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Abstract We show that a variant of the random-edge pivoting rule results in a strongly
polynomial time simplex algorithm for linear programs max{cT x : x ∈ R

n, Ax � b},
whose constraint matrix A satisfies a geometric property introduced by Brunsch and
Röglin: The sine of the angle of a row of A to a hyperplane spanned by n − 1 other
rows of A is at least δ. This property is a geometric generalization of A being integral
and each sub-determinant of A being bounded by � in absolute value. In this case
δ � 1/(�2n). In particular, linear programs defined by totally unimodularmatrices are
captured in this framework. Here δ � 1/n and Dyer and Frieze previously described a
strongly polynomial-time randomized simplex algorithm for linear programs with A
totally unimodular. The expected number of pivots of the simplex algorithm is polyno-
mial in the dimension and 1/δ and independent of the number of constraints of the lin-
ear program.Ourmain result can be viewed as an algorithmic realization of the proof of
small diameter for such polytopes by Bonifas et al., using the ideas of Dyer and Frieze.
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1 Introduction

Our goal is to solve a linear program
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max cT x
Ax � b

(1)

where A ∈ R
m×n is of full column rank, b ∈ R

m and c ∈ R
n . The rows of A are

denoted by ai , 1 � i � m. We assume without loss of generality that the rows have
Euclidean length one, i.e., that ‖ai‖ = 1 holds for i = 1, . . . , m. The rows shall have
the following δ-distance property (we use 〈.〉 to denote linear span):

For any I ⊆ [m], and j ∈ [m], if a j /∈ 〈ai : i ∈ I 〉 then d(a j , 〈ai : i ∈ I 〉) � δ.
In other words, if a j is not in the span of the ai , i ∈ I , then the distance of a j to
the subspace that is generated by the ai , i ∈ I is at least δ.

In this paper, we analyze the simplex algorithm [8] to solve (1) with a variant of the
random edge pivoting rule. Our main result is a strongly polynomial running time
bound for linear programs satisfying the δ-distance property.

Theorem 1 There is a random edge pivot rule that solves a linear program using
poly(n, 1/δ) pivots in expectation. The expected running time of this variant of the
simplex algorithm is polynomial in n, m and 1/δ.

The δ-distance property is a geometric generalization of the algebraic property of
an integer matrix having small sub-determinants in absolute value. (Recall that a k ×k
sub-determinant of A is the determinant of a sub-matrix that is induced by a choice of k
rows and k columns of A.) To see this, let A ∈ Z

m×n with each of its sub-determinants
bounded by � in absolute value. Let B ⊆ {1, . . . , m} be a basis of A, i.e., an index
set satisfying |B| = n and 〈ai : i ∈ B〉 = R

n . Let AB be the sub-matrix of A that
is induced by the rows indexed by B and let w ∈ Q

n be the column of A−1
B with

aT
i w = 1. The distance of ai to 〈a j : j ∈ B − i〉 is the absolute value of

aT
i w

‖w‖ . (2)

By Cramer’s rule, each entry ofw is a (n−1)×(n−1) sub-determinant of AB divided
by det(AB). The division by det(AB) cancels out in (2). After this cancellation, the
numerator is an integer and the denominator is at most

√
n · �. This shows that the

absolute value of (2) is at least 1/(
√

n ·�). To bound δ from below, this distance needs
to be divided by ‖ai‖ � √

n ·� since the rows of the matrix should be scaled to length
one when we measure the distance. Thus an integer matrix satisfies the δ-distance
property with δ � 1/(n · �2).

This shows that our result is an extension of a randomized simplex-type algorithm
of Dyer and Frieze [9] that solves linear programs (1) for totally unimodular (� = 1)
A ∈ {0,±1}m×n and arbitrary b and c. In this case, δ � 1/n.

