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Abstract The essential structure of the mixed-integer programming formulation for
chance-constrained program (CCP) is the intersection of multiple mixing sets with a
0–1 knapsack. To improve our computational capacity onCCP, an underlying substruc-
ture, the (single) mixing set with a 0–1 knapsack, has received substantial attentions
recently. In this study, we consider a CCP problem with stochastic right-hand side
under a finite discrete distribution. We first present a family of strong inequalities that
subsumes known facet-defining ones for that single mixing set. Due to the flexibil-
ity of our generalized inequalities, we develop a new separation heuristic that has a
complexity much less than existing one and guarantees generated cutting planes are
facet-defining for the polyhedron of CCP. Then, we study lifting and superadditive
lifting on knapsack cover inequalities, and provide an implementable procedure on
deriving another family of strong inequalities for the single mixing set. Finally, dif-
ferent from the traditional approach that aggregates original constraints to investigate
polyhedral implications due to their interactions, we propose a novel blending proce-
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dure that produces strong valid inequalities for CCP by integrating those derived from
individual mixing sets.We show that, under certain conditions, they are the first type of
facet-defining inequalities describing intersection of multiple mixing sets, and design
an efficient separation heuristic for implementation. In the computational experiments,
we perform a systematic study and illustrate the efficiency of the proposed inequalities
on solving chance constrained static probabilistic lot-sizing problems.

Keywords Mixed-integer programming ·Chance constraints ·Mixing set ·Blending ·
Knapsack · Lifting

Mathematics Subject Classification 90C11 · 90C15

1 Introduction

Chance constraints appear in optimization formulations of many important applica-
tions that model service levels, risk measures, or reliability requirements. When the
randomness occurs only at the right-hand side vector, the chance-constrained program
with joint probabilistic constraints (CCP) can be formulated as follows

min cT x

s.t. y = Ax

P {y ≥ h(ω)} ≥ 1 − τ

x ∈ X ⊆ R
m1 × Z

m2 , y ∈ R
d+

where X is a polyhedron, d and m are positive integers with m = m1 + m2 for
other two positive integers m1 and m2, ω is an element of an underlying probability
space Ω, x is an m-dimensional decision variable, A is a d × m matrix, h(ω) is a
d-dimensional column random vector, c is an m-dimensional cost vector, and τ is a
threshold probability with 0 ≤ τ ≤ 1. The major challenge in solving the CCP is that
the feasible region may not be represented by a convex (or quasiconvex) function and
is typically difficult to evaluate. For continuously distributed random variables, many
researches focus on the identification of conditions underwhich the feasible set defined
by the chance constraint is convex. Prékopa [33] shows that the feasible region can
be represented by quasiconvex functions if h is quasiconvex and ω has a logconcave
probability distribution. Henrion [16] andHenrion and Strugarek [18] show that a joint
chance constraint in certain forms defines a convex set. Hanasusanto et al. [15] study
the ambiguous joint chance constrained program and provide tight conditions when
it is conic representable. Efficient methods for computing the gradients and the value
of multivariate continuous distributions are proposed, see [17,41,42] for Gaussian,
Student’s and lognormal distributions. A widely applied approach is approximating
the chance constraint with a more tractable function if the convexity of the feasible
region is not verifiable. Many approximations have been proposed, e.g., the quadratic
approximation [4], the conditional value-at-risk approximation [35], the Bernstein
approximation [31] and Monte Carlo simulations [8,20]. Luedtke et al. [29] propose
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a sample approximation approach to substitute the underlying continuous distribution
by a finite sample and reformulate it as a mixed-integer programming problem. Thus,
algorithms based on cutting planes for mixed-integer reformulations are available in
[22,28,29]. Recently, the cutting plan approach is extended to multi-stage chance-
constrained programs and multivariate risk constraints, e.g., valid inequalities for the
deterministic equivalent formulation in [48], strong feasibility and optimality cuts for
decomposition algorithms in [27,28,45,47], and cuts generation for multivariate con-
ditional value-at-risk or second-order stochastic dominance in [23]. For joint chance
constraints with discrete distribution, a disjunctive programming reformulation for
CCP is studied in [38] by using the concept of p-level efficient points (pLEPs) [32].
A bundle method for energy problem is proposed by [44] and combined with pLEPs
for better performance [40]. Dentcheva et al. [9] use pLEPs to obtain various refor-
mulations and derive valid bounds for the objective value. Beraldi and Ruszczyński
[6] propose a branch-and-bound algorithm based on the enumeration of pLEPs, see
also [36]. Lejeune and Noyan [25] generate pLEPs by solving a series of increasingly
tighter outer approximations with several other algorithmic techniques. Lejeune [24]
introduces Boolean reformulation framework, which is extended recently for non-
linear chance constraints [26]. Another study on nonlinear chance constraints is in
[2] where optimality conditions are studied and approximation algorithms have been
developed. Kogan and Lejeune [21] propose a Boolean method to solve CCP where
the elements of the multirow random technology matrix follow a joint probability
distribution. Many applications on the chance-constrained program are also studied in
literature, such as probabilistic lot-sizing [6,48], health care [5,39], probabilistic set
covering [7,37], hydro reservoir management [43] and logistic [10].

In this paper, we consider a mixed-integer programming (MIP) reformulation of
chance-constrained program. Suppose Ω has finitely many realizations, i.e., Ω =
{ω1, ω2, . . . , ωn} and πi is the probability associated with ωi ,∀i ∈ {1, . . . , n}. Let
hri be the r -th component of h(ωi ). As described in [22,29], we can assume hri ≥ 0
without loss of generality. Throughout, we denote [i, j] ≡ {r ∈ Z : i ≤ r ≤ j}. A
deterministic equivalent formulation of the chance–constrained program is (see also
[1,22,29])

min cT x

s.t. y = Ax

yr ≥ hri (1 − zi ) ∀r ∈ [1, d], i ∈ [1, n] (1)
n∑

i=1

πi zi ≤ τ

x ∈ X ⊆ R
m1 × Z

m2

z ∈ {0, 1}n, y ∈ R
d+ (2)

where zi = 0 indicates that y ≥ h(ω) is satisfied when ω = ωi and zi = 1 otherwise.
The constraints (1) and (2) define the key substructure of this MIP reformulation, i.e.,
the polyhedron of CCP
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Q=
{

(y, z) ∈ R
d+ × {0, 1}n :

n∑

i=1

πi zi ≤τ, yr ≥ hri (1 − zi ), r ∈[1, d], i ∈ [1, n]
}

.

For r ∈ [1, d], we have a mixing set with 0–1 knapsack

Qr =
{

(yr , z) ∈ R+ × {0, 1}n :
n∑

i=1

πi zi ≤ τ, yr ≥ hri (1 − zi ), i ∈ [1, n]
}

.

By dropping the index r , we redefine the mixing set with 0–1 knapsack as

K =
{

(y, z) ∈ R+ × {0, 1}n :
n∑

i=1

πi zi ≤ τ, y ≥ hi (1 − zi ), i ∈ [1, n]
}

.

Importantly, the study of the polyhedron of CCP is fundamental for solving chance-
constrained programs efficiently. Most literature focuses on its substructure the setK.
Since our contributions include studies on the set Q and K, we give literature review
on both sets in following subsections.

1.1 Mixing set with 0–1 knapsack

Observe that the set K consists of a mixing set, introduced by Günlük and Pochet
[14] on general integer variables. The mixing set was extensively studied in varying
degrees of generality by many authors in [3,13,30,34,49,50] and its convex hull can
be described by the so-called star inequalities in [3].

Without loss of generality, we can assume h1 ≥ h2 ≥ · · · ≥ hn ≥ 0 in the set K.
As in [1,22,29], we introduce two parameters ν and p. The parameter ν is defined
such that

ν∑

i=1

πi ≤ τ and
ν+1∑

i=1

πi > τ.

As noted by [29], we have y ≥ hν+1 and the set K can be strengthened as follows
{

(y, z) ∈ R+ × {0, 1}ν :
n∑

i=1

πi zi ≤ τ, y + (hi − hν+1)zi ≥ hi , i ∈ [1, ν]
}

. (3)

Indeed, by using y + (hi − hν+1)zi ≥ hi in (3) to replace (1), we obtain a new formu-
lation of CCP with a tighter LP relaxation and less constraints. Let {〈1〉, 〈2〉, . . . , 〈n〉}
be a permutation of set [1, n] with

π〈1〉 ≤ π〈2〉 ≤ · · · ≤ π〈n〉.

The parameter p is defined such that
p∑

i=1

π〈i〉 ≤ τ and
p+1∑

i=1

π〈i〉 > τ.
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Note that in the case of equal probabilities, i.e., πi = 1/n ∀i ∈ [1, n], the knapsack
constraint reduces to the following cardinality constraint

n∑

i=1

zi ≤ p

and p = ν. Luedtke et al. [29] applied the star inequality proposed in [3] to the
strengthened star inequality (which is stated as Theorem 1 in [22])

y +
a∑

j=1

(ht j − ht j+1)zt j ≥ ht1 ∀T = {t1, . . . , ta} ⊆ [1, ν] (4)

where t1 < · · · < ta and hta+1 = hν+1, and showed that it is facet-defining for K
when t1 = 1. This result was generalized in [1] and [22] where more facet-defining
inequalities were introduced formixing set with either cardinality constraint or general
knapsack. Luedtke et al. [29] and Küçükyavuz [22] also performed numerical studies
for their proposed inequalities to evaluate the computational impact on solving lot-
sizing based CCP instances.

1.2 Polyhedron of CCP

The polyhedron of CCP, i.e.,Q, was initially studied in [22]. When the 0–1 knapsack
in the set Q is just a cardinality constraint, the author in [22] developed so-called TL
inequalities and showed that they are facet-defining for both K and Q. We actually
find that this result could be significantly generalized to any facet-defining inequalities
as follows.

Proposition 1 (i) If an inequality is valid and facet-defining for Qr for some
r ∈ [1, d], then the inequality is valid and facet-defining for Q; moreover, (i i) if
an inequality is valid and facet-defining for ∩r∈DQr for a set D ⊆ [1, d], then the
inequality is valid and facet-defining for Q.

Proof We omit the proof since it is the same as the last paragraph of the proof for
Theorem 4 in [22]. ��

Clearly, this proposition implies that the study of the single set K (i.e., a single
Qr ) provides a crucial polyhedral description to the setQ. However, it can only bring
us inequalities with at most one nonzero coefficient of yr for some r ∈ [1, d]. As
illustrated by a numerical example in [22], non-trivial inequalities for the polyhedron
of CCP with d = 2, which are not obtainable from its single mixing subsetQ1 orQ2,
can be obtained by studying an aggregation of Q1 and Q2. Specifically, it involves
selecting two scalars β1, β2, setting y = β1y1 + β2y2, and obtaining a new set

Q′ =
{

(y, z) ∈ R+ × {0, 1}n :
n∑

i=1

πi zi ≤ τ, y

≥ (β1h1i + β2h2i )(1 − zi ) ∀i ∈ [1, n]
}

.

