
Math. Program., Ser. A (2017) 166:1–17
DOI 10.1007/s10107-016-1102-7

FULL LENGTH PAPER

An unbounded Sum-of-Squares hierarchy integrality
gap for a polynomially solvable problem

Adam Kurpisz1 · Samuli Leppänen1 ·
Monaldo Mastrolilli1

Received: 27 November 2015 / Accepted: 15 December 2016 / Published online: 4 January 2017
© Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2017

Abstract In this paper we study the complexity of the Min-sum single machine
scheduling problem under algorithms from the Sum-of-Squares/Lasserre hierarchy.
We prove the first lower bound for this model by showing that the integrality gap
is unbounded at level �(

√
n) even for a variant of the problem that is solvable in

O(n log n) time by the Moore–Hodgson algorithm, namely Min-number of late jobs.
We consider a natural formulation that incorporates the objective function as a con-
straint and prove the result by partially diagonalizing the matrix associated with the
relaxation and exploiting this characterization. To the best of our knowledge, our result
provides the first example where the Sum-of-Squares hierarchy exhibits an unbounded
integrality gap for a polynomially solvable problem after non-constant number of lev-
els.
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2 A. Kurpisz et al.

1 Introduction

The Min-sum single machine scheduling problem (often denoted 1||∑ f j ) is
defined by a set of n jobs to be scheduled on a single machine. Each job has an
integral processing time, and there is a monotone function f j (C j ) specifying the cost
incurred when the job j is completed at a particular time C j ; the goal is to minimize∑

f j (C j ). A natural special case of this problem is given by the weighted version
of the Min- number of late jobs (denoted 1||∑w jU j ), with f j (C j ) = w j if
C j > d j , and 0 otherwise, where w j ≥ 0, d j > 0 are the specific cost and due date of
the job j respectively. This problem is known to be NP-complete [12]. However, the
unweighted version, where w j = 1 for every j , can be solved in O(n log n) time by
the Moore–Hodgson algorithm [21].

The first constant approximation algorithm for 1||∑ f j was obtained by Bansal
and Pruhs [1], who considered an even more general scheduling problem. Their 16-
approximation has been recently improved to 4 + ε byMestre andVerschae [20] based
on a primal-dual algorithm by Cheung and Shmoys [6].

A particular difficulty in approximating this problem lies in the fact that the ratio
(integrality gap) between the optimal IP solution to the optimal solution of “natural”
LPs can be arbitrarily large, since the Min- knapsack LP is a common special case.
Thus, in [1,6] the authors strengthen natural time-indexed LP relaxations by adding
(exponentially many) Knapsack-Cover (KC) inequalities introduced by Wolsey [29]
(see also [4]) that have been proved to be a useful tool to address capacitated covering
problems.

One source of improvements could be the use of semidefinite relaxations such as
the powerful Sum-of-Squares (SoS)/Lasserre hierarchy [16,23,27] (we defer the defi-
nition and related results to Sect. 2). Indeed, it is known [11] that forMin- knapsack
the SoS hierarchy relaxation, when the objective function is incorporated as a con-
straint in the natural LP, reduces the gap to (1 + ε) at level O(1/ε), for any ε > 0
(in fact, the same holds even for the weaker Sherali–Adams hierarchy). In light of
this observation, it is therefore tempting to understand whether the SoS hierarchy can
replace the use of exponentially many KC inequalities to get a better approximation
for the problem 1||∑ f j .1

In this paper we study the complexity of theMin- sum single machine schedul-
ing problem under algorithms from the SoS hierarchy. Our contribution is two-fold.
We provide a novel technique that is interesting on its own for analysing integrality
gaps for the SoS hierarchy. We then use this technique to prove the first SoS hierar-
chy lower bound for this scheduling problem by showing that the integrality gap is
unbounded at level �(

√
n) even for the unweighted Min- number of late jobs

problem, a variant of the problem that admits an O(n log n) time algorithm [21]. This
result is one of the few known examples where the SoS hierarchy requires a non-
constant number of levels to exactly solve a problem that admits a polynomial time
algorithm, and to the best of our knowledge the only one where integrality gap remains

1 Note that in order to claim that one can optimize over the SoS hierarchy in polynomial time, one needs
to assume that the number of constraints of the starting LP is polynomial in the number of variables (see
the discussion in [17]).
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An unbounded Sum-of-Squares hierarchy integrality gap... 3

unbounded. Another well-known such example is theMatching problem, where the
SoS hierarchy is known to exhibit a vanishing gap at�(n) levels (Corollary 2 in [10]).

Our lower bound (Theorem 4.1) is obtained by formulating the hierarchy as a
sum of (exponentially many) rank-one matrices (Sect. 2) and, for every constraint,
by choosing a dedicated collection (Sect. 3) of rank-one matrices whose sum can
be shown to be positive definite by diagonalizing it; it is then sufficient to compare
its smallest eigenvalue to the smallest eigenvalue of the remaining part of the sum
of the rank-one matrices. Furthermore, we complement the result by proving a tight
characterization of the considered instance (Theorem 4.2) by analysing the sign of the
Rayleigh quotient.