1.1 Related work

General linear programming problems can be solved in weakly polynomial time [16,
17]. This means that the number of basic arithmetic operations performed by the
algorithm is bounded by a polynomial in the binary encoding length of the input.
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Geometric random edge 327

It is a longstanding open problem whether there exists a strongly polynomial time
algorithm for linear programming. Such an algorithm would run in time polynomial
in the dimension and the number of inequalities on a RAMmachine. For general linear
programming, the simplex method is sub-exponential [15,21].

The δ-distance property is a geometric property and not an algebraic one. In fact,
the matrix A can be irrational even. This is in contrast to a result of Tardos [26],
who gave a strongly polynomial time algorithm for linear programs whose constraint
matrix has integer entries that are bounded by a constant. The algorithm of Tardos is
not a simplex-type algorithm.

Spielman and Teng [25] have shown that the simplex algorithm with the shadow-
edge pivoting rule runs in expected polynomial time if the input is randomly perturbed.
This smoothed analysis paradigmwas subsequently applied to many other algorithmic
problems. Brunsch and Röglin [5] have shown that, given two vertices of a linear
program satisfying the δ-distance property, one can compute in expected polynomial
time a path joining these two vertices with O(mn2/δ2) edges in expectation with
the shadow-edge rule. However, the two vertices need to be known in advance. The
authors state the problem of finding an optimal vertex w.r.t. a given objective function
vector c in polynomial time as an open problem. We solve this problem and obtain a
path whose length is independent of the number m of inequalities.

Klee andMinty [18] have shown that the simplexmethod is exponential if Dantzig’s
original pivoting rule is applied. More recently, Friedmann et al. [11] have shown that
the random edge pivot rule results in a superpolynomial number of pivoting operations.
Here, random edge means to choose an improving edge uniformly at random. The
authors also show such a lower bound for random facet. Friedmann [10] also recently
showed a superpolynomial lower bound for Zadeh’s pivoting rule. Nontrivial, but
exponential upper bounds for random edge are given in [12,14].

Bonifas et al. [3] have shown that the diameter of a polytope defined by an integral
constraint matrix A whose sub-determinants are bounded by� is polynomial in n and
� and independent of the number of facets. In the setting of the δ-distance property,
their proof yields a polynomial bound in 1/δ and the dimension n on the diameter that
is independent of m. Our result is an extension of this result in the setting of linear
programming. We show that there is a variant of the simplex algorithm that uses a
number of pivots that is polynomial in 1/δ and the dimension n.

1.2 Assumptions

Throughout we assume that c and the rows of A, denoted by ai , 1 � i � m, have
Euclidean norm ‖ · ‖2 one. We also assume that the linear program is non-degenerate,
meaning that for each feasible point x∗, there are at most n constraints that are satisfied
by x∗ with equality. It is well known that this assumption can be made without loss of
generality [23]. Furthermore, we assume that n � 4, i.e., that the number of variables
is at least 4.

2 Identifying an element of the optimal basis

Before we describe our variant of the random-edge simplex algorithm, we explain the
primary goal, which is to identify one inequality of the optimal basis. Then, we can
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328 F. Eisenbrand, S. Vempala

u v Cu Cv

0

Fig. 1 Two neighboring vertices u and v and their normal-cones Cu and Cv

continue with the search for other basis elements by running the simplex algorithm in
one dimension lower.

Let K = {x ∈ R
n : Ax � b} be the polyhedron of feasible solutions of (1).