123



24 M. Zhao et al.

Then, all the results on the set K can be readily applied to Q′. Nevertheless, no
analytical study has been done and the effectiveness of this combining approach is
either theoretically or computationally unknown. For example, we do not know if this
approach will derive any facet-defining inequalities of Q.

1.3 Main contributions and outline

Our main contributions are in both theory and computation, and presented in each of
the following sections in details. Here we summarize our contributions as follows,

• In Sect. 2, we derive a new family of inequalities for the mixing set with general
0–1 knapsack, which subsumes all known facet-defining inequalities proposed in
[1,22,29] as special cases. Due to the flexibility of our generalized inequalities,
we are able to develop a new separation heuristic different from those in [1,22],
which has a much less complexity and is guaranteed to identify the strongest (i.e.,
facet-defining) cutting planes for the polyhedron of CCP.

• In Sect. 3, we present another large family of inequalities by performing lifting
and superadditive lifting procedures on cover inequalities of 0–1 knapsack. Not-
ing that all existing valid inequalities (including our results in Sect. 2) are based
on star inequalities for the basic mixing set, our results are the first type of valid
inequalities with a different structure. Unlike a characterization on parameters of
valid inequalities derived in [1] for K, our inequalities are explicit and construc-
tive, which provide an implementable procedure to identify strong inequalities to
strengthen the polyhedral description and to improve our solution capacity of CCP.

• In Sect. 4, we introduce a novel blending approach to studyQ such that, instead of
combining original formulation, we are blending facet-defining inequalities ofQr

for r ∈ [1, d]. Especially, we are able to show when the resulting inequalities are
facet-defining forQ. To the best of our knowledge, they are the first group of facet-
defining inequalities capturing interactions among multiple mixing sets. We also
develop a very effective separation heuristic that can find violated facet-defining
blending inequalities.

• In Sect. 5, we fully test the strengthened star inequality, TL inequalities (as
described in [22]) and our three families of inequalities.We show that our inequali-
ties outperform other known inequalities in the literature and substantially improve
a commercial solver’s ability to solve large static probabilistic lot-sizing problems.

The last section concludes the paper.

2 Strong inequalities derived from mixing set

On the top of the classical mixing inequality, a family of strong inequalities was
developed in [29] for the set K when the knapsack constraint was replaced by a
cardinality constraint. Then,Küçükyavuz [22] generalized that result for the cardinality
constrained mixing set and extended those inequalities as valid ones for K. Recently,
Abdi et al. [1] provided a characterization of valid inequalities for K, and explicitly
developed a set of facet-defining inequalities for K under some special conditions.
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In the following, we present a large family of strong inequalities for K, and derive
sufficient conditions under which our proposed inequalities are facet-defining. In order
to understand the connections to existing research onK, we provide a detailed analysis
and numerical examples to show that explicit strong inequalities or facet-defining
inequalities developed in [1,22] are either dominated or subsumed by ours. Due to
the flexibility of our inequalities, we can further present a separation heuristic which
can identify potential facet-defining inequalities with a computational complexity less
than those of [1,22].

Theorem 1 For m ∈ [1, ν] and q ∈ [0, p − m], we define
• a set T = {t1, . . . , ta} ⊆ [1,m] with t1 < · · · < ta;
• a set L with a permutation ΠL = {l1, . . . , lq};
• a sequence of integers s j ∈ [0, ν −m + 1] such that 0 ≤ s1 ≤ · · · ≤ sq ≤ sq+1 =

ν − m + 1.

If L ⊆ [m + s1 + 1, n] with l j ≥ m + min{1 + s j , s j+1} and

m+s j∑

i=1

πi +
q∑

i= j

πki > τ ∀ j ∈ [1, q]

where {k1, . . . , kq} is a permutation of L with πk1 ≥ · · · ≥ πkq , we have the following
inequality

y +
a∑

j=1

(ht j − ht j+1)zt j +
q∑

j=1

δ j (1 − zl j ) ≥ ht1 (5)

that is valid for K, where ta+1 = m + s1 and

δ j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

hm+s1 − hm+s2 j = 1

max

⎧
⎪⎨

⎪⎩
δ j−1, hm+s1 − hm+s j+1 −

∑

i∈[1, j−1] and li≥m+min{1+s j ,s j+1}
δi

⎫
⎪⎬

⎪⎭
j ∈ [2, q]. (6)

Proof It is clear that if y ≥ ht1 , the inequality (5) is trivially satisfied. If y ≥ hti for
some i = 2, . . . , a + 1 and y < ht j for all j ∈ [1, i − 1], then we must have zt j = 1
for all j ∈ [1, i − 1]. Thus,

y +
a∑

j=1

(ht j − ht j+1)zt j ≥ hti +
i−1∑

j=1

(ht j − ht j+1)

= ht1 ≥ ht1 −
q∑

j=1

δ j (1 − zl j )
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and inequality (5) is satisfied when y ≥ hta+1 = hm+s1 . Therefore, we assume that
y < hm+s1 , which implies zt j = 1∀ j = 1, . . . , a and

a∑

j=1

(ht j − ht j+1)zt j = ht1 − hm+s1

in the rest of proof.
If q = 0, we have m + s1 = m + ν − m + 1 = ν + 1. Such case is trivial

because y ≥ hν+1 and the resulting inequality is the strengthened star inequality. It is
sufficient to consider q ≥ 1. Because y ≥ hν+1 and sq+1 = ν −m + 1, we must have
hm+si ′ > y ≥ hm+si ′+1

for some i ′ = 1, . . . , q. Without loss of generality, we assume
that si ′+1 ≥ si ′ + 1, i.e., m + min{1 + si ′ , si ′+1} = m + 1 + si ′ . Thus, z j = 1 for all
j = 1, . . . ,m + si ′ , which implies

m+si ′∑

i=1

πi +
n∑

i=m+si ′+1

πi zi ≤ τ (7)

from the knapsack inequality, and we have

q∑

j=1

δ j (1 − zl j ) =
∑

j∈[1,q] and l j≥m+si ′+1

δ j (1 − zl j )

=
q∑

j=i ′+1

δ j (1 − zl j ) +
∑

j∈[1,i ′] and l j≥m+si ′+1

δ j (1 − zl j )

=
q∑

j=i ′+1

δ j +
∑

j∈[1,i ′] and l j≥m+si ′+1

δ j −
q∑

j=i ′+1

δ j zl j −
∑

j∈[1,i ′] and l j≥m+si ′+1

δi zl j .

(8)

The first equality holds because z j = 1∀ j ∈ [1,m + si ′ ]. The second equality holds
because

l j ≥
{
m + s j + 1 ≥ m + si ′ + 1,

m + s j+1 ≥ m + si ′+1 ≥ m + si ′ + 1
∀ j ∈ [i ′ + 1, q].

Next, we show that
q∑

j=1

zl j ≤ q − i ′ (9)
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by introducing a contradiction. Suppose
∑q

j=1 zl j ≥ q − i ′ + 1. We have

τ ≥
m+si ′∑

i=1

πi +
n∑

i=m+si ′+1

πi zi (10)

≥
m+si ′∑

i=1

πi +
∑

j∈[1,q] and l j≥m+si ′+1

πl j zl j

≥
m+si ′∑

i=1

πi +
q∑

j=i ′
πl j zl j +

∑

j∈[1,i ′] and l j≥m+si ′+1

πl j zl j (11)

≥
m+si ′∑

i=1

πi +
q∑

j=i ′
πk j > τ (12)

where inequality (10) is just (7). Inequality (11) holds because

l j ≥
{
m + s j + 1 ≥ m + si ′ + 1,

m + s j+1 ≥ m + si ′+1 ≥ m + si ′ + 1
∀ j ∈ [i ′, q].

Inequality (12) holds because
∑q

j=1 zl j ≥ q − i ′ + 1 and πk1 ≥ · · · ≥ πkq .
Given the contradiction introduced by (10)–(12), we have that (9) holds. Note that

δ1 ≤ · · · ≤ δq+1 is monotonic. With (9), we get

q∑

j=i ′+1

δ j ≥
q∑

j=i ′+1

δ j zl j +
∑

j∈[1,i ′] and l j≥m+si ′+1

δ j zl j .

Then from (8), we have

q∑

j=1

δ j (1 − zl j ) =
q∑

j=i ′+1

δ j +
∑

j∈[1,i ′] and l j≥m+si ′+1

δ j −
q∑

j=i ′+1

δ j zl j

−
∑

j∈[1,i ′] and l j≥m+si ′+1

δ j zl j

≥
∑

j∈[1,i ′] and l j≥m+si ′+1

δ j

≥ δi ′ +
∑

j∈[1,i ′−1] and l j≥m+si ′+1

δ j ≥ hm+s1 − hm+si ′+1
.
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The last inequality holds because of the definition of δi ′ . Therefore, we have

y +
a∑

j=1

(ht j − ht j+1)zt j +
q∑

j=1

δ j (1 − zl j )

≥ hm+si ′+1
+ ht1 − hm+s1 + hm+s1 − hm+si ′+1

≥ ht1 . ��
Next, we give necessary condition that (5) is facet-defining for K.

Proposition 2 If (5) is facet-defining for K, then we have t1 = 1 and

m+s j−1∑

i=1

πi +
q∑

i= j

πki ≤ τ ∀ j ∈ [1, q] with s j ≥ 1. (13)

Proof Note that the inequality (5) is uniquely determined by a triple (T,ΠL , s). We
will denote (5) as the triple (T,ΠL , s) in the proof. First, we will prove the necessary
condition that t1 = 1. Given a (T,ΠL , s) with t1 > 1. We can have (T ′,ΠL , s) with
T ′ = T ∪ {1}, i.e.,

y + (h1 − ht1)z1 +
a∑

j=1

(ht j − ht j+1)zt j +
q∑

j=1

δ j (1 − zl j ) ≥ h1

which implies

(h1 − ht1)(z1 − 1) + y +
a∑

j=1

(ht j − ht j+1)zt j +
q∑

j=1

δ j (1 − zl j ) ≥ ht1 .

As (h1 − ht1)(z1 − 1) ≤ 0, The (T ′,ΠL , s) is at least as strong as the (T,ΠL , s)
inequality.

Suppose the condition (13) does not hold for a (T,ΠL , s) with coefficient δ j ∀ j ∈
[1, q] and i ′ ∈ [1, q] is the first index that the condition (13) does not hold. Thus, we
have

m+si ′−1∑

i=1

πi +
q∑

i=i ′
πki > τ but

m+si ′−1−1∑

i=1

πi +
q∑

i=i ′
πki ≤ τ

which implies that si ′−1 < si ′ . We can define a triple (T,ΠL , s′) such that s′
j =

s j ∀ j ∈ [1, q] − {i} and s′
i ′ = si ′ − 1. Note that s′ is still a monotonic sequence as s.

