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Abstract Let � be an arbitrary set, equipped with an algebra A ⊆ 2� and let
f : B(A) → R be a functional defined on the set B(A) of bounded measurable
functions x : � → R. We provide necessary and sufficient conditions for a submodu-
lar functional f to be representable as a Choquet integral. From standard properties of
the Choquet integral the functional f should be positively homogeneous and constant
additive. Our first result shows that these two properties, together with submodularity,
characterize a subadditive Choquet integral, when � is finite. In the general case, f is
a subadditive Choquet integral if and only if it satisfies the three previous properties,
together with sup-norm continuity. This result provides another characterization of
subadditive Choquet integrals different from the seminal paper by Schmeidler (Proc
Am Math Soc 97(2):255–261, 1986) that relies on comonotonic additivity.

Mathematics Subject Classification 28A12 · 91B06

1 Introduction

Let � be a set, equipped with an algebra A ⊆ 2� of subsets of �, let B(A) be the
set of bounded measurable functions x : � → R, and denote by 1� the constant
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616 A. Chateauneuf, B. Cornet

function on � equal to 1. The goal of this paper is to provide necessary and sufficient
conditions for f : B(A) → R to be a subadditive Choquet functional, the class of
functionals in which Choquet [4] was the most interested, that is, f is subadditive,
i.e., f (x + y) ≤ f (x) + f (y) for all x, y in B(A) such that x + y ∈ B(A), and,
there exists some set function v : A → R satisfying v(∅) = 0 such that for all
x ∈ B(A), f (x) is the Choquet integral of x with respect to v. Interestingly, posi-
tive homogeneity and constant additivity (i.e., f (x + t1�) = f (x) + t f (1�) for all
t > 0, all x ∈ B(A)) are the two basic properties enjoyed by Choquet functionals.
Moreover, a Choquet functional is subadditive if and only if it is submodular, that is,
f (x ∨ y)+ f (x ∧ y) ≤ f (x)+ f (y) for all x, y in B(A), where the lattice operations
on B(A) are defined for its point-wise order. Our first result (Theorem 2.1) shows that
the properties of positive homogeneity and constant additivity, together with submod-
ularity characterize subadditive Choquet integrals, when � is finite. Our second result
(Theorem 2.2) shows that sup-norm continuity of the functional needs merely to be
added to the three previous properties to get the characterization in the general case.

Our results provide another characterization of subadditive Choquet integrals, dif-
ferent from the seminal one by Schmeidler [12] that relies on comonotonic additivity,1

a fundamental property satisfied by the Choquet integral, as proved by Dellacherie [5].
Assuming that f ismonotonic, then f is a subadditiveChoquet functional if and only if
f is subadditive and comonotonic additive (Schmeidler [12]) and also, from our result,
if and only if it is positively homogeneous, constant additivity, and submodular. The
proof of our result is direct without invoking comonotonic additivity. Moreover, the
monotonicity assumption is not assumed in our characterization results.

We now show the relationship with the literature dealing with an old conjecture by
Choquet [4] who claimed that on certain lattice cones, every positively homogeneous
and submodular functional is subadditive, a result that was known since Choquet
when f is twice continuously differentiable (see Huber [7]). This conjecture has been
recently proved in full generality by König [8] for the positive coneRn+ endowed with
the point-wise order and by Marinacci and Montrucchio [10] in the case of hyper-
Archimedean Riesz spaces, thus allowing orders on the space other than the point-wise
one. In [10], they also provide another result showing that continuous, constant additive
and submodular functionals are also subadditive when they are defined on R

n+, or on
R
n , and more generally on a hyper-Archimedean Riesz space. Our main result is more

specific in terms of the space B(A) we consider, but more precise in its conclusion,
namely a submodular functional f : B(A) → R is a subadditive Choquet functional if
and only if it is additionally assumed to be positively homogeneous, constant additive,
and sup-norm continuous (unless � is finite).

We recall some notations used throughout the paper. Let � be an arbitrary set, we
let R� be the vector space of functions x : � → R. Then R

�+ denotes the set of
non-negative functions x ≥ 0, that is, x(ω) ≥ 0 for all ω ∈ � and we define the
point-wise order x ≥ x ′ by x(ω) ≥ x ′(ω) for all ω ∈ �. The lattice operations ∧ and
∨ are defined by (x ∧ y)(ω) := min{x(ω), y(ω)}, (x ∨ y)(ω) := max{x(ω), y(ω)}
for all ω ∈ �. We denote by 1A the indicator (or characteristic) function of a subset

1 The functional f is said to be comonotonic additive if f (x + y) = f (x) + f (y) for all x, y in B(A)

such that x + y ∈ B(A) and (x(ω) − x(ω′))(y(ω) − y(ω′)) ≥ 0 for all ω,ω′ in �.
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Choquet representability of submodular functions 617

A ⊆ �, i.e., 1A(ω) = 1 if ω ∈ A, and 1A(ω) = 0 otherwise, and, by convention,
1∅ = 0. We will consider successively the two following cases (i)� is finite,2 and
(i i)� is a set equipped with an algebra A ⊆ 2� of subsets of �, hence in particular
a measurable space space when A is a σ -algebra.