Without loss of generality, see Sect. 1, we can assume that K is a polytope, i.e.,
that K is bounded. Let v ∈ K be a vertex. The normal cone Cv of v is the set of
vectors w ∈ R

n such that, if cT x is replaced by wT x in (1), then v is an optimal
solution of that linear program. Equivalently, let B ⊆ {1, . . . , m} be the n row-indices
with aT

i v = bi , i ∈ B, then the normal cone of v is the set cone{ai : i ∈ B} =
{∑i∈B λi ai : λi � 0, i ∈ B}. The cones Cu and Cv of two vertices u 	= v intersect
if and only if u and v are neighboring vertices of K . In this case, they intersect in
the common facet cone{ai : i ∈ Bu ∩ Bv}, where Bu and Bv are the indices of tight
inequalities of u and v respectively, see Fig. 1.
Suppose that we found a point c′ ∈ R

n together with a vertex v of K whose normal
cone Cv contains c′ such that:

‖c − c′‖ < δ/(2 · n). (3)

The following variant of a lemma proved by Cook et al. [6] shows that we then can
identify at least one index of the optimal basis of (1). We provide a proof of the lemma
in the appendix.

Lemma 2 Let c′ ∈ R
n and let B ⊆ {1, . . . , m} be the optimal basis of the linear

program (1) and let B ′ be an optimal basis of the linear program (1) with c being
replaced by c′. Consider the conic combination

c′ =
∑

j∈B′
μ j a j . (4)

For k ∈ B ′\B, one has
‖c − c′‖ � δ · μk .

Following the notation of the lemma, let B ′ be the optimal basis of the linear
program with objective function c′x . Since (3) holds and since ‖c‖ = 1 we have
‖c′‖ > 1−δ/(2 ·n). This means that there exists aμk withμk > 1/n ·(1 − δ/(2 · n)).
But then k must be in B since δ · μk > δ/n (1 − δ/(2 · n)) � δ/(2 · n).
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Geometric random edge 329

Oncewehave identified an index k of the optimal basis B of (1)we set this inequality
to equality and let the simplex algorithm search for the next element of the basis on
the induced face of K . This is in fact a n − 1-dimensional linear program with the
δ-distance property. We explain now why this is the case.

Suppose that the element from the optimal basis is a1. Let U ∈ R
n×n be a non-

singular orthonormal matrix that rotates a1 into the first unit vector, i.e.

aT
1 · U = eT

1 .

The linear program max{cT x : x ∈ R
n, Ax � b} is equivalent to the linear program

max{cT U · x : x ∈ R
n, A · U · x � b}. Notice that this transformation preserves the

δ-distance property. Therefore we can assume that a1 is the first unit vector.
Now we can set the constraint x1 � b1 to equality and subtract this equation from

the other constraints such that they do not involve the first variable anymore. The ai

are in this way projected into the orthogonal complement of e1. We scale the vectors
and right-hand-sides with a scalar� 1 such that they lie on the unit sphere and are now
left with a linear program with n − 1 variables that satisfies the δ-distance property as
we show now.1

Lemma 3 Suppose that the vectors a1, . . . , am satisfy the δ-distance property, then
a∗
2 , . . . , a∗

m, after being scaled to unit length, satisfy the δ-distance property as well,
where a∗

i is the projection of ai onto the orthogonal complement of a1.

Proof Let I ⊆ {2, . . . , m} and j ∈ {2, . . . , m} such that a∗
j is not in the span of

the a∗
i , i ∈ I . Let d(a∗

j , 〈a∗
i : i ∈ I 〉) = γ . Clearly, d(a∗

j , 〈ai : i ∈ I ∪ {1}〉 � γ

and since a∗
j stems from a j by subtracting a suitable scalar multiple of a1, we have

d(a j , 〈ai : i ∈ I ∪ {1}〉 � γ and consequently γ � δ. �
This shows that we can solve the linear programming problem efficiently if we can
efficiently solve the following algorithmic problem.

Problem 1 Given an initial vertex of the linear program (1), compute a vector
c′ ∈R

n together with a vertex v of (1) such that

a) The vector c′ is contained in the normal cone Cv of v and
b) ‖c − c′‖ < δ/(2 · n) hold.

