denoted as Δint . These names apply to d, and
its restrictions dZ , dC or dI depending on the context. We also give some insights
on the structure of the set of all integral directions, and a generic framework for our
algorithm.

3.2.1 Over compatible variables

Note that for any j ∈ C, the feasible solution δ j of RP is an integral direction. Indeed,
A· j = ∑

i∈P j
A·i and following a step of length r(δ j) = 1 in that direction is

123

342 S. Rosat et al.

•

•

•

•

•

•

Δ

Conv Δint

Δint

Ext (Δ) \ Δint

Fig. 4 Geometrical insight on the extreme points of Δ and Δint . All extreme points of Conv
(
Δint

)
(•)

are extreme points of Δ. Moreover, Δint is a finite set (FSPP is finite)

equivalent to let j enter the working basis P and let P j leave it. Namely,

[
x0 + ρδ j

]
i
=

⎧
⎪⎪⎨
⎪⎪⎩

1 if i ∈ P \ P j

1 − ρ if i ∈ P j

ρ if i = j
0 otherwise.

The corresponding maximal step is ρ = r(δ j) = 1, so x1 = x0 + δ j ∈ FSPP and
integrality is maintained.

3.2.2 Characterization of integral directions in ΔI

Now, let us consider the problem for C- Mima (and CP). We base our analysis on
previous results of Zaghrouti et al. [37] that we first recall here. For any polyhedron
P , denote as Ext (P) the set of its extreme points (or vertices).

Definition 2 A set S of indices of the variables in {1, . . . , n} is column-disjoint if
no pair of columns of A·S has a common nonzero entry, i.e., ∀i, j ∈ S, i �= j,∀k ∈
{1, . . . ,m} , Aki Ak j = 0. This definition is extended to A·S and xS . Since A is binary,
S is column-disjoint iff A·S is a set of orthogonal columns.

Proposition 5 (Propositions 6 and 7, [37]) Given d ∈ Ext (Δ), d is an integral
direction iff the support of dI , denoted as S = Supp (dI), is column-disjoint. In this
case, r(d) = |S|.

Because SPP is quasi-integral, then the edges of Conv (FSPP) are edges of FSPPLR ,
and Ext

(
Δint
I

) ⊆ Ext (Δ). A geometrical description of this is shown on Fig. 4. Since
every linear program has at least one optimal solution that is also an extreme point of
its feasible domain, and since the simplex algorithm guarantees to find such a solution,
Proposition 5 has a strong practical interest. In the next section, we will show that it
still remains valid when cutting planes or branching techniques are used. Hence, it
is sufficient to test whether the solution of the relaxation (CP) is column-disjoint to
determine if it is integral.

123

Integral simplex using decomposition with primal cutting… 343

3.2.3 Algorithmic framework

Algorithm 1: Integral Simplex Using Decomposition

Input: x0, a solution of SPP; INC_MAX, maximal incompatibility degree considered.
Output: xk , a possibly better solution of SPP.

1 Compute P and C associated with x0; k ← 0; ι ← 1;
2 while true do
3 If necessary, update P , C, and Iι associated with xk ;
4 if z�RP < 0 then
5 δi ← an optimal solution of RP (c̄i < 0, i ∈ C);
6 xk+1 ← xk + δi ; k ← k + 1;
7 else
8 continue ← true;
9 while continue = true do

10 If necessary, update P , C, and Iι associated with xk , and CPι;
11 if z�CPι < 0 then
12 d�

I ← an optimal solution of CPι; d� ← Td�
I ;

13 if d�
I is column-disjoint then

14 xk+1 ← xk + r(d�)d�; k ← k + 1; continue ← false;
15 else
16 if some stopping criterion is reached then
17 return xk ;
18 else

• Add cutting planes to CPι;
• or use branching strategy;
• or increase ι (only if ι < INC_MAX);
• or continue ← false;

19 else
20 if ι < INC_MAX then
21 ι ← ι + 1;
22 else
23 return xk ;

Algorithm 1 is based on successive resolutions of augmenting problems either to
C or to I ι for a certain incompatibility degree ι. Hence, the incompatibility degree
defines a neighborhood of the current solution on which the augmentation problem
is solved with integer programming techniques. CPι describes the restriction of CP
to the columns of I ι and INC_MAX describes the largest incompatibility degree
considered during the execution. Whenever INC_MAX ≥ ιmax , and provided that
one uses exhaustive primal cutting planes families such as Gomory-Young inequalities
(line 18 of Algorithm 1), the algorithm is exact. When it is not the case, the solution
returned by Algorithm 1 may not be optimal: This strongly depends on the value of
INC_MAX, andon the chosen branching and cutting planes techniques. For instance, if
INC_MAX < ιmax , there may exist augmenting integral directions involving columns
of incompatibility degree greater than INC_MAX.The same holdswhen the branching
technique is nonexhaustive. This kind of heuristic stopping criterion of the algorithm
makes the execution more efficient in practice.

123

344 S. Rosat et al.

4 Solving the augmentation problem with cutting-planes

In this section, we suppose that we know an optimal solution d�
I of CP, but that this

solution is not integral (Supp
(
d�
I
)
is not column-disjoint). An idea to tighten the

known relaxation of Δ̄int
I is to add cutting planes to CP. Given a polyhedron P , a

valid inequality for P is an inequality satisfied by all elements of P; and given a point
x′, the inequality separates x′ from P if it is valid for P but violated by x′. Such an
inequality is called a cut (or cutting plane). The main issue is to characterize valid
inequalities for Δ̄int

I that cut off the current optimal solution d�
I .

Notation. Denote as H1= = {
dI ∈ Rq | eT dI = 1

}
the hyperplane defined by the

normalization constraint of Δ̄I . Let ᾱ ∈ Rq , β̄ ∈ R, and denote by
(
Γ̄

)
the inequality

(
Γ̄

) : ᾱT dI ≤ β̄. (8)

The associated hyperplane is denoted as HΓ̄= =
{
x ∈ Rq |ᾱT dI = β̄

}
and the asso-

ciated half-space as HΓ̄≤ =
{
x ∈ Rq |ᾱT dI ≤ β̄

}
. Without loss of generality, we can

assume that ᾱ is not proportional to e.

Definition 3 Let
(
ᾱ1, β̄1

)
,
(
ᾱ2, β̄2

) ∈ Rq ×R, and
(
Γ̄1

)
and

(
Γ̄2

)
be the correspond-

ing inequalities.
(
Γ̄1

)
and

(
Γ̄2

)
are equivalent for Δ̄int

I if

H1= ∩ HΓ̄1≤ = H1= ∩ HΓ̄2≤ .

Since Δ̄I ⊆ H1=, two equivalent inequalities exactly discard the same subset of Δ̄I
and are simultaneously valid. Hence, adding the one or the other to the formulation is
equivalent.

Proposition 6 There exists ᾱ′ ∈ Rq such that
(
Γ̄ ′) : (ᾱ′)T dI ≤ 0 is equivalent to(

Γ̄
)
.

Proof Consider E= = H1= ∩ HΓ̄= . The two hyperplanes H1= and HΓ̄= are not parallel,
so dim(E=) = q − 2. 0 /∈ H1=, therefore 0 /∈ E= and H0= = Span (E= ∪ {0}) is
a hyperplane containing 0. Thus, there exists ᾱ′ ∈ Rq such that H0= is defined by(
ᾱ′)T dI = 0. Furthermore, by construction, H0= ∩ H1= = E= = HΓ̄= ∩ H1=. With

ᾱ′ = ±ᾱ0 (sign to be well chosen), the proposition holds. �
The geometrical interpretation of Proposition 6 is given on Fig. 5. Hereinafter, we

suppose that β̄ = 0. We can now characterize valid inequalities for Δ̄int
I .

Proposition 7 Given α ∈ Rn such that ᾱ = T Tα,
(
Γ̄

)
is a valid inequality for Δ̄int

I
if and only if

(Γ) : αT
(
x − x0

)
≤ 0 (9)

is a valid inequality for FSPP.

123

Integral simplex using decomposition with primal cutting… 345

Δ̄I (⊂ H1
=)

•
•E= = H0

= ∩ H1
= = HΓ

= ∩ H1
=

H0
=

HΓ
=

0
•

•

Fig. 5 Equivalent inequalities. BothH0= andHΓ= cut off the same part of Δ̄I .H0= is of the form ᾱT dI ≤ 0
but notHΓ= (0 /∈ HΓ=)

Proof Let α ∈ Rn such that ᾱ = T Tα. Recall Proposition 4:ΔI = {d = TdI | dI ∈
Δ̄I

}
. This extends to Δint

I and Δ̄int
I . Hence,

(
Γ̄

)
is valid for Δ̄int

I ⇔ ∀dI ∈ Δ̄int
I , ᾱT dI ≤ 0

⇔ ∀dI ∈ Δ̄int
I ,αT TdI ≤ 0

⇔ ∀d ∈ Δint
I ,αT d ≤ 0

⇔ ∀d ∈ Δint
I ,αT

(
x0 + r(d)d

)
≤ αT x0

⇔ ∀x′ ∈ FSPP,α
T

(
x′ − x0

)
≤ 0

⇔ (Γ) is valid for SPP.