2 The main results

2.1 The finite case

When � is finite, a game is a set function v : 2� → R satisfying v(∅) = 0. Then
the Choquet integral (Choquet [4]) with respect to the game v is the functional
v̂ : R� → R defined as follows. For x ∈ R

�, whose set of values, {x(ω) : ω ∈
�} = {x1, . . . xK }, is ordered decreasingly as x1 > · · · > xk > · · · > xK we define
Ak := x−1({xk}) and

v̂(x) =
K−1∑

k=1

(xk − xk+1)v(A1 ∪ · · · ∪ Ak) + xK v(�). (2.1)

The functional v̂ : R
� → R satisfies the following properties [direct from the

definition for the first three, see for example [9] Proposition 4.11 page 64]:

[Extension] v̂(1A) = v(A) for all A ⊆ �;
[Positive Homogeneity] v̂(t x) = t v̂(x) for all t ≥ 0, all x ∈ R

�;
[Constant Additivity] v̂(x + t1�) = v̂(x) + t v̂(1�) for all t > 0, all x ∈ R

�;
[Lipschitz] ∃k ∈ R, |v̂(x) − v̂(y)| ≤ k‖x − y‖∞ for all x, y in R�.
Moreover if v is a capacity, i.e., v(∅) = 0 and v(A) ≤ v(B) for all A ⊆ B ⊆ �,
then
[Monotonicity] v̂(x) ≤ v̂(y) for all x, y in R� such that x ≤ y.

The function f : R� → R is said to be Choquet representable or a Choquet
functional if there exists a game v : 2� → R such that f (x) = v̂(x) for all x ∈ R

�.
Note that the game v associated with a Choquet functional f is unique since v(A) =
v̂(1A) = f (A) for all A ⊆ �, from the Extension property of the Choquet integral.
Then f : R� → R is said to be a subadditive (resp. convex, submodular,…) Choquet
functional if it is subadditive (resp. convex, submodular,…) as a function and if f is
a Choquet functional.

From the above properties, every Choquet functional f : R� → R is positively
homogeneous and constant additive. Moreover, a Choquet functional is subadditive

2 When � is finite of cardinal n, we can identify R
� with R

n , thus a function x : � → R can also be
viewed as the n-tuple x = (x1, . . . , xn). The previously defined order is the coordinate-wise order ofRn , i.e.,
x = (x1, . . . , xn) ≤ y = (y1, . . . , yn) inRn means xi ≤ yi for every i = 1, . . . , n. The lattice operations∧
and∨ are defined by x∧y := (min{x1, y1}), . . . ,min{xn , yn}), x∨y := (max{x1, y1}), . . . ,max{xn , yn}).
With the previous identification, for A ⊆ {1, . . . , n}, 1A will now be the vector in R

n such that xi = 1
if i ∈ A and xi = 0 otherwise. Thus we denote by 1i := 1{i} (resp. 1�) the vector with all coordinates
equal to zero, but the i-th equal to 1 (resp. with all coordinates equal to 1) so that x = (x1, . . . , xn) =
x111 + · · · + xn1n .
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618 A. Chateauneuf, B. Cornet

if and only if it is convex if and only if it is submodular. See, for example [9]. The
following theorem shows that the three properties of positive homogeneity, constant
additivity, and submodularity characterize the class of subadditive Choquet function-
als.

Theorem 2.1 Let� be a finite set, let f : R� → R, then the two following assertions
(i) and (i i) are equivalent:

(i) f satisfies the following three conditions:
[Positive Homogeneity] f (t x) = t f (x) for all t ≥ 0, all x ∈ R

�+,
[Constant Additivity] f (x+ t1�) = f (x)+ t f (1�) for all t > 0, all x ∈ R

�,3

[Submodularity] f (x ∨ y) + f (x ∧ y) ≤ f (x) + f (y) for all x, y in R�+; 4
(ii) f is a Choquet functional that is subadditive on R

�, i.e.,
[Subadditivity] f (x + y) ≤ f (x) + f (y) for all x, y in R�.

If f satisfies one of the above equivalent properties, then it is Lipschitzian.

The proof of Theorem 2.1 is given in Sect. 3.1.
Subadditive Choquet functionals is a class of functionals that has been extensively

studied. Connecting the previous theorem with fundamental results of this literature
provides additional properties satisfied by the class of positively homogeneous, con-
stant additive, and submodular functionals.

Corollary 2.1 Let � be a finite set, let f : R� → R, and let v : 2� → R be defined
by v(A) := f (1A) for A ⊆ �. Then the following assertions are equivalent:

(i) f is positively homogeneous, constant additive, and submodular;
(ii) f is a subadditive Choquet functional;
(ii’) f is a convex Choquet functional;
(iii) f is a submodular Choquet functional;
(iv) f is a Choquet functional and v is submodular (or concave by Shapley [14])

v(A ∪ B) + v(A ∩ B) ≤ v(A) + v(B) f or all A ⊆ �, B ⊆ �;

(v) v is submodular and f (x) = sup{x · μ : μ ∈ core (v)} for all x ∈ R
�,

where core (v) := {μ ∈ R
� : μ(A) ≤ v(A) for all A ⊆ �, and μ(�) = v(�)}.