3 A random walk controls the simplex pivot operations

Next we show how to solve Problem 1with the simplex algorithmwherein the pivoting
is carried out by a random walk. Consider the function

f (x) = exp(−‖x − α · c‖1), (5)

1 A similar fact holds for totally unimodular constraint matrices, see, e.g., [22, Proposition 2.1, p. 540]
meaning that after one has identified an element of the optimal basis, one is left with a linear program in
dimension n −1 with a totally unimodular constraint matrix. A similar fact fails to hold for integral matrices
with sub-determinants bounded by 2.
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330 F. Eisenbrand, S. Vempala

where α � 1 is a constant whose value will be determined later. Imagine that we
could sample a point x∗ from the distribution with density proportional to (5) and
that, at the same time, we are provided with a vertex v that is an optimal solution
of the linear program (1) where c has been replaced by x∗. We are interested in the
probability that c′ = x∗/α together with v is not a solution of Problem 1. This happens
if ‖x∗ − α · c‖2 � α · δ/2n and since ‖ · ‖1 � ‖ · ‖2 one has

‖x∗ − α · c‖1 � α · δ/2n (6)

in this case. The probability of the event (6) is equal to the probability that a random
y∗ chosen with a density proportional to exp(−‖y‖1) has �1 norm at least α · δ/2n.
Since at least one component of y needs to have absolute value at least α · δ/2n2 to
satisfy (6), this probability is upper bounded by

n
∫ ∞

α·δ/2n2
exp(−x) dx = n/ exp(α · δ/2n2) (7)

by applying the union bound. Thus if α � 2n3/δ, this probability is exponentially
small in n.

Approximate sampling for log-concave distributions can be dealt with by random-
walk techniques [1]. As in the paper of Dyer and Frieze [9] we combine these
techniques with the simplex algorithm to keep track of the optimal vertex of the
current point of the random walk.

Remember that the normal cones Cv of the vertices v partition the space Rn . Each
of these cones is now again partitioned into countably infinitely many parallelepipeds
whose axes are parallel to the unit vectors defining the cone of length 1/n2 see Fig. 2.
More precisely, a given cone Cv = {∑i∈B λi ai : λi � 0, i ∈ B} is partitioned into
translates of the parallelepiped

{
∑

i∈B

λi · ai : 0 ≤ λi ≤ 1/n2, i ∈ B

}

.

The volume of such a parallelepiped P is vol(P) = (1/n2)n| det(AB)| where AB is
the sub-matrix of A consisting of the rows indexed by the basis B. For a parallelepiped
P , we define

f (P) = f (zP )vol(P)

where zP is the center of P . The state space of the random walk will be all paral-
lelepipeds used to partition all cones, a countably infinite collection. One iteration is
as follows.

At the parallelepiped P , pick one of the 2n parallelepipeds that
share a facet with P uniformly at random, i.e. with probability
(1/2) n. Let this parallelepiped be P ′ and go to it with probability
1
2 min{1, f (P ′)/ f (P)}.
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Cv

0

Fig. 2 The partitioning of R2 into parallelepipeds for the polytope in Fig. 1 together with the illustration
of a parallelepiped (blue) and its neighbors (green) (color figure online)

Notice that P ′ can be a parallelepiped that is contained in a different cone. If we then
make the transition to P ′ we perform a simplex pivot. In this way we can always keep
track of the normal cone containing the current parallelepiped. We assume that we
are given some vertex of the polytope, x0 and its associated basis B0 ⊆ {1, . . . , m} to
start with. We explain in the appendix how this assumption can be removed. We start
the random walk at the parallelepiped of the cone Cx0 that has vertex 0. The algorithm
is completely described below.

Algorithm 1 (Geometric random edge)

Input: An LP specified by A, b, c; a basic feasible solution x0 of
Ax ≤ b and an associated basis B0.

Output: If successful, an element of the optimal basis

1. Let f (P) = exp (−‖zP − αc‖1) vol(P). Start with the parallelepiped P0 inCx0
containing the point 0.

2. Repeat for � iterations:
• If c is in the current cone, the algorithm stops. It has found the optimal basis.
• Otherwise pick a neighboring parallelepiped, say P ′, uniformly at random.

