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Abstract We propose a general feasible method for nonsmooth, nonconvex con-
strained optimization problems. The algorithm is based on the (inexact) solution of a
sequence of strongly convex optimization subproblems, followed by a step-size pro-
cedure. Key features of the scheme are: (i) it preserves feasibility of the iterates for
nonconvex problems with nonconvex constraints, (ii) it can handle nonsmooth prob-
lems, and (iii) it naturally leads to parallel/distributed implementations. We illustrate
the application of the method to an open problem in green communications whereby
the energy consumption in MIMOmultiuser interference networks is minimized, sub-
ject to nonconvex Quality-of-Service constraints.
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1 Introduction

We consider the solution of the problem

minimize
x

U (x)

s.t. x ∈ X ,
(P)

whereX ⊆ R
n is a nonempty closed set andU : O → R is locally Lipschitz on O , an

open set containing X . We are interested in a method for finding stationary points of
the nonconvex problem (P) with the following properties: (i) feasibility is maintained
throughout iterates, (ii) nonsmooth (objective or constraint) functions can be handled,
and (iii) the algorithm is possibly amenable to parallel/distributed implementations.

Properties (i) and (iii) are of well-recognized interest and have been extensively
studied in the literature, somewhat independently, both by optimizers and different
engineering communities. Among these results, we list below the main approaches,
paying attention to the ability to handle nonsmooth problems and with an empha-
sis on those methods that can be applied to nonconvex problems and, in particular,
to problems with nonconvex constraints. Standard feasible approaches include the
classical logarithmic barrier Interior-Point (IP) method by Fiacco and Mc Cormick
[18], see also [10,13,21] for modern developments that try to overcome the numerical
pitfalls of the original algorithm, and the Feasible Sequential Quadratic Program-
ming (FSQP) method of Tits, see e.g. [27,35–37] and [11,14,25,38,50] for further
developments. Both IP and FSQP methods require smoothness and are not suited to
parallel/distributed implementations. Parallel Variable Distribution (PVD) schemes,
proposed in [17,40,46] for smooth problems, are suitable for implementation over
parallel architectures. However, PVD methods require an amount of information
exchange/knowledge that is often not compatible with a distributed architecture and
they call for the solution of possibly difficult nonconvex subproblems; moreover,
convergence has been established only for convex constraints [17,46] or noncon-
vex constraints with a Cartesian product structure [40]. In [34] methods for DC
programs are discussed. Among them, Algorithm II generates feasible iterates; par-
allel/distributed schemes are also considered, but only for problems with a convex
feasible set. While the methods proposed in [34] enjoy very strong convergence prop-
erties, in that they converge toB-stationary points, they are potentially computationally
very intensive and only apply to a specific subclass of DC programs. In [8] new results
are proved on a proximal alternating linearized minimization method for nonconvex
and nonsmooth problems. This method maintains feasibility but requires at each iter-
ation the solution of (generally) nontrivial nonsmooth and nonconvex subproblems.
The paper [48] is the rigorous culmination of a series of works in the structural engi-
neering community such as the CONvex LINearization (CONLIN) method [19,20]
and the Method of Moving Asymptotes (MMA) [47]. It introduces a large class of
feasible schemes for smooth problems, potentially suited to parallel/distributed imple-
mentations, called Conservative Convex Separable Approximation (CCSA). A serious
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drawback of CCSA is that, besides requiring the difficult tuning of some unknown
parameters, it finds stationary points of a reformulation that are not necessarily sta-
tionary also for the original problem. To some extent similar to CCSA methods is the
INner Convex Approximation (INCA) algorithm, which was first proposed in 1978
by Marks and Wright [30] for problems with a smooth convex objective function and
smooth nonconvex constraints. In the INCA approach a sequence of convex subprob-
lems is solved where the original nonconvex constraints are replaced by upper convex
approximations so that the algorithms generate only feasible iterates. INCA has been
recently more rigorously studied in [3], in the case of a strongly convex objective
function. In [1], the authors, unaware of [30], use a specific inner convex approxi-
mation for the feasible set and, in the spirit of majorization/minimization techniques,
also approximate the possibly nonconvex objective function with an upper convex
quadratic, so as to solve at each iteration a surrogate problem with a convex quadratic
objective function and convex quadratic constraints. The resulting algorithm, which
is potentially suited to parallel/distributed implementations, cannot deal with non-
smooth problems and the proposed approximation for the objective function, based
on the global Lipschitz property of its gradient, is possibly hard to obtain and, more
importantly, can lead to poor numerical performances (see Sect. 6).

As a major departure from the above approaches, in this work we consider general
nonconvex problems and quite an ample class of nonsmooth functions and provide
easily implementable solutions methods for (P) that, in many cases, with no difficulty
can also lead to parallel and distributed implementations. Building on the INCA par-
adigm, along the lines put forward in [43,44], our method is based on the (inexact)
solution of a sequence of strongly convex optimization subproblems, followed by a
step-size procedure. At each iteration xν , a subproblem is formed of the type

minimize
x

˜U (x; xν)

s.t. x ∈ ˜X (xν),
(Pxν )

where ˜U (•; xν) is a strongly convex “approximation” of U and ˜X (xν) is a closed,
convex, inner approximation of X , meaning that ˜X (xν) ⊆ X . Let x̂(xν) be the unique
solution of problem (Pxν ); the underlying idea of the approach is that (the subproblems
(Pxν ) are chosen so that) one is able to compute efficiently x̂(xν). The new iteration
xν+1 is then given by moving from xν towards (an approximation of) x̂(xν) according
to a step-size γ ν . We prove that, under appropriate assumptions, every limit point of
the sequence xν+1 is stationary for the original problem (P).

