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Abstract Recently, Bandeira (C R Math, 2015) introduced a new type of algorithm
(the so-called probably certifiably correct algorithm) that combines fast solvers with
the optimality certificates provided by convex relaxations. In this paper, we devise
such an algorithm for the problem of k-means clustering. First, we prove that Peng
andWei’s semidefinite relaxation of k-means Peng andWei (SIAMJOptim18(1):186–
205, 2007) is tight with high probability under a distribution of planted clusters called
the stochastic ball model. Our proof follows from a new dual certificate for integral
solutions of this semidefinite program. Next, we show how to test the optimality of a
proposed k-means solution using this dual certificate in quasilinear time. Finally, we
analyze a version of spectral clustering from Peng andWei (SIAM JOptim 18(1):186–
205, 2007) that is designed to solve k-means in the case of two clusters. In particular,
we show that this quasilinear-time method typically recovers planted clusters under
the stochastic ball model.

Mathematics Subject Classification 65-XX · 90-XX · 46N10 · 68Q87

1 Introduction

Clustering is a central problem in unsupervised machine learning. It consists of par-
titioning a given finite set {xi }Ni=1 of points in R

m into k subsets such that some
dissimilarity function is minimized. Usually, this function is chosen ad hoc with an
application in mind. A particularly common choice is the k-means objective:
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minimize
k∑

t=1

∑

i∈At

∥∥∥∥xi − 1

|At |
∑

j∈At

x j

∥∥∥∥
2

2

subject to A1 � · · · � Ak = {1, . . . , N } (1)

Problem (1) is NP-hard in general [14]. A popular heuristic for solving k-means is
Lloyd’s algorithm, also knownas the k-means algorithm [16]. This algorithmalternates
between calculating centroids of proto-clusters and reassigning points according to the
nearest centroid. In general, Lloyd’s algorithm (and its variants [3,21]) may converge
to local minima of the k-means objective (e.g., see Sect. 5 of [4]). Furthermore, the
output of Lloyd’s algorithm does not indicate how far it is from optimal. Instead, we
seek a new sort of algorithm, recently introduced by Bandeira [5]:

Definition 1 Let P be an optimization problem that depends on some input, and let
D denote a probability distribution over possible inputs. Then a probably certifiably
correct (PCC) algorithm for (P,D) is an algorithm that on input D ∼ D produces a
global optimizer of P with high probability, and furthermore produces a certificate of
having done so.

Most non-convex optimization methods fail to produce a certificate of global opti-
mality. However, if a non-convex problem enjoys a convex relaxation, then solving the
dual of this relaxation will produce a certificate of (approximate) optimality. Along
these lines, the k-means problem enjoys a semidefinite relaxation. To see this, let 1A
denote the indicator function of A ⊆ {1, . . . , N } (i.e. 1A ∈ {0, 1}N with (1A)i = 1 if
and only if i ∈ A), and define the N × N matrix D by Di j := ‖xi − x j‖22. Then taking

X :=
k∑

t=1

1

|At |1At 1
�
At

, (2)

the k-means objective (1) may be expressed as 1
2 Tr(DX). Since X satisfies several

convex constraints, we may relax the region of optimization to produce a convex
program, namely, the Peng–Wei semidefinite relaxation [22] (cf. [6]):

minimize Tr(DX)

subject to Tr(X) = k, X1 = 1, X ≥ 0, X 	 0 (3)

Here, X ≥ 0 means that each entry of X is nonnegative, whereas X 	 0 means that
X is symmetric and positive semidefinite. A similar relaxation for clustering with
regularization appears in [25].

Recently, it was shown that under a certain random data model, this convex relax-
ation is tight with high probability [4], that is, every solution to the relaxed problem
(3) has the form (2), thereby identifying an optimal clustering. As such, in this high-
probability event, onemay solve the dual program to produce a certificate of optimality.
However, semidefinite programming (SDP) solvers are notoriously slow. For exam-
ple, running MATLAB’s built-in implementation of Lloyd’s algorithm on 64 points
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Probably certifiably correct k-means clustering 607

in R
6 will take about 0.001s, whereas a CVX implementation [11] of the dual of (3)

for the same data takes about 20 s. Also, Lloyd’s algorithm scales much better than
SDP solvers, and so one should expect this runtime disparity to only increase with
larger datasets. Overall, while the SDP relaxation theoretically produces a certificate
in polynomial time (e.g., by an interior-point method [20]), it is far too slow to wait
for in practice.

As a fast alternative, Bandeira [5] recently devised a general technique to certify
global optimality. This technique leverages several components simultaneously:

(i) A fast non-convex solver that produces the optimal solution with high probability
(under some reasonable probability distribution of problem instances).

(ii) A convex relaxation that is tight with high probability (under the same distribu-
tion).

(iii) A fast method of computing a certificate of global optimality for the output of
the non-convex solver in (i) by exploiting convex duality with the relaxation in
(ii).

In the context of k-means, one might expect Lloyd’s algorithm and the Peng–Wei
SDP to be suitable choices for (i) and (ii), respectively. For (iii), one might adapt
Bandeira’s original method in [5] based on complementary slackness (see Fig. 1 for an
illustration). In this paper, we provide a theoretical basis for each of these components
in the context of k-means.

y

x

y

x

Fig. 1 (left) Depiction of complementary slackness. The horizontal axis represents a vector space in which
we consider a cone program (e.g., a linear or semidefinite program), and the feasibility region of this
program is highlighted in green. The dual program concerns another vector space, which we represent with
the vertical axis and feasibility region highlighted in red. The downward-sloping line represents all pairs
of points (x, y) that satisfy complementary slackness. Recall that when strong duality is satisfied, we have
that x is primal-optimal and y is dual-optimal if and only if x is primal feasible, y is dual feasible, and
(x, y) satisfy complementary slackness. As such, the intersection between the blue Cartesian product and
the complementary slackness line represents all pairs of optimizers. (right) Bandeira’s probably certifiably
correct technique [5]. Given a purported primal-optimizer x , we first check that x is primal-feasible. Next,
we select y such that (x, y) satisfies complementary slackness. Finally, we check that y is dual-feasible. By
complementary slackness, y is then a dual certificate of x’s optimality in the primal program, which can be
verified by comparing their values (a la strong duality) (color figure online)
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608 T. Iguchi et al.

Table 1 Summary of cluster recovery guarantees under the stochastic ball model

Method Sufficient condition Optimal? References

Thresholding � > 4 Yes (Simple exercise)

k-Medians LP � ≥ 4 No Theorem 2 in [9]

� ≥ 3.75 No Theorem 1 in [19]

� > 2 Yes Theorem 1 in [4]

k-Means LP � > 4 Yes Theorem 9 in [4]

k-Means SDP � > 2
√
2(1 + 1/

√
m) No Theorem 3 in [4]

� > 2 + k2/m No Theorem 9

Spectral k-means � > ��, k = 2 Yes Theorem 14

The second column reports sufficient separation between ball centers in order for the corresponding method
to provably give exact recovery with high probability. The third column reports whether the sufficient
condition on � cannot be improved. Here, �� = ��(D, k) denotes the smallest value for which � > ��

implies that minimizing the k-means objective recovers planted clusters under the (D, γ, n)-stochastic ball

model with probability 1 − e−�D,γ (n)

1.1 Technical background and overview

The first two components of a probably certifiably correct algorithm require non-
convex and convex solvers that perform well under some “reasonable” distribution
of problem instances. In the context of geometric clustering, it has become popu-
lar recently to consider a particular model of data called the stochastic ball model,
introduced in [19]:

Definition 2 ((D, γ, n)-stochastic ball model) Let {γa}ka=1 be ball centers in R
m .

For each a, draw i.i.d. vectors {ra,i }ni=1 from some rotation-invariant distribution D
supported on the unit ball. The points from cluster a are then taken to be xa,i :=
ra,i + γa . We denote � := mina �=b ‖γa − γb‖2.

Table1 summarizes the state of the art for recovery guarantees under the stochastic
ball model. In [19], it was shown that an LP relaxation of k-medians will, with high
probability, recover clusters drawn from the stochastic ballmodel provided the smallest
distance between ball centers is � ≥ 3.75. Note that exact recovery only makes sense
for � > 2 (i.e., when the balls are disjoint). Once � > 4, any two points within a
particular cluster are closer to each other than any two points from different clusters,
and so in this regime, cluster recovery follows from a simple distance thresholding. For
the k-means problem, Awasthi et al. [4] studies the Peng–Wei semidefinite relaxation
and demonstrates exact recovery in the regime � > 2

√
2(1+ 1/

√
m), where m is the

dimension of the Euclidean space.
As indicated in Table1, we also study the Peng–Wei SDP, but our guarantee is

different from [4]. In particular, we demonstrate tightness in the regime� > 2+k2/m,
which is near-optimal for largem. The source of this improvement is a different choice
of dual certificate, which leads to the following result (see Sect. 2 for details):

Theorem 3 Take X of the form (2), and let P�⊥ denote the orthogonal projection onto
the orthogonal complement of the span of {1At }kt=1. Then there exists an explicit matrix
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Probably certifiably correct k-means clustering 609

Z = Z(D, X) and scalar z = z(D, X) such that X is a solution to the semidefinite
relaxation (3) if

P�⊥ Z P�⊥ 
 zP�⊥ . (4)

To prove that � > 2+ k2/m suffices for the SDP to recover the planted clustering
under the stochastic ball model, we estimate the left- and right-hand sides of (4)
with the help of standard techniques from random matrix theory and concentration of
measure; seeAppendix 3 for the (rather technical) details.While this is an improvement
over the condition from [4] in the large-m regime, there are other regimes (e.g., k = m)
for which their condition is much better, leaving open the question of what the optimal
bound is. Conjecture 4 in [4] suggests that � > 2 suffices for the k-means SDP to
recover planted clusters under the stochastic ballmodel, but aswe illustrate in Sect. 2.3,
this conjecture is surprisingly false.

Having accomplished component (ii) in Bandeira’s PCC technique, we tackle com-
ponent (iii) next. For this, consider the matrix

A := z

N
11� + P�⊥ Z P�⊥ , (5)

where z and Z come from Theorem 3. Since the all-ones vector 1 lies in the span of
{1At }kt=1, we have that 1 spans the unique leading eigenspace of A precisely when
P�⊥ Z P�⊥ ≺ zP�⊥ , which in turn implies that X is a k-means optimal clustering by
Theorem 3. As such, component (iii) can be accomplished by solving the following
fundamental problem from linear algebra:

Problem 4 Given a symmetricmatrix A ∈ R
n×n and an eigenvector v of A, determine

whether the span of v is the unique leading eigenspace, that is, the corresponding
eigenvalue λ has multiplicity 1 and satisfies |λ| > |λ′| for every other eigenvalue λ′
of A.