• Go to P ′ with probability 1
2 min

{
1, f (P ′)

f (P)

}
.

(this is a pivot whenever P ′ and P are in different cones.)
3. If the center zP of the final parallelepiped satisfies ‖zP/α − c‖ < δ/2n,

then return an element of the optimal basis as described in Section 2. Return
failure otherwise.

Before we analyze the convergence of the random walk, we first explain the reason
behind our choice for 1/n2 for the length of the edges of the parallelepipeds. In short,
this is because the value of the function f (x) = exp(−‖x − α · c‖1) does not vary
too much for points in neighboring parallelepipeds. More precisely, we can state the
following lemma.
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332 F. Eisenbrand, S. Vempala

Lemma 4 Let P1 and P2 be two parallelepipeds that share a common facet and let
x1, x2 ∈ P1 ∪ P2. If n � 4 then

f (x1)/ f (x2) � e.

Proof TheEuclidean distance between any twopoints in one of the twoparallelepipeds
is at most 1/n and thus ‖x1 − x2‖ � 2/n. This implies ‖x1 − x2‖1 � 2/

√
n � 1 since

n � 4. Consequently

f (x1)/ f (x2) = exp(−‖x1 − α · c‖1 + ‖x2 − α · c‖1)
� exp(‖x1 − x2‖1)
� exp(1).

In the second line of the above equation, we have applied the triangle inequality. �

4 Analysis of the walk

We assume that the reader is familiar with basics ofMarkov chains (see e.g., [20]). The
random walk above with its transition probabilities is in fact a Markov chain M =
(P, p)with a countably infinite state space P which is the set of parallelepipeds and
transition probabilities p : P × P −→ R�0. Let Q : P −→ R�0 be a probability
distribution onP . The distribution Q is called stationary if for each P ∈ P one has

Q(P) =
∑

P ′∈P
p(P ′, P) · Q(P ′).

Our Markov chain is lazy since, at each step, with probability � 1/2 it does noth-
ing. The rejection sampling step where we step from P to P ′ with probability
1/2 · min{1, f (P ′)/ f (P)} is called a Metropolis filter. Laziness and the Metropo-
lis filter ensure that M = (P, p) has the unique stationary distribution (see e.g.,
Section 1, Thm 1.4 of [19] or Thm 2.1 of [27]):

Q(P) = f (P)

/ ∑

P ′∈P
f (P ′)

which is a discretization of the continuous distributionwith density 2−n exp(‖x−αc‖1)
from (5).

Performing � steps of the walk induces a distribution Q� on P where Q�(P) is
the probability that the walk is in the parallelepiped P in the end. In the limit, when �

tends to infinity, Q� converges to Q. We now show that, due to the δ-distance property
of the matrix A, the walk quickly converges to Q. More precisely, we only need to
run it for a polynomial number (in n and 1/δ) iterations. Then Q� will be sufficiently
close to Q which shows that Algorithm 1 solves Problem 1 with high probability.

123



Geometric random edge 333

To prove convergence of the walk, we bound the conductance of the underlying
Markov chain [24]. The conductance of M is

φ = min
S⊆P :

0<Q(S)�1/2

∑
P∈S,P ′∈P\S Q(P) · p(P, P ′)

Q(S)
. (8)

Jerrum and Sinclair [24] related the conductance to the convergence of a finiteMarkov
chain to its stationary distribution. Lovász and Simonovits [19] extended their result
to general Markov chains and in particular to Markov chains with a countably infinite
set of states like our chain M = (P, p). We state their theorem in our setting.

Theorem 5 [19, Corollary 1.5] Let Q� be the distribution obtained after � steps of
the Markov chain M = (P, p) started at the initial parallelepiped P0 and let φ be
the conductance as in (8). Then for any T ⊆ P one has

|Q�(T ) − Q(T )| ≤ Q(P0)
−1/2

(

1 − φ2

2

)�

.