�
Proposition 8 Let (Γ) and

(
Γ̄

)
be valid inequalities defined as in Proposition 7, and

d�
I ∈ ΔI , d� = TdI , and x� = x0 + r(d�)d�. Then,

(
Γ̄

)
separates d�

I from Δ̄int
I ⇔ (Γ) separates x� from FSPP.

Proof We only need to prove that
(
Γ̄

)
is violated by d�

I if and only if (Γ) is violated
by x�. We have

ᾱT d� > 0 ⇔ αT d� > 0

⇔ αT
(
x0 + r(d�)d�

)
> αT x0

⇔ αT
(
x� − x0

)
> 0.

�
What we have shown must now be seen the other way round to take advantage of

previous work on primal separation. Assume that we know how to determine a primal

123

346 S. Rosat et al.

cut (Γ) for SPP that separates x� from FSPP. Then, with ᾱ = T Tα, the associated
inequality

(
Γ̄

)
is a cut for CP, that separates d�

I from Δ̄int
I . Moreover, we have shown

that any cut for CP can be obtained in this way. This enables us to develop a procedure
based on the primal separation problem P-SEP – given x0 and x�, is there a valid
inequality for FSPP, tight at x0, that separates x� from FSPP? If it exists, it will be
transferred to CP to tighten the relaxation of Δ̄int

I . From the theoretical point of view,
if d� is extremal, such a cut always exists as shown on Corollary 2.

Corollary 2 Assume d�
I ∈ Ext (FCP), and let d� = Td�

I (we still assume that d�
I is

not an integral direction). There always exists a valid inequality (Γ) tight at x0 that
separates x� = x0 + r(d�)d� from FSPP.

Proof d�
I is an extreme point ofFCP but does not belong toΔint . SinceΔint is a finite

subset of elements of FCP, and since FCP is a polyhedron, there exists a cut
(
Γ̄

)
that

separates d�
I from Δ̄int

I . By Proposition 8, the result holds. �
It is also interesting to note that the linear transformation applied to the primal cut

to transfer it to CP (ᾱT = αT T) is the same as for the objective function (c̄T = cT T)
and for the constraint matrix (ĀP̄I = AP̄·T). Finally, note that adding cuts does
not prevent to use the characterization of extreme integer solutions as those having a
column-disjoint support. Since no cutting plane is added to CP that cuts any integer
directions, the set of extreme integral directions Ext

(
Conv

(
Δ̄int
I

))
is still contained

in the set of extreme directions Ext (FCP) even after the addition of cutting planes.
Geometrically, adding any valid inequality for Conv

(
Δ̄int
I

)
to the relaxation cannot

transform any nonextreme integral direction into a extreme one.

4.1 Specific primal separation procedures

As exposed in the introduction, there exist extensive work on the primal separation
side. It has been shown that P-SEP is equivalent to SPP in terms of complexity [28].
Also, there exist general-purpose families of primal cuts, such as Gomory–Young’s
cuts [35]. Iteratively adding cuts from these familieswould ultimately lead to a column-
disjoint solution of CP, after a finite number of separations – provided that the choice
of incoming variables follow some lexicographic order (see [35]). However, these
families are not polyhedral, i.e., they do not take into account the SPP structure. We
chose to study two families of inequalities that are known to yield strong cutting planes
for SPP, namely clique and odd-cycle inequalities.

4.1.1 Primal clique inequalities

Let us consider the conflict graph of matrix A, G = (N , E), where each node of
N = {1, . . . , n} corresponds to a column of A, and E is such that {i, j} ∈ E if and
only if AT·i A· j �= 0. Two vertices are linked by an edge if the corresponding columns
are not disjoint. Given a cliqueW in this graph, any feasible solution of SPP satisfies

(ΓW) :
∑
i∈W

xi ≤ 1, (10)

123

Integral simplex using decomposition with primal cutting… 347

called the clique inequality associated withW . clique cuts form a family of generally
strong cutting planes for SPP, and were first introduced by Padberg [20]. Given a
fractional solution x� of SPPLR, the standard clique separation problem consists in
associating the weightwi = x�

i with each vertex of G and determine a clique of weight
greater than 1 in G if any.

From the work of Letchford and Lodi [16], we develop here a more efficient proce-
dure for primal clique cuts. In the primal context, let d� be a fractional direction, and
x� = x0 + r(d�)d�. For (ΓW) to be tight at x0, we need

∑
i∈W x0i = |W ∩ P| = 1.

Hence, exactly one variable from P must be part of clique W . Denote that variable
as l, and the corresponding clique asWl . Furthermore, for

(
ΓWl

)
to separate x� from

FSPP, we must have
∑

i∈Wl
x�
i > 1. Since x�

i = r(d�)d�
i for all i ∈ I,

∑
i∈Wl

x�
i =

x�
l + ∑

i∈S+ x�
i , where S+ = Supp

(
d�
I
)
. Denote also as S− = Supp

(
d�
P

)
the set

of columns of P that are impacted by direction d�. Sets (S−,S+) form a partition of
Supp

(
d�

)
such that for all i ∈ Supp

(
d�

)
, i ∈ S+ if d�

i > 0 and i ∈ S− if d�
i < 0, so

∑
i∈Wl

x�
i > 1 ⇔ x�

l +
∑

i∈Wl∩S+
x�
i > 1.

Because Wl is a clique in G, then Wl ∩ S+ ⊆ Wl is also a clique. The consequence
of these observations is summarized in the following proposition, which shows that
it is sufficient to look for a primal clique cut within S+ ∪ S− to solve the complete
primal clique separation problem.

Proposition 9 There exists a primal clique inequality that separates x� from FSPP if
and only if for some l ∈ S−, there exists a clique Wl that satisfies

(1) Wl \ {l} ⊆ Nl , (2) l ∈ Wl , and (3) w(Wl) > 1,

where Nl is the set of neighbors of l in G that are also in S+ andw(Wl) = ∑
i∈Wl

x�
i .

Hence, the primal separation procedure for primal clique cuts, called CL_PSEP
and summarized in Algorithm 2, returns an empty set of primal clique cuts if and
only if none exists, i.e., this separation procedure is exact. This algorithm always
finds a cut if there exists one, and that will be the most violated. However, the size
of the clique could be potentially increased by adding 0-weight variables. Even if
Step 4 of Algorithm 2 requires solving aNP-hard problem,4 note that the procedure
is practically very fast because the size of Nl is usually small.

4 For the determination of the clique of maximal weight in Gl , we use the cliquer open source library,
available at http://users.aalto.fi/~pat/cliquer.html, based on the algorithm described in [19].

123

http://users.aalto.fi/~pat/cliquer.html

348 S. Rosat et al.

Algorithm 2: CL_PSEP
Input: d�

I ← an optimal solution of CP (fractional direction).
Output: K, a set of primal clique cuts (empty if none exists)

1 K ← ∅; d� ← Td�
I ; S− ← Supp

(
d�
P

)
; S+ ← Supp

(
d�
I

)
;

2 for l ∈ S− do
3 Gl = (Nl , El) ← weighted subgraph of G induced by Nl ⊆ S+ (wi = x�

i);
4 Wl ← clique of maximum weight in Gl ;
5 Wl ← Wl ∪ {l};
6 if w(Wl) > 1 then

7 K ← K ∪ {
(
ΓWl

)
};

8 return K;

4.1.2 Primal odd-cycle inequalities

odd-cycle inequalities form another well-known family of valid inequalities for SPP.
Given a cycle Q of odd length in G, the following inequality

(
ΓQ

) :
∑
i∈Q

xi ≤ |Q| − 1

2
(11)

is valid for SPP. Clearly,
(
ΓQ

)
is tight at x0 if and only if

∑
i∈Q x0i = |Q ∩ P| =

(|Q| − 1)/2. Furthermore, since P is column-disjoint, there exists no edge between
any pair of vertices of P . Therefore, Q is an alternate cycle with vertices in P and I,
except for one I − I edge (i.e., an edge that links two vertices of I). Based on these
observations and similarly to clique cuts, the search graph can be restricted to vertices
in Supp

(
d�

)
, but in a stronger manner.

Proposition 10 Every primal odd-cycle cut
(
ΓQ

)
that separates x� fromFSPP satisfies

Q ⊆ Supp
(
d�

)
.