Our main contributions are: (a) the definition and analysis of a general algorith-
mic framework enjoying properties (i), (ii), and (iii) and vastly improving over all the
approaches described above; (b) the first practical feasible method for ample classes
of nonsmooth, nonconvex problems requiring at each iteration only the solution of
strongly convex subproblems (as opposite to [8,34]); (c) a systematic approach to
the development of parallel and distributed solution methods that can be applied to
classes of problems for which parallel and distributed methods were not available;
(d) the analysis of several step-size (Armijo-type, diminishing and fixed step-size)
rules, and of corresponding inexactness criteria for the solution of problem (Pxν );
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(e) the first numerically efficient solution method for an important open problem in
green communications, paving the way to the application of our algorithmic frame-
work to a host of unsolved resource allocation problems in interference networks.
During the reviewing process, a referee brought to our attention the interesting, recent
paper [7]. Also in [7] a sequence of strongly convex approximating subproblems is
solved; in particular, following the INCA approach, the authors resort to inner convex
approximations of the feasible set. The analysis in [7] is very elegant and shows full
convergence to a single limit point; moreover, convergence rates aspects are investi-
gated. There are however several differences with our approach: (i) [7] follows the
classical majorization/minimization idea, as in [1], i.e., at each iteration the nonconvex
objective function is approximated by an upper convex estimate; this feature, on the
one hand simplifies the convergence analysis but, on the other hand, may be numer-
ically impractical, see the eloquent numerical results in Sect. 6; (ii) the analysis is
geared towards smooth problems and the assumptions made are strong, so that only
simple and well-behaved forms of nonsmoothness, under (Clarke’s) regularity, can
actually be treated, see Sect. 5; (iii) no consideration is given to practical aspects like
inexactness and parallel/distributed implementations.

The paper is organized as follows. In the next section we recall some basic back-
ground material on nonsmooth analysis and optimality conditions. In Sect. 3 we give
an overall description of our approach and present some preliminary results, while in
Sect. 4 we provide an in-depth convergence analysis. Section 5 is devoted to a detailed
presentation of approximations that can be used in our framework and to their use in
the development of parallel/distributed versions of our algorithm. Section 6 is dedi-
cated to the application of our results to an open problem in green communications
and shows how the flexibility of our approach easily permits to tailor the method to
specific problems and obtain some impressive numerical results.

2 Background material

In this section we briefly recall some basic nonsmooth analysis notions, but we refer
the reader to [31,39] for more details and other results that, in some cases, will be
freely invoked. We assume that all sets C and functions f considered in this section
are closed and locally Lipschitz continuous, respectively.

2.1 Continuity properties of set-valued mappings

Let M : Rn ⇒ R
m be a set-valued mapping and C a subset of Rn .

Definition 1 ([39,Definition 5.4]) The set-valuedmappingM is outer semicontinuous
relative to C at x̄ ∈ C if lim supx→

C
x̄ M(x) ⊆ M(x̄), and inner semicontinuous at x̄ if

lim infx→
C
x̄ M(x) ⊇ M(x̄). M is called continuous (relative toC) at x̄ if both conditions

hold.

The following definition extends to set-valuedmappings the notion of locally bounded
function.
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Definition 2 ([39, Definition 5.14]) The set-valued mapping M is locally bounded at
x̄ ∈ R

n if, for some neighborhood Vx̄ of x̄, the set M(Vx̄) ⊆ R
m is bounded.

Finally,we recall theAubin property,which is a Lipschitz-type condition thatmakes
reference to specific points in the graph of M .

Definition 3 ([39,Definition9.36])The set-valuedmappingM has theAubinproperty
relative to C at x̄ ∈ C for ū ∈ M(x̄), if the graph of M is locally closed at (x̄, ū) and
there are neighborhoods Vx̄ of x̄, Wū of ū, and a constant κ ∈ R+ � {t ∈ R : t ≥ 0}
such that, denoting by B the closed unit ball,

M(y) ∩ Wū ⊆ M(x) + κ ‖y − x‖B for all x, y ∈ C ∩ Vx̄.

2.2 Normal cones and subgradients

Definition 4 ([39, Definition 6.3, 6(19)]) Let a closed set C ⊆ R
n and a point x̄ ∈ C

be given. A vector v is a regular normal to C at x̄ if vT (y − x̄) ≤ o(‖y − x̄‖), for
y ∈ C. The set of regular normals to C at x̄ is denoted by ̂NC (x̄). Moreover, v is a
normal to C at x̄ if there are sequences xν −→

C x̄ and vν → v with vν ∈ ̂NC (xν). The
set of of normals to C at x̄ is denoted by NC (x̄). Lastly, the convexified normal cone
to C at x̄ is defined by NC (x̄) = cl co NC (x̄), where cl and co denote the closure and
the convex hull of a set.

The set C is termed regular at x̄ ∈ C if ̂NC (x̄) = NC (x̄); convex sets are regular at
each of their points.With the aid of normal coneswe cangive the followingdefinition of
subgradients, see [31, Definition 1.77, 1.83 and (2.73)] or [39, Theorem 8.9 and 8(32)].

Definition 5 The set of regular subgradients of f at x̄ ∈ C iŝ∂ f (x̄) � {v|(v,−1) ∈
̂Nepi f (x̄, f (x̄))}. The set of subgradients of f at x̄ ∈ C is ∂ f (x̄) � {v|(v,−1) ∈
Nepi f (x̄, f (x̄))}. The set ofClarke subgradients of f at x̄ ∈ C is ∂̄ f (x̄) � {v|(v,−1) ∈
N epi f (x̄, f (x̄))}.
We recall [39, Theorems 8.6, 8.49] that, if x̄ ∈ C , ̂∂ f (x̄), ∂ f (x̄) and ∂̄ f (x̄) are
closed with ̂∂ f (x̄) convex, ̂∂ f (x̄) ⊆ ∂ f (x̄) and, by [39, Theorems 8.49 and 9.13],
∂̄ f (x̄) = co ∂ f (x̄). Letting x̄ be a point in C , by [39, Theorem 8.7],

• ∂ f is outer semicontinuous relative to C ,

and the following properties of the subgradient set characterizes locally Lipschitz
continuous functions, see [39, Theorem 9.13]:

• ∂ f (x̄) is nonempty and compact;
• botĥ∂ f and ∂ f are locally bounded as set-valued mappings.