Finally, we show a different use of the above technique to prove that the class of
unconstrained k (≤ n) degree 0/1 n-variate polynomial optimization problems cannot
be solved exactly within k − 1 levels of the SoS hierarchy relaxation. We do this
by exhibiting for each k a 0/1 polynomial optimization problem of degree k with
an integrality gap. We include this proof in the paper to demonstrate the developed
technique, although the result has been recently improved. Indeed, after submitting the
present paper for reviewing, the performance of the SoS hierarchy on unconstrained
0/1 polynomial optimization problems has been fully characterized in this sense.
Sakaue et al. [25] showed that � n+k−1

2 � levels are enough to exactly solve polynomial
optimization problems of degree k in n variables, generalizing the result of Fawzi et
al. [8]. Moreover, using a technique different from the current work, the authors of
this paper proved that the bound of Sakaue et al. is tight for even k and odd n [13].

2 The Sum-of-Squares hierarchy

In this section we provide a formal definition of the SoS hierarchy [16] together with
a brief overview of the literature. We refer the reader to “Appendix” for an extended
discussion of the form of the hierarchy used here.

Related work. The SoS hierarchy [16,23,27] is a systematic procedure to strengthen
a relaxation for an optimization problem by constructing a sequence of increasingly
tight formulations, obtained by adding additional variables and positive semidefinite-
ness (PSD) constraints. The hierarchy is parameterized by its level t , such that the
formulation gets tighter as t increases, and the size of the resulting semidefinite pro-
gram ismnO(t) where n is the number of variables and m the number of constraints in
the original problem. This approach captures the convex relaxations used in the best
available approximation algorithms for a wide variety of optimization problems. Due
to space restrictions, we refer the reader to [7,17,22,24] and the references therein.

The limitations of the SoShierarchy have also been studied, but notmany techniques
for proving lower bounds are known.Most of the known lower bounds for the hierarchy
originated in the works of Grigoriev [9,10] (also independently rediscovered later by
Schoenebeck [26]). In [10] it is shown that random 3XOR or 3SAT instances with n
variables cannot be solved by even�(n) rounds of SoS hierarchy. Lower bounds, such
as those of [3,28] rely on [10,26] plus gadget reductions. For different techniques to
obtain lower bounds see [2,5,14,15,18,19].
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4 A. Kurpisz et al.

Notation and the formal definition. In the context of this paper, it is convenient to define
the hierarchy in an equivalent form that follows easily from “standard” definitions (see
e.g. [17]) after a change of variables.

For the applications that we have in mind, we restrict our discussion to opti-
mization problems with n 0/1-variables and m linear constraints. We denote K =
{x ∈ R

n | g�(x) ≥ 0,∀� ∈ [m]} to be the feasible set of the linear relaxation. We are
interested in approximating the convex hull of the integral points in K . We refer to
the �-th linear constraint evaluated at the set I ⊆ N (xi = 1 for i ∈ I , and xi = 0 for
i /∈ I ) as g�(xI ). Let N = {1, ..., n}. For each integral solution xI , where I ⊆ N , in
the SoS hierarchy defined below there is a variable yNI that can be interpreted as the
“relaxed” indicator variable for the solution xI .

For a set I ⊆ N and fixed integer t , let Pt (I ) denote the set of the subsets of I of
size at most t . Define d-zeta vectors: ZI ∈ R

Pd (N ) for every I ⊆ N , such that for

each |J | ≤ d, [ZI ]J =
{
1, if J ⊆ I
0, otherwise

. In order to keep the notation simple, we do

not emphasize the parameter d as the dimension of the vectors should be clear from
the context (we can think of the parameter d as either t or t + 1).

Definition 2.1 The SoS hierarchy relaxation at level t for the set K , denoted by
SoSt (K ), is given by the set of values yNI ∈ R for I ⊆ N that satisfy

∑

I⊆N

yNI = 1, (1)

∑

I⊆N

yNI Z I Z


I � 0, where ZI ∈ R

Pt+1(N ) (2)

∑

I⊆N

g�(xI )y
N
I Z I Z



I � 0, ∀� ∈ [m], where ZI ∈ R

Pt (N ) (3)

Notice that the formulation of the SoS hierarchy given in Definition 2.1 has expo-
nentially many variables yNI , due to the change of variables. This is not a problem
for our purposes, since we are interested in showing an integrality gap rather than
solving an optimization problem. Furthermore, it is straightforward to see that SoS
hierarchy is a relaxation of the integral polytope. Indeed consider any feasible integral
solution xI ∈ K and set yNI = 1 and the other variables to zero. This solution clearly
satisfies Condition (1), Condition (2) because the rank one matrix ZI Z


I is PSD, and
Condition (3) since xI ∈ K .

3 Partial diagonalization

In this section we describe how to partially diagonalize the matrices associated to SoS
hierarchy. This will be used in the proofs of Theorems 4.1 and 4.2.

Below we denote by wN
I either yNI or yNI g�(xI ). The following simple observation

describes a congruent transformation (∼=) to obtain a partial diagonalization of the
matrices used in Definition 2.1. We will use this partial diagonalization in our bound
derivation.
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An unbounded Sum-of-Squares hierarchy integrality gap... 5

Lemma 3.1 Let C ⊆ Pn(N ) be a collection of size |Pd(N )| (where d is either t or
t + 1). If C is such that the matrix Z with columns Z I for every I ∈ C is invertible,
then

∑

I⊆N

wN
I Z I Z



I

∼= D +
∑

I∈Pn(N )\C
wN

I Z−1ZI (Z
−1ZI )




where D is a diagonal matrix with entries wN
I , for I ∈ C.