Proof Suppose that the result is false and that there exists a cycleQ � Supp
(
d�

)
. Let

S− = Supp (dP) and S+ = Supp (dI). Define Q = (q1, q2, . . . , q2T+1, q1), where
q1, q2t+1 ∈ I and q2t ∈ P for all t ∈ {1, . . . , T }. Q is an alternate cycle but for the
{q2T+1, q1} edge. Consider the two following cases:

(i) q1 /∈ S+. Then d�
q1 = 0 and

∑
i∈Q

x�
i =

2T+1∑
i=2

x�
qi =

T∑
t=1

(
x�
q2t + x�

q2t+1

)
.

Every (q2t , q2t+1) is an edge ofG, so for every pair of columns
(
A·2t , A·2t+1

)
there

exists a row i such that Ai(2t) = Ai(2t+1) = 1. The linear set partitioning constraint
that corresponds to that conflict yields x�

q2t + x�
q2t+1

≤ 1 for all t ∈ {1, . . . T }.
Hence,

∑
i∈Q x�

i ≤ T = (|Q| − 1) /2 and x� does not violate
(
ΓQ

)
.

123

Integral simplex using decomposition with primal cutting… 349

(ii) q2 /∈ S−. From Ad� = 0 and d�
I ≥ 0, necessarily q1, q3 /∈ S+. Case (i) applies

and this concludes the proof. �

Proposition 10 suggests to distinguish between S− − S+ and S+ − S+ edges.
Let GB = (NB, EB) be a subgraph of G with NB = S− ∪ S+ = Supp

(
d�

)
, and

{i, j} ∈ EB if and only if i ∈ S−, j ∈ S+, and {i, j} ∈ E (in conflict graph G). GB is
a bipartite graph. In the case of the primal odd-cycle separation, the edges (and not the
vertices) of the graph are weighted as wi j = 1 − x�

i − x�
j if {i, j} ∈ EB . The weight

of a path or a cycle is the sum of the weights of its edges. Given a cycleQ, its weight
is therefore w(Q) = |Q| − 2

∑
i∈Q x�

i and the corresponding odd-cycle inequality is
violated by x� if and only if w(Q) < 1. The primal odd-cycle separation procedure,
CY_PSEP is given in Algorithm 3. This algorithm is usually fast because it consists
of finding at most |S−| shortest paths in a relatively small bipartite graph GB .

Algorithm 3: CY_PSEP
Input: d�

I ← an optimal solution of CP (fractional direction).
Output: K, a set of primal odd-cycle cuts (empty if none exists)

1 K ← ∅; d� ← Td�
I ; S− ← Supp

(
d�
P

)
; S+ ← Supp

(
d�
I

)
; x� ← x0 + r(d�)d�;

2 Build weighted graph GB (wi j = 1 − x�
i − x�

j);

3 for i, j ∈ S+ such that {i, j} ∈ E (S+–S+ conflict) do
4 (q1, q2, . . . , q2T , q2T+1) ← shortest path from i to j in GB (i = q1, j = q2T+1);
5 Q ← (q1, q2, . . . , q2T , q2T+1, q1) (odd-cycle);

6 if w(Q) = wi j + ∑2T+1
k=1 wqkqk+1 < 1 then

7 K ← K ∪ {(ΓQ
)};

8 return K;

4.2 Algorithm

Algorithm 4 incorporates the cutting plane results discussed in the previous sections
into Algorithm 1. The different (nonexhaustive) branching strategies that we use are
presented in Sect. 5.

SEP_MAX is a parameter that represents the maximum number of separation
problems to be solved consecutively. Explicit values chosen for INC_MAX and
SEP_MAX, aswell as themethods to determine the set of variables to be fixed (line 33)
are discussed in Sect. 5 before the numerical results are given. Different priority rules
for choosing the separation algorithm (line 28) are studied and the corresponding
results are displayed in the next section.

5 Numerical results

The results presented in this section empirically show the relevance of our theoretical
results. We show that primal cuts indeed improve the performance of our algorithm
and help foster integral solutions in Isud.

123

350 S. Rosat et al.

Algorithm 4: ISUD_CUTS
Input: x0: a solution of SPP; INC_MAX: maximal incompatibility degree considered; SEP_MAX:

maximal number of consecutive P-SEP;
Output: xk , a better solution of SPP.

1 c ← 0 (number of consecutive P-SEP solved);
2 ι ← 1 (current maximum incompatibility degree);
3 Pool ← ∅ (pool of valid inequalities);
4 Compute P and C associated with x0; k ← 0;
5 while true do
6 If necessary, update P , C, and Iι associated with xk ;
7 if z�RP < 0 then
8 δi ← an optimal solution of RP (c̄i < 0, i ∈ Ck);
9 xk+1 ← xk + δi ; k ← k + 1;

10 else
11 Build CPι anew (without cutting planes nor fixed variables);
12 continue ← true;
13 while continue = true do
14 If necessary, update P , C, and Iι associated with xk , and CPι;
15 if z�CPι < 0 then
16 d�

I ← an optimal solution of CPι; d� ← Td�
I ;

17 if d�
I is column-disjoint then

18 xk+1 ← xk + r(d�)d�;
19 k ← k + 1;
20 continue ← false;
21 else
22 x� ← x0 + r(d�)d�;
23 if c < SEP_MAX then
24 c ← c + 1;
25 if Pool contains primal cuts that separate x� from FSPP then
26 Transfer all these cuts to CPι;
27 else
28 K ← set of primal cuts generated with CL_PSEP and/or CY_PSEP;
29 if K �= ∅ then
30 Transfer every cut in K to CPι;
31 Pool ← Pool ∪ K;
32 else
33 Fix at least one variable of CPι to zero;
34 c ← 0;
35 else
36 if ι < INC_MAX then
37 ι ← ι + 1;
38 c ← 0;
39 else
40 return xk ;

5.1 Methodology

5.1.1 Instances

The instances presented here are those used by Zaghrouti et al. [37] (sppaa01,
vcs1200, and vcs1600) to which we added another instance from the OR-Library,5

sppaa04. Both sppaa01 and sppaa04 are small flight assignment problems (respec-

5 http://people.brunel.ac.uk/~mastjjb/jeb/info.html.

123

http://people.brunel.ac.uk/~mastjjb/jeb/info.html

Integral simplex using decomposition with primal cutting… 351

tively 823 constraints and 8904 variables, and 426 constraints and 7195 constraints)
with an average of 9 nonzero entries per column. vcs1200 is a medium-size bus
driver scheduling problem (1200 constraints, 133,000 variables), and vcs1600 is a
large bus driver scheduling problem (1600 constraints, 571,000 variables); both have
an average of 40 nonzero entries per column. These numbers of nonzero entries per
column are typical of aircrew and bus driver scheduling problems and do not vary
much with the number of constraints. In scheduling instances, they typically corre-
spond to the number of tasks to be completed by a worker in a given time span. The
optimal solutions of the problems are known: sppaa01 and sppaa04were solved with
CPLEX,6 and vcs1200 and vcs1600 were made with all columns generated during a
column-generation process by GENCOL7 whose optimal solution is known.

5.1.2 Initial solutions

Generating meaningful initial solutions is crucial for accurately testing primal algo-
rithms. For this reason, we took here an “application-oriented” viewpoint and we
generated initial solutions (from known optimal ones) that accurately mimic the ones
available in practice, especially in transportation scheduling problems, i.e., where
SPP is widely used. More precisely, in industrial crew scheduling instances, one can
observe the following:

(1) In the case of beforehand planning, one can use the vehicle (aircraft/bus) routes
as initial crew schedules. Each column of this solution corresponds to the set of
legs (flight or bus trips) covered by that vehicle. If some of these schedules are
not feasible for the pilots/drivers (they may not respect the collective agreement),
the corresponding columns are given prohibitive big-M costs.

(2) In the case of reoptimization, one can use the existing schedule as initial solution.
If some schedules are not feasible anymore in the new situation, they are given
prohibitive big-M costs.

Suppose now that the rows of A are given in chronological order of the correspond-
ing tasks, i.e., for all i, j ∈ R, i < j if and only if task i starts before task j . Given
a solution x and the corresponding indices of the nonzero variables P = Supp (x), a
pair (i, j) ∈ R2 of tasks is called consecutive in x if and only if there exists k ∈ P
such that: (i) Aik = A jk = 1 and (ii) ∀ j ′ ∈ {i + 1, . . . , j − 1} , A j ′k = 0. Consec-
utive tasks are therefore all the pairs of tasks performed consecutively by the same
employee (see Example 1).

The main observation here is the following: the initial solutions described above
share a high proportion of consecutive tasks with the optimal solution. Quantitatively,
this is described by the primal information contained in the initial solution x0 that
we define as the percentage of consecutive tasks of x0 that are also consecutive tasks
in the optimal solution x�

SPP. In bus driver scheduling problems, the initial solution

6 CPLEX is freely available for academic and research purposes under the IBM academic initiative: http://
www-03.ibm.com/ibm/university/academic.When referring to CPLEX,we always refer to the version 12.4
of this software, with single-thread settings (all other settings being default).
7 GENCOL is a commercial software developed at the GERAD research center and now owned by the AD
OPT company, a division of KRONOS.