Proof The equivalence [(i i) ⇐⇒ (v)] is due to the seminal paper by Schmeidler
[12]. A general reference for the equivalence [(i i) ⇐⇒ (i i ′) ⇐⇒ (i i i) ⇐⇒
(iv) ⇐⇒ (v)] is Marinacci and Montrucchio [9] and Denneberg [6]. ��

3 This is easily proved to be equivalent to f (x + t1�) = f (x) + t f (1�) for all t ∈ R, all x ∈ R
�. Also,

under positive homogeneity, constant additivity is equivalent to

f (x + 1�) = f (x) + f (1�) for all x ∈ R
�.

Indeed, f (x + t1�) = f (t (x/t + 1�)) = t f (x/t + 1�) = t ( f (x/t) + f (1�)) = f (x) + t f (1�).
4 Under constant additivity, it is easily proved to be equivalent to f submodular on the whole space R�.
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Choquet representability of submodular functions 619

We now deduce that every positively homogeneous, constant additive and submod-
ular functional is a polyhedral convex function, that is, it is the supremum of finitely
many affine functions; see Rockafellar [11].

Corollary 2.2 Let � be a finite set, let f : R� → R be a function that is positively
homogeneous, constant additive, and submodular, and let v : 2� → R be defined by
v(A) := f (1A) for A ⊆ �. Then

• f is a polyhedral convex function;
• ∂ f (0) = core (v).

Proof We first prove that f is a polyhedral convex function. Indeed, from Assertion
(v) of Theorem 2.1, one has f (x) = sup{x · μ : μ ∈ core (v)} for all x . Thus f is the
support function of the set core (v), which is a polyhedral convex set, i.e., a convex
set defined by finitely many affine inequalities. Thus the function f is a polyhedral
convex function ([11] Corollary 19.2.1, page 174).

We now prove that ∂ f (0) = core (v). Indeed, since f is the support function of
core (v), which is nonempty convex compact, one gets ( [11] Theorem 13.1, page
112)

core (v) = {μ ∈ R
� : x · μ ≤ f (x) for all x ∈ R

�},

which is exactly ∂ f (0), since f (0) = 0 (from the positive homogeneity of f ). ��

2.2 The general case

When � is (possibly) infinite, more structure is needed on the space � and on the
functions x : � → R. The set � is now equipped with an algebra A ⊆ 2� (not
assumed to be a σ -algebra), of subsets of �, that is, A contains the whole set � and
is stable by union and complementation. Moreover every function x : � → R will be
assumed to be measurable, that is, x−1(I ) ∈ A for every interval I ⊆ R. We denote by
B(A) the set of boundedmeasurable functions x : � → R, that is, x is measurable and
‖x‖∞ := sup{|x(ω)| : ω ∈ �} < +∞ and by B0(A) the set of simple measurable
functions, i.e., measurable functions x : � → R whose set of values {x(ω) : ω ∈ �}
is finite. We let B+(A) := B(A) ∩ R

�+ (resp. B+
0 (A) := B0(A) ∩ R

�+) be the set of
non-negative bounded measurable functions (resp. non-negative simple measurable
functions). Clearly the finite case is a particular case of the measurable one, taking
A = 2�, and every function x : � → R is measurable, bounded, and simple. We
recall that B(A) is a lattice for the point-wise order but may not be a vector space,
unless A is assumed to be a σ -algebra (but B0(A) is always a vector space).

A game is now a set function v : A → R such that v(∅) = 0 (and v is not assumed
to be a capacity, i.e., monotonic). Following Aumann and Shapley [2], the variation
norm of a game v is defined as follows:

‖v‖ := sup

{
K∑

k=1

|v(Ak) − v(Ak−1)| : (Ak)
K
k=0 finite chain in A

}
,
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620 A. Chateauneuf, B. Cornet

where, by finite chain (Ak)
K
k=0 in A, we mean that Ak ∈ A for all k = 1, . . . , K and

∅ = A0 ⊆ A1 ⊆ · · · ⊆ AK = �. We denote by:

bv(A) := {
v : A → R : v(∅) = 0 and ‖v‖ < +∞}

,

the set of games having a finite variation norm. The variation norm is indeed a norm
on the space bv(A), which is a Banach space for this norm. Moreover, bv(A) contains
the class of finite games, the class of capacities, i.e., monotone games, and also the
set ba(A) of bounded charges, i.e., additive games of bounded variation. For all these
properties we refer to [2].5

We follow Marinacci and Montrucchio [9], to define the Choquet integral with
respect to the game v ∈ bv(A), as follows. First when x ∈ B(A), we let:

∫ C

�

x(ω) dv(ω) :=
∫ 0

−∞
[v(x> t) − v(�)] dt +

∫ +∞

0
v(x> t) dt, also denoted v̂(x)

where the integrals (with respect to the real variable t) are taken in the sense of
Riemann.TheRiemann integrals arewell defined and the definition ofChoquet integral
coincides with the previous one for finite games.Moreover the functional v̂ : B(A) →
R is Lipschitzian and this allows to extend the integral on the set:

B(A) := {
x = lim

n→∞ xn : x ∈ R
� is bounded, for all n, xn ∈ B(A)

}
,

the closure of B(A) in the Banach space of all bounded functions (endowed with the
sup norm). Then B(A) is a Banach lattice (hence a vector space) containing B(A),
which is not in general a vector space, B(A) is also the closure of B0(A), the set of
simple measurable functions, and B(A) = B(A) wheneverA is a σ -algebra. For this
construction and the properties listed above and below, we refer to [9].