Proof It is sufficient to note that
∑

I∈C wN
I Z I Z


I = ZDZ
. 
�
Since congruent transformations are known to preserve the sign of the eigenvalues,

the above lemma in principle gives us a technique to check whether or not (2) and (3)
are satisfied: show that the sum of the smallest diagonal element of D and the smallest
eigenvalue of the matrix

∑
I∈Pn(N )\C wN

I Z−1ZI (Z−1ZI )

 is non-negative. In what

follows we introduce a method to select the collection C such that the matrix Z is
invertible.

Let Zd denote the matrix with columns [Zd ]I = ZI indexed by sets I ⊆ N of size
atmost d. Thematrix Zd is invertible as it is upper triangular with ones on the diagonal.

It is straightforward to check that the inverse Z−1
d is given by

[
Z−1
d

]

I,J
= (−1)|J\I |

if I ⊆ J and 0 otherwise (see e.g. [17]).
In Lemma 3.1 we require a collection C such that the matrix, whose columns are

the zeta vectors corresponding to elements in C, is invertible. The above indicates
that if we take C to be the set of subsets of N with size less or equal to d, then this
requirement is satisfied. We can think that the matrix Zd contains as columns the
zeta vectors corresponding to the set ∅ and all the symmetric differences of the set ∅
with sets of size at most d. The observation allows us to generalize this notion: fix a
set S ⊆ N , and define C to contain all the sets S ⊕ I for |I | ≤ d (here ⊕ denotes
the symmetric difference). More formally, consider the following |Pd(N )|× |Pd(N )|
matrix Zd,S , whose generic entry I, J ⊆ Pd(N ) is

[
Zd,S

]
I,J =

{
1 if I ⊆ J ⊕ S,

0 otherwise.
(4)

Note that Zd,∅ = Zd . In order to apply Lemma 3.1, we show that Zd,S is invertible.

Lemma 3.2 Let Ad,S be a |Pd(N )| × |Pd(N )| matrix defined as

[
Ad,S

]
I,K =

{
(−1)|K∩S| if (I\S) ⊆ K ⊆ I
0 otherwise.

(5)

Then Z−1
d,S = Z−1

d Ad,S.

Proof The claim follows by proving that Zd = Ad,S Zd,S . The generic entry (I, J ) of
Ad,S Zd,S is
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6 A. Kurpisz et al.

[
Ad,S Zd,S

]
I,J =

∑

K∈Pd (N )

[Ad,S]I,K [Zd,S]K ,J =
∑

K∈Pd (N )
(I\S)⊆K⊆I
K⊆J⊕S

(−1)|K∩S|

We first note that unless I ⊆ J ∪ S, the sum is over an empty set, and thus zero.
Indeed, assume there exists an element a ∈ I, a /∈ J ∪ S. Then, since I\S ⊆ K , we
require that a ∈ K . On the other hand, K ⊆ S ⊕ J implies that a ∈ S ⊕ J , which
contradicts the assumption on a, and hence no such K exists.

Since K ⊆ (J⊕S)∩I , and I\S ⊆ J ,we canpartition K in the form K = (I\S)∪H ,
where H is any subset of I ∩ (S\J ). Indeed, it is easy to see that such a K satisfies the
conditions of the sum, and that no other choice is possible. Then, the sum becomes of
the form

[
Ad,S Zd,S

]
I,J =

m∑

i=0

(−1)i
(
m

i

)

where m is the size of the set S ∩ (I\J ). Therefore, the sum equals 1 if m = 0 and 0
otherwise. It follows that

[
Ad,S Zd,S

]
I,J = 1 if and only if I ⊆ J , and 0 otherwise. 
�

We also give a closed form of the elements of the matrix Z−1
d,S .

Lemma 3.3 For each I, J ⊆ Pd(N ) the generic entry (I, J ) of Z−1
d,S is

[
Z−1
d,S

]

I,J
= (−1)|J∩S|+|J\I |

{
(−1)d−|I∪J |(|S\(I∪J )|−1

d−|I∩J |
)
, if I\S ⊆ J

0, otherwise.
(6)

In particular

∣
∣
∣
∣

[
Z−1
d,S

]

I,J

∣
∣
∣
∣ ≤ |S|O(d).

Proof From Lemma 3.2 we know that Z−1
d,S = Z−1

d Ad,S , thus

[
Z−1
d,S

]

I,J
=

∑

K∈Pd (N )

[Z−1
d ]I,K [Ad,S]K ,J =

∑

K∈Pd (N )
I⊆K

K\S⊆J⊆K

(−1)|K\I |+|J∩S|

First, note that K\S ⊆ J implies that K ⊆ J ∪ S. This with I ⊆ K implies in
particular that the sum has no terms unless I ⊆ J ∪ S. Next, we see that I ∪ J ⊆ K ,
so we can write K = I ∪ J ∪ H for some set H disjoint from I ∪ J . Using the first
observation we get that H ⊆ S\(I ∪ J ). Since K ∈ Pd(N ), we thus require that
H ∈ Pd−|I∪J |(S\(I ∪ J )). The above sum then becomes

[
Z−1
d,S

]

I,J
= (−1)|J∩S|+|J\I | ∑

H∈Pd−|I∪J |(S\(I∪J ))

I⊆J∪S

(−1)|H |
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An unbounded Sum-of-Squares hierarchy integrality gap... 7

This simplifies to

[
Z−1
d,S

]

I,J
= (−1)|J∩S|+|J\I |

{
(−1)d−|I∪J |(|S\(I∪J )|−1

d−|I∩J |
)
, if I ⊆ J ∪ S

0, otherwise


�

4 A lower bound for Min-number of late jobs

We consider the single machine scheduling problem to minimize the number of late
jobs: we are given a set of n jobs, each with a processing time p j > 0, and a due
date d j > 0. We have to sequence the jobs on a single machine such that no two jobs
overlap. For each job j that is not completed by its due date, we pay the cost w j .