The locally Lipschitz function f is said to be regular at x̄ ∈ C if epi f is regular
at (x̄, f (x̄)). Furthermore, f is regular at x̄ ∈ C if and only if ̂∂ f (x̄) = ∂ f (x̄)
and, thus, the three subgradient sets coincide. In particular, if f is convex on C or
continuously differentiable on an open set containingC , then it is regular at each point
of C . Besides, in the former case, the set of subgradients ∂ f (x̄) coincides with the
classical subdifferential fromconvex analysiswhile, in the latter, the set of subgradients
collapses to the gradient.
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2.3 Optimality conditions and constraint qualifications

Consider the constrained optimization problem

minimize
x

f (x)

s.t. x ∈ C,
(1)

where C ⊆ R
n is a nonempty, closed set and f is locally Lipschitz on an open set

containingC . The basic necessary optimality condition for a point x̄ ∈ C to be (locally)
optimal for this problem is, see [39, Theorems 8.15 and 9.13],

0 ∈ ∂ f (x̄) + NC (x̄). (2)

When f andC are convex, the previous condition is also sufficient for x̄ to be globally
optimal. A key issue in applying this condition is the capability to estimate the normal
cone NC (x̄). To this end, as usual, we suppose that C � {x ∈ S : h j (x) ≤ 0, j =
1, . . . ,m}, with S ⊆ R

n closed and, for every j , h j locally Lipschitz continuous
on an open set containing S. In this setting, if we suppose that a standard constraint
qualification holds, we can obtain a “dual” description of normal vectors.

Definition 6 The (nonsmooth) Mangasarian–Fromovitz Constraint Qualification
(MFCQ) holds at x̄ ∈ C if

0 ∈
m

∑

j=1

μ j∂h j (x̄) + NS(x̄), μ ∈ NR
m−(h(x̄)) ⇒ μ = 0, (3)

where h(x) � (h1(x), . . . , hm(x))T and R
m− � {μ ∈ R

m |μ ≤ 0}.
A somewhat weaker condition can be obtained by replacing

∑m
j=1 μ j∂h j (x̄) by

∂(
∑m

j=1 μ j h j (x̄)); we refrain from doing this, since, for our purpose, theMFCQ (3) is
what we can really expect to check and use in practice. The condition μ ∈ NR

m−(h(x̄))
can be rewritten, taking into account x̄ ∈ C , as μ j ≥ 0, μ j h j (x̄) = 0 for all j. It is
worth pointing out that, if S = R

n and all functions involved are smooth, (3) reduces
to the classical MFCQ.

In viewof the description of normal vectors for Lipschitzian constraints given in [39,
Corollary 10.50], if (3) holds at x̄ ∈ C , thanks to [39, Theorem 9.13, Corollary 10.9]
and by [39, Theorem 6.42], we have

NC (x̄) ⊆
⋃

⎧

⎨

⎩

m
∑

j=1

μ j∂h j (x̄)|μ ∈ NR
m−(h(x̄))

⎫

⎬

⎭

+ NS(x̄), (4)

with equality holding if all functions h j s and the set S are regular at x̄. A particularly
important case is the convex one: whenever all functions h j s and the set S are convex,
and hence regular, equality holds in (4) and we get an exact representation of the
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normal cone. Combining relations (2) and (4), it is straightforward to obtain KKT-like
optimality conditions. Consider problem (1), with C having the constraint structure
just discussed. Let x̄ ∈ C be a minimum point at which the MFCQ holds, then

0 ∈ ∂ f (x̄) +
⋃

⎧

⎨

⎩

m
∑

j=1

μ j∂h j (x̄)|μ ∈ NR
m−(h(x̄))

⎫

⎬

⎭

+ NS(x̄). (5)

The KKT-like conditions (5), although less stringent than the necessary condition for
local optimality (2) (but the two are equivalent for regular data), are the stationarity
conditions generally used when studying algorithms.

Remark 1 In this paper we express all optimality conditions and constraint qualifica-
tions by resorting to subgradients, not to Clarke subgradients. This choice allows us
to get sharper optimality conditions and weaker constraint qualifications. The price
we pay is a more complex technical analysis for some of our results. Nevertheless, all
the conclusions in this paper still hold if Clarke subgradients are employed.

3 Outline of the method

Our aim is to compute stationary solutions of (P) while preserving feasibility of the
iterates, by solving a sequence of “easier” convex subproblems. In this section we give
a description of the overall method and present some preliminary technical results;
the complete convergence properties are investigated in the next section.

Given the current feasible iterate xν , we consider a strongly convex “approxima-
tion” to the original nonconvex problem (P). The convex feasible set ˜X (xν) of this
subproblem is contained in the feasible region X of (P) and is such that xν ∈ ˜X (xν).
We then compute an (approximate) solution vν of the subproblem and generate the
new iteration xν+1 as a suitably chosen point on the segment [xν, vν]. By construction,
xν+1 still belongs to X since the whole segment [xν, vν] is contained in ˜X (xν) ⊆ X .
Clearly, in order to prove convergencewe need tomake proper assumptions: these con-
ditions are discussed in this and in the next section, while in Sect. 5 we present many
examples of approximations that satisfy the required assumptions. In this section we
only make minimal assumptions and, accordingly, prove a weak convergence result,
see Proposition 1. Although Proposition 1 is of little interest per se, it constitutes the
basis for the developments in the next section.