[Extension] v̂(1A) = v(A) for all A ∈ A;
[Positive Homogeneity] v̂(t x) = t v̂(x) for all t ≥ 0, all x ∈ B(A);
[Constant Additivity] v̂(x + t1�) = v̂(x) + t v̂(1�) for all t > 0, all x ∈ B(A);
[Lipschitz] ∃k ∈ R+, |v̂(x) − v̂(y)| ≤ k‖x − y‖∞ for all x, y in B(A).

We now provide an extension of the representation Theorem 2.1. The function
f : B(A) → R (resp. f : B(A) → R) is said to be Choquet representable or a
Choquet functional if there exists a game v ∈ bv(A) such that f (x) = v̂(x) for all
x ∈ B(A) (resp. x ∈ B(A)). Again, the game v associated with a Choquet functional
f is unique since v(A) = v̂(1A) = f (1A) for all A ∈ A, from the Extension property
of the Choquet integral. We stress the fact that if f is a Choquet functional then its
associated game v is of finite (bounded) variation, i.e., v ∈ bv(A) (since the Choquet

5 Indeed bv(A) contains the class of all finite games (i.e., � is finite) since there are finitely many finite
chains. Moreover, bv(A) contains all capacities v since, using the monotonicity of v, for all finite chains
(Ak ),

∑K
k=1 |v(Ak ) − v(Ak−1)| = ∑K

k=1 v(Ak ) − v(Ak−1) = v(�) − v(∅) = v(�). Consequently,
‖v‖ = v(�) < ∞. An additive game μ is called a charge (or a signed charge) and we point out that the
total variation norm of a charge ‖μ‖ is exactly the variation norm of the game μ defined above.
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Choquet representability of submodular functions 621

integral has been defined only in this case). Then, as previously, f : R� → R is said to
be a subadditive (resp. convex, submodular,…) Choquet functional if it is subadditive
(resp. convex, submodular,…) as a function and if it is a Choquet functional.

Theorem 2.2 Let � be a set equipped with an algebra A ⊆ 2�, let f : B(A) → R.
Then the following three assertions are equivalent:

(i) f satisfies the following four conditions:
[Positive homogeneity] f (t x) = t f (x) for all t ≥ 0, all x ∈ B+

0 (A),
Constant Additivity f (x + t1�) = f (x) + t f (1�) for all t > 0, all x ∈ B0(A),
Submodularity f (x ∨ y) + f (x ∧ y) ≤ f (x) + f (y) for all x, y in B+

0 (A),
[Continuity] f is sup-norm continuous on B+(A);

(ii) f is a Choquet functional, and f is subadditive, i.e.
[Subadditivity] f (x+x ′) ≤ f (x)+ f (x ′) for all x, x ′ in B(A), x+x ′ ∈ B(A);

(ii’) f has a sup-norm continuous extension f̄ : B(A) → R satisfying: f̄ is a
subadditive Choquet functional on B(A).

Moreover, if f satisfies one of the above equivalent assertions, then f and f̄ are
Lipschitzian.

The proof of Theorem 2.2 is given in Sect. 3.2.

Remark 2.3 The above theorem contains an additional continuity assumption that
was not made in Theorem 2.1 when � is finite. Moreover the continuity assumption
cannot be dispensed with when � is not finite. Consider a linear functional f that is
not sup-norm continuous, then f is positively homogeneous, constant additive, and
submodular. But f cannot be a Choquet functional since Choquet functionals are
always Lipschitzian. ��

In the general case, subadditive Choquet functionals have been extensively studied,
starting with the seminal paper by Schmeidler [12]. Connecting Theorem 2.2 with this
literature provides additional properties satisfied by the class of positively homoge-
neous, constant additive, submodular, and sup-norm continuous functionals. The next
result considers the case of functionals f̄ : B(A) → R defined on the Banach lattice
B(A).

Corollary 2.3 Let � be a set equipped with an algebra A ⊆ 2�, let f̄ : B(A) → R,
and let v : A → R be defined by v(A) := f̄ (1A) for A ∈ A. Then the following
assertions are equivalent.