It is clear that we have δ′
j ≤ δ j ∀ j ∈ [1, q] where δ′

j is the coefficient for (T,ΠL , s′).
So (T,ΠL , s′) inequality is at least as strong as the (T,ΠL , s) inequality. ��

In Theorem 1, we have parameter q ∈ [0, p − m]. It is obvious that inequality (5)
becomes the strengthened star inequality when q = 0. Next, when q = p − m, we
show that Theorem 1 improves Theorem 6 in [22].
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Corollary 1 Let q = p − m and s j = min{ j, ν − m + 1} ∀ j ∈ [1, q], we have valid
inequalities

y +
a∑

j=1

(ht j − ht j+1)zt j +
p−m∑

j=1

δ j (1 − zl j ) ≥ ht1 (14)

where

δ j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

hm+1 − hm+min{ν−m+1,2} j = 1

max

⎧
⎨

⎩δ j−1, hm+1 − hm+min{ν−m+1, j+1} −
∑

i∈[1, j−1] and li≥m+1+min{ν−m+1, j}
δi

⎫
⎬

⎭ j ∈ [2, q].

Proof Because the definition of p in Sect. 1 implies that the summation of any p + 1
many πi ’s for i ∈ [1, n] is strictly greater than τ , we have the following result for any
permutation {k1, . . . , kq} of L

m+s j∑

i=1

πi +
q∑

i= j

πki ≥

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

m+ j∑

i=1

πi +
p−m∑

i= j

πki

m+(ν−m+1)∑

i=1

πi +
p−m∑

i= j

πki

> τ ∀ j ∈ [1, q].

Apparently s1 = min{1, ν − m + 1} = 1 since m ∈ [1, ν]. Therefore, the expected
result follows. ��
Remark 1 (i) Corollary 1 is equivalent to Theorem 3 in [22] when the knapsack

constraint is reduced to a cardinality constraint. In such case, we have p = ν and
s j = min{ j, p − m + 1} = j ∀ j ∈ [1, p − m].

(ii) Corollary 1 improves Theorem 6 in [22], which is the main result in [22] for
general K. Note that

{i ∈ [1, j − 1] : li ≥ m + 1 + min{ν − m + 1, j}}
⊇ {i ∈ [1, j − 1] : li ≥ m + 1 + j}

and δ j s are all positive. Hence, inequality (14) is at least as strong as the one in
[22].

(iii) We note that the choice of s j in Corollary 1 does not need to satisfy (13). If it is
the case, (14) could be dominated by (5), which is demonstrated in an example
adopted from [22].

Example 1 (Example 1 in [22]) Let h = (40, 38, 34, 31, 26, 16, 8, 4, 2, 1) for n = 10,
and π1 = · · · = π4 = τ/4 and π5 = · · · = π10 = τ/6 with τ = 0.5. It is easy to
check that ν = 4 and p = 6. As showed in [22], inequality (14) with m = 1, t1 = 1
and ΠL = {4, 6, 7, 8, 9} gives

y + (h1 − h2)z1 + (h2−h3)(1−z4) + (h2 − h3)(1 − z6) + (h2 − h5 − δ2)(1 − z7)

+ (h2 − h5 − δ2)(1 − z8) + (h2 − h5 − δ2)(1 − z9) ≥ h1
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or specifically,

y + 2z1 + 4(1 − z4) + 4(1 − z6) + 8(1 − z7) + 8(1 − z8) + 8(1 − z9) ≥ 40 (15)

where δ2 = h2 − h3 is the coefficient for term (1− z6). This inequality, nevertheless,
is not facet-defining as it is dominated by

y + (h1 − h2)z1 + (h2 − h3)(1 − z4) + (h2 − h3)(1 − z7)

+(h2 − h5 − δ2)(1 − z8) ≥ h1 (16)

or specifically,

y + 2z1 + 4(1 − z4) + 4(1 − z7) + 8(1 − z8) ≥ 40

which is valid and facet-defining. According to Theorem 1, inequality (16) can be
generated by letting m = 1,ΠL = {4, 7, 8} with q = 3. So {k1, k2, k3} = {4, 7, 8} as
well since π4 ≥ π7 ≥ π8. It is easy to see that we can choose (s1, s2, s3) = (1, 2, 3)
because, for j ∈ [1, q] = [1, 3], we have

m+s j∑

i=1

πi +
q∑

i= j

πki =

⎧
⎪⎨

⎪⎩

2
4τ + 1

4τ + 2
6τ = 13

12τ when j = 1
3
4τ + 2

6τ = 13
12τ when j = 2

τ + 1
6τ = 7

6τ when j = 3

> τ.

Because of Proposition 2, we make the following assumption to have stronger
inequalities (5).

Assumption 1 In Theorem 1, we always choose s j ∀ j ∈ [1, q + 1] such that

m+s j−1∑

i=1

πi +
q∑

i= j

πki ≤ τ ∀ j ∈ [1, q].

Next, we provide sufficient conditions that guarantee (5) to be facet-defining forK.

Theorem 2 The inequality (5) is facet-defining for K if t1 = 1, πl1 ≥ · · · ≥ πlq , and

q∑

i=1

πli + π j ≤ τ ∀ j /∈ T ∪ L . (17)

Proof The proof is similar to that of Theorem 4 in [22]. However, since our inequality
(5) is more general, we give a self-contained proof. First, let y0 = h1, vector z0 with
z0j = 1 if j ∈ L and z0j = 0 otherwise. Next, for each j /∈ (T ∪ L), we have point

(y j , z j ) = (y0, z0+e j ), where e j is an n dimensional unit vector with j th component
equal to 1. The point is feasible because of (17).
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For each j ∈ [1, a], let yt j = ht j+1 , z
t j
i = 1 if i ∈ [1, t j+1 − 1] ∪ L and z

t j
i = 0

otherwise. The point is feasible because of the condition

t j+1−1∑

i=1

πi +
q∑

i=1

πli ≤
m+s1−1∑

i=1

πi +
q∑

i=1

πli ≤ τ.

For j ∈ [1, q], first we let yl1 = hm+s2 and

z
l j
i = 1 ∀i ∈ [1,m + s2 − 1] ∪ {l2, . . . , lq+1} and z

l j
i = 0 otherwise.

The point is feasible because of Assumption 1. Then, for j ∈ [2, q + 1], if

δ j = hm+s1 − hm+s j −
∑

i∈[1, j−1] and li≥m+1+s j

δi ,

let yl j = hm+s j+1 and

z
l j
i = 1 ∀i ∈ [1,m + s j+1 − 1] ∪ {l j+1, . . . , lq+1} and z

l j
i = 0 otherwise.

If δ j = δ j−1, we let

(yl j , zl j ) = (yl j−1 , zl j−1 + el j−1 − el j ).

Note that πl j ≥ πl j−1 . In either case, the point is feasible because of Assumption 1.
These n + 1 points on the face defined by inequality (5) are affinely independent. ��

In the following, we consider an implementation strategy of this type of strong
inequalities in our numerical study.

Corollary 2 When |L| = 1, the inequality (5) in Theorem 1 is facet-defining if t1 = 1,
and

πl1 + π j ≤ τ ∀ j ∈ [1, n]\{l1}.

Next we will provide a separation algorithm for implementing Corollary 2.

Separation Heuristic We always set t1 = 1. Let z∗ be a fraction solution and we
keep an ordered list of the elements in {i ∈ [ν + 1, n] : z∗i = 1, πi + π j ≤ τ, ∀ j ∈
[1, n]\{i}}, denoted as Ω , in decreasing order of πi . We choose the first element in
the list to be in the set L , i.e., L = {l1} where l1 = argmaxi {πi : i ∈ Ω}. We let

m + s1 = min

⎧
⎨

⎩ j :
j∑

i=1

πi + πl1 > τ, j ∈ [1, ν]
⎫
⎬

⎭
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which can be found in O(ν). Then, the best choice of the set T in the inequality
(5) can be found by solving a shortest path problem from the source 1 to the sink
m + s1 on a directed acyclic graph with vertices {1, . . . ,m + s1}, edges (i, j), 1 ≤
i < j ≤ m + s1, and associated cost of (hi − h j )z∗i (see also Sect. 3.1 in [22]) and
the complexity is O(ν2). The coefficient δ1 = hm+s1 − hν+1. Note that z∗l1 = 1 and
shortest path algorithm is used to find the best choice of the set T . Therefore, our
separation algorithm can find the most violated inequality in the form of Corollary 2,
which is facet-defining for Q, in O(ν2).

Note that the separation algorithm in [22] is O(p4) without guarantee of finding
facet-defining inequalities of Q. Abdi et al. [1] mentioned that the same separation
algorithm can be applied in their case without providing computational evaluation.

As mentioned, a set of facet-defining inequalities forK was developed in Theorem
14 of [1]. In the following, we analyze the connection between those facet-defining
inequalities and results in Theorems 1 and 2. In particular, we show that they are
subsumed as special cases of (5).

Corollary 3 Let M be a positive integer, ai = Mπi ∀i ∈ [1, n] and μ = Mτ . The
inequality (5) in Theorem 1 is valid for K if

• ai = 1∀i ∈ L and q = μ −∑m
i=1 ai is an integer;

• s1 = 1 and m + s j = m( j − 1) + 1∀ j ∈ [2, q];
• l j > m( j)∀ j ∈ [1, q]

wherem( j) = max
{
k : j ≥ ∑k

i=1 ai −∑m
i=1 ai

}
. The inequality is facet-defining if

t1 = 1 and a j ≤ ∑m
i=1 ai ∀ j ∈ [1, n]\L.

It is not difficult to verify that Corollary 3 is equivalent to Theorem 14 in [1]. So,
before providing a proof to this result, we make a few remarks on the applicability of
Corollary 3 (equivalently, Theorem 14 of [1]).

Remark 2 (i) The condition that ai = 1∀i ∈ L requires that πi ∀i ∈ L are equal,
which is a very special case of the knapsack constraint ofK. For example, Corollary
3 cannot explain (15) (derived in [22]) or (16) because π4 �= π6. Note however
that Corollary 1 or Theorem 6 in [22] is able to generate explicit valid inequalities
for a general K. Hence, different from the understanding made in [1], we cannot
conclude that Corollary 3 subsumes Corollary 1 or Theorem 6 in [22].

(ii) The condition that q = μ −∑m
i=1 ai is an integer is very restrictive. Actually,

Corollary 3 cannot describe any inequalities in Example 1 with m = 1. Since
we need to have ai = 1∀i ∈ L , we have either L ⊆ {1, . . . , 4} with M = 8 or
L ⊆ {5, . . . , 10} with M = 12. If L ⊆ {1, . . . , 4}, q = M(τ − π1) = 3. So, we
must have L = {2, 3, 4}. However, l j > m( j) = j + 1 implies that the choice
of L is not viable. If L ⊆ {5, . . . , 10}, q = M(τ − π1) = 4.5, which is not an
integer. So, there is no valid L satisfying those conditions.

(iii) Corollary 3 could fail to provide any inequalities other than strengthened star
inequalities. Consider an example with n = 8, π1 = · · · = π3 = τ/3, and
π4 = · · · = π8 = τ/5 where τ = 0.5. Since we need to have ai = 1∀i ∈ L ,
we have either L ⊆ {1, . . . , 3} with M = 6 or L ⊆ {4, . . . , 8} with M = 10.
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Suppose m < ν = 3. To have that q = μ − ∑m
i=1 ai is an integer, we can

only set L ⊆ {1, . . . , 3} with M = 6. If m = 1 or 2, it is easy to check that
m( j) = j + m, which implies that a viable choice of L with l j > m( j) does
not exist. So, m = ν, i.e., the only set of inequalities Corollary 3 implies is the
strengthened star inequalities.