We introduce the following approximation of (P) at a feasible point y ∈ X :

minimize
x

˜U (x; y)
s.t. x ∈ ˜X (y)

(Py)

where ˜U (x; y) and ˜X (y) are convex approximations at y ofU andX , respectively. The
basic requirement on ˜U is that it capture the first-order behavior ofU at y while being
strongly convex. In order to make subproblem (Py) convex, we also need ˜X (y) to be
convex; in addition, we also impose ˜X (y) to contain y and to be an inner approximation
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of X . In what follows Ox and Oy are an open, convex set and an open set containing
X , respectively.

Assumption U Let ˜U : Ox × Oy → R satisfy the following properties:

(U1) ˜U (•; y) is a finite strongly convex function on Ox for every y ∈ X with modulus
of strong convexity independent of y;

(U2) ∂1˜U (•; •) is locally bounded relative to X × X at every (y, y) with y ∈ X ;
(U3) lim sup(u,w) −→

X×X
(y,y) ∂1˜U (u;w) ⊆ ∂U (y) for every y ∈ X ;

where ∂1˜U (u;w) denotes the set of subgradients of ˜U (•;w) evaluated at u.

Assumption X (X1) ˜X (y) is closed and convex for every y ∈ X ;
(X2) y ∈ ˜X (y) and ˜X (y) ⊆ X for every y ∈ X .

U1 and X1, together with X2, which ensures that the feasible set ˜X (y) is nonempty,
guarantee that all subproblems (Py) are strongly convex and have a unique solution,
which we denote by x̂(y):

x̂(y) � argmin
x∈ ˜X (y)

˜U (x; y).

Our Algorithmic Framework is based on the successive (approximate) solution of
subproblems (Py) followed by some kind of line-search procedure.

Algorithmic Framework (AF) 1
Data: εν ≥ 0, x0 ∈ X ; set ν = 0.

(S.1) If xν satisfies a stationarity condition for (P): STOP.

(S.2) Solve problem (Pxν ) with accuracy εν :
find vν ∈ ˜X (xν) s.t. ‖vν − x̂(xν)‖ ≤ εν .

(S.3) Set xν+1 = xν + γ ν(vν − xν) for some γ ν ∈ (0, 1].
(S.4) ν ← ν + 1 and go to step (S.1).

Assumptions U and X alone are not enough to establish the convergence of AF 1 to
stationary points of problem (P), and yet some instructive aspects of AF 1 can be
investigated under Assumptions U and X alone. U2 and U3 establish a link between
the first-order properties of U and those of ˜U . To illustrate their meaning, let us
consider first the simple case of continuously differentiable U and ˜U : U2 is then
automatically satisfied, while U3 simply postulates that ∇1˜U (y; y) = ∇U (y) for all
y ∈ X , i.e. that ˜U (•; y) and U have the same first-order behavior at the “base point”
y. Assume now that ˜U is locally Lipschitz continuous: Lemma 1, in view of the local
Lipschitz continuity of U , shows that, whenever ˜U is (jointly) locally Lipschitz in
both its variables and ˜U (•; y) is convex for every y ∈ X (as it must be by U1),
U2 is automatically satisfied and, by virtue of the outer semicontinuity property of
the partial subgradient set-valued mapping, U3 boils down to the simple condition
∂1˜U (y; y) ⊆ ∂U (y) for all y ∈ X .
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Lemma 1 Let ˜U : Ox × Oy → R be locally Lipschitz at (y, y) ∈ X × X and such
that ˜U (•;w) is convex on Ox for every w ∈ X in a neighborhood of y. Then, the
set-valued mapping ∂1˜U (•; •) is locally bounded and outer semicontinuous (relative
to X × X ) at (y, y).

Proof Without loss of generality, suppose (uν,wν) −−−−→X×X (y, y) and let {ξ ν}, with
ξ ν ∈ ∂1˜U (uν;wν), be a sequence of partial subgradients of ˜U (•;wν) evaluated at
uν . By [39, Corollary 10.11], we have ξ ν ∈ πx∂˜U (uν;wν), where πx denotes the pro-
jection on the subspace of the first argument: therefore, there exists a sequence {ζ ν}
such that {(ξ ν, ζ ν)} ∈ ∂˜U (uν;wν). By the local boundedness and outer semicon-
tinuity (relative to X × X ) of the subgradient set of the locally Lipschitz function
˜U , renumbering if necessary, we have {(ξ ν, ζ ν)} → (ξ , ζ ) ∈ ∂˜U (y; y). Since
∂˜U (y; y) ⊆ ∂̄˜U (y; y), where ∂̄˜U (y; y) is the set of Clarke subgradients of ˜U at
(y, y), by [12, Proposition 2.5.3] and thanks to the regularity of ˜U (•; y), we have
ξ ∈ ∂̄1˜U (y; y) = ∂1˜U (y; y); then, in view of [39, Proposition 5.15] and by Definition
1, the thesis follows. 
�
In the general case, U2 andU3 suitably extend the previous considerations by requiring
some consistency property between the subgradient set ofU and the partial subgradient
set of ˜U at the “base point”.

Proposition 1 below essentially states that, if the sequence {xν} produced by AF 1 is
such that ‖x̂(xν) − xν‖ → 0, then every limit point of {xν} satisfies the “stationarity-
looking” condition (7), which is formally similar to (2) applied to problem (P), but
with the normal cone NX (x̄) replaced by the cone ˜N (x̄), where the set ˜N (x̄) is defined
as

˜N (y) � lim supu→y
w→

X
y
N

˜X (w)(u)

= {

η | ∃ ην → η,uν → y,X � wν → y : ην ∈ N
˜X (wν )(u

ν)
}

.

Notice that, if y ∈ X , since y ∈ ˜X (y), then ∅ �= N
˜X(y)(y) ⊆ ˜N (y).

Proposition 1 Let {xν} be the sequence generated by AF 1 under Assumptions U and
X.