Interestingly, this same problem appeared in Bandeira’s original PCC theory [5],
but it was left unresolved. In this paper, we fill this gap by developing a so-called power
iteration detector, which applies the power iteration to a random initialization on the
unit sphere. Due to the randomness, the power iteration produces a test statistic that
allows us to infer whether (A, v) satisfies the desired leading eigenspace condition.
In Sect. 3, we pose this as a hypothesis test, and we estimate the associated error
probabilities. In addition, we show how to leverage the structure of A defined by (5)
and Theorem 4 to compute the matrix–vector multiplication Ax for any given x in
only O(kmN ) operations, thereby allowing the test statistic to be computed in linear
time (up to the spectral gap of A and the desired confidence for the hypothesis test).
See Fig. 2 for an illustration of the runtime of our method. Overall, the power iteration
detectorwill deliver a highly confident inference onwhether (A, v) satisfies the leading
eigenspace condition, which in turn certifies the optimality of X up to the prescribed
confidence level. Of course, one may remove the need for a confidence level by opting
for deterministic spectral methods, but we have no idea how to accomplish this in
linear or even near-linear time.

Now that we have discussed components (ii) and (iii) in Bandeira’s PCC technique,
we conclude by discussing component (i). While we presume that there exists a fast
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Fig. 2 Running time of different algorithms as a function of number of points to cluster. Points are sampled
from two unit balls in R

6 at distance 2.3 apart. For each N ∈ {23, 24, . . . , 216}, we perform 300 trials of
the following experiment: draw N/2 points uniformly at random from each ball, and then compute four
different functions: (a) MATLAB’s built-in implementation of k-means++, (b) a CVX implementation [11]
of the k-means SDP (3), (c) the power iteration detector (Algorithm 1) with A given by (5), and (d) spectral
k-means clustering (Algorithm 2). For each trial, we recorded the runtime in seconds. Above, we plot the
average runtime along with vertical error bars for standard deviation. For the record, the power iteration
detector failed to certify optimality (i.e., reject H0 in (16)) in at most 3% of the trials with N ≤ 27, but
provided a certificate of optimality in every trial otherwise; similarly, spectral k-means failed to recover the
planted clusters in two of the trials with N = 23. In the rest of the trials, the planted clusters were recovered.
Our implementation of the k-means SDPwas too slow to perform trials with N ≥ 27 in a reasonable amount
of time, so we only recorded runtimes for N ∈ {23, 24, 25, 26}. As the plot illustrates, the other algorithms
ran in quasilinear time, as expected

initialization of Lloyd’s algorithm that performs well under the stochastic ball model,
we leave this investigation for future research. Instead, Sect. 4 considers a spectral
method introduced by Peng and Wei [22]. We show that when k = 2, this method
performs as well as the optimizer of the original k-means problem under the stochastic
ball model. Figure2 illustrates the quasilinear runtime of this approach.
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Probably certifiably correct k-means clustering 611

1.2 Outline

In this paper, we provide a theoretical analysis of probably certifiably correct k-means
clustering, and we do so by developing components (i), (ii) and (iii) of Bandeira’s
general technique. First, we investigate (ii) in Sect. 2 by analyzing the tightness of
the Peng–Wei SDP. In particular, we choose a different dual certificate from the one
used in [4], and our choice demonstrates tightness in the SDP for clusters that are near-
optimally close. Section3 then addresses (iii) by providing a fast method of computing
this dual certificate given the optimal k-means partition. In fact, a subroutine of our
method (the so-called power iteration detector) resolves a gap in Bandeira’s original
PCC theory [5], and as such, we expect this to be leveraged in future PCC algorithms.
We conclude in Sect. 4 with some theoretical guarantees for (i). Here, we focus on the
case k = 2, and we show that a slight modification of the spectral clustering–based
method in [22] manages to recover the optimal k-means partition with high probability
under the stochastic ball model. We conclude in Sect. 5 with a discussion of various
open problems.

2 A typically tight relaxation of k-means

This section establishes that the Peng–Wei semidefinite relaxation (3) of the k-means
problem (1) is typically tight under the stochastic ball model. First, we find a determin-
istic condition on the set of points underwhich the relaxationfinds the k-means-optimal
solution. Later, we discuss when this deterministic condition is satisfied with high
probability under the stochastic ball model.

2.1 The dual program

To derive the dual of (3), we will leverage the general setting from cone program-
ming [18], namely, that given closed convex cones K and L , the dual of (6) is given
by (7):

maximize 〈c, x〉
subject to b − Ax ∈ L

x ∈ K
(6)

minimize 〈b, y〉
subject to A∗y − c ∈ K ∗

y ∈ L∗
(7)

where A∗ denotes the adjoint of A, while K ∗ and L∗ denote the dual cones of K and
L , respectively. In our case, c = −D, x = X , and K is simply the cone of positive
semidefinite matrices (as is K ∗). Before we determine L , we need to interpret the
remaining constraints in (3). To this end, we note that Tr(X) = k is equivalent to
〈X, I 〉 = k, X1 = 1 is equivalent to having
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〈
X,

1

2

(
ei1

� + 1e�
i

)〉
= 1 ∀i ∈ {1, . . . , N },

and X ≥ 0 is equivalent to having

〈
X,

1

2

(
ei e

�
j + e j e

�
i

)〉
≥ 0 ∀i, j ∈ {1, . . . , N }, i ≤ j.

(These last two equivalences exploit the fact that X is symmetric.) As such, we can
express the remaining constraints in (3) using a linear operator A that sends anymatrix
X to its inner products with I , { 12 (ei1�+1e�

i )}Ni=1, and { 12 (ei e�
j +e j e�

i )}Ni, j=1,i≤ j . The
remaining constraints in (3) are equivalent to having b− Ax ∈ L , where b = k⊕1⊕0
and L = 0⊕ 0⊕R

N (N+1)/2
≥0 . Writing y = z ⊕α ⊕ (−β), the dual of (3) is then given

by

minimize kz +
N∑
i=1

αi

subject to Q := z I +
N∑
i=1

αi · 1
2

(
ei1� + 1e�

i

)

−
N∑
i=1

N∑
j=i

βi j · 1
2

(
ei e�

j + e j e�
i

)
+ D 	 0

β ≥ 0

(8)

For notational simplicity, from this point forward, we organize indices according to
clusters. For example, 1a shall denote the indicator function of the ath cluster. Also,
we shuffle the rows and columns of X and D into blocks that correspond to clusters;
for example, the (i, j)th entry of the (a, b)th block of D is given by D(a,b)

i j . We also
index α in terms of clusters; for example, the i th entry of the ath block of α is denoted
αa,i . For β, we identify

β :=
N∑

i=1

N∑

j=i

βi j · 1
2

(
ei e

�
j + e j e

�
i

)
.

Indeed, when i ≤ j , the (i, j)th entry of β is βi j . We also consider β as having its rows
and columns shuffled according to clusters, so that the (i, j)th entry of the (a, b)th
block is β

(a,b)
i j .

With this notation, the following proposition (whose proof has been reproduced in
Appendix 1 for completeness) characterizes all possible dual certificates of (3):

Proposition 5 (Theorem 4 in [13], cf. [4]) Take X := ∑k
a=1

1
na
1a1�

a , where na
denotes the number of points in cluster a. The following are equivalent:

(a) X is a solution to the semidefinite relaxation (3).
(b) Every solution to the dual program (8) satisfies

Q(a,a)1 = 0, β(a,a) = 0 ∀a ∈ {1, . . . , k}.
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(c) Every solution to the dual program (8) satisfies

αa,r = − 1

na
z + 1

n2a
1�D(a,a)1 − 2

na
e�
r D(a,a)1 ∀a ∈ {1, . . . , k}, r ∈ a.

Remark 1 (Pointed out by Xiaodong Li on an earlier version of this manuscript) The
statement Q(a,a)1 = 0 implies Q1 = 0.

Proof Let a ∈ {1, . . . , k} and let R be a N×N symmetric positive semidefinite matrix
with blocks R(a,a) = 1a1Ta , R

(b,b) = Ib, R(b,a) = 0 for all b �= 0. Then L := R�QR
is a symmetric positive semidefinite matrix where L(a,a) = 0, therefore for every
(a, b) we have L(b,a) = 0, but note that L(b,a) = Q(b,a)1�

a 1a . ��

The following subsection will leverage Proposition 5 to identify a condition on D
that implies that the SDP (3) relaxation is tight.

2.2 Selecting a dual certificate

The goal is to certify when the SDP relaxation is tight. In this event, Proposition 5 char-
acterizes acceptable dual certificates (z, α, β), but this information fails to uniquely
determine a certificate. In this subsection,wewillmotivate the application of additional
constraints on dual certificates so as to identify certifiable instances.

We start by reviewing the characterization of dual certificates (z, α, β) provided in
Proposition 5. In particular, α is completely determined by z, and so z and β are the
only remaining free variables. Indeed, for every a, b ∈ {1, . . . , k}, we have

( k∑

t=1

∑

i∈t
αt,i · 1

2
(et,i1

� + 1e�
t,i )

)(a,b)

=
∑

i∈a
αa,i · 1

2
ei1

� +
∑

j∈b
αb, j · 1

2
1e�

j

= −1

2

(
1

na
+ 1

nb

)
z +

∑

i∈a

(
1

n2a
1�D(a,a)1 − 2

na
e�
i D(a,a)1

)
1

2
ei1

�

+
∑

j∈b

(
1

n2b
1�D(b,b)1 − 2

nb
e�
j D

(b,b)1

)
1

2
1e�

j ,

and so since

Q = z I +
k∑

t=1

∑

i∈t
αt,i · 1

2
(et,i1

� + 1e�
t,i ) − 1

2
β + D,
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we may write Q = z(I − E) + M − B, where

E (a,b) := 1

2

(
1

na
+ 1

nb

)
11�

M (a,b) := D(a,b) +
∑

i∈a

(
1

n2a
1�D(a,a)1 − 2

na
e�
i D(a,a)1

)
1

2
ei1

� (9)

+
∑

j∈b

(
1

n2b
1�D(b,b)1 − 2

nb
e�
j D

(b,b)1

)
1

2
1e�

j

B(a,b) = 1

2
β(a,b) (10)

for every a, b ∈ {1, . . . , k}. The following is one way to formulate our task: Given D
and a clustering X (which in turn determines E and M), determine whether there exist
feasible z and B such that Q 	 0; here, feasibility only requires B to be symmetric
with nonnegative entries and B(a,a) = 0 for every a ∈ {1, . . . , k}. We opt for a slightly
more modest goal: Find z = z(D, X) and B = B(D, X) such that Q 	 0 for a large
family of D’s.