The rate of convergence is thus O(1/φ2). Our goal is now to bound φ from below.

4.1 Bounding the conductance

Inspecting (8), we first note that the transition probability p(P, P ′) is zero, unless the
parallelepiped P ′ is a neighbor of P , i.e., shares a facet with P . In this case one has

p(P, P ′) = 1

4n
min{1, f (P ′)/ f (P)}.

The ratio f (P ′)/ f (P) can be bounded from below by δ/e. This is because
f (zP ′)/ f (zP ) � 1/e by Lemma 4 and since vol(P ′)/vol(P) � δ. The latter inequal-
ity is a consequence of the δ-distance property, as the ratio vol(P ′)/vol(P) is equal to
the ratio of the height of P ′ and the height of P measured from the common facet that
they share respectively. This ratio is at least δ. Consequently we have for neighboring
parallelepipeds P and P ′,

p(P, P ′) � δ/(4en).

Clearly Q(P) · p(P, P ′) = Q(P ′) · p(P ′, P) which implies that the conductance can
be bounded by

φ � min
S⊆P :

0<Q(S)�1/2

(δ/4en)
Q(N (S))

Q(S)
. (9)

where N (S) ⊆ P\S denotes theneighborhood of S, which is the set of parallelepipeds
P ′ /∈ S for which there exists a neighboring P ∈ S.
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334 F. Eisenbrand, S. Vempala

Fig. 3 An illustration of Theorem 6 in our setting. The gray parallelepipeds are the set S and the boundary
∂S is in blue. The green parallelepipeds are N (S) (color figure online)

We next make use of the following isoperimetric inequality that was shown by
Bobkov and Houdre [2] for more general product probability measures. For our func-
tion f (x) = exp(−‖x −α · c‖1) it reads as follows, where ∂(A) denotes the boundary
of A.

Theorem 6 [2] Let f (x) = exp(−‖x − α · c‖1). For any measurable set A ⊂ R
n

with 0 < 2−n
∫

A f (x) dx < 1/2 one has

∫

∂ A
f (x) dx ≥ 1

2
√
6

∫

A
f (x) dx .

Theorem 6 together with the δ-distance property yields a lower bound on
Q(N (S))/Q(S) as follows. Each parallelepiped P ′ ∈ N (S) has at least one facet
F at the boundary ∂(∪P∈S P), see Fig. 3. Lemma 4 implies that

∫
F f (x) dx �

e · Area(F) · f (zP ′) and since the height of P ′ w.r.t. F is at least δ one has
Area(F) · δ � vol(P ′) which implies

∫

F
f (x) dx � e/δ · f (zP ′)vol(P ′) = e/δ · f (P ′).

Since each P ′ ∈ N (S) has 2n facets, this implies

2n e/δ ·
∑

P ′∈N (S)

f (P ′) � 1

2
√
6

∫

∪P∈S P
f (x) dx � 1

2 e
√
6

∑

P∈S

f (P) (10)

where we used Lemma 4 again in the last inequality. Thus Q(N (S))/Q(S) �
δ/(4e2

√
6n) which implies a bound of 
(δ2/n2) on the conductance.

Lemma 7 The conductance of the random walk on the parallelepipeds is 
(δ2/n2).
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4.2 Bounding the failure probability of the algorithm

Algorithm 1 does not return an element of the optimal basis if

‖zP − α · c‖2 � δ/2n.

What is the probability of this event if P is sampled according to Q, the stationary
distribution of the walk? If this happens, then the final parallelepiped is contained in
the set

{x ∈ R
n : ‖x − α · c‖2 � αδ/2n − 1/n} (11)

since the diameter of a parallelepiped is at most 1/n. Let T ⊆ P be the set of
parallelepipeds that are contained in the set (11). To estimate Q(T )we use the notation
T̃ to denote the set of points in the union of the parallelepipeds, i.e., T̃ = ∪P∈T P .
Using Lemma 4, we see that

Q(T ) =
∑

P∈T

f (P)

/ ∑

P∈P
f (P) � e2 · 2−n ·

∫

T̃
f (x) dx .