123

http://www-03.ibm.com/ibm/university/academic
http://www-03.ibm.com/ibm/university/academic

352 S. Rosat et al.

that follows the bus routes typically contains 90% of primal information (vcs1200,
vcs1600). In aircrew scheduling, the figure is generally around 75% [37] (sppaa01,
sppaa04). These percentages are even higher in the reoptimization case. Example 1
shows how primal information is computed on an 11-task case.

Example 1 Consider an 11-task scheduling problem. The tasks (rows) are in chrono-
logical order and denoted as A, …, K. The individual schedules used in the optimal
and initial solutions are respectively those of P� and P0 and are described here:

P� Task P0

1 0 0 A 1 0 0
0 1 0 B 0 1 0
0 1 0 C 0 1 0
1 0 0 D 1 0 0
1 0 0 E 1 0 0
1 0 0 F 0 1 0
1 0 0 G 0 1 0
0 1 0 H 0 0 1
0 0 1 I 1 0 0
0 1 0 J 0 0 1
0 0 1 K 1 0 0

The set of consecutive tasks in the optimal solution is CT � = {(A, D) , (D, E) ,

(E, F) , (F,G) , (B,C) , (C, H) , (H, J) , (I, K)}. That of the initial solution is:
CT 0 = {(A, D) , (D, E) , (E, I) , (I, K) , (B,C) , (C, F) , (F,G) , (H, J)}. There-
fore, the primal information contained in x0 is |CT � ∩ CT 0|/|CT 0| = 5/8 = 62.5%.

We chose to perturb the (known) optimal solutions to generate initial solutions
that contain a similar level of primal information to that experienced in practice. The
details of the perturbation method can be found in [37]. These solutions are generally
infeasible, so we assign the perturbed columns a high cost, as is done in companies
for the schedules that follow the bus/airplane routes. In our perturbation method, the
input parameter π is the percentage of columns of the optimal solution that will appear
in the new initial solution. For sppaa04 and sppaa01, we generated initial solutions
for π = 10, 15, 20, and 35%; for vcs1200 and vcs1600, we used π = 20, 35, and
50%. These parameters were chosen so that the resulting primal information (given in
Table 1) is consistent with the typical values. The initial gaps range from 50 to 80%,
depending on the instance. Here (and in the rest of the paper), the gap is the ratio
of the difference between the current solution value and the optimal solution value
divided by the latter.

Remark 5 The primal information is related to a form of consecutive-ones property
in the SPP. Suppose here that the rows are re-sorted so that each column of the initial
solution has consecutive ones and that the corresponding nonzero rows are sorted in
chronological order of the tasks. The primal information is the measure of how close
the optimal solution is to the consecutive-ones property with that particular ordering,
namely, it is the percentage of consecutive ones of the initial solution that are also

123

Integral simplex using decomposition with primal cutting… 353

Table 1 Percentage of primal information in the initial solutions of the benchmark

Instance m n Primal information

π = 10% π = 15% π = 20% π = 35% π = 50%

sppaa01 803 8904 71.5 75.6 80.0 – –

sppaa04 423 7195 – 64.0 70.1 78.5 –

vcs1200 1200 133,000 – – 87.6 91.1 93.9

vcs1600 1600 570,000 – – 86.8 90.9 93.9

consecutive in the optimal solution. With that order, given the typical figures of primal
information in practical problems (over 75%), the columns of the optimal solution
are thus made of few blocks of consecutive ones (“quasi”-consecutive-ones). From
the algorithmic point of view, this characteristic of the problem is only superficial
in the sense that it depends on its presentation (ordering of the rows) and not on its
intrinsic structure. Furthermore, with a pure chronological ordering (the one that we
use), neither the initial nor the optimal solution have the consecutive-ones property.
More interesting is the computation of the incompatibility degree (see, Sect. 3.1.2):
it is a dynamic measure of the number of breaks of consecutive-ones in the nonbasic
columns, based on the ordering in which the current solution has the consecutive-ones
property with chronological order of the tasks. Rather than sticking to a static ordering
of the rows corresponding to the initial solution when measuring the incompatibility
degree, we compute it in terms of the current solution.

5.1.3 Cutting planes strategies

The tests were conducted for the following cutting planes strategies:

none: Without primal cuts;
Clique: With primal clique cuts only;
Cycle: With primal odd-cycle cuts only;
Both: Both aforementioned cut types are separated at every P-SEP step;
Prio: Primal odd-cycle cuts are separated only if no primal clique cut is found.

Moreover, another parameter is included, which is the maximum number of separation
problems solved before using another technique (such as branching). We analyzed the
results for different values ranging from 40 to 40,000 (virtually infinite). In a very
large majority of the cases, either no cut could be found before the 40th P-SEP was
solved, or the cutting planes yield an integral direction in less than 40 P-SEP. Hence,
we fixed the maximum number of consecutive P-SEP to 40 and only present these
results here.

5.1.4 Branching strategies

We propose four different nonexhaustive branching techniques to improve the perfor-
mance of the algorithm. They correspond to the decision made when no primal cut is
found that cuts the current fractional direction.

123

354 S. Rosat et al.

Nobr: stop the algorithm;
Last: all variables of the last fractional direction found are set to zero in CP until

an augmentation is performed;
First: all variables of the first direction found since the last augmentation or the

last branching are set to zero in CP until an augmentation is performed;
Cover: a subproblem is solved to determine a small subset of I such that the

support of each fractional solution found since the last augmentation or the
last branching contains at least one element of this set. These variables are
set to zero inCP, so that all the aforementioned fractional solutions become
infeasible.

All these techniques were experimented, but we present detailed results for Nobr
and First only. The performance for the other two branching strategies are exposed
more briefly. The variation in the results is not significant enough to make a detailed
presentation of all four aforementioned strategies.

5.2 Results

All the tests were performed on a Linux PC with a processor of 3.4GHz. For
each problem and each perturbation parameter π , 10 different instances (differ-
ent initial solutions and corresponding artificial columns) are generated. Column
Algo indicates the cutting strategy used; Best is the best of the four on each
instance, i.e., the one with the smallest gap, and in the event of a tie, the
shortest computational time to reach the best solution. All times are given in sec-
onds.

The commercial solver CPLEX was tested on all the instances of the benchmark,
with the initial solutions given asMIP-start. Instances sppaa01 and sppaa04 are solved
to optimality in an average of 22.1 and 14.4s, respectively. Within a time limit of 1h,
provided the initial solutions as a warm start, CPLEX only slightly improves them
on the instance vcs1200, never lowering the gap under 14% (average gap of 49.7%).
Within that same time limit, it never improves any of the initial solutions given for
vcs1600 at all (the average gap remains 73% as for the initial solutions). Note that,
if the initial solution is not given, CPLEX only finds a feasible solution for 1 of 30
instances for both vcs1200 and vcs1600within 1h, and that solution is of comparable
cost to that of our initial solutions. Here, one should consider sppaa01 and sppaa04
as benchmark instances used for a detailed analysis of our algorithm and its behavior,
and vcs1200 and vcs1600 as practical instances that we aim to solve within a few
minutes.

Tables 2 and 3 show the results of our algorithm for all instances generated
from sppaa01, with associated branching strategies Nobr and Last, for parame-
ters INC_MAX = 10, SEP_MAX = 40. Other values were tested and gave very
similar results. Columns π and Algo display the perturbation degree of the instances
and the chosen separation strategy, respectively. The next three columns display the
number of instances (out of 10) that were solved to optimality (0%), with a positive
gap ≤ 2%, and with a gap > 2%. The number of instances where the best solution
found by Isud still contains artificial columns from the initial solution (with big-M

123

Integral simplex using decomposition with primal cutting… 355

Table 2 Comparison of the performances of Isud with branching Nobr for instance sppaa01