(i) All the iterates xν are feasible, i.e. they belong to X .
(ii) Suppose that {xν} is bounded and such that

lim inf
ν→∞

‖x̂(xν) − xν‖ = 0. (6)

Then, at least one limit point x̄ of {xν} satisfies the condition

0 ∈ ∂U (x̄) + ˜N (x̄). (7)

(iii) Suppose that {xν} is bounded and such that

lim
ν→∞

‖x̂(xν) − xν‖ = 0. (8)

Then, every limit point of {xν} satisfies condition (7).
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(iv) Whenever x̂(xν) = xν, the point xν satisfies condition (7).

Proof (i) The thesis follows from Assumption X by induction and considering that
xν+1 is a convex combination of vν ∈ ˜X (xν) and xν ∈ ˜X (xν), which is a convex
set. We now prove (ii); (iii) follows applying (ii) to every convergent subsequence of
{xν}. If (6) holds, by passing to subsequences, we have (x̂(xν)− xν) → 0 and xν−→X x̄.
By U1 and X1, x̂(xν) is the unique global optimal solution of the strongly convex
optimization problem (Pxν ) for every ν; this fact, in turn, is equivalent to the following
condition:

0 ∈ ∂1˜U (x̂(xν); xν) + N
˜X (xν )(x̂(x

ν)). (9)

Thus, we can write 0 = ξ ν + ην, for some ξ ν ∈ ∂1˜U (x̂(xν); xν) and ην ∈
N

˜X (xν )(x̂(x
ν)). By this and U2, we deduce that the sequence {ην} is bounded and

we can assume, without loss of generality, that it converges to an element η̄ belong-
ing, by definition, to ˜N (x̄). Thanks to U3, the thesis follows passing to the limit in
0 = ξ ν + ην . (iv) By (9) and U3, considering that N

˜X (xν )(x
ν) ⊆ ˜N (xν), we have

0 ∈ ∂1˜U (xν; xν) + N
˜X (xν )(x

ν) ⊆ ∂U (xν) + ˜N (xν). 
�
Proposition 1 sets the following agenda for the further study of AF 1.

1. What is the exact meaning of inclusion (7) and how does this condition relate to the
classical “stationarity” condition (2)? The answer to this question revolves around
the nature of cone ˜N (x̄). As things stand now, since, except for X2, we made no
assumptions linkingX and ˜X(x̄), (7) is not very informative. It is thus important to
study concrete realizations of the inner approximation ˜X that make (7) meaningful.

2. We will see that the validity of key conditions (6) and (8) depend critically on
the choice of γ ν (as well as on the characteristics of ˜U and ˜X ). We will consider
fixed and diminishing step-size rules, and step-size determined by an Armijo-type
condition.

3. In the subsequent analysis of the first two issues we will resort to additional condi-
tions, beyond Assumptions U and X, on ˜U and ˜X (see Sect. 4.1). It is then essential
to show that, in relevant cases, one can easily define suitable approximations ˜U
and ˜X satisfying these assumptions, thus leading to practical solution methods.

Points 1 and 2 above will be discussed in the next section, while point 3 will be
dealt with in Sect. 5.

4 The method in detail

In this section we present an in-depth analysis aimed at answering the questions of
points 1-2 listed at the end of the previous section. In order to perform our analysis,
we consider a more concrete realization of problem (P), that is,

minimize
x

F(x) + H(x)

s.t. g j (x) ≤ 0, j = 1, . . . ,m
x ∈ K,

(P1)
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where X � {x ∈ K : g j (x) ≤ 0, j = 1, . . . ,m} is nonempty, with K ⊆ R
n closed

and convex and, letting O ⊇ X be open, g j : O → R locally Lipschitz continuous
on O for every j ; moreover, U � F + H is coercive on X , with F continuously
differentiable on O , its gradient Lipschitz continuous on O with constant L∇F and H
locally Lipschitz continuous on O . We note that the above conditions guarantee the
existence of a solution of problem (P1).

In this formulation the feasible set X is described by the convex, closed set K and
m inequality constraints. The set K is intended to represent the “easy” part of the
constraints and is possibly defined by further convex inequalities. On the other hand,
the explicit and “difficult” inequality constraints g j s, which are possibly nonsmooth
and nonconvex, need to be suitably approximated/simplified in order to build, starting
from (P1) and at a generic feasible point y, the better behaved subproblem (P1y) below.

The objective functionU is given by the sum F + H , with F smooth and H locally
Lipschitz. Of course, this description of U is somewhat redundant since we could
simply takeU = H ; however, it is useful to highlight, if present, a smooth component
F , because, on this term, we can relax the assumptions that we need, instead, for the
more general nonsmooth part H .

Taking into account that the general abstract problem (P) is actually represented by
(P1), we are naturally led to consider the following approximation of (P1) at a feasible
point y:

minimize
x

˜F(x; y) + ˜H(x; y)
s.t. g̃ j (x; y) ≤ 0, j = 1, . . . ,m

x ∈ K,

(P1y)

where ˜U = ˜F + ˜H and ˜X (y) � {x ∈ K : g̃ j (x; y) ≤ 0, j = 1, . . . ,m}.
In the next subsection we provide a detailed description of the assumptions that

we make on problem (P1y), while in the remaining part of the section we analyze the
convergence properties of AF 1.

4.1 Assumptions

In order to strengthen the results of Proposition 1 and to take into account the specific
structure of problems (P1) and (P1y), below we state three assumptions about the
approximations ˜F , ˜H , and g̃ j that complement Assumptions U and X. These condi-
tions are somewhat technical, but in Sect. 5 we give many examples of approximations
satisfying the assumptions, thus showing the breadth and wide practical applicability
of our approach. The first two assumptions concern the objective function.