4.1 The starting linear program

Our result is based on the following “natural” linear programming (LP) relaxation
that is a special case of the LPs used in [1,6] (therefore our gap result also holds if
we apply those LP formulations). For each job we introduce a variable x j ∈ [0, 1]
with the intended (integral) meaning that x j = 1 if and only if the job j completes
after its deadline. Then, for any time s ∈ {d1, . . . , dn}, the sum of the processing
times of the jobs with deadlines less than s, and that complete before s, must satisfy∑

j :d j≤s(1−x j )p j ≤ s. The latter constraint can be rewritten as a capacitated covering
constraint,

∑
j :d j≤t x j p j ≥ Dt , where Ds := ∑

j :d j≤s p j − s represents the demand
at time s. The goal is to minimize

∑
j x j .

The feasible sets of our LP relaxation and the relaxation used in [1,6] both consist of
convex combinations of fractional schedules that have no idle periods and that process
at most one job at a time. However, the LP of [1,6] uses time-indexed variables z jt
with the intended (integral) meaning that z jt = 1 if and only if the job j completes
at time t . This allows the formulation to model more general problems than just the
Min- number of late jobs. In the case of Min- number of late jobs one can
show that a feasible solution to the formulation used in this paper can be mapped to
a feasible solution to the time-indexed formulation by assigning x j = ∑

t>d j
z j,t and

resolving the ambiguity in the zi j variables by ordering according to the deadlines.

4.2 The integrality gap instance

Consider the following instancewithn = m2 jobs of unit costs. The jobs are partitioned
into m blocks N1, N2, . . . , Nm , each with m jobs. For i ∈ [m], the jobs belonging
to block Ni have the same processing time Pi , for P > 1, and the same deadline
di = m

∑i
j=1 P

j − ∑i
j=1 P

j−1. Then the demand at time di is Di = ∑i
j=1 P

j−1.
For any t ≥ 0, let T be the smallest value that makes SoSt (LP(T )) feasible, where
LP(T ) is defined as follows for the variables xi j ∈ [0, 1] for the j-th job from the
i-th block, where i, j ∈ [m]:
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8 A. Kurpisz et al.

LP(T )

m∑

i=1

m∑

j=1

xi j ≤ T, (7a)

�∑

i=1

m∑

j=1

xi j · Pi ≥ D�, for � ∈ [m] (7b)

Note that, for any feasible integral solution for LP(T ), the smallest T (i.e. the optimal
integral value) can be obtained by selecting one job for each block, so the smallest T
for integral solutions is m = √

n. The integrality gap of SoSt (LP(T )) (or LP(T ))
is defined as the ratio between

√
n (i.e. the optimal integral value) and the smallest

T that makes SoSt (LP(T )) (or LP(T )) feasible. It is easy to check that LP(T ) has
an integrality gap P for any P ≥ 1: for T = √

n/P , a feasible fractional solution for
LP(T ) exists by setting xi j = 1√

nP
.

4.3 Proof of integrality gap for SoSt(LP(T ))

Theorem 4.1 For any k ≥ 1 and n such that t =
√
n

2k − 1
2 ∈ N, the following solution

is feasible for SoSt (LP(
√
n/k))

yNI =
{

α, ∀I ∈ P2t+1(N )

0, otherwise
(8)

where α > 0 is such that
∑

I⊆N yNI = 1 and the parameter P is large enough.

Proof We need to show that the solution (8) satisifies the feasibility conditions (1)–
(2) for the variables and the condition (3) for every constraint. The condition (1) is
satisfied by definition of the solution, and (2) becomes a sum of positive semidefinite
matrices ZI Z


I with non-negative weights yNI , so it is satisfied as well.
It remains to show that (3) is satisfied for both (7a) and (7b). Consider the Eq. (7a)

first, and let g(xI ) = T − ∑
i, j xi j be the value of the constraint when the decision

variables are xi j = 1 whenever (i, j) ∈ I , and 0 otherwise.2 Now for every I ⊆ N , it
holds g(xI )yNI ≥ 0, as we have yNI = 0 for every I containing more than 2t + 1 =√

n
k = T elements. Hence the sum in (3) is again a sum of positive semidefinite
matrices with non-negative weights, and the condition is satisfied.

Finally, consider the �-th constraint of the form (7b), and let g�(xI ) =∑l
i=1

∑m
j=1 xi j · Pi − D�. In order to prove that (3) is satisfied, we apply Lemma 3.1

with the following collection of subsets of N : C = {I ⊕ S | I ⊆ [m], |I | ≤ t}, where
we take S = {(�, j) | j ∈ [t + 1]}. Now, S is a set of t + 1 jobs from the �th block.
Since any J ∈ C is of the form J = I ⊕ S where |I | ≤ t , we have that J always
contains at least one job from the block �. Therefore, any allocation xJ with J ∈ C
satisfies the constraint g�.