π (%) Algo gap Time (s) AUG

0% ≤2% >2% mean (%) tIsud tBest tAUG K |S|D |S|N

10 none 2 2 6 [6] 0.4 6.2 5.1 0.21 29 4.5 101

Clique 3 5 2 [2] 0.5 12.5 8.6 0.28 33 4.9 122

Cycle 3 2 5 [5] 0.3 8.0 5.6 0.22 31 4.6 143

Both 3 3 4 [4] 0.5 15.9 7.4 0.25 35 4.6 142

Prio 3 5 2 [2] 0.5 16.1 9.3 0.30 33 4.9 113

Best 3 5 2 [2] 0.5 11.7 7.9 – – – –

15 none 2 3 5 [5] 0.4 6.7 5.3 0.17 37 3.7 48

Clique 5 3 2 [2] 0.2 10.4 6.7 0.18 39 3.9 70

Cycle 3 4 3 [3] 0.3 8.0 5.9 0.18 37 3.8 70

Both 5 4 1 [1] 0.2 15.7 7.3 0.20 39 4.0 95

Prio 5 4 1 [1] 0.2 15.6 7.4 0.20 39 4.0 98

Best 5 4 1 [1] 0.2 9.2 6.7 – – – –

20 none 7 2 1 [1] 0.0 7.6 6.0 0.17 37 3.4 32

Clique 5 5 0 [0] 0.2 11.0 6.9 0.17 40 3.4 57

Cycle 6 3 1 [1] 0.0 7.7 6.0 0.16 39 3.4 43

Both 6 4 0 [0] 0.2 15.0 7.0 0.18 40 3.4 76

Prio 6 4 0 [0] 0.2 13.3 6.9 0.17 40 3.4 74

Best 9 1 0 [0] 0.0 10.4 6.3 – – – –

Parameters: INC_MAX = 10 and SEP_MAX = 40

cost) is indicated between brackets next to those with a gap > 2% (because of the
big-M, no solution with a gap lower or equal to 2% contains any of these columns).
Under label mean is the mean gap computed over instances where solutions contain
no artificial column only. Then, the overall computation time (tIsud), the time to reach
the best solution obtained (tBest) and the average time per augmentation (tAUG) are
displayed. The last columns contain the mean number of augmentations K performed
to reach the best solution, and the mean size of |S| = Supp (d) for disjoint (|S|D) and
nondisjoint (|S|N) directions. Note that, while the other mean values are computed
over all executions of the algorithm, the mean number of augmentations K is based on
the instances for which the final gap is ≤ 2%. Large gaps often mean a much smaller
number of iterations, and taking these instances into account would distort that mean.
Tables 4 and 5 show the results of the same experiments for instances generated from
sppaa04.

Consistently with our expectations and whatever the cutting planes or branch-
ing strategy, the primal information strongly influences the results of the algorithm.
Namely, the higher the percentage of primal information is, the better the algorithm
performs, both in terms of quality of the solution, and average running time. The
branching strategies highlight common features and global differences between the
various cutting techniques. First, the performance of the algorithms can be globally

123

356 S. Rosat et al.

Table 3 Comparison of the performances of Isud with branching Last for instance sppaa01

π (%) Algo gap Time (s) AUG

0% ≤2% >2% mean (%) tIsud tBest tAUG K |S|D |S|N

10 none 3 3 4 [4] 0.3 11.4 8.7 0.27 38 4.4 112

Clique 3 3 4 [3] 0.3 52.6 33.0 0.92 39 4.7 198

Cycle 3 2 5 [5] 0.4 18.0 12.0 0.35 37 4.3 151

Both 4 1 5 [4] 0.4 76.2 32.2 0.91 40 4.6 208

Prio 5 1 4 [3] 0.3 54.6 24.1 0.68 39 4.7 177

Best 7 1 2 [2] 0.2 33.2 19.4 – – – –

15 none 2 4 4 [4] 0.1 14.9 12.2 0.30 44 4.0 87

Clique 7 2 1 [1] 0.0 28.2 9.6 0.24 41 4.0 142

Cycle 5 3 2 [2] 0.2 16.0 10.6 0.27 41 3.9 129

Both 8 2 0 [0] 0.0 30.7 16.3 0.39 42 4.1 111

Prio 9 1 0 [0] 0.0 34.6 17.6 0.43 41 4.1 120

Best 9 1 0 [0] 0.0 25.0 14.8 – – – –

20 none 7 2 1 [1] 0.1 9.9 7.0 0.17 42 3.3 67

Clique 6 4 0 [0] 0.0 22.2 9.2 0.21 43 3.5 104

Cycle 8 2 0 [0] 0.1 12.7 8.5 0.20 42 3.4 86

Both 9 1 0 [0] 0.0 23.6 9.8 0.22 45 3.6 91

Prio 9 1 0 [0] 0.0 24.4 9.7 0.21 45 3.6 102

Best 9 1 0 [0] 0.0 16.1 9.1 – – – –

Parameters: INC_MAX = 10 and SEP_MAX = 40

ranked from worst to best as follows: none � Cycle � Clique � Prio � Both.
Moreover, the execution time is significantly shorter for none and Cycle than for
the others. In the case of none, no primal separation problem is solved, and either
no branching, or very simple fixing rules are applied, hence the high speed of the
algorithm. In the case of Cycle, the number of primal cycle cuts found is quite small,
so the computation time is also smaller. The same holds for the time spent to reach the
best solution (tBest) and the time per augmentation (tAUG). Note that the difference is
much bigger for tIsud than for tBest because the time spent at the optimal solution to
generate cutting planes is important. The number of augmentation steps is higher for
the algorithms that generate more primal cuts (column K). Generally, cutting planes
allow the algorithm to find more disjoint solutions within the same phase, hence yield-
ing a larger number of steps for each incompatibility degree. The algorithms using
cuts tend to generate disjoint and nondisjoint combinations of larger size (columns
|S|D and |S|N). Cutting planes tend to make the problem more complex, add con-
straints, and the size of the support of a basic solution of CP therefore increases with
the number of cuts inserted, hence the larger size of the combinations.

Furthermore, the algorithm is significantly better if fixing variables is available. This
is particularly true when no cut is applied. Both nonexhaustive branching and cutting
planes improve the performance of the algorithm. If we analyze the performance over

123

Integral simplex using decomposition with primal cutting… 357

Table 4 Comparison of the performances of Isud with branching Nobr for instance sppaa04

π (%) Algo gap Time (s) AUG

0% ≤2% >2% mean (%) tIsud tBest tAUG K |S|D |S|N

15 none 1 0 9 [8] 1.6 2.6 1.8 0.10 29 3.4 86

Clique 3 2 5 [3] 1.1 8.1 3.3 0.14 26 4.0 159

Cycle 2 1 7 [6] 0.5 3.7 2.3 0.12 26 3.9 102

Both 5 2 3 [2] 0.4 12.4 4.1 0.16 30 4.1 154

Prio 5 2 3 [2] 0.3 9.8 4.0 0.16 30 4.1 148

Best 5 2 3 [1] 0.1 6.9 3.8 – – – –

20 none 4 0 6 [4] 1.0 3.2 2.2 0.10 28 3.4 60

Clique 5 2 3 [1] 0.9 6.6 3.0 0.12 28 3.7 138

Cycle 4 0 6 [4] 1.0 3.5 2.2 0.10 28 3.4 93

Both 7 2 1 [0] 0.3 11.6 3.7 0.14 27 3.8 150

Prio 7 2 1 [0] 0.3 9.1 3.6 0.13 27 3.8 143

Best 8 1 1 [0] 0.0 5.9 3.2 – – – –

35 none 9 0 1 [0] 0.0 3.3 2.2 0.9 24 3.0 73

Clique 9 0 1 [0] 0.0 7.1 2.2 0.9 25 2.9 153

Cycle 9 0 1 [0] 0.0 3.8 2.2 0.9 25 2.9 117

Both 9 0 1 [0] 0.0 10.9 2.2 0.9 25 2.9 162

Prio 9 0 1 [0] 0.0 8.1 2.2 0.9 25 2.9 155

Best 9 0 1 [0] 0.0 4.2 2.1 – – – –

Parameters: INC_MAX = 10 and SEP_MAX = 40

sppaa01 forπ = 15% (closest to real-life problems)we see that (1)when no branching
is made, Prio solves 5/10 problems to optimality (against 2/10 for none), and 9/10
within 2% of the optimum (5/10 for none); and (2) when variables are fixed, Prio
solves 9/10 problems to optimality (2/10 for none) and all of them within 2% of the
optimum (6/10 for none). Cutting planes therefore solve 7 out of the 8 problems that
Isud did not solve previously, hence yielding an improvement of 87.5% over sppaa01
for π = 15%.

Figure 6 displays the four performance diagrams of the algorithms for branching
strategies Nobr, Last, First and Cover, over all sppaa04 and sppaa01 instances
(70). Here again, whatever the branching strategy, cutting planes allow to solve many
more instances. However, the improvement factor is much higher when no variable is
fixed (less that 50% of the instances are solved without cuts; against more than 80%
for Prio or Both separation strategies). Interestingly, the time-increase factor (x-axis)
never exceeds 10, and is most of the time lower than 4. Hence, the addition of cutting
planes does not slow down the algorithm toomuch. Detailed computing times for each
of the two problems are displayed in Figs. 7 and 8, respectively. The Cover branching
strategy shows slightly better performances, but not significantly enough to draw any
conclusion yet. Moreover, more instances are solved by Isud faster than by CPLEX.