(i) f̄ satisfies the following four conditions:
[Positive homogeneity] f̄ (t x) = t f̄ (x) for all t > 0, all x ∈ B+

0 (�),
[Constant Additivity] f̄ (x+ t1�) = f̄ (x)+ t f̄ (1�) for all t ≥ 0, all x ∈ B0(A),
[Submodularity] f̄ (x ∨ y) + f̄ (x ∧ y) ≤ f̄ (x) + f̄ (y) for all x, y in B+

0 (A),
[Continuity] f̄ is sup-norm continuous on B (A);

(ii) f̄ is a subadditive Choquet functional;
(ii’) f̄ is a convex Choquet functional;
(iii) f̄ is a submodular Choquet functional;
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622 A. Chateauneuf, B. Cornet

(iv) f̄ is a Choquet functional and v is submodular, i.e.,

v(A ∪ B) + v(A ∩ B) ≤ v(A) + v(B) f or all A ∈ A, B ∈ A;

(v) v ∈ bv(A) is submodular, and

f̄ (x) = sup{x · μ : μ ∈ core (v)} for all x ∈ B(A),

where core (v) := {μ ∈ ba(A) : μ(A) ≤ v(A) f or all A ∈ A μ(�) = v(�)},
ba(A) denotes the vector space of all charges with finite (total) variation norm.

Moreover, if f̄ satisfies one of the above equivalent assertions, then f̄ is Lip-
schitzian.

The equivalence [(i) ⇐⇒ (i i)] is a direct consequence of Theorem 2.2, con-
sidering the restriction f of the functional f̄ to B(A). For the other equivalences
[(i i) ⇐⇒ (i i ′) ⇐⇒ (i i i) ⇐⇒ (iv) ⇐⇒ (v)], we refer to Marinacci and
Montrucchio [9].

The next corollary replaces the previous continuity assumption by themonotonicity
of the functional f and the associated game v will then be a capacity.

Corollary 2.4 (Monotone) Let � be a set equipped with an algebra A ⊆ 2�, let
f : B(A) → R, then the following two assertions are equivalent:

(i) f is positively homogeneous, constant additive, submodular on B(A),6 and
[Monotone Increasing] f (x) ≤ f (y) for all x, y in B(A) such that x ≤ y;

(ii) v is a capacity and f is a subadditive Choquet functional.

Proof The proof of [(i) �⇒ (i i)] is a direct consequence of Theorem 2.2 and the
fact that f is Lipschitzian whenever f is monotone increasing and constant additive.
Indeed, for all x, y in B(A) one has, x ≤ y + ‖x − y‖∞1�. Since f is monotone
increasing and constant additive, one gets:

f (x) ≤ f
(
y + ‖x − y‖∞1�

) = f (y) + ‖x − y‖∞ f (1�).

Interchanging the role of x and y one gets f (y) ≤ f (x)+‖y− x‖∞ f (1�), hence

| f (x) − f (y)| ≤ f (1�)‖x − y‖∞.

Consequently, from Theorem 2.2, f is a subadditive Choquet functional. Since f
is monotone increasing, one then checks that v is monotonic, i.e., v(A) := f (1A) ≤
f (1B) := v(B) for all A ⊆ B, A ∈ A, B ∈ A, that is, v is a capacity. The proof of
the converse [(i i) �⇒ (i)] relies on standard properties of the Choquet integral. ��

We can now deduce the Riesz’ representation theorem for linear and sup-norm
continuous functions f , in the case of an algebra A (and the case of a σ - algebra A
follows immediately since in this case B(A) = B(A)).

6 As in Condition (i) of Theorem 2.2.
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Choquet representability of submodular functions 623

Corollary 2.5 (Riesz) Let � be a set equipped with an algebra A ⊆ 2�, let f :
B(A) → R and let v : A → R be defined by v(A) := f (1A) for A ∈ A. Then the
following two assertions are equivalent:

(i) f is linear and sup-norm continuous;
(ii) v ∈ ba(A) and f (x) = ∫ C

�
x(ω)dv(ω) for all x ∈ B(A).

Proof [(i) �⇒ (i i)] is a direct consequence of Corollary 2.3 since a linear functional
is positively homogeneous, constant additive, and modular (see Topkis [15]), hence
submodular.7 Thus f is a Choquet functional. Then one checks that v is additive (i.e.,
a charge) since f is linear and v ∈ ba(A) since v ∈ bv(A) and v is additive.
[(i i) �⇒ (i)]. If f is a Choquet functional with respect to v ∈ ba(A), then it is linear
from standard properties of the Choquet integral. Moreover the Choquet functional f
is sup-norm continuous by Corollary 2.3. ��

3 Proof of the theorems

3.1 Proof of Theorem 2.1

Hereafter, we provide the proof in a slightly more general framework than � finite,
since it will be needed in the next section for the proof of the general case. More
precisely, hereafter we assume that � is a set equipped with an algebra A ⊆ 2�, we
let f : B0(A) → R, where B0(A) denotes the set of simple measurable functions,
and the definition of the Choquet integral is given by the same formula (2.1) as in the
finite case. Clearly this framework extends the case of � finite, taking A = 2�, and
noticing that B0(A) = R

� .
[(i i) �⇒ (i)] Assume that f is a subadditive Choquet functional. By standard
properties of the Choquet integral, f is constant additive and positively homogeneous
on B0(A). Moreover the Choquet functional f is subadditive on B0(A) if and only
if it is submodular on B0(A) (see [9]). Hence f is submodular, constant additive and
positively homogeneous on B0(A), which shows that it satisfies Condition (i). ��
[(i) �⇒ (i i)] We assume that f : B0(A) → R satisfies (i), we let x ∈ B0(A),

whose values {x1, . . . , xK } are ranked in decreasing order x1 > · · · > xk > · · · > xK ,
and we recall that:

x = x11A1 + · · · + xK 1AK where Ak := {ω ∈ � : x(ω) = xk} ∈ A,
{A1, . . . , AK } defines a measurable partition of �,
x = ∑K

k=1 yk with yk := (xk − xk+1)1A1∪···∪Ak (k ≤ K − 1), yK := xK 1�,∫ C
�

x dv := ∑K−1
k=1 (xk − xk+1)v(A1 ∪ · · · ∪ Ak) + xK v(�) (by Definition (2.1)).