2 Strictly speaking I ⊆ N is a set of numbers, so we associate to each pair i, j a number via the one-to-
one mapping (i − 1)m + j . Hence, to keep the notation simple, we here understand (i, j) ∈ I to mean
(i − 1)m + j ∈ I .
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An unbounded Sum-of-Squares hierarchy integrality gap... 9

By Lemma 3.2, the matrix Zt,S is invertible and by Lemma 3.1 we have for (3)
that

∑
I⊆N g�(xI )yNI Z I Z


I
∼= D +∑

I∈Pn(N )\C g�(xI )yNI Z−1
t,S Z I (Z

−1
t,S Z I )


, where

D is a diagonal matrix with elements g�(xI )yNI for each I ∈ C. We prove that the
latter is positive semidefinite by analysing its smallest eigenvalue λmin. Writing RI =
Z−1
t,S Z I (Z

−1
t,S Z I )


, we have by Weyl’s inequality

λmin

⎛

⎝D +
∑

I∈Pn(N )\C
g�(xI )y

N
I RI

⎞

⎠ ≥ λmin (D)+λmin

⎛

⎝
∑

I∈Pn(N )\C
g�(xI )y

N
I RI

⎞

⎠

(9)

Since D is a diagonal matrix with entries g�(xI )yNI for I ∈ C, and for every I ∈ C the

constraint g�(xI ) is satisfied, we have λmin(D) ≥ α
(
P� − D�

) = α
(
P� − P�−1

P−1

)
.

On the other hand for every I ⊆ N , g�(xI ) ≥ −∑�
j=1 P

j−1 = − P�−1
P−1 .

The nonzero eigenvalue of the rank one matrix RI is
(
Z−1
t,S Z I

)

Z−1
t,S Z I ≤

|Pt (N )|3t O(t) = nO(
√
n). This is because by Lemma 3.3, for every I, J ∈ Pt (N ),∣

∣
∣[Z−1

t,S ]I,J
∣
∣
∣ ≤ t O(t), for |S| = t + 1. Furthermore, [ZI ]J ∈ {0, 1} and thus Z−1

t,S Z I is

a vector of dimension |Pt (N )| with entries bounded by |Pt (N )|t O(t). This in turn

gives that
(
Z−1
t,S Z I

)

Z−1
t,S Z I ≤ |Pt (N )|3t O(t) which, by the fact that t ≤ √

n,

|Pt (N )| ≤ nO(
√
n), is equal to nO(

√
n). Finally, since 1/2n ≤ α ≤ 1, for P ≥ 2 we get

λmin

⎛

⎝D +
∑

I∈Pn(N )\C
g�(xI )y

N
I RI

⎞

⎠ ≥ α

(

Pk − Pk − 1

P − 1

)

− α
Pk − 1

P − 1
2nnO(

√
n)

≥ αPk − α
Pk − 1

P − 1

(
1 + 2nnO(

√
n)
)

≥ Pk

2n
− Pk

P/2
2n+1nO(

√
n) ≥ Pk−1

(
P

2n
− 2n+2nO(

√
n)

)

which is non-negative for P = nC(
√
n), for C being a sufficiently large constant. 
�

Note that the level t cannot be easily increased in the above proof to meet for
example the level of Theorem 4.2. This is because we require that the solutions yNI
in (8) and (10) assign zero for sets of size greater than

√
n/k. Requiring this ensures

that satisfying (3) for (7a) can be done easily (second paragraph of the above proof).
Moreover, if the level t is increased in Theorem 4.1 without changing the solution (8),
our constructionwould yield subsets of size greater than

√
n/k in C. This in turnwould

produce zero diagonal entries in the diagonal matrix (9) implying λmin(D) = 0.
Theorem 4.1 states that the SoS hierarchy has an arbitrarily large integrality gap

k even at level t =
√
n

2k − 1
2 . In the following we provide a tight analysis char-

acterization for this instance, namely we prove that the SoS hierarchy admits an

123



10 A. Kurpisz et al.

arbitrarily large gap k even at level t =
√
n
k − 1. Note that at the next level, namely

t + 1 = √
n/k, SoSt+1(LP(

√
n/k)) has no feasible solution for k > 1, since the

constraint (7b) implies that any feasible solution for SoSt+1(LP(
√
n/k)) has yNI = 0

for all |I | >
√
n/k. This in turn implies, with Lemma 3.1 for C = Pt (N ), that∑

I⊆N g�(xI )yNI Z I Z

I

∼= D�, where D� is a diagonal matrix with entries g�(xI )yNI ,
for every |I | ≤ t , there exists � such that g�(xI ) < 0 which, in any feasible solution
implies yNI = 0, contradicting (1). Therefore, our analysis gives a tight characteriza-
tion of the integrality gap threshold phenomenon. The claimed tight bound is obtained
by utilizing amore involved analysis of the sign of the Rayleigh quotient for the almost
diagonal matrix characterization of the SoS hierarchy.

Theorem 4.2 For any k ≥ 1 and n such that t =
√
n
k − 1 ∈ N, the following solution

is feasible for SoSt (LP(
√
n/k))

yNI =
{

α, ∀I ∈ Pt+1(N )

0, otherwise
(10)

where α > 0 is such that
∑

I⊆N yNI = 1 and the parameter P is large enough.