Tables 6 and 7 display specific characteristics concerning the cutting planes gen-
erated during the process. For each branching strategy (Nobr and Last), the number

123

358 S. Rosat et al.

Table 5 Comparison of the performances of Isud with branching Last for instance sppaa04

π (%) Algo gap Time (s) AUG

0% ≤2% >2% mean (%) tIsud tBest tAUG K |S|D |S|N

15 none 3 3 4 [4] 0.6 6.2 4.9 0.18 31 4.0 72

Clique 4 3 3 [3] 0.1 34.9 20.5 0.72 31 4.1 180

Cycle 3 3 4 [3] 0.7 7.2 4.9 0.18 30 3.9 102

Both 5 2 3 [2] 0.1 34.3 13.9 0.48 31 4.1 177

Prio 5 2 3 [2] 0.0 24.3 10.9 0.38 31 4.1 168

Best 6 1 3 [2] 0.0 24.3 15.0 – – – –

20 none 3 2 5 [4] 0.5 5.4 3.6 0.13 33 3.4 76

Clique 7 3 0 [0] 0.2 15.6 9.7 0.30 32 4.0 146

Cycle 3 3 4 [4] 0.2 9.0 5.2 0.18 35 3.4 110

Both 9 0 1 [1] 0.0 28.7 10.8 0.35 32 3.9 150

Prio 7 1 2 [1] 0.4 27.8 14.0 0.47 31 3.8 142

Best 10 0 0 [0] 0.0 15.1 7.9 – – – –

35 none 9 1 0 [0] 0.0 3.5 2.4 0.9 25 2.9 65

Clique 9 1 0 [0] 0.1 8.9 3.0 0.11 27 3.0 140

Cycle 9 1 0 [0] 0.0 4.3 2.5 0.10 25 2.9 108

Both 10 0 0 [0] 0.0 12.9 2.5 0.10 27 2.9 158

Prio 10 0 0 [0] 0.0 9.8 2.5 0.9 26 2.9 150

Best 10 0 0 [0] 0.0 5.3 2.4 – – – –

Parameters: INC_MAX = 10 and SEP_MAX = 40

of instances solved within 2% of the optimum is shown under label inst. The
mean time spent in the primal separation and cut management process including
the cut pool management is given (tSep), as well as the mean number of separation
problems solved (nSep), the mean number of primal clique cuts (nCl), and primal
odd-cycle cuts (nCy). We can see that the time spent in the separation process is
much higher when branching is applied. Indeed, in our algorithm, between two
branching stages, SEP_MAX separation problems are solved. When no branching
is performed, at most one sequence of SEP_MAX separation problems are solved
and in case of failure to find a new primal cut, the algorithm instantly stops. This
can also be seen in the nSep column, for which the number of separation prob-
lems solved with branching is significantly higher than without branching. Moreover,
the time tSep, and number of P-SEP nSep are significantly higher when the algo-
rithm fails to find a good solution (gap > 2%). This reflects the struggling of the
algorithm to improve the solution and the associated running time increase. As it
is often the case for the SPP, clique cuts are more efficient, and easier to find.
Furthermore, as seen in Sect. 4.1, the requirements for an odd-cycle cut to be a pri-
mal cut are harder to meet (alternated cycles) than those that apply to clique cuts
(only one vertex of the clique must be in the current solution); this also make them
rarer.

123

Integral simplex using decomposition with primal cutting… 359

1 1.5 2 2.5

Within this factor of the best. Within this factor of the best.

Within this factor of the best.Within this factor of the best.

50%

100%
Percentage of instances solved

Percentage of instances solved Percentage of instances solved

none
Clique
Cycle
Both
Prio

(a) Branching strategy: Nobr .

1 4 7 10

50%

100%

Percentage of instances solved

none
Clique
Cycle
Both
Prio

(b) Branching strategy: Last.

1 2 3 4 5 6

50%

100%

none
Clique
Cycle
Both
Prio

(c) Branching strategy: First.

1 3 5 7 9

50%

100%

none
Clique
Cycle
Both
Prio

(d) Branching strategy: Cover.

Fig. 6 Performance diagrams over all sppaa04 and sppaa01 instances for the four branching strategies
(Nobr (top-left),Last (top-right),First (bottom-left) andCover (bottom-right). An instance is considered
as solved if the gap is lower than 2%

Definition 4 A solution x0 is ι-optimal if it is optimal for the restriction of SPP to
P ∪ I ι, i.e., for the set of all at most ι-incompatible columns of A computed at x0.

Detailed results of Isud on vcs1200 and vcs1600 are displayed in Table 8 and 9.
Branching did not change the results, hence the figures shown here correspond to the
Nobr strategy and the time limit of half an hour was never reached. The first column
shows the perturbation degree π , and the second the cutting plane strategyAlgo. The
next four display the number of instances solved to optimality (0%), with a positive
gap ≤ 2% and with a gap > 2%, as well as the mean gap computed over instances
where solutions contained no more artificial columns (mean). Columns tIsud and tBest
indicate the total running time and the time spent before reaching the best solution
found, respectively. Then, the number of instances for which ι-optimality has been
proved is given for ι = 7 and ι = 8, and finally the mean size of the disjoint (|S|D)
and nondisjoint (|S|N) combination are shown.

In the experiments on vcs1200 and vcs1600, we chose a lower value for the
maximum incompatibility number (INC_MAX = 8) than for the smaller problems;

123

360 S. Rosat et al.

25 50 75 100
sec.

50%

100%
Percentage of instances solved

none
Clique
Cycle
Both
Prio
Best

(a) Branching strategy: Nobr.

25 50 75 100
sec.

50%

100%
Percentage of instances solved

none
Clique
Cycle
Both
Prio
Best

(b) Branching strategy: Last.

25 50 75 100

sec.

50%

100%
Percentage of instances solved

none
Clique
Cycle
Both
Prio
Best

(c) Branching strategy: First.

25 50 75 100
sec.

50%

100%
Percentage of instances solved

none
Clique
Cycle
Both
Prio
Best

(d) Branching strategy: Cover.

Fig. 7 Percentage of instances solved over solution time for all sppaa01 instances for the four branching
strategies (Nobr (top-left), Last (top-right), First (bottom-left) and Cover (bottom-right). An instance
is considered as solved if the gap is lower than 2%

this choice is motivated by several reasons. First, it limits the running time of the
algorithm. Second, this number is already high compared to what swap heuristics can
consider. As explained in Sect. 3.1.2, the incompatibility degree of A· j is proportional
to the number of sequences of consecutive tasks from A· j that are not performed
consecutively in the current solution. Hence, it is a kind of measure of the primal
distance between a column and the current solution. This number can be compared to
the typical parameter of a swap heuristic that tries to swap parts of the current solution
to form new individual schedules which is the number of times an individual schedule
of the current solution may be split. Nonbasic columns for which ι = 8 are made of
at least 4 separate sequences of tasks performed consecutively in the current solution
(there is no maximum number); in practice, this number usually ranges between 6
and 7. For an average of 40 nonzero entries per columns, this number therefore seems
reasonable. It is in particular much higher than the typical number of splits allowed
in the existing schedules in a swap heuristic, and the neighborhood explored by our
algorithm is hence significantly wider than that of a swap heuristic.

123

Integral simplex using decomposition with primal cutting… 361

25 50 75 100
sec.

50%

100%
Percentage of instances solved

none
Clique
Cycle
Both
Prio
Best

(a) Branching strategy: Nobr.

25 50 75 100
sec.

50%

100%
Percentage of instances solved

none
Clique
Cycle
Both
Prio
Best

(b) Branching strategy: Last.

25 50 75 100
sec.

50%

100%
Percentage of instances solved

none
Clique
Cycle
Both
Prio
Best

(c) Branching strategy: First.

25 50 75 100
sec.

50%

100%
Percentage of instances solved

none
Clique
Cycle
Both
Prio
Best

(d) Branching strategy: Cover.

Fig. 8 Percentage of instances solved over solution time for all sppaa04 instances for the four branching
strategies (Nobr (top-left), Last (top-right), First (bottom-left) and Cover (bottom-right). An instance
is considered as solved if the gap is lower than 2%

Furthermore, the numerical results show that, even though primal cuts yield no
improvement, they prove the ι-optimality of the solution in many cases, i.e., they
show that the solution returned by Isud is optimal for the restriction of SPP to the set
of at most ι-incompatible columns (I ι). This is especially true in the case of vcs1200,
where 3 instances are proven 7-optimal without cutting planes, whereas 26 are with
cutting planes.