Clearly 2−n · ∫
T̃ f (x) dx is at most the probability that a random point x∗ ∈ R

n

sampled from the distribution with density 2−n · exp(−‖x‖1) has �2-norm at least
α · δ/2n − 1/n � α · δ/4n where we assume that α � 2n3/δ in the last inequality.
Arguing as in (7) we conclude that

Q(T ) � e2 · n/ exp(α · δ/4n2).

Thus is α = 4n3/δ, then
Q(T ) � e2 · n/ exp(n) (12)

which is exponentially small in n.
How many steps � of the walk are necessary until

|Q�(T ) − Q(T )| � exp(−n) (13)

holds? Remember that the conductance φ � ξ · (δ/n)2 for some constant ξ > 0.
Thus (13) holds if

√

e22n/ f (P0)
(
1 − ξ · (δ/n)2

)�

< exp(−n). (14)

Now f (P0) = f (zP0)vol(P0) � exp(−‖2αc‖1)n−nδn � exp(−8 · n3.5/δ)(δ/n)n .
Thus (14) holds if

(
1 − ξ · (δ/n)2

)�

< exp(−νn3.5/δ)(δ/n)n,
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336 F. Eisenbrand, S. Vempala

where ν > 0 is an appropriate constant. Using the inequality (1 + x) � exp(x) and
taking logarithms on both sides, this holds if

− � · ξ · (δ/n)2 < −νn3.5/δ + n ln δ/n (15)

and thus � = 
(n5.5/δ3) is a polynomial lower bound on � such that (13) holds. With
the union bound we thus have our main result.

Theorem 8 If Algorithm 1 performs 
(n5.5/δ3) steps of the random walk, then the
probability of failure is bounded by e2 · n exp(−n) + exp(−n). Consequently, there
exists a randomized simplex-type algorithm for linear programming with an expected
running time that is polynomial in n/δ.

4.3 Remarks

Remark 1 The δ-distance property is a global property of the matrix A. However, we
used it only for the feasible bases of the linear program when we showed rapid mixing
of the random walk. In the first submission of our paper, we asked whether an analog
of Lemma 2 also holds for linear programs where a local δ-distance property holds.
This was answered positively by Dadush and Hähnle [7]. Thus our random walk can
be used to solve linear programs whose basis matrices AB , for each feasible basis
B, satisfy the δ-distance property in expected polynomial time in n/δ. The paper of
Dadush and Hähnle shows this as well via a variant of the shadow-vertex pivoting rule.
Their algorithm is much faster than ours. Also Brunsch et. al [4] could recently show
that the shadow-vertex pivoting rule results in a polynomial-time algorithm for linear
programs with the δ-distance property. Their number of pivot-operations however also
depends on the number m of constraints.

Remark 2 Our random walk, and especially the partitioning scheme, is similar to
Dyer and Frieze [9] and is directly inspired by their paper. The main differences
are the following. Dyer and Frieze rely on a finite partitioning of a bounded subset
of Rn , adapting a technique of Applegate and Kannan [1]. Our walk, however, is
on a countably infinite set of states. For this, we rely on the paper of Lovàsz and
Simonovits [19] which extends the relation of the conductance and rapid mixing to
more general Markov chains, in particular countably infinite Markow chains. We also
choose the �1-norm, i.e., the function exp(−‖x − α · c‖1), whereas Dyer and Frieze
used the Euclidean norm. With this choice, the isoperimetric inequality of Bobkov
and Houdré [2] makes the conductance analysis much simpler. Finally, we analyze
the walk in terms of the δ-distance in a satisfactory way. We feel that this geometric
property is better suited for linear programming algorithms, as it is more general.