Assumption F ˜F : Ox × Oy → R satisfies the following properties:

(F1) ˜F(•; y) is a finite strongly convex function on Ox for every y ∈ X with modulus
of strong convexity c

˜F>0 independent of y;
(F2) ∇1˜F(•; •) exists and is continuous on Ox × Oy;
(F3) ∇1˜F(y; y) = ∇F(y), for every y ∈ X ;

where ∇1˜F(u;w) denotes the partial gradient of ˜F(•;w) evaluated at u.
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Assumption H ˜H : Ox × Oy → R satisfies the following properties:

(H1) ˜H(•; y) is a finite convex function on Ox for every y ∈ X ;
(H2) ˜H(y; y) = H(y), for every y ∈ X ;
(H3) H(x) ≤ ˜H(x; y) for every x ∈ X and y ∈ X ;
(H4) ∂1 ˜H(•; •) is locally bounded relative to X × X at every (y, y) with y ∈ X ;
(H5) lim sup(u,w) −→

X×X
(y,y) ∂1 ˜H(u;w) ⊆ ∂H(y) for every y ∈ X .

Assumption F on the smooth part of the objective function is just a verbatim repetition
ofAssumptionU, see the discussion just before Lemma1.AssumptionsH1,H4 andH5
are again a plain restatement of AssumptionU, the only difference being that condition
H1 only requires convexity: indeed, in view of F1, it is enough to have ˜H convex in
order to make the overall approximation ˜U = ˜F + ˜H strongly convex for fixed y.
Conditions H2 and H3 are instead new. H2 is only made for convenience and can
always be satisfied by a translation. The key assumption H3 requires ˜H(x, y) to be an
upper approximation of H(x)making up, in some sense, for the lack of differentiability
of H . Note that this condition is typical of majorization/minimizations schemes as, for
example, [1,7]. An important feature of AF 1 is that we do not require thismajorization
condition of ˜F and therefore on ˜U . This is very important from the practical point
of view, since majorization schemes can be very slow, see for example Sect. 6, and
also because, in general, it is easier to build an approximations which is not un upper
estimate, see Sect. 5.

When considering the constraints, we assume that, at each given point y ∈ X
and for each function g j , we can define a suitable approximation g̃ j that satisfies the
following conditions.

Assumption G Each g̃ j : Ox × Oy → R satisfies the following properties:

(G1) g̃ j (•; y) is a finite convex function on Ox for every y ∈ X ;
(G2) g̃ j (y; y) = g j (y), for every y ∈ X ;
(G3) g j (x) ≤ g̃ j (x; y) for every x ∈ X and y ∈ X ;
(G4) g̃ j (•; •) is continuous relative to X × X at every (y, y) with y ∈ X ;
(G5) ∂1g̃ j (•; •) is locally bounded relative to X × X at every (y, y) with y ∈ X ;
(G6) lim sup(u,w) −→

X×X
(y,y) ∂1g̃ j (u;w) ⊆ ∂g j (y) for every y ∈ X .

Conditions G1-G3 are just the translation of Assumption X in the setting of problems
(P1) and (P1y). While G4 is a fairly mild continuity assumption, the consistency
condition G6, along with G5, is instrumental for building a bridge between the sets ˜N
and NX at y ∈ X . In any case, G5 and G6 are identical to H4 and H5 and, if we are
able to define suitable assumptions for the g j s we can do the same for H .

For future reference, it may be useful to explicitly state the following fact that, in the
light of the discussion so fare, does not need any proof.

Proposition 2 Assumptions F, H, and G on problem (P1) imply that problem (P1y)
satisfies Assumptions U and X.
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4.2 Main convergence result

In this subsection we study the main convergence properties of AF 1. We still have to
specify how to choose the step-size γ ν at each iteration. We consider three options:
(i) a sufficiently small fixed step-size; (ii) a diminishing step-size rule; (iii) a step-
size that is chosen according to an Armijo-type line-search procedure. Each of these
options has its pros and cons. Indeed, (i) is conceptually the simplest (provided that
some Lipschitz and strong convexity constants are known), however it is expected to
perform poorly in practice; (ii) is the easiest-to-implement rule and does not require
any prior knowledge of any possibly-hard-to-know constant; (iii) is the most complex
option and is expected to lead to a better practical behavior, since, in this case, the
step-size is chosen taking into account the problem structure; rule (iii) is less suited
to distributed environments, since performing a line-search is inherently a centralized
task. The following theorem shows that, by choosing γ ν according to these three
methods, we can ensure that (6) or (8) hold.

Proposition 3 Given the nonconvex problem (P1) under F1-F3, H1-H3 and G1-G3,
let {xν} be the sequence generated by AF 1. The following hold:

(i) if the step-size γ ν and the error term εν are chosen so that

0 < inf
ν

γ ν ≤ sup
ν

γ ν ≤ γmax ≤ min{1, c
˜F/L∇F } (10)

εν ≤ a1 min{bν/[‖∇F(xν) + ξ ν‖], cν}, (11)

for some ξ ν ∈ ∂1 ˜H(vν; xν) and for some non negative a1, bν and cν with
∑

ν b
ν < +∞,

∑

ν(c
ν)2 < +∞, then {xν} is a bounded sequence such that

lim
ν→∞

‖x̂(xν) − xν‖ = 0; (12)

(ii) if the step-size γ ν and the error term εν are chosen so that

γ ν ∈ (0, 1], lim
ν→∞

γ ν = 0,
∑

ν

γ ν = +∞, and
∑

ν

(γ ν)2 < +∞,

εν ≤ γ νa1 min{a2, 1/[‖∇F(xν) + ξ ν‖]}, (13)

for some ξ ν ∈ ∂1 ˜H(vν; xν) and for some non negative a1 and a2, then {xν} is a
bounded sequence such that

lim inf
ν→∞

‖x̂(xν) − xν‖ = 0; (14)

(iii) if the step-size γ ν ∈ (0, 1] is chosen by means of a backtracking rule so that
γ ν = 0.5i

ν
, where iν is the smallest number in 0, 1, 2, . . . such that x(iν) �

xν + 0.5i
ν
(vν − xν) satisfies the Armijo-type condition

F(x(iν)) + H(x(iν)) ≤ F(xν) + H(xν) + αγ ν[∇F(xν)T (vν − xν)

+ ˜H(vν; xν) − ˜H(xν; xν)], (15)
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for some α ∈ (0, 1), the error εν is such that limν→∞ εν = 0, and

˜F(vν; xν) + ˜H(vν; xν) ≤ ˜F(xν; xν) + ˜H(xν; xν), (16)

then {xν} is well-defined, bounded and condition (12) holds.