Before determining z and B, we first analyze E :

Lemma 6 Let E be the matrix defined by (9). Then rank(E) ∈ {1, 2}. The eigenvalue
of largest magnitude is λ ≥ k, and when rank(E) = 2, the other nonzero eigenvalue of
E is negative. The eigenvectors corresponding to nonzero eigenvalues lie in the span
of {1a}ka=1.

Proof Writing

E =
k∑

a=1

k∑

b=1

1

2

(
1

na
+ 1

nb

)
1a1

�
b = 1

2

( k∑

a=1

1

na
1a

)
1� + 1

2
1

( k∑

b=1

1

nb
1b

)�
,

we see that rank(E) ∈ {1, 2}, and it is easy to calculate 1�E1 = Nk and Tr(E) = k.
Observe that

λ = sup
x∈RN

‖x‖2=1

x�Ex ≥ 1

N
1�E1 = k,

and combining with rank(E) ≤ 2 and Tr(E) = k then implies that the other
nonzero eigenvalue (if there is one) is negative. Finally, any eigenvector of E with
a nonzero eigenvalue necessarily lies in the column space of E , which is a subspace
of span{1a}ka=1 by the definition of E .

When finding z and B such that Q = z(I − E) + M − B 	 0, it will be useful that
I − E has only one negative eigenvalue. Let v denote the corresponding eigenvector.
Then combining Lemma 6 and Remark 1 we know v is also an eigenvector of M − B.
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Since

0 = (Q1b)a =
(
(z(I − E) + M − B)1b

)

a

= −zE (a,b)1+M (a,b)1 − B(a,b)1 = −z
na + nb
2na

1 + M (a,b)1 − B(a,b)1,

(11)

then, in order for there to exist a vector B(a,b)1 ≥ 0 that satisfies (11), z must satisfy

z
na + nb
2na

≤ min(M (a,b)1),

and since z is independent of (a, b), we conclude that

z ≤ min
a,b∈{1,...,k}

a �=b

2na
na + nb

min(M (a,b)1). (12)

Now it is time to make a choice for the dual certificate. In order to ensure z(I −
E)+M−B 	 0 for as many instances of D as possible, we intend to choose z as large
as possible. We choose B which satisfies (11) for every (a, b), even when z satisfies
equality in (12). Indeed, we define

u(a,b) := M (a,b)1−z
na + nb
2na

1, ρ(a,b) := u�
(a,b)1, B(a,b) := 1

ρ(b,a)

u(a,b)u
�
(b,a)

(13)
for every a, b ∈ {1, . . . , k} with a �= b. Then by design, B immediately satisfies (11).
Also, note that ρ(a,b) = ρ(b,a), and so B(b,a) = (B(a,b))�, meaning B is symmetric.
Finally, we necessarily have u(a,b) ≥ 0 (and thus ρ(a,b) ≥ 0) by (12), andwe implicitly
require ρ(a,b) > 0 for division to be permissible. As such, we also have B(a,b) ≥ 0,
as desired.

Now that we have selected z and B, it remains to check that Q 	 0. By construction,
we already have � := span{1a}ka=1 in the nullspace of Q, and so it suffices to ensure

0 
 P�⊥QP�⊥ = P�⊥
(
z(I − E) + M − B

)
P�⊥ = zP�⊥ + P�⊥(M − B)P�⊥ .

Here, P�⊥ denotes the orthogonal projection onto the orthogonal complement of �.
Rearranging then gives the following result:

Theorem 7 Take X := ∑k
t=1

1
nt
1t1�

t , where nt denotes the number of points in cluster
t . Consider M defined by (10), pick z so as to satisfy equality in (12), take B defined
by (13), and let � denote the span of {1t }kt=1. Then X is a solution to the semidefinite
relaxation (3) if

P�⊥(B − M)P�⊥ 
 zP�⊥ . (14)

The next subsection leverages this sufficient condition to establish that the Peng–
Wei SDP (3) is typically tight under the stochastic ball model.
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2.3 Integrality of the relaxation under the stochastic ball model

We first note that our sufficient condition (14) is implied by

‖P�⊥MP�⊥‖ + ‖P�⊥ BP�⊥‖ ≤ z

since P�⊥|�⊥ = z I�⊥ and � ⊂ ker(P�⊥(B − M)P�⊥). By further analyzing the
left-hand side above (see Appendix 2), we arrive at the following corollary:

Corollary 8 Take X := ∑k
t=1

1
nt
1t1�

t , where nt denotes the number of points in
cluster t . Let � denote the m × N matrix whose (a, i)th column is xa,i − ca, where

ca := 1

na

∑

i∈a
xa,i

denotes the empirical center of cluster a. Consider M defined by (10), pick z so as
to satisfy equality in (12), and take ρ(a,b) defined by (13). Then X is a solution to the
semidefinite relaxation (3) if

2‖�‖2 +
k∑

a=1

k∑

b=a+1

‖P1⊥M (a,b)1‖2‖P1⊥M (b,a)1‖2
ρ(a,b)

≤ z.

In Appendix 3, we leverage the stochastic ball model to bound each term in Corol-
lary 8, and in doing so, we identify a regime in which the data points typically satisfy
the sufficient condition given in Corollary 8:

Theorem 9 The k-means semidefinite relaxation (3) recovers the planted clusters in
the (D, γ, n)-stochastic ball model with probability 1 − e−�D,γ (n) provided � >

2 + k2/m.

We note that Theorem 9 is an improvement to the main result of the authors’
preprint [13]. When k = o(m1/2), Theorem 9 is near-optimal, and in this sense, it’s a
significant improvement over the sufficient condition

� > 2
√
2

(
1 + 1√

m

)
(15)

given in [4]. However, there are regimes (e.g., k = m) for which (15) is much better,
leaving open the question ofwhat the optimal bound is.Conjecture 4 in [4] suggests that
� > 2 suffices for the k-means SDP to recover planted clusters under the stochastic
ball model, but as we illustrate below, this conjecture is surprisingly false.

Consider the special casewherem = 1,D is uniform on {±1}, and k = 2. Centering
the two balls on±�/2, then all of the points land in {±�/2±1}. The k-means-optimal
clustering will partition the real line into two semi-infinite intervals, and so there are
three possible ways of clustering these points. Suppose exactly N/4 of the points land
in each of the 4 positions. Then by symmetry, there are only two ways to cluster:
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Fig. 3 (left) Take two unit disks in R2 with centers on the x-axis at distance 2.08 apart. Let x0 denote the
smallest possible x-coordinate in the disk on the right. For each disk, draw N/2 = 50,000 points uniformly
at random from the perimeter. Given θ , cluster the points according to whether the x-coordinate is smaller
than x0 + θ . When θ = 0, this clustering gives the planted clusters, and the k-means objective (divided by
N ) is 1. We plot this normalized k-means objective for θ ∈ [0, 0.2]. Since N is large, this curve is very
close to its expected shape, and we see that there are clusters whose k-means value is smaller than that of
the planted clustering. (center) Take two intervals of width 2 in R, and let � denote the distance between
the midpoints of these intervals. For each interval, draw 10 points at random from its endpoints, and then
run the k-means SDP. For each � = 2 : 0.1 : 5, after running 2000 trials of this experiment, we plot the
proportion of trials for which the SDP relaxation was tight (dashed line) and the proportion of trials for
which the SDP recovered the planted clusters (solid line). In this case, cluster recovery appears to exhibit
a phase transition at � = 4. (right) For each � = 2 : 0.1 : 3 and k = 2 : 2 : 20, consider the unit balls
in R20 centered at { �√

2
ei }ki=1, where ei denotes the i th identity basis element. Draw 100 points uniformly

from each ball, and test if the resulting data points satisfy (14). After performing 10 trials of this experiment
for each (�, k), we shade the corresponding pixel according to the proportion of successful trials (white
means every trial satisfied (14)). This plot indicates that our certificate (14) is to blame for Theorem 9’s
dependence on k

either we select the planted clusters, or we make the left-most location its own cluster.
Interestingly, a little algebra reveals that this second alternative is strictly better in
the k-means sense provided � < 1 + √

3 ≈ 2.7320. Also, in this regime, then as N
gets large, the proportion of points in each position will be so close to 1/4 (with high
probability) that this clustering will beat the planted clusters.

Overall, whenm = 1 and k = 2, then � ≥ 1+√
3 is necessary for minimizing the

k-means objective to recover planted clusters for an arbitrary D. As a relaxation, the
k-means SDP recovers planted clusters only if minimizing the k-means objective does
so as well, and so it inherits this necessary condition, thereby disproving Conjecture 4
in [4]. Furthermore, as Fig. 3(left) illustrates, a similar counterexample is available in
higher dimensions.

To study when the SDP recovers the clusters, let’s continue with the case where
m = 1 and k = 2. We know that minimizing k-means will recover the clusters with
high probability provided � > 1 + √

3. However, Theorem 9 only guarantees that
the SDP recovers the clusters when � > 6; in fact, (15) is slightly better here, giving
that � ≥ 5.6569 suffices. To shed light on the disparity, Fig. 3(center) illustrates the
performance of the SDP for different values of �. Observe that the SDP is often tight
when � is close to 2, but it doesn’t reliably recover the planted clusters until � > 4.
We suspect that � = 4 is a phase transition for cluster recovery in this case.

Qualitatively, the biggest difference between Theorem 9 and (15) is the dependence
on k that Theorem 9 exhibits. Figure3(right) illustrates that this comes from (14),
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meaning that one would need to use a completely different dual certificate in order to
remove this dependence.

3 A fast test for k-means optimality

In this section, we leverage the certificate (14) to test the optimality of a candidate
k-means solution. We first show how to solve a more general problem from linear
algebra, and then we apply our solution to devise a fast test for k-means optimality (as
well as fast test for a related PCC algorithm).

3.1 Leading eigenvector hypothesis test

This subsection concerns Problem 4. To solve this problem, one might be inclined to
apply the power method:

Proposition 10 (Theorem 8.2.1 in [10]) Let A ∈ R
n×n be a symmetric matrix with

eigenvalues {λi }ni=1 (counting multiplicities) satisfying

|λ1| > |λ2| ≥ · · · ≥ |λn|,

and with corresponding orthonormal eigenvectors {vi }ni=1. Pick a unit-norm vector
q0 ∈ R

n and consider the power iteration q j+1 := Aq j/‖Aq j‖2. If q0 is not orthog-
onal to v1, then

(v�
1 q j )

2 ≥ 1 −
(
(v�

1 q0)
−2 − 1

)(λ2

λ1

)2 j

.