Proof The solution satisfies the conditions (1), (2) and (3) for (7a) by the same
argument as in the proof of Theorem 4.1.

We prove that the solution satisfies the condition (3) for any constraint � of the
form (7b). Since M � 0 if and only if v
Mv ≥ 0, for every unit vector v, by
Lemma 3.1 (for the collection C = Pt (N )) and using the solution (10) we can
transform (3) to the following semi-infinite system of linear inequalities (recall that
g�(xI ) = ∑l

i=1
∑m

j=1 xi j · Pi − D�):

∑

I∈Pt (N )

g�(xI )v
2
I+

∑

J⊆N :|J |=t+1

⎛

⎜
⎜
⎝

∑

I∈Pt (N )
I⊂J

vI (−1)|I |

⎞

⎟
⎟
⎠

2

g�(xJ ) ≥ 0, ∀v ∈ S
|Pt (N )|−1

(11)
where S|Pt (N )|−1 is the set of unit vectors in R|Pt (N )|. Now consider the �-th covering
constraint g�(x) ≥ 0 of the form (7b) and the corresponding semi-infinite set of
linear inequalities (11). Then consider the following partition of Pt+1(N ): A = {I ∈
Pt+1(N ) : I ∩ N� �= ∅} and B = {I ∈ Pt+1(N ) : I ∩ N� = ∅}.

Note that A corresponds to the assignments that are guaranteed to satisfy the con-

straint �. More precisely, for S ∈ A we have g�(xS) ≥
(
P� −∑�

j=1 P
j−1

)
=

P�
(
1 − P�−1

P�(P−1)

)
≥ P�

(
1 − 1

P−1

)
, and for S ∈ B we have g�(xS) ≥

−∑�
j=1 P

j−1 ≥ P�
(
− 1

P−1

)
. Since P > 0, by scaling g�(x) ≥ 0 [see (7b)] by

P�, we will assume, w.l.o.g., that

g�(xS) ≥
{
1 − 1

P−1 , if S ∈ A
− 1

P−1 , if S ∈ B
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An unbounded Sum-of-Squares hierarchy integrality gap... 11

Note that, since v is a unit vector, we have v2I ≤ 1, and for any J ⊆ N such that

|J | = t+1, the coefficient of g�(xJ ) is bounded by

(
∑

I∈Pt (N )
I⊂J

vI (−1)|I |
)2

≤ 2O(t).

For all unit vectors v, let β denote the smallest possible total sum of the negative terms

in (11) (these are those related to g�(xI ) for I ∈ B).Note that,β ≥ −|B|2O(t)

P = − nO(t)

P ,
since |B| ≤ Pt (N ) ≤ nO(t).

In the following,we show that, for sufficiently large P , the claimed solution satisfies
(11). We prove this by contradiction.

Assume that there exists a unit vector v such that (11) is not satisfied by the solution.
We start by observing that under the previous assumption the following holds v2I =
nO(t)

P for all I ∈ A ∩ Pt (N ). If not, we would have an I ∈ A ∩ Pt (N ) such that
v2I g�(xI ) ≥ −β contradicting the assumption that (11) is not satisfied. We claim that
under the contradiction assumption, the previous bound on v2I can be generalized to

v2I = nO(t2)

P for any I ∈ Pt (N ). Then, by choosing P such that v2I < 1/n2t , for
I ∈ Pt (N ), we have

∑
I∈Pt (N ) v2I < 1, which contradicts the assumption that v is a

unit vector.
The claim follows by showing that ∀I ∈ B ∩ Pt (N ) it holds v2I ≤ nO(t2)/P . The

proof is by induction on the size of I for any I ∈ B ∩ Pt (N ).
Consider the empty set, since∅ ∈ B∩Pt (N ).We show that v2∅ = nO(t)/P .With this

aim, consider any J ⊆ N� with |J | = t+1.Note that J ∈ A, so g�(xJ ) ≥ 1−1/(P−1)

and its coefficient u2J =
(
∑

I∈Pt (N )
I⊂J

vI (−1)|I |
)2

is the square of the sum of v∅ and

other terms vI , all with I ∈ A∩Pt (N ). Ignoring all the other positive terms apart from
the one corresponding to J in (11), evaluating the sum of all the negative terms as β

and using a loose bound g�(xJ ) ≥ 1/2 for large P , we obtain the following bound b0

|v∅| ≤ √−2β +
∑

∅�=I⊂J

|vI | ≤ b0 = O

(
√−β + 2O(t) n

O(t)

√
P

)

= nO(t)

√
P

(12)

which implies that v2∅ = nO(t)/P .
Similarly as before, consider any singleton set {i} with {i} ∈ B ∩ Pt (N ) and any

J ⊆ N� with |J | = t . Note that J ∈ A, g�(xJ ) ≥ 1 − 1/(P − 1) and its coefficient

u2J =
(
∑

I∈Pt (N )
I⊂J∪{i}

vI (−1)|I |
)2

is the square of the sum of v{i}, v∅ and other terms vI ,

with I ⊆ J and therefore v2I = nO(t)

P . Moreover, again note that u2J is smaller than
−β [otherwise (11) is satisfied]. Therefore, for any singleton set {i} ∈ B ∩Pt (N ), we
have that |v{i}| ≤ |v∅| + √−2β +∑

∅�=I⊂J |vI | ≤ 2b0.
Generalizing by induction, consider any set S ∈ B ∩ Pt (N ) and any J ⊆ N� with

|J | = t + 1 − |S|. We claim that |v|S|| ≤ b|S| where

b|S| = b0 +
|S|−1∑

i=0

nibi (13)
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12 A. Kurpisz et al.