The equality f (x) = ∫ C
�

x dv will be proved in the following three steps and the
subadditivity of f in the fourth step.
Step 1. f (x) ≥ ∫ C

�
x dv for all x ≥ 0.

The proof of Step 1 is a consequence of the following two claims.

7 If f is additive, then the functional f ismodular. Indeed, since x∨y+x∧y = x+y: f (x∨y)+ f (x∧y) =
f (x ∨ y + x ∧ y) = f (x + y) = f (x) + f (y) for all x, y in B(A).
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624 A. Chateauneuf, B. Cornet

Claim 1 f (yk) := (xk − xk+1)v(A1 ∪ · · · ∪ Ak) (k ≤ K − 1), f (yK ) = xK v(�).
Indeed, for k = K , since xK ≥ 0 [because x ≥ 0] and f is positively homogeneous,

we get f (yK ) := f (xK 1�) = xK f (1�) = xK v(�) [from the definition of v].
For k ≤ K − 1 one has:

f (yk) = f
(
(xk − xk+1)1A1∪···∪Ak

)

= xk − xk+1) f (1A1∪···∪Ak )[since f is pos. hom. and xk > xk+1]
= (xk − xk+1)v(A1 ∪ · · · ∪ Ak)[from the definition of v]. ��

Claim 2 f (x) = f (
∑K

k=1 yk) ≥ ∑K
k=1 f (yk) = ∫ C

�
x dv.

Indeed, we will prove hereafter the following inequality:

f (y1 + · · · + yk) ≥ f (y1 + · · · + yk−1) + f (yk) for all k = 2, . . . , K ,

that immediately implies Claim 2 (by a simple induction argument) since

f (x) = f

(
K∑

k=1

yk

)
≥ f (y1 + · · · + yK−1) + f (yK ) ≥ . . .

≥ f (y1 + · · · + yk−1) + f (yk) + · · · + f (yK ) ≥ · · · ≥
K∑

k=1

f (yk).

We now prove the above inequality, fixing k = 2, . . . , K . We let xK+1 := 0

• a := y1 + · · · + yk = (x1 − x2)1A1 + · · · + (xk − xk+1)1A1∪···∪Ak

= (x1 − xk+1)1A1 + · · · + (xk − xk+1)1Ak

• b := (xk − xk+1)1� ≥ 0,

recalling that x1 > · · · > xK ≥ 0 := xK+1 since x ≥ 0. Moreover one gets:

• a ∧ b := (y1 + · · · + yk) ∧ (xk − xk+1)1�

= ((x1 − xk+1)1A1 + · · · + (xk − xk+1)1Ak ) ∧ (xk − xk+1)1�

= (xk − xk+1)1A1 + . . .+(xk − xk+1)1Ak =(xk − xk+1)1A1∪···∪Ak = yk,

• a ∨ b := (
(x1 − xk+1)1A1 + · · · + (xk − xk+1)1Ak

) ∨ (xk − xk+1)1�

= (x1 − xk+1)1A1 + · · · + (xk−1 − xk+1)1Ak−1 + (xk − xk+1)1Ak

+(xk − xk+1)1Ak+1∪···∪AK

= (x1 − xk)1A1 + · · · + (xk−1 − xk)1Ak−1 + (xk − xk+1)1�

= y1 + · · · + yk−1 + (xk − xk+1)1�[from the formula giving a at k − 1]
= y1 + · · · + yk−1 + b.

Consequently, using the submodularity and constant additivity of f we get:
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f (y1 + · · · + yk) + f (b) = f (a) + f (b)
≥ f (a ∧ b) + f (a ∨ b) [since f is submodular]
= f (yk) + f (y1 + · · · + yk−1 + b) [from above] where b := (xk − xk+1)1�,
= f (yk) + f (y1 + · · · + yk−1) + f (b) since f is constant additive.

Hence, f (y1 + · · · + yk) ≥ f (y1 + · · · + yk−1) + f (yk). ��

Step 2.
∫ C
�

x dv ≥ f (x) for all x ≥ 0.