Notice that the above convergence guarantee depends on the quality of the initial-
ization q0. To use this guarantee, draw q0 at random from the unit sphere so that q0
is not orthogonal to v1 almost surely; one might then analyze the statistics of v�

1 q0 to
produce statistics on the time required for convergence. The power method is typically
used to find a leading eigenvector, but for our problem, we already have access to an
eigenvector v, and we are tasked with determining whether v is the unique leading
eigenvector. Intuitively, if you run the power method from a random initialization and
it happens to converge to v, then this would have been a remarkable coincidence if
v were not the unique leading eigenvector. Since we will only run finitely many iter-
ations, how do we decide when we are sufficiently confident? The remainder of this
subsection answers this question.

Given a symmetric matrix A ∈ R
n×n and a unit eigenvector v of A, consider the

hypotheses

H0 : span(v) is not the unique leading eigenspace of A,

H1 : span(v) is the unique leading eigenspace of A.
(16)

To test these hypotheses, pick a tolerance ε > 0 and run the power iteration detector
(see Algorithm 1). This detector terminates either by accepting H0 or by rejecting H0
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Algorithm 1: Power iteration detector
Input: Symmetric matrix A ∈ R

n×n , unit eigenvector v ∈ R
n , tolerance ε > 0

Output: Decision of whether to accept H0 or to reject H0 and accept H1 as given in (16)
λ ← v�Av

Draw q uniformly at random from the unit sphere in R
n

while no decision has been made do
if |q�Aq| > |λ| then

Print accept H0
else if (v�q)2 ≥ 1 − ε then

Print reject H0 and accept H1
end
q ← Aq/‖Aq‖2

end

and accepting H1. We say the detector fails to reject H0 if it either accepts H0 or fails
to terminate. Before analyzing this detector, we consider the following definition:

Definition 11 Given a symmetric matrix A ∈ R
n×n and unit eigenvector v of A, put

λ = v�Av, and let λ1 denote a leading eigenvalue of A (i.e., |λ1| = ‖A‖). We say
(A, v) is degenerate if

(a) the eigenvalue λ of A has multiplicity ≥ 2,
(b) −λ is an eigenvalue of A, or
(c) −λ1 is an eigenvalue of A.

Theorem 12 Consider the power iteration detector (Algorithm 1), let q j denote q at
the j th iteration (with q0 being the initialization), and let πε denote the probability
that (e�

1 q0)
2 < ε.

(i) (A, v) is degenerate only if H0 holds. If (A, v) is non-degenerate, then the power
iteration detector terminates in finite time with probability 1.

(ii) The power iteration detector incurs the following error rates:

Pr
(
reject H0 and accept H1

∣∣∣ H0

)
≤ πε, Pr

(
fail to reject H0

∣∣∣ H1

)
= 0.

(iii) If H1 holds, then

min
{
j : (v�q j )

2 > 1 − ε
}

≤ 3 log(1/ε)

2 log |λ1/λ2| + 1

with probability≥ 1−πε , where λ2 is the second largest eigenvalue (in absolute
value).

Proof Denote the eigenvalues of A by {λi }ni=1 (counting multiplicities), ordered in
such a way that |λ1| ≥ · · · ≥ |λn|, and consider the corresponding orthonormal
eigenvectors {vi }ni=1, where v = vp for some p.

For (i), first note that H1 implies that (A, v) is non-degenerate, and so the con-
trapositive gives the first claim. Next, suppose (A, v) is non-degenerate. If H1 holds,
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then (v�q j )
2 → 1 by Proposition 10 provided q0 is not orthogonal to v, and so the

power iteration detector terminates with probability 1. Otherwise, H0 holds, and so
the non-degeneracy of (A, v) implies that the eigenspace corresponding to λ1 is the
unique leading eigenspace of A, and furthermore, |λ1| > |λ|. Following the proof of
Theorem 8.2.1 in [10], we also have

q�
j Aq j = q�

0 A2 j+1q0
q�
0 A2 j q0

=
∑n

i=1(v
�
i q j )

2λ
2 j+1
i∑n

i=1(v
�
i q j )2λ

2 j
i

.

Putting r := min{i : |λi | < |λ1|}, then

|q�
j Aq j − λ1| =

∣∣∣∣∣

∑n
i=1(v

�
i q j )

2λ
2 j
i (λi − λ1)

∑n
i=1(v

�
i q j )2λ

2 j
i

∣∣∣∣∣

≤ |λ1 − λn|
‖Pλ1q0‖22

n∑

i=r

(v�
i q j )

2
(

λi

λ1

)2 j

≤ |λ1 − λn|
(
1 − ‖Pλ1q0‖22

‖Pλ1q0‖22

)(
λr

λ1

)2 j

,

where Pλ1 denotes the orthogonal projection onto the eigenspace corresponding to
λ1. As such, |q�

j Aq j | → |λ1| > |λ| provided Pλ1q0 �= 0, and so the power iteration
detector terminates with probability 1.

For (ii), we first consider the case of a false positive. Taking v = vp for p �= 1,
note that (v�q j )

2 > 1 − ε implies

ε > 1 − (v�q j )
2 = ‖q j‖22 − (v�

p q j )
2 =

n∑

i=1
i �=p

(v�
i q j )

2 ≥ (v�
1 q j )

2.

Also, since ‖Ax‖2 ≤ |λ1|‖x‖2 for all x ∈ R
n , we have that (v�

1 q j )
2 monotonically

increases with j :

(v�
1 q j+1)

2 =
(

v�
1

Aq j

‖Aq j‖2
)2

= (λ1v
�
1 q j )

2

‖Aq j‖22
≥ (v�

1 q j )
2

‖q j‖2 = (v�
1 q j )

2.

As such, ε > (v�
1 q j )

2 ≥ (v�
1 q0)

2. Overall, when H0 holds, the power iteration
detector rejects H0 only if q0 is initialized poorly, i.e., (v�

1 q0)
2 < ε, which occurs

with probability πε (since q0 has a rotation-invariant probability distribution). For the
false negative error rate, note that Proposition 10 gives that H1 implies convergence
(v�q j )

2 → 1 provided q0 is not orthogonal to v, i.e., with probability 1.
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For (iii), we want j such that (v�q j )
2 > 1 − ε. By Proposition 10, it suffices to

have

(
(v�

1 q0)
−2 − 1

)(λ2

λ1

)2 j

< ε.

In the event that (v�
1 q0)

2 ≥ ε (which has probability 1 − πε), it further suffices to
have

ε−2
(

λ2

λ1

)2 j

< ε.

Taking logs and rearranging then gives the result. ��
To estimate ε and πε , first note that q0 has a rotation-invariant probability distribu-

tion, and so linearity of expectation gives

E
[
(e�

1 q0)
2] = 1

n

n∑

i=1

E
[
(e�

i q0)
2] = 1

n
E‖q0‖22 = 1

n
.

Thus, in order to make πε small, we should expect to have ε � 1/n. The following
lemma gives that such choices of ε suffice for πε to be small:

Lemma 13 If ε ≥ n−1e−2n, then πε ≤ 3
√
nε.

Proof First, observe that (e�
1 q0)

2 is equal in distribution to Z2/Q, where Z has stan-
dard normal distribution and Q has chi-squared distribution with n degrees of freedom
(Z and Q are independent). The probability density function of Z has a maximal value
of 1/

√
2π at zero, and so

Pr
(
Z2 < a

)
≤
√
2a

π
.

Also, Lemma 1 in [15] gives

Pr
(
Q ≥ n + 2

√
nx + 2x

)
≤ e−x ∀x > 0.

Therefore, picking a = 5nε and x = n, the union bound gives

Pr
(
(e�

1 q0)
2 < ε

)
= Pr

(
Z2

Q
< ε

)
≤ Pr

(
Z2 < 5nε

)
+ Pr

(
Q > 5n

)

≤
√
10nε

π
+ e−n ≤ 3

√
nε.

��
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Overall, if we take ε = n−(2c+1) for c > 0, then if H0 is true, our detector will
produce a false positive with probability O(n−c). On the other hand, if H1 is true,
then with probability 1− O(n−c), our detector will reject H0 after Oδ(c log n) power
iterations, provided |λ2| ≤ (1 − δ)|λ1|.

3.2 Testing optimality with the power iteration detector

In this subsection, we leverage the power iteration detector to test k-means optimality.
Note that the sufficient condition (14) holds if and only if v := 1√

N
1 is a leading

eigenvector of the matrix

A := z

N
11� + P�⊥(B − M)P�⊥ = z

N
11� + P�⊥(B − D)P�⊥ . (17)

(The second equality follows from distributing the P�⊥ ’s and recalling the definition
ofM in (10).) As such, it suffices that (A, v) satisfy H1 in (16). Overall, given a collec-
tion of points {xi }Ni=1 ⊆ R

m and a proposed partition A1 � · · · � Ak = {1, . . . , N }, we
can produce the corresponding matrix A (defined above) and then run the power iter-
ation detector of the previous subsection to test (14). In particular, a positive test with
tolerance ε will yield≥ 1−πε confidence that the proposed partition is optimal under
the k-means objective. Furthermore, as we detail below, the matrix–vector products
computed in the power iteration detector have a computationally cheap implementa-
tion.

Given an m × na matrix �a = [xa,1 · · · xa,na ] for each a ∈ {1, . . . , k}, we follow
the following procedure to implement the corresponding function x �→ Ax as defined
in (17):
Steps in computation of x �→ Ax . cost in operations

1: Compute νa ∈ R
na such that (νa)i = ‖xa,i‖22 for every a ∈ {1, . . . , k}.

Let ν ∈ R
N denote the vector whose ath block is νa . O(mN )

2: Define the function (a, b, x) �→ D(a,b)x such that
D(a,b) = νa1� − 2��

a �b + 1ν�
b . O(m(na + nb))

3: Define the function x �→ Dx such that D = ν1� − 2��� + 1ν�,
where � = [�1 · · · �k ]. O(mN )

4: Compute μa = 1
2 ( 1

n2a
11� − 2

na
I )D(a,a)1 for every a ∈ {1, . . . , k}. O(mN )

5: Define the function (a, b, x) �→ M(a,b)x such that
M(a,b) = D(a,b) + μa1� + 1μ�

b . O(m(na + nb))

6: Compute z = mina �=b
2na

na+nb
min(M(a,b)1). O(kmN )

7: Computeu(a,b) = M(a,b)1−z na+nb
2na

1 for everya, b ∈ {1, . . . , k},a �= b. O(kmN )

8: Compute ρ(a,b) = u�
(a,b)1 for every a, b ∈ {1, . . . , k}, a �= b. O(kN )

9: Define the function x �→ Bx such that the ath block of the output

is given by (Bx)a =
k∑

b=1
b �=a

u(a,b)u
�
(b,a)

xb

ρ(b,a)
. O(kmN )

10: Define the function x �→ P�⊥ x such that P�⊥ = I −∑k
a=1

1
na

1a1�
a . O(N )

11: Define the function x �→ Ax such that A = z
N 11�+P�⊥ (B−D)P�⊥ . O(kmN )
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Overall, after O(kmN ) operations of preprocessing, one may compute the function
x �→ Ax for any given x in O(kmN ) operations. (Observe that this is the same
complexity as each iteration of Lloyd’s algorithm, and as we illustrate in Fig. 2, the
runtimes are comparable.)