(iv) Comparing to Corollary 3, we mention that Theorem 1 has no such limitations
but includes it as a special case. Therefore, Theorem 1 generalizes one of the
main theorems in [1]. Note also that Corollary 3 does not imply Corollary 2
because q = 1

πl1
(τ −∑m

i=1 πi ) might not be an integer.

Proof Note that ∀ j ∈ [1, q], l j > m( j) implies l j ≥ m + s j+1, and

s j = m( j − 1) − m + 1 = argmax
s

{
m+s∑

i=1

ai −
m∑

i=1

ai ≤ j − 1

}
+ 1

= argmin
s

{
m+s∑

i=1

ai −
m∑

i=1

ai > j − 1

}
.

For any j ∈ [1, q], we have
m+s j∑

i=1

πi +
q∑

i= j

πki = 1

M

⎛

⎝
m+s j∑

i=1

ai +
q∑

i= j

aki

⎞

⎠

= 1

M

⎛

⎝
m+s j∑

i=1

ai + q − j + 1

⎞

⎠

= 1

M

⎛

⎝
m+s j∑

i=1

ai −
m∑

i=1

ai + μ − j + 1

⎞

⎠

>
1

M
(Mτ) > τ (18)

where (18) holds because ai = 1∀i ∈ L . By Theorem 1, the inequality (1) is valid for
K. We have

μ = q +
m∑

i=1

ai =
∑

i∈L
ai +

m∑

i=1

ai ≥
∑

i∈L
ai + a j ∀ j ∈ [1, n]/L , (19)

⇒ τ ≥
∑

i∈L
πi + π j ∀ j ∈ [1, n]\L , (20)

⇒ τ ≥
∑

i∈L
πi + π j ∀ j ∈ [1, n]\(T ∪ L), (21)

where (20) is obtained fromdividing (19) byM . Note thatCorollary 3 followsTheorem
1 by imposing more restricted requirements on parameters other than T . Actually,
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according to Theorem 1, set T is an arbitrary subset of [1,m]. Since j ∈ [1, n]\(T ∪L)

implies j ∈ [1, n]\L obviously, we have (21), i.e., (17), holds. Thus, Theorem 2
implies that (5) is facet-defining. ��

3 Strong inequalities derived from lifting

In Sect. 2, although a large number facet-defining inequalities subsuming those iden-
tified in [1,22,29] are proposed forK, they are not sufficient to define its convex hull.
For instance, we observe that the following inequalities are facet-defining for the set
in Example 1, which, nevertheless, cannot be derived based on Theorem 1.

1

3
z1 − 1

3
z2 + z3 + z4 + z5 + z7 + z8 + z9 ≤ 4 + 1

3
(y − 40) + 8

3
(1 − z10)

1

3
z1 − 1

3
z2 + z3 + z4 + z5 + z6 + z7 + z9 ≤ 4 + 1

3
(y − 40) + 8

3
(1 − z10)

1

3
z1 − 1

3
z2 + z3 + z4 + z6 + z7 + z8 + z9 ≤ 4 + 1

3
(y − 40) + 8

3
(1 − z5).

(22)

Indeed, as pointed out by Abdi and Fukasawa [1], set K has abundant polyhedral
structure and many of its valid inequalities are related to 0–1 knapsack polyhedron.
They further presented a characterization of all valid inequalities of K. Yet, from our
understanding, such result does not have explicit representation for implementation,
unless a general purpose solver is called for separation. To advance our understanding
on K as well as our solution capacity for chance-constrained problem, we directly
make use of the cover inequality of 0–1 knapsack polyhedron and develop lifting
techniques with consideration of mixing inequalities to derive valid inequalities. As
demonstrated at the end of this section, inequalities in (22) can be simply obtained
using this approach. We mention that, the family of inequalities obtained through this
approach is, to the best of our knowledge, the first type that has a different structure
from those of all star inequality based ones, including those in [1,22,29], as well as
ours presented in Sect. 2.

For m ∈ [1, ν], let N0 = [1,m − 1] and N1 = {l1, . . . , lq} ⊆ [ν + 2, n] with
cardinality q such that

m∑

i=1

πi +
∑

i∈N1

πi ≤ τ and
m+1∑

i=1

πi +
∑

i∈N1

πi > τ. (23)

We consider a restricted 0–1 knapsack polytope S(N0, N1), where

S(N0, N1) =
{
z ∈ {0, 1}n :

n∑

i=1

πi zi ≤ τ, zi = 0 ∀i ∈ N0 and zi = 1 ∀i ∈ N1

}
.
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Let τ ′ = τ −∑
i∈N1

πi . Then, for set N̂ = [1, n]\(N0 ∪ N1), we assume that a cover
C is available with respect to τ ′ and a lifted cover inequality (LCI) is derived as the
following ∑

i∈E
αi zi ≤ |C| − 1 (24)

with αi > 0 ∀i ∈ E ⊆ N̂ and αi = 0 ∀i ∈ N̂ \ E .
We then define the following function with set W ⊆ E and scalar β ≤ ∑m

i=1 πi .

G(W, β) =max
∑

i∈W
αi zi

s.t.
∑

i∈W
πi zi ≤ τ ′ − β, zi ∈ {0, 1} ∀i ∈ W.

The functionG iswell defined because of (23).Note that the lifting function of (24) can

be defined as |C|−1−G(E, β). Let ρ̄ = G
(
E,
∑m−1

i=1 πi

)
−G

(
E\{m},∑m

i=1 πi
)−

αm , which is nonnegative noting that an optimal solution of G
(
E\{m},∑m

i=1 πi
)
,

together with zm = 1, is just feasible to G
(
E,
∑m−1

i=1 πi

)
.

Theorem 3 Let m ∈ [1, ν] and N1 ⊆ [ν + 2, n]. Suppose a superadditive function
Φ(β) exists and 0 ≤ Φ(β) ≤ |C| − 1−G(E, β). If hm > hm+1 and 0 ≤ ρ ≤ ρ̄, then
the inequality

m−1∑

i=1

φi zi +
∑

i∈E
αi zi ≤ |C| − 1 + ρ

hm − hm+1
(y − h1) (25)

is valid for the set K(N1) = K ∩ {z ∈ {0, 1}n : zi = 1 ∀i ∈ N1}, where

φi = Φ(πi ) + ρ

hm − hm+1
(hi+1 − hi ) ∀i = 1, . . . ,m − 1. (26)

Proof By the definition of K(N1), we can fix zi = 1 ∀i ∈ N1 for the rest of proof.
Note that y ≥ hm+1 in the set K(N1), because of condition (23). Next, we consider
all three situations based on the value of y.

First, if y ≥ h1, we assume that zi = 1∀i ∈ Q ⊆ [1,m − 1] and zi = 0 ∀i ∈
[1,m − 1]\Q for a set Q. Then the knapsack constraint in K(N1) becomes

∑

i∈E
πi zi ≤ τ ′ −

∑

i∈Q
πi
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and we have

m−1∑

i=1

φi zi +
∑

i∈E
αi zi ≤

∑

i∈Q
Φ(πi ) +

∑

i∈E
αi zi

≤ Φ

⎛

⎝
∑

i∈Q
πi

⎞

⎠+
∑

i∈E
αi zi ≤ Φ

⎛

⎝
∑

i∈Q
πi

⎞

⎠+ G

⎛

⎝E,
∑

i∈Q
πi

⎞

⎠ ≤ |C| − 1

≤ |C| − 1 + ρ

hm − hm+1
(y − h1)

where the first inequality holds because φi ≤ Φ(πi ).
Second, if ht−1 > y ≥ ht for some t = 2, . . . ,m.Wemust have zi = 1∀i ∈ [1, t−

1], and also assume that zi = 1∀i ∈ Q ⊆ [t,m − 1] and zi = 0 ∀i ∈ [1,m − 1]\Q
for a set Q. Then the knapsack constraint in K(N1) becomes

∑

i∈E
πi zi ≤ τ ′ −

t−1∑

i=1

πi −
∑

i∈Q
πi

and we get

m−1∑

i=1

φi zi +
∑

i∈E
αi zi =

t−1∑

i=1

φi +
m−1∑

i=t

φi zi +
∑

i∈E
αi zi

≤
t−1∑

i=1

Φ(πi ) + ρ

hm − hm+1
(ht − h1) +

∑

i∈Q
Φ(πi ) +

∑

i∈E
αi zi

≤ Φ

⎛

⎝
t−1∑

i=1

πi +
∑

i∈Q
πi

⎞

⎠+ ρ

hm − hm+1
(ht − h1) +

∑

i∈E
αi zi

≤ Φ

⎛

⎝
t−1∑

i=1

πi +
∑

i∈Q
πi

⎞

⎠+ ρ

hm − hm+1
(ht − h1) + G

⎛

⎝E,

t−1∑

i=1

πi +
∑

i∈Q
πi

⎞

⎠

≤ |C| − 1 + ρ

hm − hm+1
(y − h1).

Otherwise, hm > y ≥ hm+1 and zi = 1∀i ∈ [1,m]. So, we get

m−1∑

i=1

φi zi +
∑

i∈E
αi zi =

m−1∑

i=1

φi + αm +
∑

i∈E\{m}
αi zi

≤
m−1∑

i=1

Φ(πi ) + ρ

hm − hm+1
(hm − h1) + αm +

∑

i∈E\{m}
αi zi
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= Φ

(
m−1∑

i=1

πi

)
+ ρ

hm − hm+1
(hm+1 − h1) + ρ + αm +

∑

i∈E\{m}
αi zi

≤ Φ

(
m−1∑

i=1

πi

)
+ ρ

hm − hm+1
(hm+1 − h1) + G

(
E,

m−1∑

i=1

πi

)

≤ |C| − 1 + ρ

hm − hm+1
(hm+1 − h1)

≤ |C| − 1 + ρ

hm − hm+1
(y − h1) (27)

where the inequality (27) holds because of the definition of G.
With analysis on all three cases, it can be seen that the inequality (25) is valid for

the set K(N1). ��
Remark 3 (i) LCI in (24) can be easily obtained through the sequential lifting algo-

rithm in [46]. Note that αi are positive integers for i ∈ E , and G(E, β) (also the
lifting function |C|−1−G(E, β))will be a staircase function [11]. Then, a dynamic
program algorithm can be used to analytically describe the lifting function, whose
superadditive approximation Φ(β) can be constructed using the approximation
method developed in [12].

(ii) To support our example at the end of this section and to make this paper self-
contained, we next provide a valid superadditive approximation for the lifting
function |C| − 1− G(E, β). Our intention here is for demonstration, rather than
deriving the strongest but complicated ones, i.e., maximal and non-dominated
approximations, which certainly is a future research direction. Assume step
lengths of lifting function are p0, . . . , p|C|−1. We sort them from large to small
to obtain a permutation (pa0 , . . . , pa|C|−1). Then, by [12], the following function
is a valid superadditive approximation.