Finally, the failure of the cutting planes to improve the results of Isud on vcs1200
and vcs1600 can be partly explained by the nature of these instances. Although
they describe real-world problems, they are in fact large instances obtained from
column generation solution of bus drivers scheduling instances. All columns gener-
ated throughout the Branch-and-Price process are stored and put together to form
a large scale instance, the solution of which is known. However, due to the intrin-
sic nature of that solution process, the density of the vertices of the resulting
relaxed polyhedron (FSPPLR) tends to be higher near the optimal solution. Hence,
if a wrong decision is made in the beginning, there is a high probability of going
to a region of the polyhedron where very few extreme integer neighbors, and

123

362 S. Rosat et al.

Table 6 Cutting planes behavior of Isud on sppaa01

gap Algo inst tSep (s) mean

Nobr Last Nobr Last Nobr Last
nSep nCl nCy nSep nCl nCy

≤2% none 18 21 0.0 0.0 0 0 0 0 0 0

Clique 26 25 0.5 2.8 56 240 0 164 853 0

Cycle 21 23 0.3 0.7 12 0 28 44 0 125

Both 25 25 1.7 7.1 74 289 95 159 808 233

Prio 27 26 1.2 4.9 95 356 22 219 1073 48

>2% none 12 9 0.0 0.0 0 0 0 0 0 0

Clique 4 5 1.5 29.9 68 454 0 290 3383 0

Cycle 9 7 1.1 6.8 21 0 122 90 0 424

Both 5 5 7.1 51.8 59 653 202 241 2957 567

Prio 3 4 4.8 27.3 141 998 79 336 3259 153

Comparison of branching strategies Nobr and Last

Table 7 Cutting planes behavior of Isud on sppaa04

gap Algo inst tSep (s) mean

Nobr Last Nobr Last Nobr Last
nSep nCl nCy nSep nCl nCy

≤2% none 14 21 0.0 0.0 0 0 0 0 0 0

Clique 21 27 1.5 3.1 83 446 0 149 734 0

Cycle 16 22 0.3 0.5 15 0 52 29 0 100

Both 25 26 5.2 8.4 91 438 103 138 665 165

Prio 25 25 2.2 3.2 106 480 31 144 658 44

>2% none 16 9 0.0 0.0 0 0 0 0 0 0

Clique 9 3 1.6 34.9 58 366 0 540 3997 0

Cycle 14 8 0.4 3.3 17 0 39 101 0 514

Both 5 4 5.2 41.5 74 426 88 375 2458 580

Prio 5 5 2.4 25.3 95 453 30 576 3033 216

Comparison of branching strategies Nobr and Last

thus integer directions, exist. Getting back to an area where the density of inte-
ger neighbors is higher, only by traveling alongside integer-to-integer edges, may
then become extremely complicated. In the context of all-integer column gener-
ation, i.e., alternatively generate columns and improve the integer solution with
Isud as evoked in the introduction, this issue would disappear, because the dynam-
ically generated columns increase the density of extreme points around the current
solution, hence providing many more potential directions to the complementary prob-
lem.

123

Integral simplex using decomposition with primal cutting… 363

Ta
bl

e
8

R
es
ul
ts
fo
r
in
st
an
ce

v
cs
12

00

π
(%

)
A
lg

o
g
a
p

T
im

e
(s
)

ι-
O
pt

A
U

G

0%
≤2

%
>
2%

m
ea

n
(%

)
t I
su

d
t B
es
t

7-
O
pt

8-
O
pt

|S
|D

|S
|N

20
n
o
n
e

4
0

6
[6
]

0.
0

53
46

3
2

2.
5

19
8

C
li
q
u
e

4
0

6
[6
]

0.
0

11
2

46
8

2
2.
5

48
0

C
y
cl

e
4

0
6
[6
]

0.
0

55
46

3
2

2.
5

21
3

B
o
th

4
0

6
[6
]

0.
0

16
4

46
8

2
2.
5

47
6

Pr
io

4
0

6
[6
]

0.
0

11
2

46
8

2
2.
5

48
0

35
n
o
n
e

8
0

2
[2
]

0.
0

50
43

0
0

2.
3

15
1

C
li
q
u
e

8
0

2
[2
]

0.
0

14
2

55
8

0
2.
3

36
1

C
y
cl

e
8

0
2
[2
]

0.
0

53
43

0
0

2.
3

17
6

B
o
th

8
0

2
[2
]

0.
0

16
6

49
8

0
2.
3

37
1

Pr
io

8
0

2
[2
]

0.
0

14
2

55
8

0
2.
3

36
1

50
n
o
n
e

10
0

0
[0
]

0.
0

37
28

0
0

2.
2

13
2

C
li
q
u
e

10
0

0
[0
]

0.
0

81
29

10
0

2.
2

31
5

C
y
cl

e
10

0
0
[0
]

0.
0

39
29

0
0

2.
2

15
6

B
o
th

10
0

0
[0
]

0.
0

13
0

30
10

0
2.
2

35
4

Pr
io

10
0

0
[0
]

0.
0

81
29

10
0

2.
2

31
5

Pa
ra
m
et
er
s:
IN

C
_M

A
X

=
8
an
d
SE

P
_M

A
X

=
40

;B
ra
nc
hi
ng

N
o
br

123

364 S. Rosat et al.

Ta
bl

e
9

R
es
ul
ts
fo
r
in
st
an
ce

v
cs
16

00

π
(%

)
A
lg

o
g
a
p

T
im

e
(s
)

ι-
O
pt

A
U

G

0%
≤2

%
>
2%

m
ea

n
(%

)
t I
su

d
t B
es
t

7-
O
pt

8-
O
pt

|S
|D

|S
|N

20
n
o
n
e

5
0

5
[5
]

0.
0

46
2

32
4

6
6

2.
8

52
8

C
li
q
u
e

5
0

5
[5
]

0.
0

64
6

32
5

6
6

2.
8

83
1

C
y
cl

e
5

0
5
[5
]

0.
0

46
5

32
4

6
6

2.
8

53
4

B
o
th

5
0

5
[5
]

0.
0

72
3

35
5

6
6

2.
8

80
6

Pr
io

5
0

5
[5
]

0.
0

64
7

32
5

6
6

2.
8

83
1

35
n
o
n
e

6
0

4
[4
]

0.
0

43
3

24
4

7
6

2.
4

51
9

C
li
q
u
e

6
0

4
[4
]

0.
0

75
0

24
4

9
6

2.
4

75
3

C
y
cl

e
6

0
4
[4
]

0.
0

45
9

24
4

7
6

2.
4

53
9

B
o
th

6
0

4
[4
]

0.
0

81
3

24
4

9
6

2.
4

76
1

Pr
io

6
0

4
[4
]

0.
0

75
0

24
4

9
6

2.
4

75
3

50
n
o
n
e

8
0

2
[2
]

0.
0

40
4

15
6

9
8

2.
2

51
7

C
li
q
u
e

8
0

2
[2
]

0.
0

49
2

15
6

9
8

2.
2

69
1

C
y
cl

e
8

0
2
[2
]

0.
0

40
5

15
6

9
8

2.
2

52
1

B
o
th

8
0

2
[2
]

0.
0

52
1

15
6

9
8

2.
2

69
3

Pr
io

8
0

2
[2
]

0.
0

49
2

15
6

9
8

2.
2

69
1

Pa
ra
m
et
er
s:
IN

C
_M

A
X

=
8
an
d
SE

P
_M

A
X

=
40

;B
ra
nc
hi
ng

N
o
br

123

Integral simplex using decomposition with primal cutting… 365

6 Conclusions

In this work, we proposed a purely primal formulation of Isud and introduced cut-
ting planes in the complementary problem CP. This method is guaranteed to reach
optimality whenever an appropriate set of cutting planes is used (Gomory-Young,
for example). We showed that the incompatibility degree defines a neighborhood of
the current solution on which the augmentation problem is solved with integer pro-
gramming techniques. In order to improve the practical numerical performances, we
compromise by both heuristically increasing the neighborhood and by stopping the
algorithm prematurely. The efficiency of linear programming and of our separation
algorithms (Algorithms 2 and 3) allows us to explore a larger neighborhood than what
a typical exchange heuristic would consider.

The work conducted on the mathematical formulation led us to characterize the set
of cuts that can be transferred toCP as a nonempty subset of primal cuts tight at x0.We
showed that, given a fractional direction d�, a primal clique (or odd-cycle) cut exists
if and only if there exists one that only involves variables of Supp

(
d�

)
. Furthermore,

in the case of primal odd-cycles, the separation over all variables is strictly equivalent
to that over Supp

(
d�

)
. Tests conducted over a benchmark of practical-like instances

proved the potential of our method and highlight the importance of primal cutting
planes in Isud.

This work should be extended threefold. First, to gain better understanding of our
algorithm, a larger benchmark is to be taken in consideration and a combination of
cutting planes and other techniques (such as those proposed in [23] for instance) must
be tested over that larger set of problems. Second, other cutting planes families should
be taken in consideration, and the corresponding primal separation procedures must be
developed. Last, the algorithm need to be extended to more general {0,1}-programs,
and not only to SPP instances. This last point seems to be the most important if the
method is to be used in practice, since supplementary constraints are often added to
set partitioning problems. All these extensions are active research subjects and the
present work will have extensions in a near future. Of course, further extensions to
mixed {0,1}-problems and to general mixed-integer ones would be very interesting but
also harder, especially for the latter class. This is because the property of any feasible
solution being a vertex of the polyhedron of the continuous relaxation is not generally
true.