At this point, we take a short aside to illustrate the utility of the power iteration
detector beyond k-means clustering. The original problem for which a PCC algorithm
was developed was community recovery under the stochastic block model [5]. For this
random graph, there are two communities of vertices, each of size n/2, and edges are
drawn independently at random with probability p if the pair of vertices belong to the
same community, andwith probabilityq < p if they come fromdifferent communities.
Given the random edges, the maximum likelihood estimator for the communities is
given by the vertex partition of two sets of size n/2 with the minimum cut. Given a
partition of the vertices, let X denote the corresponding n× n matrix of ±1s such that
Xi j = 1 precisely when i and j belong to the same community. Given the adjacency
matrix A of the random graph, one may express the cut of a partition X in terms of
Tr(AX). Furthermore, X satisfies the convex constraints Xii = 1 and X 	 0, and so
one may relax to these constraints to obtain a semidefinite program and hope that the
relaxation is typically tight over a large region of (p, q). Amazingly, this relaxation
is typically tight precisely over the region of (p, q) for which community recovery is
information-theoretically possible [1].

Given A, put B := 2A − 11� + I , and given a vector x ∈ R
n , define the corre-

sponding n × n diagonal matrix Dx by (Dx )i i := xi
∑n

j=1 Bi j x j . In [5], Bandeira
observes that, given a partition matrix X by some means (such as the fast algorithm
provided in [2]), then X = xx� is SDP-optimal if both x�1 = 0 and the second
smallest eigenvalue of Dx − B is strictly positive, meaning the partition gives the
maximum likelihood estimator for the communities. However, as Bandeira notes, the
computational bottleneck here is estimating the second smallest eigenvalue of Dx −B,
and he suggests that a randomized power method—like algorithm might suffice, but
leaves the investigation for future research.

Here, we show how the power iteration detector fills this void in the theory. First,
we note that in the interesting regime of (p, q), the number of nonzero entries in A is
O(n log n) with high probability [1]. As such, the function x �→ Bx can exploit this
sparsity to take only O(n log n) operations. This in turn allows for the computation of
the diagonal of Dx to cost O(n log n) operations. Next, note that

‖Dx − B‖ ≤ ‖Dx‖ + ‖2A − 11�‖ + ‖I‖
≤ ‖Dx‖ + ‖2A − 11�‖F + 1 = max

i
|(Dx )i i | + n + 1 =: λ,

and that λ can be computed in O(n) operations after computing the diagonal of Dx .
Also, it takes O(n) operations to verify x�1 = 0. Assuming x�1 = 0, then the second
smallest eigenvalue of Dx − B is strictly positive if and only if x spans the unique
leading eigenspace of λI −Dx + B. Thus, one may test this condition using the power
iteration detector, and furthermore, each iterationwill take only O(n log n) operations,
thanks to the sparsity of A.
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4 A fast k-means solver for two clusters

The previous section illustrated how to quickly test whether a proposed solution to
the k-means problem is optimal. In particular, this test will be successful with high
probability if the data follows the stochastic ball model with� > 2+k2/m. It remains
to find a fast k-means solver which also performs in this regime.

In doing so, we maintain the philosophy that our algorithm should not “see” the
stochastic ball model. Indeed, we view the stochastic ball model as a method of eval-
uating clustering algorithms rather than a realistic data model. For example, Lloyd’s
algorithmcan be viewed as an alternatingminimization of the lifted objective function:

f (A1, . . . , Ak, c1, . . . , ck) :=
k∑

t=1

∑

i∈At

‖xi − ct‖2,

A1 � · · · � Ak = {1, . . . , N }, c1, . . . , ck ∈ R
m,

and since this function is minimized at the k-means optimizer (regardless of how the
data is distributed), such an algorithm is acceptable. On the other hand, one might
consider matching the stochastic ball model to the data by maximizing the following
function:

g(c1, . . . , ck) :=
N∑

i=1

k∑

t=1

pD(xi − ct ), c1, . . . , ck ∈ R
m,

where pD(·) denotes the density function of D, which is supported on the unit ball
centered at the origin.One could certainly devise a fast greedymethod such asmatching
pursuit [17] to optimize this objective function (especially if pD is smooth), but doing
so violates our philosophy.

In [22], Peng andWei showed that k-means is equivalent to the following program:

minimize Tr(DX)

subject to X� = X, X2 = X, Tr(X) = k, X1 = 1, X ≥ 0 (18)

One may quickly observe that the SDP (3) we analyzed in Sect. 2 is a relaxation of
this program. In this section, we follow Peng and Wei [22] by considering another
relaxation of (18), obtained by discarding the X ≥ 0 constraint (this is known as the
spectral clustering relaxation [7,8]).Wefirst denote them×N matrix� = [x1 · · · xN ].
Without loss of generality, the data set is centered at the origin so that�1 = 0. Letting
ν denote the N × 1 vector with νi = ‖xi‖22, then

Di j = ‖xi − x j‖22 = ‖xi‖22 − 2x�
i x j + ‖x j‖22 =

(
ν1� − 2��� + 1ν�)

i j
.

As such, D = ν1� − 2��� + 1ν�, and so the constraints X = X� and X1 = 1
together imply an alternative expression for the objective function:
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Tr(DX) = Tr
(
ν1�X − 2���X + 1ν�X

)

= Tr
(
ν1�X�)− 2 Tr

(
���X

)
+ Tr

(
X1ν�)

= 2ν�1 − 2 Tr
(
���X

)
.

We conclude that minimizing Tr(DX) is equivalent to maximizing Tr(���X).
Next, we observe that the feasible X in our relaxation are precisely the rank-k

N × N orthogonal projection matrices satisfying X1 = 1. This in turn is equivalent
to X having the form X = 1

N 11
� + Y , where Y is a rank-(k − 1) N × N orthogonal

projection matrix satisfying Y1 = 0. Discarding the Y1 = 0 constraint produces the
following relaxation of (18):

maximize Tr
(
���Y

)

subject to Y� = Y, Y 2 = Y, Tr(Y ) = k − 1 (19)

For general values of k, this program amounts to finding k − 1 principal components
of the data. Recalling our initial clustering goal, after finding the optimal Y , it remains
to take X = 1

N 11
� + Y and then round to a nearby member of the feasibility region

in (18). In [22], Peng and Wei focus on the k = 2 case; they reduce the rounding step
to a 2-means problem on the real line, and they establish an approximation ratio of 2
for this relax-and-round procedure. Here, we are concerned with exact recovery under
the stochastic ball model, and as such, we slightly modify the rounding step.

When k = 2, the solution to (19) has the form Y = yy�, where y is a leading unit
eigenvector of ���. Our task is to find a matrix of the form 1

|A|1A1
�
A + 1

|B|1B1
�
B with

A � B = {1, . . . , N } that is close to 1
N 11

� + yy�. To this end, it seems natural to
consider

Aθ := {i : yi < θ}, Bθ := Ac
θ

for some threshold θ . Since the data is centered (�1 = 0), one may be inclined to take
θ = 0, but this will be a poor choice if the true clusters have significantly different
numbers of points. Instead, we select the θ which minimizes the k-means objective
of (Aθ , Bθ ). Since we only need to consider N − 1 choices of θ , this is plausibly
tractable, although computing the k-means objective once costs O(mN ) operations,
and so some care is necessary to keep the algorithm fast.

We will show how to find the optimal (Aθ , Bθ ) in O((m + log N )N ) operations
using a simple dynamic program. Order the indices so that y1 ≤ · · · ≤ yN . Then the
function to minimize is

f (i) := 1

i

i∑

j=1

i∑

j ′=1

‖x j − x j ′ ‖22
︸ ︷︷ ︸

vi

+ 1

N − i

N∑

j=i+1

N∑

j ′=i+1

‖x j − x j ′ ‖22
︸ ︷︷ ︸

vci

.
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Algorithm 2: Spectral k-means clustering (for two clusters)
Input: m × N matrix � = [x1 · · · xN ] of points to be clustered
Output: Clusters A � B = {1, . . . , N }
Subtract centroid 1

N
∑N

i=1 xi from each column of � to produce �0

Compute leading eigenvector y of ��
0 �0

Find θ that minimizes the k-means objective of ({i : yi < θ}, {i : yi ≥ θ})
(A, B) ← ({i : yi < θ}, {i : yi ≥ θ})

Expanding the square and distributing sums gives

vi+1 = vi + 2
i∑

j=1

‖x j‖22 − 4x�
i+1

i∑

j=1

x j + 2i‖xi+1‖22,

and the vci ’s satisfy a similar recursion rule. As such, one may iteratively compute the
vi ’s and vci ’s before computing the f (i)’s and then minimizing. Overall, the following
procedure finds the optimal (Aθ , Bθ ) in O((m + log N )N ) operations:
Steps cost in operations
1: Sort the entries y1 ≤ · · · ≤ yN . O(N log N )

2: Iteratively compute for every i ∈ {1, . . . , N − 1}:
s1(i) :=

i∑

j=1

x j , sc1(i) :=
N∑

j=i+1

x j , s2(i) :=
i∑

j=1

‖x j‖22,

sc2(i) :=
N∑

j=i+1

‖x j‖22. O(mN )

3: Compute v1 = 0 and vi+1 = vi + 2s2(i) − 4x�
i+1s1(i) + 2i‖xi+1‖22

for every i ∈ {1, . . . , N − 2}. O(mN )

4: Compute vcN−1 = 0 and vci−1 = vci + 2sc2(i) − 4x�
i sc1(i) + 2(N − i)‖xi‖22

for every i ∈ {N − 1, . . . , 2}. O(mN )

5: Compute f (i) = vi / i + vci /(N − i) for every i ∈ {1, . . . , N − 1}. O(N )

6: Find i that minimizes f (i) and output {1, . . . , i} and {i + 1, . . . , N }. O(N )

Note that in the special case where m = 1, the above method exactly solves the k-
means problem when k = 2 in only O(N log N ) operations, recovering the rounding
step of Peng andWei [22]. For comparison, [26] leveragesmore sophisticated dynamic
programming for the m = 1 case, but k is arbitrary and the algorithm costs O(kN 2)

operations.
See Algorithm 2 for a summary of our relax-and-round procedure. As a spec-

tral method, this algorithm enjoys quasilinear computational complexity; see Fig. 2
for an illustration. In particular, when computing the leading eigenvector of ��

0 �0,
each matrix–vector multiply in the power method costs only O(mN ) operations. Fur-
thermore, as the following result guarantees, this algorithm performs well under the
stochastic ball model:

Theorem 14 Let�� = ��(D, k) denote the smallest value for which� > �� implies
that minimizing the k-means objective recovers planted clusters under the (D, γ, n)-
stochastic ball model with probability 1 − e−�D,γ (n). When k = 2, spectral k-means
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Probably certifiably correct k-means clustering 627

clustering (Algorithm 2) recovers planted clusters under the stochastic ball model
with probability 1 − e−�D,γ (n) provided � > ��.