Φ(β) =

⎧
⎪⎨

⎪⎩

0 if 0 ≤ β < pa0

h if
h−1∑
k=0

pak ≤ β <
h∑

k=0
pak , h = 1, . . . , |C| − 1.

Note that when ρ̄ = ρ = 0, (25) reduces to an LCI of 0–1 knapsack set S(∅, N1).
Then performing exact lifting with respect to variables fixed at 1 provides us a valid
inequality for both S(∅,∅) and K. It actually corresponds the observation made in
[1] that facet-defining inequalities of S(∅,∅) are also facet-defining for K. To study
more interesting interactions between mixing set and 0–1 knapsack set, we next limit
ourselves to the case that ρ > 0 in Theorem 3 and investigate lifting (25) sequentially
with respect to variables zi ∀i ∈ N1 in the order of {l1, . . . , lq}. Suppose we already
have lifting coefficients for zl1, . . . , zlr−1 such that

m−1∑

i=1

αi zi +
∑

i∈E
αi zi ≤ |C| − 1 + ρ

hm − hm+1
(y − h1) +

r−1∑

j=1

δl j (1 − zl j ) (28)
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is valid for the set K ∩ {
z ∈ {0, 1}n : zi = 1 ∀i ∈ {lr , . . . , lq}

}
, and we are lifting

inequality (28) with respect to variable zlr . By denoting the lifting coefficient as δlr ,
we have

Proposition 3 The lifting coefficient δlr can be defined as

δlr = ρ

hm − hm+1
h1 −

r−1∑

j=1

δl j − (|C| − 1) + max
t∈[1,ηr+1]

{
Δt,r − ρ

hm − hm+1
ht
}

(29)

where

ηr = max
{
j :

j∑

i=1

πi ≤ τ ′ +
r∑

i=1

πli

}

and Δt,r for t ∈ [1, ηr + 1] are arbitrary scalars satisfying

Δt,r ≥
t−1∑

i=1

αi + max
∑

i∈E∪[t,m−1]
αi zi +

r−1∑

j=1

δl j zl j

s.t.
∑

i∈[t,n]−N1

πi zi +
r−1∑

j=1

πl j zl j ≤ τ ′ +
r∑

j=1

πl j −
t−1∑

i=1

πi

zi ∈ {0, 1} ∀i ∈ [t, n]\{lr , . . . , lq}. (30)

Proof To prove that δlr is a valid coefficient by lifting from (28), it is sufficient to
show that

m−1∑

i=1

αi zi +
∑

i∈E
αi zi ≤ |C| − 1 + ρ

hm − hm+1
(y − h1) +

r∑

j=1

δl j (1 − zl j ) (31)

is valid for the set K ∩ {
z ∈ {0, 1}n : zi = 1 ∀i ∈ {lr+1, . . . , lq} and zlr = 0

}
� K′.

Distinct from most literature, our lifting procedure involves a continuous variable y,
which requires special treatments. Based on the definition of ηr , we know that y ≥ hηr .
Since zlr = 0 in K′, from (31), we must have

δlr ≥ max
z∈K′,y≥hηr

m−1∑

i=1

αi zi +
∑

i∈E
αi zi − (|C| − 1)

− ρ

hm − hm+1
(y − h1) −

r−1∑

j=1

δl j (1 − zl j )

= max
t∈[1,ηr ]

max
z∈K′

ht−1>y≥ht

m−1∑

i=1

αi zi +
∑

i∈E
αi zi − (|C| − 1)
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− ρ

hm − hm+1
(y − h1) −

r−1∑

j=1

δl j (1 − zl j )

= max
t∈[1,ηr ]

max
z∈K′

ht−1>y≥ht

t−1∑

i=1

αi +
∑

i∈E∪[t,m−1]
αi zi − (|C| − 1)

− ρ

hm − hm+1
(y − h1) −

r−1∑

j=1

δl j (1 − zl j ) (32)

where we denote h0 as +∞ for simplicity and (32) holds because ht−1 > y ≥ ht
implies z j = 1∀ j ∈ [1, t − 1] ([1, t − 1] = ∅ when t = 1). Recall that we set
αi = 0 ∀i ∈ N̂ − E .

Apparently, (32) holds if we can show

δlr ≥ max
t∈[1,ηr ]

max
z∈K′

ht−1>y≥ht

t−1∑

i=1

αi +
∑

i∈E∪[t,m−1]
αi zi − (|C| − 1)

− ρ

hm − hm+1
(ht − h1) −

r−1∑

j=1

δl j (1 − zl j ) (33)

= max
t∈[1,ηr ]

⎡

⎣

⎛

⎝max
z∈K′

t−1∑

i=1

αi +
∑

i∈E∪[t,m−1]
αi zi +

r−1∑

j=1

δl j zl j

⎞

⎠− ρ

hm − hm+1
ht

⎤

⎦

+ ρ

hm − hm+1
h1 −

r−1∑

j=1

δl j − (|C| − 1) (34)

where (33) implies (32) because of y ≥ ht . Thus the continuous variable y is dropped
from the lifting procedure in (34).

To show that the definition of δlr in (29) satisfies (34), we only need to demonstrate
that

Δt,r ≥ max
z∈K′

t−1∑

i=1

αi +
∑

i∈E∪[t,m−1]
αi zi +

r−1∑

j=1

δl j zl j (35)

Note that K′ (similar to K) includes only a knapsack inequality, which becomes

∑

i∈[t,n]−N1

πi zi +
r−1∑

j=1

πl j zl j ≤ τ ′ +
r∑

j=1

πl j −
t−1∑

i=1

πi

with zi ∈ {0, 1} ∀i ∈ [t, n]\{lr , . . . , lq} in K′ since zi ∀i ∈ {lr+1, . . . , lq} are fixed
to 1 and recall that z j = 1∀ j ∈ [1, t − 1]. Thus, (35) is equivalent to (30) and the
definition of δlr in (29) is valid. ��
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Therefore, by summarizing Theorem 3 together with Proposition 3, we get

Theorem 4 If hm > hm+1, then, for any ρ ≤ ρ, the inequality

m−1∑

i=1

φi zi +
∑

i∈E
αi zi ≤ |C| − 1 + ρ

hm − hm+1
(y − h1) +

q∑

j=1

δl j (1 − zl j ) (36)

is valid forK, where φi ∀i ∈ N0 are defined in (26) and δi ∀i ∈ N1 are given by lifting
procedure in (29).

Remark 4 Given that knapsack cover inequalities have been intensively implemented
in commercial solvers, we point it out that they can be readily strengthened byTheorem
4. Although the computation of (29) is a little bit involved, we can address this issue
by computing LP relaxations of (30) with a simple greedy algorithm.

Example 1 (cont.)We suppose general probabilities as shown previously, where ν = 4.
Let m = 3, N0 = {1, 2} and N1 = {10}. Note that the condition (23) holds. So, we
have set S(N0, N1) that includes a knapsack as follows,

τ

4
z3 + τ

4
z4 + τ

6
z5 + τ

6
z6 + τ

6
z7 + τ

6
z8 + τ

6
z9 ≤ τ − τ

6
.

The set {3, 4, 5, 6, 8} gives a minimal cover for this 0–1 knapsack and we have the
minimal cover inequality

z3 + z4 + z5 + z6 + z8 ≤ 4.

By lifting the cover inequality with respect to variable z9, we have

z3 + z4 + z5 + z6 + z8 + z9 ≤ 4.

For its lifting function, we note that all step lengths are τ
6 . According to the superad-

ditive function presented in Remark 3, that lifting function is naturally superadditive.
Therefore, Theorem 3 gives the following inequality

(
1 + 1

h3 − h4
(h2 − h1)

)
z1 +

(
1 − 1

h3 − h4
(h3 − h2)

)
z2 + z3

+ z4 + z5 + z6 + z8 + z9 ≤ 4 + 1

h3 − h4
(y − h1),

or specifically

1

3
z1 − 1

3
z2 + z3 + z4 + z5 + z6 + z8 + z9 ≤ 4 + 1

3
(y − h1), (37)
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which is valid for the setK∩{z ∈ {0, 1}10 : z10 = 1
}
. Then, by lifting inequality (37)

with respect to z10, we get

Δt1 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 when t = 1

1 when t = 2

1 when t = 3

1 when t = 4
8
3 when t = 5.

So δ1 = 8/3 and we have the valid inequality

1

3
z1 − 1

3
z2 + z3 + z4 + z5 + z6 + z8 + z9 ≤ 4 + 1

3
(y − 40) + 8

3
(1 − z10)

for K, which is the first inequality in the list (22). Similar procedures can produce
other inequalities in the list.

Implementation Becausewe cannot access the cover inequality generating procedure
in commercial solvers, we added (36) into the initial formulation in our numerical
study. Specifically, we let N1 = ∅, i.e., m = ν, cover C be obtained by Algorithm 1
in the following and E be an extended cover of C. Since αi = 1∀i ∈ E , the value
of ρ̄ can be obtained easily and we set ρ = ρ̄. Then the inequalities (36) can be
derived from Theorem 3 for Qr ∀r ∈ [1, d]. Overall, we could include up to d lifting
inequalities into the initial formulation.

Algorithm 1 Find cover C

1: Sort πi ∀i ∈ 1, . . . , n such that π〈1〉 ≤ · · · ≤ π〈n〉
2: C ← ∅
3: for j = 1 to n do
4: if 〈 j〉 ≥ ν then
5: C ← C ∪ {〈 j〉}
6: if

∑
i∈C πi > τ then break

7: for j = 1 to |C| do
8: if

∑
i∈C−{ j} πi > τ then

9: C ← C\{ j}
10: else
11: break

4 Intersection of multiple mixing sets with knapsack

Up to now, we focus on deriving strong valid inequalities for a single mixing set with
a 0–1 knapsack constraint, i.e., K, which, according to Proposition 1, are crucial to
understand the polyhedron Q of CCP. It is clear that such types of inequalities are
not sufficient to describe Q. Hence, in this section, we investigate the intersection of
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multiple mixing sets with knapsack constraint by developing valid inequalities that
explicitly capture their interactions, i.e., valid inequalities with nonzero coefficients
of multiple yr s, where r ∈ [1, d].

Given existing algebraic derivations of valid inequalities forK, one direct approach
to study Q is to aggregate multiple mixing sets (with assigned weights) into a sin-
gle mixing set and derive valid inequalities from that aggregation, which definitely
are valid for Q. Using a numerical example, [22] illustrated that such strategy could
lead to a new valid inequality that cannot be obtained from each individual mixing
set. Nevertheless, observing that there is no systematical study on this approach, it
remains unknown that: (1) how to select appropriate weights to generate a significant
aggregation carrying rich interactive information among mixing sets; and (2) what is
the strength of inequalities obtained from that aggregation with respect to Q. In this
section, instead of aggregating original constraints, we propose a novel blending pro-
cedure that allows us to aggregate derived strong inequalities from individual mixing
sets into a strong one for the polyhedronQ. Moreover, a set of sufficient conditions is
derived, which ensures the resulting blending inequality is facet-defining. It is worth
mentioning that it is the first type of facet-defining inequalities for the intersection of
multiple mixing sets.