This follows by induction hypothesis and because again g�(J ∪ S)uJ∪S ≤ −β and

therefore, |vS| ≤ ∑|S|−1
i=0

(
∑

I∈B|I |=i
|vI |

)

+ √−2β +∑
∅�=I⊂J |vI |.

From (13), for any S ∈ B ∩ Pt (N ), we have that |vS| is bounded by bt = (nt−1 +
1)bt−1 = nO(t2)b0 = nO(t2)√

P
. 
�

5 Application in 0/1 polynomial optimization

In this section we use the developed technique to prove an integrality gap result for
the unconstrained 0/1 n-variate polynomial optimization problem. We start with the
following definition of SoS hierarchy.

Definition 5.1 The SoS hierarchy at level t for the unconstrained 0/1 optimization
problem with the objective function f (x) : {0, 1}n → R, denoted by SoSt ( f (x)), is
given by the feasible points yNI for each I ⊆ N of the following semidefinite program

∑

I⊆N

yNI = 1, (14)

∑

I⊆N

yNI Z I Z


I � 0, where ZI ∈ R

Pt (N ) (15)

Furthermore, the objective function of SoSt ( f (x)) is
∑

I⊆N f (xI )yNI .

The main result of this section is the following theorem.

Theorem 5.1 The class of unconstrained k–degree 0/1 n-variate polynomial opti-
mization problems cannot be solved exactly with a k − 1 level of SoS hierarchy.

Proof For every k ≤ n we give an unconstrained n-variate polynomial optimization
problem with an objective function f (x) of degree k such that SoSk−1( f (x)) has
an integrality gap. Consider a maximization problem with the following objective
function over {0, 1}n : f (x) = ∑

∅�=I∈Pk (N )

(n−|I |
k−|I |

)
(−1)|I |+1∏

i∈I xi . We prove that
the following solution is super-optimal and feasible for SoSk−1( f (x))

yNI =
⎧
⎨

⎩

α, ∀I ∈ N , |I | ≥ n − k + 1
−ε, I = ∅
0, otherwise

(16)

where α > 0 is such that
∑

∅�=I⊆N yNI = 1 + ε and ε is small enough.
Using a counting argument it is easy to check that the objective function is equal

to

f (x) =
∑

K⊆N
|K |=k

∑

J⊆K
J �=∅

(−1)|J |+1
∏

j∈J

x j
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Now, consider any 0/1 solution. For every K ⊆ N of size |K | = k, a partial summation∑
∅�=J⊆K (−1)|J |+1∏

j∈J x j takes value one, if for at least one j ∈ K , x j = 1, and
zero otherwise. Therefore, whenever n − k + 1 coordinates of x are set to 1, any set
K of size k has at least one j ∈ K such that x j = 1. Thus the integral optimum is

(n
k

)

for any solution x ∈ {0, 1}n such that at least n − k + 1 coordinates are set to 1.
On the other hand the objective value for the SoS solution (16) is given by the

formula

∑

I⊆N

f (xI )y
N
I =

∑

I⊆N
|I |≥n−k+1

f (xI )y
N
I =

(
n

k

) ∑

I⊆N
|I |≥n−k+1

yNI = (1 + ε)

(
n

k

)

where the first equality comes from the fact that f (x∅) = 0 and the second from the
fact that f (xI ) evaluates to

(n
k

)
for any I ⊆ N , |I | ≥ n − k + 1.

Finally, we prove that the solution (16) is feasible for SoSk−1( f (x)). The con-
straint (14) is satisfied by definition. In order to prove that the constraint (15) is
satisfied, we apply Lemma 3.1 with the collection C = {I ⊕ S | I ∈ Pk−1(N )} of
subsets of N , for S = N , and get that

D +
∑

I∈Pn(N )\C
yNI Z−1

t,S Z I (Z
−1
t,S Z I )


 = D − εZ−1
t,S Z∅(Z−1

t,S Z∅)
 (17)

where D is a diagonal matrix with diagonal entires equal to α ≥ 1/2n . Since
the nonzero eigenvalue of the rank one matrix Z−1

t,S Z∅(Z−1
t,S Z∅)
 is equal to

(
Z−1
t,S Z∅

)

Z−1
t,S Z∅ ≤ |Pt (N )|t2t = nO(t), one can choose ε = 1/nCt , for suffi-

ciently large C , such that by the Weyl’s inequality we have that the matrix in (17) is
PSD. 
�

6 Discussion

In this paper we introduced a technique for analysing the positive semidefiniteness of
the matrices in the Sum-of-Squares hierarchy. The technique works by partially diag-
onalizing such a matrix in order to allow a diagonal dominance argument. The key
reason the partial diagonalization can be done is that the moment matrices of the hier-
archy admit a well-understood decomposition into a sum of rank-one matrices ZI Z


I
defined by zeta vectors ZI for every I ⊆ N . The partial diagonalization is possible
whenever we choose a collection of rank-one matrices such that the corresponding
zeta vectors form a basis, and the resulting diagonal matrix consists of the coefficients
of the chosen rank-one matrices in the decomposition. We introduced a natural way
of choosing such a basis of zeta vectors, but it is not clear if our choice is the only
interesting way of doing this.