See Appendix 4 for the proof. The main idea is that the leading eigenvector of
�0�

�
0 is biased towards the difference between the ball centers, and as the following

lemma establishes, this bias encourages spectral k-means clustering to separate the
planted clusters:

Lemma 15 Take two clusters contained in unit balls centered at γ and −γ with
‖γ ‖2 > 1. If minimizing the k-means objective recovers these clusters, then spectral
k-means clustering (Algorithm 2) also recovers them, provided the leading eigenvector
z of �0�

�
0 satisfies |γ �z| > ‖z‖2.

Proof Write �0 = �−μ1�, put θ := −μ�z, and observe that y = ��
0 z is a leading

eigenvector of ��
0 �0. Then

yi = (xi − μ)�z = x�
i z + θ (20)

for every i . Next, if |γ �z| > ‖z‖2, then a simple trigonometric argument gives that the
balls (and therefore the planted clusters) are separated by the hyperplane orthogonal
to z. Combined with (20), we then have that the clusters can be identified according
to whether yi < θ or yi > θ . It therefore suffices to minimize the k-means objective
subject to partitions of this form (for arbitrary thresholds θ ), as so spectral k-means
clustering succeeds. ��

5 Discussion

This paper discussed various facets of probably certifiably correct algorithms for k-
means clustering. There are still many questions that have yet to be answered:

• Let��(D, k) denote the smallest value for which� > �� implies that minimizing
the k-means objective recovers planted clusters under the (D, γ, n)-stochastic ball
model with probability 1 − e−�D,γ (n). What is ��? It was conjectured in [4] that
�� = 2, but as we demonstrated in Sect. 2.3, this is not the case.

• Let ��
SDP(D, k) denote the smallest value for which � > ��

SDP implies that
solving the k-means SDP recovers planted clusters under the (D, γ, n)-stochastic
ball model with probability 1 − e−�D,γ (n). What is ��

SDP? Considering Sect. 2.3
and Fig. 3(center), we suspect the SDP exhibits a performance gap: ��

SDP > ��.
• Is there a single dual certificate for the k-means SDP that typically certifies planted
clusters under the stochastic ball model whenever � > ��

SDP? Does this certifi-
cation have a quasilinear-time implementation similar to Sect. 3.2?

• Is there a quasilinear-time k-means solver that typically solves k-means under the
stochastic ball model whenever � > ��? In particular, is there a quasilinear-time
initialization of Lloyd’s algorithm that meets this specification? Following the
philosophy of Sect. 4, such algorithms should be designed so as to not “see” the
stochastic ball model.
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Appendix 1: Proof of Proposition 5

Proof (a) ⇔ (b): By complementary slackness, (a) is equivalent to having both

〈A∗y − c, X〉 = 0 (21)

and 〈y, b − A(X)〉 = 0. (22)

Since Q 	 0, we have

〈A∗y − c, X〉 = 〈Q, X〉 =
〈
Q,

k∑

t=1

1

nt
1t1

�
t

〉
=

k∑

t=1

1

nt
1�
t Q1t ≥ 0,

with equality if and only if Q1a = 0 for every a ∈ {1, . . . , k}. Next, we recall that
y = z⊕α ⊕ (−β), b− A(X) ∈ L = 0⊕0⊕R

N (N+1)/2
≥0 , and b = k⊕1⊕0. As such,

(22) is equivalent to β having disjoint support with {〈X, 1
2 (ei e

�
j + e j e�

i )〉}Ni, j=1,i≤ j ,

i.e., β(a,a) = 0 for every cluster a.
(b) ⇒ (c): Take any solution to the dual SDP (8), and note that

Q(a,a) = z I +
( k∑

t=1

∑

i∈t
αt,i · 1

2
(et,i1

� + 1e�
t,i )

)(a,a)

− β(a,a) + D(a,a)

= z I +
∑

i∈a
αa,i · 1

2
(ei1

� + 1e�
i ) + D(a,a),

where the 1 vectors in the second line are na-dimensional (instead of N -dimensional,
as in the first line), and similarly for ei (instead of et,i ). We now consider each entry
of Q(a,a)1, which is zero by assumption:

0 = e�
r Q(a,a)1

= e�
r

(
z I +

∑

i∈a
αa,i · 1

2
(ei1

� + 1e�
i ) + D(a,a)

)
1

= z +
∑

i∈a
αa,i · 1

2
(e�

r ei1
�1 + e�

r 1e
�
i 1) + e�

r D(a,a)1

= z +
∑

i∈a
αa,i · 1

2
(naδir + 1) + e�

r D(a,a)1. (23)
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As one might expect, these na linear equations determine the variables {αa,i }i∈a . To
solve this system, we first observe

0 = 1�Q(a,a)1

= 1�
(
z I +

∑

i∈a
αa,i · 1

2
(ei1

� + 1e�
i ) + D(a,a)

)
1

= naz +
∑

i∈a
αa,i · 1

2
(1�ei1�1 + 1�1e�

i 1) + 1�D(a,a)1

= naz + na
∑

i∈a
αa,i + 1�D(a,a)1,

and so rearranging gives

∑

i∈a
αa,i = −z − 1

na
1�D(a,a)1.

We use this identity to continue (23):

0 = z +
∑

i∈a
αa,i · 1

2
(naδir + 1) + e�

r D(a,a)1

= z + na
2

αa,r + 1

2

∑

i∈a
αa,i + e�

r D(a,a)1

= z + na
2

αa,r + 1

2

(
− z − 1

na
1�D(a,a)1

)
+ e�

r D(a,a)1,

and rearranging yields the desired formula for αa,r .
(c) ⇒ (a): Take any solution to the dual SDP (8). Then by assumption, the dual

objective at this point is given by

kz +
k∑

t=1

∑

i∈t
αt,i = kz +

k∑

t=1

∑

i∈t

(
− 1

nt
z + 1

n2t
1�D(t,t)1 − 2

nt
e�
i D(t,t)1

)

= −
k∑

t=1

1

nt
1�D(t,t)1

= −Tr(DX),

i.e., the primal objective (3) evaluated at X . Since X is feasible in the primal SDP, we
conclude that X is optimal by strong duality. ��
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Appendix 2: Proof of Corollary 8

It suffices to have
‖P�⊥MP�⊥‖ + ‖P�⊥ BP�⊥‖ ≤ z. (24)

We will bound the terms in (24) separately and then combine the bounds to derive a
sufficient condition for Theorem 7. To bound the first term in (24), let ν be the N × 1
vector whose (a, i)th entry is ‖xa,i‖22, and let � be the m × N matrix whose (a, i)th
column is xa,i . Then

D(a,i),(b, j) = ‖xa,i − xb, j‖22 = ‖xa,i‖22 − 2x�
a,i xb, j + ‖xb, j‖22

= (ν1� − 2��� + 1ν�)(a,i),(b, j),

meaning D = ν1� − 2��� + 1ν�. With this, we appeal to the blockwise definition
of M (10):

‖P�⊥MP�⊥‖ = ‖P�⊥ DP�⊥‖ = ‖P�⊥(ν1� − 2��� + 1ν�)P�⊥‖
= 2‖P�⊥���P�⊥‖ = 2‖�P�⊥‖2 = 2‖�‖2.

For the second term in (24), we first write the decomposition

B =
k∑

a=1

k∑

b=a+1

(
H(a,b)(B

(a,b)) + H(b,a)(B
(b,a))

)
,

where H(a,b) : Rna×nb → R
N×N produces a matrix whose (a, b)th block is the input

matrix, and is otherwise zero. Then

P�⊥ BP�⊥ =
k∑

a=1

k∑

b=a+1

P�⊥
(
H(a,b)(B

(a,b)) + H(b,a)(B
(b,a))

)
P�⊥

=
k∑

a=1

k∑

b=a+1

(
H(a,b)(P1⊥ B(a,b)P1⊥) + H(b,a)(P1⊥ B(b,a)P1⊥)

)
,

and so the triangle inequality gives

‖P�⊥ BP�⊥‖ ≤
k∑

a=1

k∑

b=a+1

‖H(a,b)(P1⊥ B(a,b)P1⊥) + H(b,a)(P1⊥ B(b,a)P1⊥)‖

=
k∑

a=1

k∑

b=a+1

‖P1⊥ B(a,b)P1⊥‖,
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where the last equality can be verified by considering the spectrum of the square:

(
H(a,b)(P1⊥ B(a,b)P1⊥) + H(b,a)(P1⊥ B(b,a)P1⊥)

)2

= H(a,a)

(
(P1⊥ B(a,b)P1⊥)(P1⊥ B(a,b)P1⊥)�

)

+ H(b,b)

(
(P1⊥ B(a,b)P1⊥)�(P1⊥ B(a,b)P1⊥)

)
.

At this point, we use the definition of B (13) to get

‖P1⊥ B(a,b)P1⊥‖ = ‖P1⊥u(a,b)‖2‖P1⊥u(b,a)‖2
ρ(a,b)

.

Recalling the definition of u(a,b) (13) and combining these estimates then produces
the result.

Appendix 3: Proof Theorem 9

In this section, we apply the certificate from Corollary 8 to the (D, γ, n)-stochastic
ball model (see Definition 2) to prove our main result. We will prove Theorem 9 with
the help of several lemmas.

Lemma 16 Denote

ca := 1

n

n∑

i=1

xa,i , �ab := ‖γa − γb‖2, Oab := γa + γb

2
.