Acknowledgements The authors are grateful to Daniel Dadush and Nicolai Hähnle, who pointed out an
error in the sub-division scheme in a previous version of this paper.
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Appendix

Proof of Lemma 2 We denote the normal cones of B and B ′ by

C =
{

∑

i∈B

λi ai : λi � 0

}

and C ′ =
⎧
⎨

⎩

∑

j∈B′
μ j a j : μ j � 0

⎫
⎬

⎭
.

By a gift-wrapping technique, we construct a hyperplane (hT x = 0), h ∈ R
n\{0}

such that the following conditions hold.

(i) The hyperplane separates the interiors of C and C ′.
(ii) The row ak does not lie on the hyperplane.
(iii) The hyperplane is spanned by n − 1 rows of A.

Once we construct (hT x = 0) we can argue as follows. The distance of μk · ak to
the hyperplane (hT x = 0) is at least μk · δ. Since c′ is the sum of μk · ak and a vector
that is on the same side of the hyperplane as ak it follows that the distance of c′ to this
hyperplane is also at least μk · δ. Since c lies on the opposite side of the hyperplane,
the distance of c and c′ is at least μk · δ.

We start with a hyperplane (hT x = 0) strictly separating the interiors of C and C ′.
The conditions (i, ii) are satisfied. Suppose that (iii) is not satisfied and let � < n − 1
be the maximum number of linearly independent rows of A that are contained in
(hT x = 0).

We tilt the hyperplane by moving its normal vector h along a chosen equator of the
ball of radius ‖h‖ to augment this number. Since � < n − 1 there exists an equator
leaving the rows of A that are in contained in (hT = 0) invariant under each rotation.

However, as soon as the hyperplane contains a new row of A we stop. If this new
row of A is not ak then still, conditions (i, ii) hold and the hyperplane now contains
� + 1 linearly independent rows of A.

If this new row is ak , then we redo the tilting operation but this time by moving h
in the opposite direction on the chosen equator. Since there are n linearly independent
rows of A without the row ak this tilting will stop at a new row of A which is not ak

and we end the first tilting operation.
This tilting operation has to be repeated at most n − 1 − |B ∩ B ′| times to obtain

the desired hyperplane. �

Phase 1

We now describe an approach to determine an initial basic feasible solution or to assert
that the linear program (1) is infeasible. Furthermore, we justify the assumption that
the set of feasible solutions is a bounded polytope. This phase 1 is different from the
usual textbook method since the linear programs that we need to solve have to comply
with the δ-distance property.

To find an initial basic feasible solution, we start by identifying n linearly inde-
pendent linear inequalities ãT

1 x � b̃1, . . . , ãT
n x � b̃n of Ax � b. Then we determine
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a ball that contains all feasible solutions. This standard technique is for example
described in [13]. Using the normal-vectors ã1, . . . , ãn we next determine values
βi , γi ∈ R, i = 1, . . . , n such that this ball is contained in the parallelepiped
Z = {x ∈ R

n : βi � ãT
i x � γi , i = 1, . . . , n}. We start with a basic feasible

solution x∗
0 of this parallelepiped and then proceed in m iterations. In iteration i , we

determine a basic feasible solution x∗
i of the polytope

Pi = Z ∩
{

x ∈ R
n : aT

j x � b j , 1 � j � i
}

using the basic feasible solution x∗
i−1 from the previous iteration by solving the linear

program

min
{

aT
i x : x ∈ Pi−1

}
.

If the optimum value of this linear program is larger than bi , we assert that the linear
program (1) is infeasible. Otherwise x∗

i is the basic feasible solution from this iteration.
Finally, we justify the assumption that P = {x ∈ R

n : Ax � b} is bounded
as follows. Instead of solving the linear program (1), we solve the linear program
max{cT x : x ∈ P ∩ Z} with the initial basic feasible solution x∗

m . If the optimum
solution is not feasible for (1) then we assert that (1) is unbounded.
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