A question for further study is thus if it is possible to find partial diagonalizations
in other systematic ways of choosing the basis of zeta vectors. This is particularly
interesting, since one drawback of our technique is that of diagonal dominance: apply-
ing the technique requires that we are in a situation where the negative terms in the
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14 A. Kurpisz et al.

decomposition of the moment matrix are small compared to the positive terms that are
selected to be the diagonal entries. Hence in order to prove positive semidefiniteness,
we would like to be able to select only “large” positive values on the diagonal. How
the large values are distributed among the coefficients of the decomposition is entirely
dependent on the constraints of the problem and the solution to the hierarchy.

Finally, another natural point of interest is to find further integrality gap construc-
tions where the technique developed in this paper can be applied.

Acknowledgements The authors would like to express their gratitude to anonymous reviewers for several
comments that greatly improved the presentation of this paper.

7 Appendix: Derivation of the SoS hierarchy

In this section we derive the formulation of the SoS hierarchy used in Sect. 2 and
give the missing proofs. In our notation we follow the survey by Rothvoß [24] and
we use several known derivations [17]. Let y ∈ R

P2t+2(N ) be a vector indexed by
the subsets of {1, ..., n} of size at most 2t + 2, and Mt+1(y) the moment matrix of
the variables y defined by [Mt+1(y)]I,J = yI∪J , for I, J subsets of N such that
|I |, |J | ≤ t + 1. Similarly, for every constraint � define the moment matrix of the
constraint � as [M�

t (y)]I,J = ∑n
i=1 A�i yI∪J∪{i} − b�yI∪J , where |I |, |J | ≤ t .

Definition 7.1 The SoS hierarchy at level t for the set K , denoted by SoSt (K ), is
given by the following semidefinite program

y∅ = 1, (18)

Mt+1(y) � 0, (19)

M�
t (y) � 0 for every constraint � (20)

Change of variables. A point in the SoS hierarchy is given by a vector y ∈ R
P2t+2(N ),

as seen in Definition 7.1. We now change this variable to a vector that is indexed by all
the subsets of N in order to obtain a useful decomposition of the moment matrix as a
sum of rank-one matrices. Here it is not necessary to distinguish between the moment
matrix of the variables and constraints, hence in what follows we denote a generic
vector by w ∈ R

P2d (N ), where d is either t or t + 1.

Definition 7.2 Letw ∈ R
P2d (N ). For every I ∈ P2d(N ), define a vectorwN ∈ R

Pn(N )

such that

wI =
∑

I⊆H⊆N

wN
H

To simplify the notation, we note that the moment matrix of the variables is struc-
turally similar to the moment matrix of the constraints: if z ∈ R

P2t (N ) is a vector such
that zI = ∑n

i=1 A�i yI∪{i} − b�yI for some �, then [M�
t (y)]I,J = zI∪J . Hence, the

following lemma holds for the moment matrix of variables and constraints.
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Lemma 7.1 Let w ∈ R
P2d (N ), and M ∈ R

Pd (N )×Pd (N ) such that MI,J = wI∪J .
Then

M =
∑

H⊆N

wN
H ZH Z


H

Proof Since MI,J = wI∪J , we have by the change of variables that

[M]I,J =
∑

I∪J⊆H⊆N

wN
H =

∑

H⊆N

χI∪J (H)wN
H

where χI∪J (H) is the 0-1 indicator function such that χI (H) = 1 if and only if
I ∪ J ⊆ H . On the other hand, [ZH Z


H ]I,J = [ZH ]I [ZH ]J = 1 if I ∪ J ⊆ H , and 0
otherwise. Therefore [ZH Z


H ]I,J = χI∪J (H). 
�

Lemma 7.2 Given y ∈ R
P2t+2(N ), for the vector zI = ∑n

i=1 A�i yI∪{i} − b�yI we
have

zNI = g�(xI )y
N
I (21)

where g�(xI ) = ∑n
i=1 A�i xi − b� is a linear function corresponding to the constraint

�, evaluated at xI such that xi = 1 if i ∈ I and xi = 0 otherwise.

Proof We need to show that this choice of zNI yields zI = ∑
I⊆H⊆N zNH . Substituting

(21) yields

∑

I⊆H⊆N

zNH =
∑

I⊆H⊆N

g�(xH )yNH =
∑

I⊆H⊆N

[
n∑

i=1

A�i xi − b�

]

x=xH

yNH

=
∑

I⊆H⊆N

(
n∑

i=1

[A�i xi ]x=xH yNH − b�y
N
H

)

=
∑

I⊆H⊆N

n∑

i=1

[A�i xi ]x=xH yNH − b�yI

Here the term [A�i xi ]x=xH yNH is A�i yNH if i ∈ H and 0 otherwise. Taking this into
account and changing the order of the sums, the above becomes

n∑

i=1

∑

I∪{i}⊆H⊆N

A�i y
N
H − b�yI =

n∑

i=1

A�i yI∪{i} − b�yI

which proves the claim. 
�

The above discussion justifies Definition 2.1.
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