Then the (D, γ, n)-stochastic ball model satisfies the following estimates:

‖ca − γa‖2 < ε w.p. 1 − e−�m,ε (n) (25)
∣∣∣∣
1

n

n∑

i=1

‖ra,i‖22 − E‖r‖22
∣∣∣∣ < ε w.p. 1 − e−�ε(n) (26)

∣∣∣∣
1

n

n∑

i=1

‖xa,i − Oab‖22 − E‖r + γa − Oab‖22
∣∣∣∣ < ε w.p. 1 − e−��ab ,ε (n) (27)

Proof Since Er = 0 and ‖r‖22 ≤ 1 almost surely, one may lift

Xa,i :=
[

0 r�
a,i

ra,i 0

]

and apply the Matrix Hoeffding inequality [23] to conclude that

Pr

(∥∥∥∥
n∑

i=1

ra,i

∥∥∥∥
2

≥ t

)
≤ me−t2/8n .
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Taking t := εn then gives (25). For (26) and (27), notice that the random variables in
each sum are iid and confined to an interval almost surely, and so the result follows
from Hoeffding’s inequality. ��

Lemma 17 Under the (D, γ, n)-stochastic ball model, we have D(a,b)1− D(a,a)1 =
4np + q, where

pi := r�
a,i (γa − Oab) + �2

ab

4

qi := 2n(xa,i − Oab)
�
(

(ca − cb) − (γa − γb)

)

+
⎛

⎝
n∑

j=1

‖xb, j − Oab‖22 −
n∑

j=1

‖xa, j − Oab‖22
⎞

⎠

and |qi | ≤ (6 + 2�ab)nε with probability 1 − e−�m,�ab ,ε (n).

Proof Add and subtract Oab and then expand the squares to get

e�
i (D(a,b)1 − D(a,a)1) =

n∑

j=1

‖xa,i − xb, j‖22 −
n∑

j=1

‖xa,i − xa, j‖22

= n

⎛

⎝−2(xa,i − Oab)
�(cb − Oab) + 1

n

n∑

j=1

‖xb, j − Oab‖22
⎞

⎠

− n

⎛

⎝−2(xa,i − Oab)
�(ca − Oab) + 1

n

n∑

j=1

‖xa, j − Oab‖22
⎞

⎠

= 2n(xa,i − Oab)
�(ca − cb) +

⎛

⎝
n∑

j=1

‖xb, j − Oab‖22 −
n∑

j=1

‖xa, j − Oab‖22
⎞

⎠ .

Add and subtract γa − γb to ca − cb and distribute over the resulting sum to obtain

e�
i (D(a,b)1 − D(a,a)1) = 2n(xa,i − Oab)

�(γa − γb) + q

= 4n
(
ra,i + (γa − Oab)

)�
(γa − Oab) + q.

Distributing and identifying ‖γa − Oab‖22 = �2
ab/4 explains the definition of p. To

show |qi | ≤ (6 + 2�ab)nε, apply triangle and Cauchy–Schwarz to obtain
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|qi | ≤
∣∣∣∣2n(xa,i − Oab)

�
(

(ca − cb) − (γa − γb)

)∣∣∣∣

+
∣∣∣∣∣∣

n∑

j=1

‖xb, j − Oab‖22 −
n∑

j=1

‖xa, j − Oab‖22

∣∣∣∣∣∣

≤ 2n
(‖ra,i‖2 + ‖γa − Oa,b‖2

)
(‖ca − γa‖2 + ‖cb − γb‖2)

+
∣∣∣∣∣∣

n∑

j=1

‖xb, j − Oab‖22 −
n∑

j=1

‖xa, j − Oab‖22

∣∣∣∣∣∣

≤ 2n

(
1 + �ab

2

)
(‖ca − γa‖2 + ‖cb − γb‖2)

+
∣∣∣∣∣∣

n∑

j=1

‖xb, j − Oab‖22 −
n∑

j=1

‖xa, j − Oab‖22

∣∣∣∣∣∣
.

To finish the argument, apply (25) to the first term while adding and subtracting

E‖r + γa − Oab‖22 = E‖r + γb − Oab‖22,
from the second and apply (27). ��
Lemma 18 Under the (D, γ, n)-stochastic ball model, we have

∣∣∣∣
1

n
1�D(a,a)1 − 2nE‖r‖22

∣∣∣∣ ≤ 4nε w.p. 1 − e−��ab ,ε (n).

Proof Add and subtract γa and expand the square to get

1

n
e�
i D(a,a)1 = 1

n

n∑

j=1

‖xa,i − xa, j‖22 = ‖ra,i‖22 − 2r�
a,i (ca − γa) + 1

n

n∑

j=1

‖ra, j‖22.

The triangle and Cauchy–Schwarz inequalities then give

∣∣∣∣
1

n
1�D(a,a)1 − 2nE‖r‖22

∣∣∣∣

=
∣∣∣∣

n∑

i=1

(
‖ra,i‖22 − 2r�

a,i (ca − γa) + 1

n

n∑

j=1

‖ra, j‖22
)

− 2nE‖r‖22
∣∣∣∣

≤ n

∣∣∣∣
1

n

n∑

i=1

‖ra,i‖22 − E‖r‖22
∣∣∣∣+ 2

n∑

i=1

|r�
a,i (ca − γa)| + n

∣∣∣∣
1

n

n∑

j=1

‖ra, j‖22 − E‖r‖22
∣∣∣∣

≤ n

∣∣∣∣
1

n

n∑

i=1

‖ra,i‖22 − E‖r‖22
∣∣∣∣+ 2

n∑

i=1

‖ca − γa‖2 + n

∣∣∣∣
1

n

n∑

j=1

‖ra, j‖22 − E‖r‖22
∣∣∣∣

≤ 4nε,
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where the last step occurs with probability 1− e−��ab ,ε (n) by a union bound over (26)
and (25). ��
Lemma 19 Under the (D, γ, n)-stochastic ball model, we have

1�D(a,b)1 − 1�D(a,a)1 ≥ n2�2
ab − (6 + 4�ab)n

2ε w.p. 1 − e−�m,�ab ,ε (n).

Proof Lemma 17 gives

1�D(a,b)1 − 1�D(a,a)1 = 1�(4np + q)

≥ 4n
n∑

i=1

(
r�
a,i (γa − Oab) + �2

ab

4

)
− (6 + 2�ab)n

2ε

≥ 4n

(
n(ca−γa)

�(γa − Oab) + n�2
ab

4

)
− (6 + 2�ab)n

2ε.

Cauchy–Schwarz along with (25) then gives the result. ��
Lemma 20 Under the (D, γ, n)-stochastic ball model, there exists C = C(γ ) such
that

min
a,b∈{1,...,k}

a �=b

min(M (a,b)1) ≥ n�(� − 2) + Cnε w.p. 1 − e−�m,γ,ε (n),

where � := min
a,b∈{1,...,k}

a �=b

�ab.

Proof Fix a and b. Then by Lemma 17, the following holds with probability 1 −
e−�m,�ab ,ε (n):

min
(
D(a,b)1 − D(a,a)1

)
≥ 4n min

i∈{1,...,n}

(
r�
a,i (γa − Oab) + �2

ab

4

)
− (6 + 2�ab)nε

≥ n�2
ab − 2n�ab − (6 + 2�ab)nε,

where the last step is by Cauchy–Schwarz. Taking a union bound with Lemma 18 then
gives

min(M (a,b)1)

= min
(
D(a,b)1 − D(a,a)1

)
+ 1

2

(
1

n
1�D(a,a)1 − 1

n
1�D(b,b)1

)

≥ min
(
D(a,b)1 − D(a,a)1

)

− 1

2

(∣∣∣∣
1

n
1�D(a,a)1 − 2nE‖r‖22

∣∣∣∣+
∣∣∣∣
1

n
1�D(b,b)1 − 2nE‖r‖22

∣∣∣∣

)

≥ n�ab(�ab − 2) − (10 + 2�ab)nε
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with probability 1 − e−��ab ,ε (n). The result then follows from a union bound over a
and b. ��
Lemma 21 Suppose ε ≤ 1. Then there exists C = C(�ab,m) such that under the
(D, γ, n)-stochastic ball model, we have

‖P1⊥M (a,b)1‖22 ≤ 4n3�2
ab

m
+ Cn3ε

with probability 1 − e−�m,�ab ,ε (n).

Proof First, a quick calculation reveals

e�
i M (a,b)1 = e�

i D(a,b)1 − e�
i D(a,a)1 + 1

2

(
1

n
1�D(a,a)1 − 1

n
1�D(b,b)1

)
,

1

n
1�M (a,b)1 = 1

n
1�D(a,b)1 − 1

2

(
1

n
1�D(a,a)1 + 1

n
1�D(b,b)1

)
,

from which it follows that

e�
i P1⊥M (a,b)1 = e�

i M (a,b)1 − 1

n
1�M (a,b)1

=
(
e�
i D(a,b)1 − 1

n
1�D(a,b)1

)
−
(
e�
i D(a,a)1 − 1

n
1�D(a,a)1

)

= e�
i P1⊥(D(a,b)1 − D(a,a)1).

As such, we have

‖P1⊥M (a,b)1‖22 = ‖P1⊥(D(a,b)1 − D(a,a)1)‖22
= ‖D(a,b)1 − D(a,a)1‖22 − ‖P1(D(a,b)1 − D(a,a)1)‖22. (28)

To bound the first term, we apply the triangle inequality over Lemma 17:

‖D(a,b)1 − D(a,a)1‖2 ≤ 4n‖p‖2 + ‖q‖2 ≤ 4n‖p‖2 + (6 + 2�ab)n
3/2ε. (29)

We proceed by bounding ‖p‖2. To this end, note that the pi ’s are iid random variables
whose outcomes lie in a finite interval (of width determined by �ab) with probability
1. As such, Hoeffding’s inequality gives

∣∣∣∣
1

n

n∑

i=1

p2i − Ep21

∣∣∣∣ ≤ ε w.p. 1 − e−��ab ,ε (n).

With this, we then have

‖p‖22 = n

(
1

n

n∑

i=1

p2i − Ep21 + Ep21

)
≤ nEp21 + nε (30)
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in the same event. To determine Ep21, first take r1 := e�
1 r . Then since the distribution

of r is rotation invariant, we may write

p1 = r�
a,1(γa − Oab) + ‖γa − Oab‖22 = �ab

2
r1 + �2

ab

4
,

where the second equality above is equality in distribution. We then have

Ep21 = E

(
�ab

2
r1 + �2

ab

4

)2

= �2
ab

4
Er21 + �4

ab

16
. (31)

We also note that 1 ≥ E‖r‖22 = mEr21 by linearity of expectation, and so

Er21 ≤ 1

m
. (32)

Combining (29), (30), (31) and (32) then gives

‖D(a,b)1− D(a,a)1‖2 ≤
(
4n3�2

ab

m
+ n3�4

ab + 16n3ε

)1/2

+ (6+ 2�ab)n
3/2ε. (33)

To bound the second term of (28), first note that

‖P1(D(a,b)1 − D(a,a)1)‖2 = 1√
n

∣∣∣1�D(a,b)1 − 1�D(a,a)1
∣∣∣. (34)

Lemma 19 then gives

∣∣∣1�D(a,b)1−1�D(a,a)1
∣∣∣ ≥ 1�D(a,b)1−1�D(a,a)1 ≥ n2�2

ab−(6+4�ab)n
2ε (35)

with probability 1− e−�m,�ab ,ε (n). Using (28) to combine (33) with (34) and (35) then
gives the result. ��

Lemma 22 There exists C = C(γ ) such that under the (D, γ, n)-stochastic ball
model, we have

ρ(a,b) ≥ n2
(
�2

ab − �(� − 2)
)− Cn2ε w.p. 1 − e−�D,γ,ε (n).