As stated above, according to AF 1, we consider the possibility of an inaccurate
computation of x̂(xν). The error must obey rather standard rules, with possibly the
exception of (16), which, however, is a natural and easily enforced condition: indeed,
(16) states that the approximation vν of the optimal solution x̂(xν) of problem (P1xν )
has to at least improve on the current iteration xν . Rules (11) and (13) would require us
to estimate ‖vν − x̂(xν)‖. In principle, this is possible by resorting to appropriate error
bounds, which are available for the strongly convex problem (P1xν ) [15]. However,
from a practical point of view, taking into account that constants a1, a2 and sequences
bν and cν are arbitrary, the meaning of (11) and (13) is simply that the error εν should
go to zero, i.e. the same condition needed for the line-search option (iii).

To prove Proposition 3 we need two preliminary lemmas.

Lemma 2 Under Assumption F1-F3, H1 and G1-G3, for every xν ,

∇F(xν)T (x̂(xν) − xν) + ˜H(x̂(xν); xν) − ˜H(xν; xν) ≤ −c
˜F‖x̂(xν) − xν‖2. (17)

Proof For any given xν ∈ X , by referring to problem (P1y), with y = xν , thanks to
F2, G1, and H1 we have

(z − x̂(xν))T∇1˜F
(

x̂(xν); xν
) + ˜H(z; xν) − ˜H(x̂(xν); xν) ≥ 0, ∀z ∈ ˜X (xν). (18)

By adding and subtracting ∇1˜F(xν; xν) in the LHS of (18), and choosing z = xν ∈
˜X (xν), we get

0 ≤ (

xν − x̂(xν)
)T (∇1˜F(x̂(xν); xν) − ∇1˜F(xν; xν) + ∇1˜F(xν; xν)

)

+ ˜H(xν; xν) − ˜H(x̂(xν); xν),

which, using F1 and F3, gives (17). 
�
Lemma 3 ([5, Lemma 3.4]) Let {aν}, {bν}, and {cν} be three sequences of numbers
such that {bν} ≥ 0 for all ν. Suppose that aν+1 ≤ aν − bν + cν, ∀ν = 0, 1, . . . and
∑∞

ν=0 c
ν < ∞. Then, either aν → −∞ or else {aν} converges to a finite value and

∑∞
ν=0 b

ν < ∞.

Proof of Proposition 3 First of all, we note that, by the descent lemma [4, Proposi-
tion A.24] and step (S.3) of AF 1, we get

F(xν+1) ≤ F(xν) + γ ν∇F(xν)T (vν − xν) + (γ ν)2L∇F

2
‖vν − xν‖2. (19)
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Furthermore,

H(xν+1)
(a)≤ ˜H(xν+1; xν)

(b)≤ ˜H(xν; xν) + γ ν( ˜H(vν; xν) − ˜H(xν; xν))

= ˜H(xν; xν) + γ ν
(

˜H(vν; xν) − ˜H(x̂(xν); xν) + ˜H(x̂(xν); xν) − ˜H(xν; xν)
)

(c)≤ H(xν) + γ ν(ξ ν)T (vν − x̂(xν)) + γ ν( ˜H(x̂(xν); xν) − ˜H(xν; xν)), (20)

where the last relation holds for any ξ ν ∈ ∂1 ˜H(vν; xν). The inequality (a) follows
from H3, while (b) and (c) are due to H2 and to the convexity of ˜H(•; y). Using

∇F(xν)T (vν − x̂(xν) + x̂(xν) − xν) ≤ ∇F(xν)T (vν − x̂(xν))

− c
˜F‖x̂(xν) − xν‖2 + ˜H(xν; xν) − ˜H(x̂(xν); xν),

which follows from Lemma 2, and combining (19) and (20), we have

F(xν+1) + H(xν+1) ≤ F(xν) + H(xν) − γ νc
˜F‖x̂(xν) − xν‖2

+γ νεν‖∇F(xν) + ξ ν‖ + (γ ν)2L∇F
2 ‖vν − xν‖2. (21)

Since ‖vν − xν‖2 ≤ 2‖x̂(xν) − xν‖2 + 2‖vν − x̂(xν)‖2 ≤ 2‖x̂(xν) − xν‖2 + 2(εν)2,
from (21) we obtain

F(xν+1) + H(xν+1) ≤ F(xν) + H(xν) − γ ν
(

c
˜F − γ νL∇F

) ‖x̂(xν) − xν‖2 + T ν,

(22)
where T ν � γ νεν[‖∇F(xν) + ξ ν‖] + L∇F (γ νεν)2. Note that in cases (i) and (ii),
under the assumptions of the theorem, we have

∑∞
ν=0 T

ν < ∞.
We now prove the thesis for cases (i), (ii) and (iii) separately.