Recalling that x1 > · · · > xK ≥ 0, we can rewrite the integral as

∫ C

�

x dv = (x1−x2) f (1A1)+(x2 − x3) f (1A1∪A2)+· · · +(xk − xk+1) f (1A1∪···∪Ak )

+ · · · + (xK−1 − xK ) f (1A1∪···∪AK−1) + xK f (1�)

= x1 f (1A1) + x2
(
f (1A1∪A2) − f (1A1)

)

+ · · · + xk
(
f (1A1∪···∪Ak ) − f (1A1∪···∪Ak−1)

)

+ · · · + xK
(
f (1�) − f (1A1∪···∪AK−1)

)

≥ f (x11A1) + f (x11A1 + x21A2) − f (x11A1)

+ · · · + f (x11A1 + · · · + xk1Ak ) − f (x11A1 + · · · + xk−11Ak−1)

+ · · · + f (x11A1 + · · · + xK 1AK ) − f (x11A1 + · · · + xK−11AK−1)

= f (x11A1 + · · · + xK 1AK ) = f (x).

since, on the first hand, the above equalities are simply rewriting the definition of∫ C
�

x dv and f (x) respectively, and, on the other hand, the above inequality is a
consequence of the following two assertions that for k = 1:

x1 f (1A1) = f (x11A1)[since f is positively homogeneous and x1 ≥ 0],

and and for k = 2, . . . , K

xk
(
f (1A1∪···∪Ak ) − f (1A1∪···∪Ak−1)

)

= xk
(
f (1A1 + · · · + 1Ak ) − f (1A1 + · · · + 1Ak−1)

)

= f (xk1A1 + · · · + xk1Ak ) − f (xk1A1 + · · · + xk1Ak−1)[since xk ≥ 0]
= f (a) − f (a ∧ b)

≥ f (a ∨ b) − f (b)[since f is submodular]
= f (x11A1 + · · · + xk1Ak ) − f (x11A1 + · · · + xk−11Ak−1),

where above we have taken:

a := xk1A1 + · · · + xk1Ak , b := x11A1 + · · · + xk−11Ak−1
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and, recalling that x1 > · · · > xk > · · · > xK ≥ 0, we clearly have:

a ∧ b = xk1A1 + · · · + xk1Ak−1 and a ∨ b = x11A1 + · · · + xk1Ak . ��
Step 3. f (x) = ∫ C

�
x dv for all x ∈ R

�.

Indeed, there exists t ≥ 0 such that x + t1� ≥ 0. Thus,
∫ C
�

(x + t1�) dv =
f (x + t1�) from Steps 1 and 2. Consequently, from the constant additivity properties
of both f and the Choquet integral, we have

∫ C

�

x dv + t
∫ C

�

1� dv =
∫ C

�

(x + t1�) dv = f (x + t1�) = f (x) + t f (1�).

Thus
∫ C
�

x dv = f (x) since
∫ C
�
1� dv = v(�) := f (1�). ��

Step 4. f is subadditive on R�.
From (i), the function f is submodular on R

�+, which together with the constant
additivity of f (by (i)) implies that f is submodular on R

�. But f is a Choquet
functional by Steps 1 and 2, and a Choquet functional is submodular on R

� if and
only if it is subadditive on R� (see [9]). Thus f is subadditive on R

�. ��

3.2 Proof of Theorem 2.2

We first prove [(i) �⇒ (i i)]. Let f : B(A) → R satisfy Condition (i), we define
the game v : A → R by v(A) := f (1A) for A ∈ A. The proof of (i i) will proceed in
several steps. The first step proves that v ∈ bv(A). The second step proves the equality
f (x) = v̂(x) when x ∈ B0(A), i.e., x is a measurable simple function; this has been
mainly performed in the previous section (the finite case) and we only need to recall
that the two definitions of the Choquet integral used so far coincide when x ∈ B0(A).
The third step uses a standard approximation argument of x ∈ B(A) by a sequence
of measurable simple functions (xn); since f (xn) = v̂(xn) by Step 2, then going to
the limit when n → ∞, gives the desired equality f (x) = v̂(x), using the sup-norm
continuity of v̂ (a property of the Choquet integral) and of f (by assumption).

Step 1 v ∈ bv(A).
First, v is a bounded game since f is bounded on B+ := {x ∈ B+(A) : ‖x‖∞ ≤ 1}

the non-negative unit ball; indeed, since f is sup-norm continuous at 0, for every
ε > 0 there exists α > 0 such that ‖x‖ ≤ α implies | f (x)| ≤ ε; hence, for x ∈
B+, α| f (x)| = | f (αx)| ≤ ε since f is positively homogeneous, thus | f (x)| ≤ ε/α.

Second, v is submodular since f is submodular; indeed,

v(A ∪ B) + v(A ∩ B) = f (1A∪B) + f (1A∩B)

= f (1A ∨ 1B) + f (1A ∧ 1B) ≤ f (1A) + f (1B) = v(A) + v(B).