Proof Recall from (13) that

ρ(a,b) = u�
(a,b)1 = 1�M (a,b)1−nz = 1�M (a,b)1−n min

a,b∈{1,...,k}
a �=b

min(M (a,b)1). (36)
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To bound the first term, we leverage Lemma 19:

1�M (a,b)1 = 1�D(a,b)1 − 1

2
(1�D(a,a)1 + 1�D(b,b)1)

= 1

2

(
1�D(a,b)1 − 1�D(a,a)1

)
+ 1

2

(
1�D(b,a)1 − 1�D(b,b)1

)

≥ n2�2
ab − (6 + 4�ab)n

2ε

with probability 1 − e−�m,�ab ,ε (n). To bound the second term in (36), note from
Lemma 18 that

min(M (a,b)1)

= min
(
D(a,b)1 − D(a,a)1

)
+ 1

2

(
1

n
1�D(a,a)1 − 1

n
1�D(b,b)1

)

≤ min
(
D(a,b)1 − D(a,a)1

)

+ 1

2

(∣∣∣∣
1

n
1�D(a,a)1 − 2nE‖r‖22

∣∣∣∣+
∣∣∣∣
1

n
1�D(b,b)1 − 2nE‖r‖22

∣∣∣∣

)

≤ min
(
D(a,b)1 − D(a,a)1

)
+ 4nε

with probability 1 − e−��ab ,ε (n). Next, Lemma 17 gives

min
(
D(a,b)1 − D(a,a)1

)
≤ n�2

ab + (6 + 2�ab)nε + 4n min
i∈{1,...,n} r

�
a,i (γa − Oab).

By assumption, we know ‖r‖2 ≥ 1− ε with positive probability regardless of ε > 0.
It then follows that

r�(γa − Oab) ≤ −�ab

2
+ ε

with some (ε-dependent) positive probability. As such, we may conclude that

min
i∈{1,...,n} r

�
a,i (γa − Oab) ≤ −�ab

2
+ ε w.p. 1 − e−�D,ε (n).

Combining these estimates then gives

min(M (a,b)1) ≤ n�2
ab − 2n�ab + (10 + 2�ab)nε w.p. 1 − e−�D,�ab ,ε (n).

Performing a union bound over a and b then gives

min
a,b∈{1,...,k}

a �=b

min(M (a,b)1) ≤ n�2 − 2n� + (10 + 2�)nε w.p. 1 − e−�D,γ,ε (n).

Combining these estimates then gives the result. ��
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Lemma 23 Under the (D, γ, n)-stochastic ball model, we have

‖�‖ ≤
(

(1 + ε)σ√
m

+ ε

)√
N w.p. 1 − e−�m,k,σ,ε (n),

where σ 2 := E‖r‖22 for r ∼ D.

Proof Let R denote the matrix whose (a, i)th column is ra,i . Then

� = R −
[
(c1 − γ1)1

� · · · (ck − γk)1
�],

and so the triangle inequality gives

‖�‖ ≤ ‖R‖ +
∥∥∥
[
(c1 − γ1)1

� · · · (ck − γk)1
�]
∥∥∥ ≤ ‖R‖ +

(
n

k∑

a=1

‖ca − γa‖22
)1/2

,

where the last estimate passes to the Frobenius norm. For the first term, since D is
rotation invariant, we may apply Theorem 5.41 in [24]:

‖R‖ ≤ (1 + ε)σ

√
N

m
w.p. 1 − e−�m,σ,ε (n).

For the second term, apply (25). The union bound then gives the result. ��
Proof of Theorem 9 First, we combine Lemmas 21, 22 and 23: For every δ > 0, there
exists an ε > 0 such that

2‖�‖2 +
k∑

a=1

k∑

b=a+1

‖P1⊥M (a,b)1‖2‖P1⊥M (b,a)1‖2
ρ(a,b)

≤ 2

(
1 + ε√

m
+ ε

)2

nk +
k∑

a=1

k∑

b=a+1

4n3�2
ab/m + Cn3ε

n2(�2
ab − �(� − 2)) − Cn2ε

≤ n

(
2k

m
+ 4

m

k∑

a=1

k∑

b=a+1

�2
ab

�2
ab − �(� − 2)

+ δ

)
(37)

with probability 1 − e−�D,γ,ε (n). Next, the uniform bound �ab ≥ � implies

�2
ab

�2
ab − �(� − 2)

= 1

1 − �(� − 2)/�2
ab

≤ 1

1 − �(� − 2)/�2 = �

2
.

Combining this with (37) and considering Lemma 20, it then suffices to have

2k

m
+ 4

m
·
(
k

2

)
· �

2
< �(� − 2).

123



Probably certifiably correct k-means clustering 639

Rearranging then gives

� > 2 + 2k

m�
+ k(k − 1)

m
,

which is implied by the hypothesis since � ≥ 2. ��

Appendix 4: Proof of Theorem 14

Put g = γ /‖γ ‖2 and let z have unit 2-norm. Since ‖��
0 z‖2 ≥ ‖��

0 g‖2, then consid-
ering Lemma 15, it suffices to show that the containment

S1 :=
{
v ∈ S

m−1 : |〈g�v〉| ≤ 2

�

}
⊆
{
v ∈ S

m−1 : ‖��
0 v‖2 < ‖��

0 g‖2
}

=: S2

holds with probability 1− e−�m,�(N ). To this end, we will first show that each v ∈ S1
is also a member of S2 with high probability, and then we will perform a union bound
over an ε-net of S1.

We start by considering ‖��v‖2 and ‖��g‖2. Decompose xi as either γ + ri or
−γ + ri depending on whether xi belongs to the ball centered at γ or −γ . Let w with
‖w‖2 = 1 be arbitrary. Then

(x�
i w)2 = ((±γ + ri )

�w)2 = (±γ �w + r�
i w)2

= (γ �w)2 ± 2(γ �w)(r�
i w) + (r�

i w)2,

and so E(x�
i w)2 = (γ �w)2 + E(e�

1 r)
2. Linearity of expectation then gives

E
[
(x�

i g)2 − (x�
i v)2

] = (γ �g)2 − (γ �v)2 = ‖γ ‖2(1 − (g�v)2) ≥ 1 − 4

�2 .

Since |(x�
i g)2 − (x�

i v)2| ≤ 2(1 + �/2)2 almost surely, we may apply Hoeffding’s
inequality to get

‖��g‖22 − ‖��v‖22 =
N∑

i=1

(
(x�

i g)2 − (x�
i v)2

)

≥ N

(
1 − 4

�2

)
− s w.p. 1 − e−��(s2/N ). (38)

For a properly chosen t , rearranging gives that ‖��v‖2 < ‖��g‖2. Instead, we will
use (38) to prove the closely related inequality ‖��

0 v‖2 < ‖��
0 g‖2. Letting μ denote

the centroid of the columns of �, we know by (25) that ‖μ‖2 ≤ δ with probability
1 − e−�m,δ(N ). In this event, every w with ‖w‖2 = 1 satisfies
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∣∣‖��
0 w‖2 − ‖��w‖2

∣∣ = ∣∣‖(� + μ1�)�w‖2 − ‖��w‖2
∣∣

= ∣∣‖��w + 1μ�w‖2 − ‖��w‖2
∣∣ ≤ ‖1μ�w‖2 ≤ √

Nδ.

(39)

Furthermore,

‖��
0 w‖2 = ‖(� − μ1�)�w‖2 ≤ ‖�w‖2 + ‖1μ�w‖2 ≤ √

N

(
�

2
+ 1 + ‖μ‖2

)
,

where the last inequality follows from Cauchy–Schwarz along with the fact that
‖xi‖2 ≤ �/2 + 1 for every i . Taking a supremum over w then gives

‖��
0 ‖2→2 ≤ √

N

(
�

2
+1+‖μ‖2

)
≤ √

N

(
�

2
+1+δ

)
w.p. 1−e−�m,δ(N ). (40)

In (38), pick s = (N/2)(1−4/�2) =: c1(�)N . Then taking a union bound with (39)
gives

(‖��
0 v‖2 − √

Nδ
)2 ≤ ‖��v‖22 ≤ ‖��g‖22c1(�)N ≤ (‖��

0 g‖2 + √
Nδ

)2 − c1(�)N

with probability 1 − e−�m,�,δ(N ). Expanding both sides and rearranging then gives

‖��
0 v‖22 ≤ ‖��

0 g‖22 + 2
√
Nδ

(‖��
0 v‖2 + ‖��

0 g‖2
)− c1(�)N

≤ ‖��
0 g‖22 −

(
c1(�) − 4δ

(
�

2
+ 1 + δ

))

︸ ︷︷ ︸
c2(�)

N ,

where the last step follows from (40). Thus, picking δ = δ(�) sufficiently small
ensures c2(�) > 0. Since c2(�)N ≤ ‖��

0 g‖22 − ‖��
0 v‖22 = (‖��

0 g‖2 +
‖��

0 v‖2)(‖��
0 g‖2 − ‖��

0 v‖2), we further have

‖��
0 g‖2 − ‖��

0 v‖2 ≥ c2(�)N

‖��
0 g‖2 + ‖��

0 v‖2
≥ c3(�)

√
N ,

where the last inequality takes c3(�) := c2(�)/(�/2 + 1 + δ), following (40).
At this point, we know that if v ∈ S1, then v ∈ S2 with probability 1 − e−�m,�(N ).

It remains to perform a union bound over an ε-net of S1 to conclude that S1 ⊆ S2 with
high probability. To this end, pick ε < c3(�)/(�/2 + 1 + δ), consider an ε-net Nε

of S1, and suppose

‖��
0 v‖2 ≤ ‖��

0 g‖2 − c3(�)
√
N ∀v ∈ Nε . (41)
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Then for every x ∈ S1, there exists v ∈ Nε such that ‖x − v‖2 ≤ ε, and so (40) gives

‖��
0 x‖2 ≤ ‖��

0 ‖‖x − v‖2 + ‖��
0 v‖2

≤ √
N

(
�

2
+ 1 + δ

)
ε + ‖��

0 g‖2 − c3(�)
√
N < ‖��

0 g‖2,

as desired. To measure the probability of the success event (41), a standard volume
comparison argument establishes the existence of an ε-net of size |Nε | ≤ (1+2/ε)m ;
see Lemma5.2 in [24].As such, the union bound gives that (41) occurswith probability
1 − e−�m,�(N ).
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