Acknowledgements This work was supported by a Collaborative Research and Development Grant from
the Natural Sciences and Engineering Research Council of Canada (NSERC) andKronos Inc. Samuel Rosat
benefitted of a grant from the International Internship Program of the Fonds de Recherche duQuébec Nature
et Technologies (FRQNT).

References

1. Balas, E., Padberg, M.: On the set-covering problem: 2—an algorithm for set partitioning. Oper. Res.
23(1), 74–90 (1975)

2. Baldacci, R., Mingozzi, A.: A unified exact method for solving different classes of vehicle routing
problems. Math. Program. 120, 347–380 (2009)

123

366 S. Rosat et al.

3. Ben-Israel, A., Charnes, A.: On some problems of diophantine programming. Cahiers du Centre
d’Études de Recherche Opérationnelle 4, 215–280 (1962)

4. Desrosiers, J., Dumas, Y., Solomon, M.M., Soumis, F.: Time constrained routing and scheduling.
Handb. Oper. Res. Manag. Sci. 8, 35–139 (1995)

5. Eisenbrand, F., Rinaldi, G., Ventura, P.: Primal separation for 0/1 polytopes. Math. Program. 95(3),
475–491 (2003)

6. Elhallaoui, I., Metrane, A., Desaulniers, G., Soumis, F.: An improved primal simplex algorithm for
degenerate linear programs. INFORMS J. Comput. 23(4), 569–577 (2011)

7. Elhallaoui, I., Metrane, A., Soumis, F., Desaulniers, G.: Multi-phase dynamic constraint aggregation
for set partitioning type problems. Math. Program. 123(2), 345–370 (2010)

8. Garfinkel, R.S., Nemhauser, G.L.: The set-partitioning problem: set covering with equality constraints.
Oper. Res. 17(5), 848–856 (1969)

9. Glover, F.: A new foundation for a simplified primal integer programming algorithm. Oper. Res. 16,
727–740 (1968)

10. Gomory, R.E.: Outline of an algorithm for integer solutions to linear program. Bull. Am. Math. Soc.
64(5), 275–278 (1958)

11. Gomory, R.E.: All-integer integer programming algorithm. Industrial Scheduling, pp. 193–206 (1963)
12. Haus, U.U., Köppe, M., Weismantel, R.: A primal all-integer algorithm based on irreducible solutions.

Math. Program. 96(2), 205–246 (2003)
13. Kallio,M.J., Porteus, E.L.: A class ofmethods for linear programming.Math. Program. 14(1), 161–169

(1978)
14. Letchford, A.N., Lodi, A.: Primal cutting plane algorithms revisited. Math. Methods Oper. Res. 56(1),

67–81 (2002)
15. Letchford, A.N., Lodi, A.: An augment-and-branch-and-cut framework for mixed 0–1 programming.

In: Jünger, M., Reinelt, G., Rinaldi, G. (eds.) Combinatorial Optimization - Eureka, You Shrink!.
Lecture Notes in Computer Science, vol. 2570, pp. 119–133. Springer, Berlin (2003)

16. Letchford, A.N., Lodi, A.: Primal separation algorithms. Q. J. Belg Fr. Ital. Oper. Res. Soc. 1(3),
209–224 (2003)

17. Metrane, A., Soumis, F., Elhallaoui, I.: Column generation decomposition with the degenerate con-
straints in the subproblem. Eur. J. Oper. Res. 207(1), 37–44 (2010)

18. Omer, J., Rosat, S., Raymond, V., Soumis, F.: Improved Primal Simplex: A More General Theoret-
ical Framework and an Extended Experimental Analysis. Les Cahiers du GERAD G-2014-13, HEC
Montréal, Canada. Submitted to Informs Journal on Computing (2014)

19. Östergård, P.R.J.: A new algorithm for the maximum-weight clique problem. Nord. J. Comput. 8(4),
424–436 (2001)

20. Padberg, M.W.: On the facial structure of set packing polyhedra. Math. Program. 5(1), 199–215 (1973)
21. Rönnberg, E., Larsson, T.: Column generation in the integral simplexmethod. Eur. J. Oper. Res. 192(1),

333–342 (2009)
22. Rönnberg, E., Larsson, T.: All-integer column generation for set partitioning: basic principles and

extensions. Eur. J. Oper. Res. 233(3), 529–538 (2014)
23. Rosat, S., Elhallaoui, I., Soumis, F., Chakour, D.: Influence of the normalization constraint on the

integral simplex using decomposition. Discret. Appl. Math. 217, Part 1, 53–70 (2017)
24. Rosat, S., Elhallaoui, I., Soumis, F., Lodi,A.: Integral simplex using decompositionwith primal cuts. In:

Gudmundsson, J., Katajainen, J. (eds.) Experimental Algorithms, Lecture Notes in Computer Science,
vol. 8504, pp. 22–33. Springer, New York (2014)

25. Rozenknop, A., Wolfler Calvo, R., Alfandari, L., Chemla, D., Létocart, L.: Solving the electricity
production planning problem by a column generation based heuristic. J. Sched. 16(6), 585–604 (2013)

26. Salkin, H.M., Koncal, R.D.: Set covering by an all-integer algorithm: computational experience. J.
ACM 20(2), 189–193 (1973)

27. Saxena, A.: Set-partitioning via integral simplex method. Unpublished manuscript, OR Group,
Carnegie-Mellon University, Pittsburgh (2003)

28. Schulz,A.S.,Weismantel, R., Ziegler, G.M.: 0/1-integer programming:Optimization and augmentation
are equivalent. In: Spirakis, P. (ed.) ESA ’95, LNCS, vol. 979, pp. 473–483. Springer, Berlin (1995)

29. Spille, B., Weismantel, R.: Primal integer programming. In: Aardal, K., Nemhauser, G., Weismantel,
R. (eds.) Discrete Optimization, Handbooks in Operations Research and Management Science, vol.
12, pp. 245–276. Elsevier, Amsterdam (2005)

123

Integral simplex using decomposition with primal cutting… 367

30. Stallmann, M.F., Brglez, F.: High-contrast algorithm behavior: observation, hypothesis, and experi-
mental design. In: Proceedings of the 2007Workshop on Experimental Computer Science, ExpCS ’07.
ACM, New York, NY, USA (2007)

31. Stojković, M., Soumis, F., Desrosiers, J.: The operational airline crew scheduling problem. Transp.
Sci. 32(3), 232–245 (1998)

32. Thompson, G.L.: An integral simplex algorithm for solving combinatorial optimization problems.
Comput. Optim. Appl. 22(3), 351–367 (2002)

33. Towhidi, M., Desrosiers, J., Soumis, F.: The positive edge criterion within COIN-OR’s CLP. Comput.
Oper. Res. 49, 41–46 (2014)

34. Trubin, V.: On a method of solution of integer linear programming problems of a special kind. Sov.
Math. Dokl. 10, 1544–1546 (1969)

35. Young, R.D.: A primal (all-integer) integer programming algorithm. J. Res. Natl. Bur. Stand. B Math.
Math. Phys. 69B, 213–250 (1965)

36. Young, R.D.: A simplified primal (all-integer) integer programming algorithm. Oper. Res. 16(4), 750–
782 (1968)

37. Zaghrouti, A., Soumis, F., El Hallaoui, I.: Integral simplex using decomposition for the set partitioning
problem. Oper. Res. 62(2), 435–449 (2014)

123

	Integral simplex using decomposition with primal cutting planes
	Abstract
	1 Introduction
	2 Literature review and contribution statement
	2.1 Primal algorithms for integer linear programs
	2.2 The set partitioning problem
	2.3 Contribution statement

	3 The integral simplex using decomposition (ISUD)
	3.1 Fractional augmentation fAUG and phase decomposition
	3.1.1 Generic fractional augmentation
	3.1.2 Incompatibility degree of the nonbasic variables
	3.1.3 The IPS decomposition
	3.1.4 Row-reduction of R-Mima
	3.1.5 Row-reduction of C-Mima

	3.2 Integral augmentation iAUG
	3.2.1 Over compatible variables
	3.2.2 Characterization of integral directions in ΔmathcalI
	3.2.3 Algorithmic framework

	4 Solving the augmentation problem with cutting-planes
	4.1 Specific primal separation procedures
	4.1.1 Primal clique inequalities
	4.1.2 Primal odd-cycle inequalities

	4.2 Algorithm

	5 Numerical results
	5.1 Methodology
	5.1.1 Instances
	5.1.2 Initial solutions
	5.1.3 Cutting planes strategies
	5.1.4 Branching strategies

	5.2 Results

	6 Conclusions
	Acknowledgements
	References