Apparently, in the study of Q, it is not valid to assume hr1 ≥ · · · ≥ hrn for all
r ∈ [1, d] without loss of generality. So, we keep subscript r and for each r ∈ [1, d],
we define a 1 − 1 mapping 〈·〉r on [1, n] such that

hr〈1〉r ≥ hr〈2〉r ≥ · · · ≥ hr〈n〉r .

We also use the notation that 〈X〉r = {〈i〉r : ∀i ∈ X} for any set X ⊆ [1, n]. For each
Qr , we define νr such that

νr∑

i=1

π〈i〉r ≤ τ but
νr+1∑

i=1

π〈i〉r > τ.

Note that the value p is independent of index r , since it is based on the monotonic
order of all πi ’s.

Definition 1 Given θ ∈ [1, n], for each r ∈ [1, d], let mr ∈ [1, νr ] and qr ∈ [0, p −
mr ], we define
• a set Tr = {tr1, tr2, . . . , trar } ⊆ {1, . . . ,mr } with tr1 < tr2 < · · · < trar ;
• a set Lr with a permutation ΠLr = {

lr1, lr2, . . . , lr,qr
}
and lr1 = θ ;

• a sequence of integers sr j ∈ [0, νr − mr + 1] ∀ j ∈ [1, q + 1] such that
– Lr ⊆ {mr + sr1 + 1, . . . , n} with lr j ≥ mr + min{sr j + 1, sr, j+1};
– 0 ≤ sr1 ≤ · · · ≤ sqr+1 = νr − mr + 1; and
–

mr+sr j∑

i=1

π〈i〉r +
qr∑

i= j

π〈kri 〉r > τ ∀ j (38)

where {kr1, . . . , krqr } is a permutation of set Lr with π〈kr1〉r ≥ · · · ≥ π〈krqr 〉r ;
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• an expression

Ir = yr +
ar∑

j=1

(hr〈tr j 〉r − hr〈tr, j+1〉r )z〈tr j 〉r +
qr∑

j=1

δr j (1 − z〈lr j 〉r )

where

δr j =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

hr,〈mr+sr1〉r − hr,〈mr+sr2〉r j = 1

max

⎧
⎪⎨

⎪⎩
δr, j−1, hr,〈mr+sr1〉r − hr,〈mr+sr, j+1〉r −

∑

i :i< j and lr i≥mr+min{1+sr j ,sr, j+1}
δri

⎫
⎪⎬

⎪⎭
j ∈ [2, qr ].

When the sets 〈Lr 〉r\{θ} ∀r ∈ [1, d] are mutually disjoint, we define the blending
inequality as

∑

r∈[1,d]

1

δr1
Ir − (1 − zθ ) ≥

∑

r∈[1,d]

1

δr1
hr〈tr1〉r . (39)

Next, we give a necessary condition that the blending inequality is valid for Q.

Theorem 5 The blending inequality is valid for Q if

∑

i∈⋃r∈[1,d]〈[1,mr+sr1]〉r
πi > τ. (40)

Proof Consider a single mixing set Qr for a given r ∈ [1, d]. We can assume
〈i〉r = i ∀i ∈ [1, n] without loss of generality. Thus, the next inequality is exactly the
inequality (5) for Qr

Ir ≥ hr〈tr1〉r . (41)

Since Qr ⊇ Q, the inequality (41) is valid for Q. Next, we show that for some
u ∈ [1, d], Iu − δu1(1 − zθ ) ≥ hu〈tu1〉u is valid for Qu .

Because of the condition (40), we claim that there exists some u ∈ [1, d] such that
yu ≥ hu,mu+su1 . Suppose the claim is not true. Then we have yr < hr,mr+sr1 for all
r ∈ [1, d]. It implies that zi = 1∀i ∈ 〈[1,mr + sr1]〉r , r ∈ [1, d], which violates the
knapsack constraint because of (40).

Then, for that particular u, we assume yu ≥ hu,mu+su1 . Because we are considering
single mixing set, without loss of generality, we can assume 〈i〉u = i ∀i ∈ [1, n] and
write the inequality Iu − δu1(1 − zθ ) ≥ hu〈tu1〉u explicitly as follows,

yu +
au∑

j=1

(hutu j − hutu, j+1)ztu j +
qu∑

j=2

δu j (1 − zlu j ) ≥ hutu1 .
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To simplify the notation, we can drop subscript u and have inequality

y +
a∑

j=1

(ht j − ht j+1)zt j +
q∑

j=2

δ j (1 − zl j ) ≥ ht1 .

Because of the assumption that yu ≥ hu,mu+su1 , we need to show that the above
inequality is valid when y ≥ hm+s1 , which is already proved in the first paragraph of
the proof for Theorem 1. Now, we have Iu − δu1(1 − zθ ) ≥ hu〈tu1〉u is valid for Qu ,
i.e., valid for Q.

Together with (41) for any r ∈ [1, d]\{u}, we get
∑

r∈[1,d]

1

δr1
Ir − (1 − zθ ) =

∑

r∈[1,d]−{u}

1

δr1
Ir + 1

δu1
Iu − (1 − zθ )

≥
∑

r∈[1,d]−{u}

1

δr1
hrtr1 + 1

δu1
hutu1 =

∑

r∈[1,d]

1

δr1
hrtr1 .

Therefore, the blending inequality is valid for Q. ��
When all the scenarios have equal probabilities, the condition that the blending

inequality is valid follows immediately after Theorem 5.

Corollary 4 Suppose all the scenarios have equal probabilities, then the blending
inequality is valid for Q if

∣∣∣∣∣∣

⋃

r∈[1,d]
〈[1,mr + 1]〉r

∣∣∣∣∣∣
> p. (42)

In the next theorem, we show that the blending inequality is facet-defining under
certain conditions.

Theorem 6 Suppose all scenarios have equal probabilities, d = 2 and (42) is
satisfied. The blending inequality is facet-defining for Q if, ∀r ∈ {1, 2}, the sets
〈Tr 〉r , 〈Lr 〉r\{θ} are mutually disjoint, tr1 = 1 and we have

1. 〈1〉1 /∈ 〈[1,m2]〉2⋃〈L2〉2, 〈1〉2 /∈ 〈[1,m1]〉1⋃〈L1〉1;
2. 〈L1〉1\{θ} � 〈[1,m2]〉2, 〈L2〉2\{θ} � 〈[1,m1]〉1.
Proof To show that the blending inequality is facet-defining for conv(Q), we give
n + 2 affinely independent points. The idea is that we can always set yr = hr〈1〉r and
enumerate extreme points as in the proof of Theorem 2 for yr̄ because of condition 1.

First, we let y01 = h1〈1〉1, y02 = h2〈1〉2 , and z0j = 1 if j ∈ 〈L1〉1⋃〈L2〉2. Note that

〈L1〉1 ∪ 〈L2〉2 � 〈L1〉1 ∪ 〈[1,m1]〉1 ∪ {θ} = 〈L1〉1 ∪ 〈[1,m1]〉1. (43)

So, |〈L1〉1⋃〈L2〉2| ≤ |〈L1〉1 ∪ 〈[1,m1]〉1| = p and the point is feasible.
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Next, for each j /∈ 〈T1 ∪ L1〉1⋃〈T2 ∪ L2〉2, we consider the point (y j , z j ) =
(y0, z0+e j ). For each t1 j ∈ {t11, . . . , t1a1}, we let yt2 j2 = h2〈1〉2 , y

t1 j
1 = h1t1, j+1 , z

t1 j
i =

1 if i ∈ 〈[1, t1, j+1−1]〉1∪〈L1〉1∪〈L2〉2 and 0 otherwise. The point is feasible because
(43) implies

∣∣〈[1, t1, j+1 − 1]〉1 ∪ 〈L1〉1 ∪ 〈L2〉2
∣∣ ≤ |〈L1〉1 ∪ 〈[1,m1]〉1| = p.

Due to the symmetry, we have similar way to get points for each t2 j ∈ {t21, . . . , t2a2}
by letting y

t1 j
1 = h1〈1〉1 .

Let yl111 = h1〈1〉1, y
l21
2 = hm2+2, z

l21
i = 1 if i ∈ 〈[1,m2 + 1]〉2 and zl21l2i = 1

for i > 1, and 0 otherwise. The point is feasible because of condition 2. For each
j ∈ [2, p − m2] if δ2 j = δ2, j−1, we have

(yl2 j , zl2 j ) = (yl2, j−1 , zl2, j−1 + el2, j−1 − el2 j ),

otherwise we have that y
l1 j
1 = h1〈1〉1, y

l2 j
2 = hm2+1+ j , z

l2 j
i = 1 if i ∈ 〈[1,m + j]〉2

and z
l2 j
l2i

= 1 for i > j , and 0 otherwise. Thus, we get points for each l2 j ∈
{l21, . . . , l2,p−m2}. Due to the symmetry, we can also get points for each l1 j ∈
{l11, . . . , l1,p−m1}.

Note that 〈T1〉1, 〈T2〉1, 〈L1〉1, 〈L2〉2 are mutually disjoint except 〈L1〉1 ∩ 〈L2〉2 =
{θ}. So, we get totally n+2 points on the face defined by blending inequality and they
are affinely independent. ��

We next give a numerical example to illustrate Theorem 6.

Example 2 Let n = 6 and p = 3. Supposewe have equal probabilities for all scenarios
and

(h11, . . . , h16) = (28, 25, 15, 8, 5, 3) and (h21, . . . , h26) = (2, 5, 6, 8, 17, 10)

The inequality (5) implies that

y1 + 3z1 + 10(1 − z3) + 17(1 − z6) ≥ 28 is valid for Q1 with m1 = 1

y2 + 9z5 + 2(1 − z3) ≥ 17 is valid for Q2 with m2 = 2

Let θ = 3. We have

• 〈1〉1 = 1 /∈ {5, 6}⋃{3} = 〈[1,m2]〉2⋃〈L2〉2;
• 〈1〉2 = 5 /∈ {1}⋃{3, 6} = 〈[1,m1]〉1⋃〈L1〉1;
• 〈L1〉1\{θ} = {3, 6}\{3} ⊆ {5, 6} = 〈[1,m2]〉2;
• 〈L2〉2\{θ} = {3}\{3} ⊆ {1} = 〈[1,m1]〉1.

Thus, the conditions in Theorem 6 are satisfied and we have a blending inequality

y1 + 5y2 + 3z1 + 45z5 + 10(1 − z3) + 17(1 − z6) ≥ 113

which is valid and facet-defining for Q.
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Next, we give a special case of Theorem 6 and show how to use it as our separation
algorithm.

Corollary 5 Suppose all scenarios have equal probabilities and d = 2. If L1 = L2 =
{θ} for some θ ∈ [1, n], then the blending inequality is valid and facet-defining forQ
if following conditions hold

• θ ∈ 〈[p + 1, n]〉1⋂〈[p + 1, n]〉2;
• 〈T1〉1 ∩ 〈T2〉2 = ∅;
• 〈1〉1 /∈ 〈[1, p]〉2⋃{θ}; and
• 〈1〉2 /∈ 〈[1, p]〉1⋃{θ}.