Since v is bounded and submodular (see [9] Theorem 38 Page 40), the core (v)

is nonempty and moreover, for any finite chain (Ak)
K
k=0, i.e., Ak ∈ A for all k, and
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∅ = A0 ⊆ · · · ⊆ Ak ⊆ · · · ⊆ AK = �, there exists μ ∈ core (v) (and in particular
μ ∈ ba(A) by definition of the core), such that μ(Ak) = v(Ak) for all k. Thus

K∑

k=1

|v(Ak) − v(Ak−1)| =
K∑

k=1

|μ(Ak) − μ(Ak−1)|

=
K∑

k=1

|μ(Ak\Ak−1)| ≤ ‖μ‖,

where ‖μ‖ is the variation norm of the (additive) gameμ ∈ ba(A), i.e., of the (signed)
chargeμ. From a standard result of measure theory (see for example [3], [1] Corollary
10.55, page 399), ‖μ‖ < +∞ if and only if the range ofμ is bounded, i.e., there exists
M ∈ R, such that |μ(A)| ≤ M for all A ∈ A.8 Thus to show that v ∈ bv(A), i.e., ‖v‖
is finite, we only need to check that the range of μ is bounded. Indeed, for all A ∈ A,
recalling that μ ∈ core (v), there exists M ′ ∈ R+ such that

μ(A) ≤ v(A) := f (1A) ≤ M ′,
v(�) − μ(A) = μ(�) − μ(A) = μ(Ac) ≤ v(Ac) := f (1Ac ) ≤ M ′,

since f is bounded on the unit ball and ‖1A‖∞ ≤ 1, ‖1Ac‖∞ ≤ 1. Consequently,
supA∈A |μ(A)| ≤ max{M ′, M ′ − v(�)}, i.e., the range of μ is bounded. ��

Step 2 f (x) = v̂(x) for all x ∈ B0(A), i.e., for all x measurable simple function.
We have proved in the previous section that, for every simple function x : � → R

whose (finitely many) values {x1, . . . , xK } are ranked in decreasing order x1 > · · · >

xk > · · · > xK , we have:

f (x) =
K−1∑

k=1

(xk − xk+1)v(A1 ∪ · · · ∪ Ak) + xK v(�).

But for a simple function x ∈ B0(A), the above sum coincides with the Choquet
integral w.r.t. v ∈ bv(A), that is, one has ( [9] Proposition 22, page 22, [6])

v̂(x) =
K−1∑

k=1

(xk − xk+1)v(A1 ∪ · · · ∪ Ak) + xK v(�).

Thus f (x) = v̂(x). ��
Step 3 f (x) = v̂(x) for every x ∈ B(A).

Proof We recall that the set B0(A) of simple and measurable functions is sup-norm
dense in B(A), that is, for every x ∈ B(A), there exists a sequence of measurable
simple functions xn : � → R such that ‖xn − x‖∞ → 0 when n → ∞.

8 Define ‖μ‖ = |μ|(�) := μ+(�) + μ−(�), where μ+(A) := sup{μ(B) : B ⊆ A, A ∈ A}, μ−(�) :=
− inf{μ(B) : B ⊆ A, A ∈ A} for A ∈ A. Then ‖μ‖ = |μ|(�) (see for example [3] Theorem 2.2.4 page
46, Theorem 4.1.2 page 86, [1] Corollary 10.53 page 397) and the result follows.
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Consequently, for every x ∈ B(A), we have

| f (x) − v̂(x)| ≤ | f (x) − f (xn)| + | f (xn) − v̂(xn)| + |v̂(xn) − v̂(x)|.

But | f (xn) − v̂(xn)| = 0 by Step 2, and |v̂(xn) − v̂(x)| → 0 when n → +∞
since v̂ is Lipschitzian on B(A) when v ∈ bv(A) [Marinacci and Montrucchio [9]
Proposition 24]. Moreover, | f (x)− f (xn)| → 0 when n → +∞ since f is sup-norm
continuous at x ; it suffices to notice that f is continuous on B+(A) by assumption,
which together with constant additivity, implies that f is continuous on B(A).

Letting n → +∞ in the above inequality, at the limit we get f (x) = v̂(x). ��
[(i i) �⇒ (i i ′)]. From (i i), f is a Choquet functional w.r.t. v ∈ bv(A), hence
it is Lipschitzian [Marinacci and Montrucchio [9] Proposition 24]. Consequently,
f : B(A) → R has a sup-norm continuous extension f̄ : B(A) → R since B(A)

is a Banach space. But, the Choquet integral v̂ : B(A) → R has been defined as the
sup-norm continuous extension of v̂ : B(A) → R. Since f = v̂ on B(A) by (i i), we
deduce that f̄ = v̂ on B(A), that is, f̄ is a Choquet functional w.r.t. v ∈ bv(A).

We end the proof by showing that f̄ is subadditive. Indeed, let x, y in B(A) =
B0(A), then f̄ (x) = limn f (xn), f̄ (y) = limn f (yn) for some sequences (xn), (yn)
in B0(A) converging to x and y respectively. From the subadditivity of f on B(A)

(hence also on B0(A)) by (i i), we have f (xn + yn) ≤ f (xn) + f (yn). At the limit,
we get

f̄ (x + y) = lim
n

f (xn + yn) ≤ lim
n

f (xn) + lim
n

f (yn) = f̄ (x) + f̄ (y). ��
[(i i ′) �⇒ (i)]. The Choquet functional f̄ : B(A) → R is subadditive if and only
if it is submodular (see Marinacci and Montrucchio [9]). Consequently, from (i i ′),
the Choquet functional f̄ : B(A) → R is positively homogeneous, constant additive,
submodular, and sup-norm continuous on B(A). Thus, f , which is the restriction of
f̄ on B(A), satisfies the properties of (i). ��
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