Proof Because 〈1〉1 /∈ 〈[1, p]〉2⋃{θ}, condition (42) holds, which implies that the
blending inequality is valid. It is easy to check that all conditions in Theorem 6 are
satisfied. Therefore, the blending inequality is valid and facet-defining for Q. ��

Separation Heuristic First, we collect a set R consisting of pairs (r1, r2)where r1 �=
r2 ∈ [1, d], 〈1〉r1 /∈ 〈[1, p]〉r2 and 〈1〉r2 /∈ 〈[1, p]〉r1 . Suppose z∗ is a fraction solution.
For each pair (r1, r2) ∈ R, let θ = argmaxi {πi : z∗i = 1, i ∈ 〈[p + 1, n]〉r1

⋂〈[p +
1, n]〉r2}. Next, we find the set T1 by solving a shortest path problem from the source
〈1〉r1 to the sink 〈p−1〉r1 on a directed acyclic graph with vertices 〈{1, . . . , p−1}〉r1 ,
edges (〈i〉r1 , 〈 j〉r1), 1 ≤ i < j ≤ p − 1 and associated cost of (h〈i〉r1 − h〈 j〉r1 )z

∗〈i〉r1 .
Finally, the set T2 is obtained by solving another shortest path problem from the source
〈1〉r2 to the sink 〈p − 1〉r2 on a directed acyclic graph with vertices 〈{1, . . . , p −
1}〉r2\〈T1〉r1 , edges (〈i〉r2 , 〈 j〉r2), 1 ≤ i < j ≤ p − 1 but 〈i〉r2 , 〈 j〉r2 /∈ 〈T 〉r1 , and
associated cost of (h〈i〉r2 −h〈 j〉r2 )z

∗〈i〉r2 . Following Corollary 5, all violated inequalities
found by this separation algorithm are facet-defining for Q.

At the end of this section, we adopt an example from [22] to show that our blending
inequalities are stronger than those generated from a single mixing set, which is
obtained by combining original formulation.

Example 3 (Example 2 in [22]) We have the chance-constrained program

min x1 + x2

s.t. P

{
2x1 − x2 ≥ ω1

x1 + 2x2 ≥ ω2

}
≥ 0.6 = 1 − τ

x1, x2 ≥ 0

where ω1 and ω2 are dependent random variables with joint probability density func-
tion given in Table1. The optimal solution is (x, y) = (0.55, 0.35, 0.75, 1.25) with
objective value 0.9.
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Table 1 Joint probability mass function of ω = (ω1, ω2)

Scenario 1 2 3 4 5 6 7 8 9

ω1 0.75 0.5 0.5 0.25 0.25 0.25 0 0 0

ω2 1.25 1.5 1.25 1.75 1.5 1.25 2 1.5 1.25

Probability 0.2 0.14 0.06 0.06 0.06 0.3 0.04 0.04 0.1

For this example, we have τ = 0.4, d = 2, p = 6, ν1 = 3 and ν2 = 5. Let
y1 = 2x1 − x2 and y2 = x1 + 2x2. Then the mixing set reformulation is

y1 + 0.75z1 ≥ 0.75 y2 + 2.00z7 ≥ 2.00

y1 + 0.50z2 ≥ 0.50 y2 + 1.75z4 ≥ 1.75

y1 + 0.50z3 ≥ 0.50 y2 + 1.50z2 ≥ 1.50

y1 + 0.25z4 ≥ 0.25 y2 + 1.50z5 ≥ 1.50

y1 + 0.25z5 ≥ 0.25 y2 + 1.50z8 ≥ 1.50

y1 + 0.25z6 ≥ 0.25 y2 + 1.25z1 ≥ 1.25
...

...
9∑

i=1

πi zi ≤ 0.4 = τ

and the tighter formulation (3) in [29] is

y1 + 0.50z1 ≥ 0.75 y2 + 0.75z7 ≥ 2.00

y1 + 0.25z2 ≥ 0.50 y2 + 0.50z4 ≥ 1.75

y1 + 0.25z3 ≥ 0.50 y2 + 0.25z2 ≥ 1.50

y1 ≥ 0.25 y2 + 0.25z5 ≥ 1.50

y2 + 0.25z8 ≥ 1.50
... y2 ≥ 1.25

...
9∑

i=1

πi zi ≤ 0.4 = τ.

The initial linear programming (LP) relaxation solution by using tight formulation (3)
is

(x, y) = (0.49, 0.38, 0.60, 1.25).

In [22], the author proposed 3 inequalities in the form of (14), which were generated
for y1 and y2, respectively. Then the author combined two mixing sets with y1 and y2
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(with equal weights), and derived a valid inequality y1+ y2 ≥ 2 from that aggregation.
Augmented with those inequalities, the updated LP relaxation has a solution with
optimal (x, y).

For this example, based on our previously presented theorems, we are able to
develop several new facet-defining inequalities. First, we have facet-defining inequal-
ity

y2 + 0.25z2 + 0.25z4 + 0.25z7 ≥ 2 (44)

which is a strengthened star inequality in [29] and also a special case of inequality
(5). Then, we have another facet-defining inequality

z2 + z4 + z6 ≤ 2 + 4(y1 − 0.75) + (1 − z7) (45)

which is derived from lifting by fixing z7 = 1 and lettingm = 2. Note that, with these
choices, we have a minimal cover inequality

z2 + z4 + z6 ≤ 2.

From Theorem 3, we can easily calculate ρ = 1 and Φ(π1) = Φ(0.2) = 1. So we
have

z2 + z4 + z6 ≤ 2 + 4(y1 − 0.75)

which is valid when z7 = 1. By performing lifting procedure on variable z7, we
can derive inequality (45). Indeed, by summing (44) and 0.25×(45), we have a valid
inequality y1 + y2 ≥ 2 + 0.25z6. Because it dominates the inequality y1 + y2 ≥ 2,
the latter one clearly is not facet-defining. Instead, the blending inequality proposed
in this section gives a facet-defining inequality

y1 + y2 + 0.25z1 + 0.5z7 + 0.25(1 − z9) ≥ 2.75 (46)

by blending following two inequalities as in (39)

y1 + 0.25z1 + 0.25(1 − z9) ≥ 0.75 (47)

y2 + 0.5z7 + 0.25(1 − z9) ≥ 2 (48)

where (47) and (48) are facet-defining inequalities for two individual mixing sets
respectively, and can be derived by (5).

5 Computational study

In order to investigate the computational advantages of the proposed strong inequal-
ities, we implement them as cutting planes within professional solver CPLEX’s
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branch-and-bound process, i.e., an implementation of of branch-and-cut (B&C) algo-
rithm. In particular, the CALLABLE libraries of CPLEX 12.6.1 are called for adding
user defined cuts and a single thread with traditional branch-and-bound search method
is adopted. All tests are subject to 3600 CPU seconds time limit. If no optimal solution
is obtained within the time limit, then the optimality gap will be reported. Because it
is often the case that a very large number of user defined cuts will be generated, we
activate the purging option (which is the default option as well) in CPLEX to allow
ineffective ones to be removed by CPLEX. The complete computational study is car-
ried out on the Texas Tech High Performance Computing Center’s node based system,
where each node contains two Westmere 2.8GHz 6-core processors with 24 GB main
memory [19].

Our numerical study data sets (available at [51]) consist of a set of difficult and
large instances of the static probabilistic lot-sizing (SPLS) model as described in [48]
with d periods, n scenarios and service level 1 − τ . Let xt be the decision variable of
ordering quantity in period t, Ii t be the inventory level at the end of period t under
scenario i , andwt be binary variables to indicate order setup. The natural deterministic
equivalent of SPLS model is

max
d∑

t=1

n∑

i=1

πi (ct xt + hit Ii t + gtwt )

s.t. yt =
t∑

j=1

x j t ∈ {1, . . . , d}

yt ≥ Dit (1 − zi ) t ∈ {1, . . . , d}, i ∈ {1, . . . , n}
Ii t ≥ yt − Dit t ∈ {1, . . . , d}, i ∈ {1, . . . , n}
0 ≤ xt ≤ Mtwt t ∈ {1, . . . , d}
n∑

i=1

πi zi ≤ τ

Ii,t ≥ 0, zi , wt ∈ {0, 1} t ∈ {1, . . . , d}, i ∈ {1, . . . , n}

where Dit is the cumulative demand until period t under scenario i, ct and gt are
the variable and fixed costs of ordering, hit is the variable holding cost in period t
under scenario i , and Mt is the order capacity in period t . As mentioned in Sect. 1,
this natural formulation can be easily strengthened by using (3), which has a tighter
LP relaxation and less constraints. Hence, the reformulation (3) is applied on those
instances to build our testing platform for both CPLEX and B&C algorithms.

We assume that the demands are i.i.d. across periods. In any time period, the
demand follows a normal distribution with mean 100 and standard deviation 40,
i.e., Normal(100, 40), and we set demand to 0 if a negative number is generated
(denoted as Normal+(100,40)). Then, the cumulative demand Di1 is generated from
Normal+(100,40), and Dit is generated by adding an i.i.d. random number from
Normal+(100,40) to Di,t−1 ∀t ∈ [2, d]. The variable production costs are generated
from a uniform distribution between 1 and 5 and inventory holding costs are gener-
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ated from an uniform distribution between 1 and 2. The fixed costs follow a discrete
uniform distribution between 900 and 1000. We set the order capacity Mt = 500.

5.1 Computational results of instances with general probabilities

To generate instances with scenarios of general probabilities, we first assign every
scenario a random number from a discrete uniform distribution between 1 and 99, and
then normalize those numbers by dividing their total summation to obtain probabilities
for all scenarios. By varying values of d, n and τ, 45 instances with different sizes are
produced. Those random instances are tested by our implementations of the following
computing methods. Observing that adding cuts at every node of branch-and-bound
tree is rather ineffective, our implementations mainly focus on cut generation at the
root node.

• CPX indicates the default CPLEX with traditional B&C in single thread mode;
• Mix indicates a B&C algorithm by adding strengthened star inequalities [3,29] at
every node of branch-and-bound tree;

• MixR indicates a B&C algorithm by adding strengthened star inequalities [3,29]
at the root node only;

• TL indicates a B&C algorithm by adding TL inequalities (using the separation
algorithm described in [22]) at every node of the B&C tree;

• TLR indicates a B&C algorithm by adding TL inequalities (using the separation
algorithm described in [22]) at the root node only;

• LF indicates applying the algorithm MixR on an updated formulation with lifting
cover inequalities (see Sect. 3 for implementation details);

• GMixR indicates a B&C algorithm by adding new inequalities (5) (using the
separation algorithm presented in Sect. 2) at the root node only.

The detailed computational results of each algorithm are presented in two tables,
i.e., Tables5 and 6, due to space limitation. To evaluate the overall performance of
those algorithms and gain a general understanding, a summary is presented in Table2,
where we report the number of instances solved to the optimality (column Solved), the
number of unsolved instances (column Unsolved), the average gap before termination
among unsolved instances (column Avg. Gap (Unsolved)), and the average number
of user defined cuts added before termination but after CPLEX purging (column Avg.
Cuts). Given that B&C algorithms have different behaviors and almost all of them
(excluding TL) are actually able to solve instances that are solved by CPLEX, we
benchmark their performances against CPLEX on those instances to have a fair com-
parison basis. Hence, in Table2, we also report algorithms’ data on those instances,
specifically, the average CPU seconds (column Avg. Time (CPX Solved)), the ratio of
the average CPU seconds between CPLEX and a B&C algorithm (column CPX Time

B&C Time ),
the average number of nodes explored (column Avg. Nodes (CPX Solved)), and the
ratio of the average number of nodes explored between CPLEX and a B&C algorithm
(column CPX Nodes

B&C Nodes ).
Based on Table2, a few non-trivial observations can be made. First, as mentioned,

adding cuts at every node of the whole branch-and-bound tree is not an effective
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strategy. As demonstrated inMix and TL, an extremely large number of cuts are gen-
erated, which drastically increase the complexity of SPLS formulation. Such situation
is especially severe in TL. Note that SPLS only has d + 1 non-sparse constraints, i.e.,
the first set of constraints and the 0–1 knapsack. Nevertheless, the average number of
generated TL inequalities, which are non-sparse, is almost twenty-seven thousands.
Comparing to the performances of their two corresponding variants, i.e., MixR and
TLR, we can clearly see the benefits of adding cuts in a less frequent fashion.

Second, among all implemented computing methods, our GMixR and LF pro-
vide the most significant computational improvements and perform much better than
CPLEX. Note that only 22 of 45 instances can be solved to optimality by CPLEX,
whileLF andGMixR can solve 39 and 40 instances, respectively. In addition,GMixR
and LF, on instances solved by CPLEX, have the best computation speed (are faster
by 2.5 and 3.3 times, respectively) with the smaller numbers of branch-and-bound
nodes (roughly 28 and 24% of CPLEX nodes, respectively). Also, for those that can-
not be solved to optimality, the average gaps before termination in GMixR and LF
are the least ones. For the efficacy of GMixR, we believe that it is mainly due to the
fact that the separation algorithm based on Corollary 2 leads to facet-defining cuts for
the polyhedron of CCP. As the strengthened star inequalities are also facet-defining
cuts for the polyhedron of CCP, results of GMixR and MixR show that they are all
practically useful and the former has more computationally advantages. For LF, we
think the lifted inequalities largely capture the non-trivial interactions between mixing
set and the 0–1 knapsack. Their strong performance suggests that a more sophisticated
separation algorithm is worth further exploring.

Third, although TL inequalities are theoretically valid and strong, they are less
effective than the strengthened star inequalities in computation. One explanation is
that, as shown in Corollary 1 and Example 1, TL inequalities are usually weak for CCP
instances with general probabilities. Another interesting observation is that TL has
much more user defined cuts than Mix, while the root node implementation variant
TLR has much less cuts than the corresponding MixR. One possibility is that we
allow CPLEX to purge user defined cuts if they are deemed weak, CPLEXmay decide
to purge a high proportion of TL cuts and start branching very soon.

5.2 Computational results of instances with equal probabilities

In Sect. 4, we develop a new technique to blend strong inequalities (5) derived from
individual mixing sets into a strong one for CCP. In particular, we show that blending
inequality could be facet-defining when scenarios have equal probabilities. In order to
computationally evaluate this new type of inequalities, we generate 45 instances with
equal probabilities (by simply setting scenario probabilities as 1

n ) and compute them
by the following computing methods.

• CPX indicates the default CPLEX with transitional branch-and-bound in single
thread mode;

• Mix indicates a branch-and-cut algorithm by adding strengthened star inequalities
at every node of branch-and-bound tree;
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• Mix100 indicates a branch-and-cut algorithmby adding strengthened star inequal-
ities at every 100 nodes of branch-and-bound tree;

• BL indicates a branch-and-cut algorithm by adding blending inequalities at the
root node and strengthened star inequalities at every 100 nodes of the branch-and-
bound tree.

TheMix100 is implemented due to the observation made from Table2 that adding
cuts at every node of the whole branch-and-bound tree is not effective. With some
preliminary tests, we find that adding strengthened star inequalities at every 100 nodes
of branch-and-bound tree gives the best result in general. Then, on top of theMix100,
we develop BL algorithm by adding blending inequalities at the root node. Similar to
the organization of Sect. 5.1, the detailed computational results are presented in Table
7 and a summary is presented in Table3.

Based on the performances of CPLEX andMix in Tables2 and 3, we first note that
the instances with equal probabilities are not necessarily easier than the instances with
general probabilities. It is different from the observation made in [29], but reasonable
since p ≥ ν (or p ≥ νr ∀r ∈ [1, d]) and hence the instances with equal probabilities
usually have much larger problem size in the reformulation (3).

Regarding the effectiveness of B&C methods, we observe that BL completely
dominates other algorithms by optimally computing almost all instances (44 out of 45
instances) and demonstrating much fast computational speed (as 4.5 × CPLEX). We
believe that such strong performance shows that the generated blending cuts, which
capture the interactive information among mixing sets and are facet-defining for CCP,
have a great computational advantage over existing strong inequalities derived from
single mixing sets. The ratio of the average number of nodes between CPLEX and BL
supports our understanding. Note that BL generally has 13% less user defined cuts
than Mix100 while it explores 23% less nodes in the branch-and-bound trees than
Mix100.

6 Conclusion and future research

In this paper, we study the polyhedral structure of chance-constrained program with
stochastic right-hand side, which is computationally very challenging. We develop
three families of strong inequalities fromdifferent perspectives. Following the tradition
that considers a single mixing set with a 0–1 knapsack, our first family of inequalities
of that set dominates or subsumes all explicit inequalities described in [1,22,29]. Our
second family of inequalities builds a direct link between a single mixing set and 0–1
knapsack through lifting and superadditive lifting with respect to cover inequality. In
order to analyzing the interactions among multiple mixing sets, we design a novel
technique to integrate facet-defining inequalities derived from individual mixing sets,
which leads to our third family of inequalities, i.e., blending inequalities. Finally, we
implement all three families of strong inequalities and test them on random instances
of static probabilistic lot-sizing problem. Through benchmarking with a professional
MIP solver and existing cutting plane methods, we observe significant computational
improvements can be achieved by all those proposed inequalities, especially by the
newly developed blending inequalities.
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There are three directions, we believe, that deserve further studies. The first one is
to develop more general and effective separation algorithms. Note that cutting planes
generated in our current numerical study is just a small proportion of our first family
of strong inequalities. So, more powerful separation algorithms will allow us to make
good use of that large family of strong inequalities. Another one is to develop stronger
superadditive lifting functions and better lifting techniques. For example, our current
superadditive approximation scheme is adopted from existing research, which proba-
bly is not the best one. A deeper study on the lifting function should help us develop
tighter valid approximations for stronger cutting planes. Finally, given the outstand-
ing computational performance of blending inequalities, this technique should be fully
investigated and we will extend it for other similar models.

Appendix 1: Notations

Table4 presents our key notations, their definitions and the first usage place. Note that
many notations are reused in Sect. 4 (especially in Definition 1) with an additional
subscript r because we extend our results in Sect. 2 to multiple mixing sets.

Table 4 Key notations used in this paper

Type Notation Definition Introduced in

Parameters n Number of scenarios (dimension of z
variable)

Sect. 1

d Dimension of y variable (number of periods
in lot-sizing model)

Sect. 1

hri , hi Right hand side of chance constraints with
r ∈ [1, d], i ∈ [1, n]

Sect. 1

m Dimension of x variable Sect. 1

τ The threshold probability for chance
constraint

Sect. 1

ωi A scenario in a set of finitely many
realizations with i ∈ [1, n]

Sect. 1

πi The probability associated with ωi Sect. 1

ν

ν∑

i=1

πi ≤ τ and
ν+1∑

i=1

πi > τ with

h1 ≥ h2 ≥ · · · ≥ hn

Sect. 1

p
p∑

i=1

π〈i〉 ≤ τ and
p+1∑

i=1

π〈i〉 > τ where

{〈1〉, 〈2〉, . . . , 〈n〉} is a permutation of the
set [1, n] with π〈1〉 ≤ π〈2〉 ≤ · · · ≤ π〈n〉.
Note p = ν in the case of equal
probabilities

Sect. 1

m An arbitrary scalar in [1, ν] Theorems 1 and 3

a Cardinality of set T Theorem 1

q Cardinality of set L Theorem 1
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Table 4 continued

Type Notation Definition Introduced in

δ∗ Coefficient of the term (1 − z∗) for proposed
inequalities

Theorems 1 and 3

M, ai , μ,m Only used in Corollary 3 to match notations
in Theorem 14 in [1]

Corollary 3

ρ A scalar related to lifting coefficient Theorem 3

ρ̄ A upper bound of obtaining feasible ρ Sect. 3

αi Coefficients of an arbitrary lifted cover
inequality for i ∈ E

Sect. 3

τ ′ = τ −∑
i∈N1

πi updated threshold
probability after z variables fixed

Sect. 3

Polyhedron K,Qr A mixing set with 0–10–1 knapsack Sect. 1

Q Polyhedron of CCP Sect. 1

S(N0, N1) Projected set for lifting procedure Sect. 3

K(N1) Projected set for lifting procedure Theorem 3

Index sets T = {t1, . . . , ta} ⊆ [1,m] Theorem 1

L ⊆ [1, n]\T Theorem 1

{s1, . . . , sq+1} A sequence of integers such that
0 ≤ s1 ≤ · · · ≤ sq ≤ sq+1 = ν − m + 1

Theorem 1

ΠL = {l1, . . . , lq }, an arbitrary permutation of
set L with l j ≥ m + min{1 + s j , s j+1}

Theorem 1

{k1, . . . , kq } A permutation of set L based on probability
πki

Theorem 1

N0, N1 The set of z variables fixed at 0 or 1
respectively

Sect. 3

N̂ = [1, n]\(N0 ∪ N1) Sect. 3

C Cover Sect. 3

E Variables zi ∀i ∈ E have nonzero coefficient
in a lifted cover inequality

Sect. 3

Lifting functions G(W, β) Where W ⊆ E and β ≤ ∑m
i=1 πi Sect. 3

Φ(β) For lifting coefficients φi Theorem 3

Appendix 2:Computational tables for instanceswith general probabilities

The column d × n × τ indicates that the instance has d periods and n scenarios
with service level 1 − τ . For a given combination of d, n, τ , we solve 5 instances.
In all tables, we compare the percentage of root node gap (column %RootGap),
the number of branch-and-cut tree nodes explored (column Nodes), and CPU time
in second on solving the instance to the optimality (column Time (%Endgap)). We
indicate the instance that could not be solved within one hour with T(gap), where
gap, in parenthesis, is the percentage gap between the best lower bound and the best
integer solution found in the search tree when the time limit is reached. We also report
the number of user cuts added (column Cuts) after purging. Due to the page size
restriction, we partition the results into two tables as in Tables5 and 6.
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Appendix 3: Computational tables for instances with equal probabilities

We keep the same table format as in “Appendix 1”. For a given combination of d, n, τ ,
we solve 5 instances. Results are presented in Table7.
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