(i) In view of relation (22), since F+H is coercive, Lemma 3 implies that the sequence
{F(xν) + H(xν)} is convergent and, thus, that {xν} is bounded. Furthermore, again
by Lemma 3, limν→∞

∑ν
t=ν̄ γ t‖x̂(xt )−xt‖2 < +∞, which, taking into account that

γ ν is bounded away from zero, readily entails (12).
(ii) Since limν→∞ γ ν = 0, there exists a positive constant ω such that by (22) we
have, for ν ≥ ν̄ sufficiently large,

F(xν+1) + H(xν+1) ≤ F(xν) + H(xν) − γ νω‖x̂(xν) − xν‖2 + T ν . (23)

Since F + H is coercive, Lemma 3 implies that the sequence {F(xν) + H(xν)} is
convergent and, thus, that {xν} is bounded. Furthermore, again by Lemma 3, we have
limν→∞

∑ν
t=ν̄ γ t‖x̂(xt )−xt‖2 < +∞, from which, taking into account

∑∞
ν=0 γ ν =

+∞, (14) follows.
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(iii) By (19) and relation (b) in (20), we have

F(xν+1) + H(xν+1) − [F(xν) + H(xν)] ≤ γ ν
[

∇F(xν)T (vν − xν)

+ ˜H(vν; xν) − ˜H(xν; xν)
]

+ (γ ν)2L∇F

2
‖vν − xν‖2. (24)

We also observe that, by F1, F3 and (16),

∇F(xν)T (vν − xν) + ˜H(vν; xν) − ˜H(xν; xν) ≤ −c
˜F

2
‖vν − xν‖2. (25)

Now, we are able to prove that there exist suitable values of the step-size γ ν such that
(15) holds. Indeed, by (24), the sufficient decrease condition is satisfied if

γ ν[∇F(xν)T (vν − xν) + ˜H(vν; xν) − ˜H(xν; xν)] + (γ ν)2L∇F

2
‖vν − xν‖2

≤ αγ ν[∇F(xν)T (vν − xν) + ˜H(vν; xν) − ˜H(xν; xν)], (26)

and thus, thanks to (25) and easy reasonings, for any γ ν such that γ ν ≤ min{1, (1 −
α)

c
˜F

L∇F
}. Therefore, we can always find a finite iν for which the Armijo condition

(15) holds. By the same token, the step-size γ ν is bounded away from zero and, more
precisely, such that, for all ν,

γ ν ≥ min

{

1,
1 − α

2

c
˜F

L∇F

}

. (27)

Besides, (15) and (25) also imply

F(xν+1) + H(xν+1) − [F(xν) − H(xν)] ≤ −αγ ν c˜F

2
‖vν − xν‖2

and in turn, thanks to (27) and the coercivity of F + H , we deduce that {F(xν) +
H(xν)} is convergent, {xν} is bounded, and limν→∞ ‖vν − xν‖ = 0. By observing
that ‖x̂(xν) − xν‖ ≤ ‖x̂(xν) − vν‖ + ‖vν − xν‖, we get (12). 
�

Point (iii) in Proposition 3 and, in particular, (27) show that if we choose c
˜F large

enough (see the next section to appreciate how this is easily possible) we could always
take γ ν = 1 and get (12). However, if the original objective function U = F + H is
itself strongly convex, then, without any additional requirement, a unit step-size leads
to condition (12). The following proposition is a generalization of a similar result in
[3] (see the first part of the proof of Proposition 3.2 therein) valid for smooth problems
only and only when the exact solution x̂(xν) is used at each iteration (i.e. when εν = 0
at each iteration).

Proposition 4 Given the nonconvex problem (P1) under G1-G3, suppose that U =
F + H is strongly convex with constant cU and that we set ˜U (x; y) = U (x). Letting
{xν} be the sequence generated by AF 1,
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(iv) if the step-size γ ν and the error term εν are chosen so that

γ ν = 1, lim
ν→∞ εν = 0, U (vν) ≤ U (xν),

then {xν} is a bounded sequence such that (12) holds.

Proof Preliminarily, we observe that, by choosing γ ν = 1, we have xν+1 = vν . Then,
by U (vν) ≤ U (xν), since U = F + H is coercive, the sequence {U (xν)} converges
and {xν} is bounded. Thus, by ‖vν − x̂(xν)‖ ≤ εν , we have

lim
ν→∞ ‖U (x̂(xν)) −U (xν)‖ = 0. (28)

On the other hand, by the strong convexity of U , for every ξ ν ∈ ∂U (x̂(xν)),

U (xν) −U (x̂(xν)) ≥ (ξ ν)T (xν − x̂(xν)) + cU
2

‖x̂(xν) − xν‖2. (29)

Furthermore, since x̂(xν) is the solution of problem (P1xν ) and xν ∈ ˜X (xν),

(ξ̂
ν
)T (xν − x̂(xν)) ≥ 0 (30)

for some ξ̂
ν ∈ ∂U (x̂(xν)). Thus, by (29) and (30), we get U (x̂(xν)) − U (xν) ≤

− cU
2 ‖x̂(xν) − xν‖2 for every ν and, in turn, by (28), limν→∞ ‖x̂(xν) − xν‖ = 0. 
�

Combining Propositions 1, 3, and 4, we easily get convergence to points satisfying (7).
By showing that, under the MFCQ, this condition is actually equivalent to the station-
arity condition (5), the following theorem provides the main convergence properties
of AF 1.

Theorem 1 Let {xν} be the sequence generated by AF 1. Under Assumptions F, H,
and G, {xν} is bounded and

(a) if the step-size rules in (i) or (iii) of Proposition 3, or if U is strongly convex and
the step-size in (iv) of Proposition 4 is adopted, every limit point of {xν} satisfies
(7);

(b) if the step-size rule in (ii) of Proposition 3 is employed, at least one limit point of
{xν} satisfies (7).

Furthermore, any limit point of {xν} which satisfies (7) and the MFCQ with respect
to the set X , is also stationary for problem (P1) according to (5).

Proof In view of the previous comments and taking into account Proposition 2, (a)
and (b) need no further proof. Then, we show that a limit point x̄ that satisfies (7) and
the MFCQ also satisfies (5). It is enough to prove that if (3) holds at x̄ ∈ X , then

˜N (x̄) ⊆
⋃

⎧

⎨

⎩

m
∑

j=1

μ j∂g j (x̄)|μ ∈ NR
m−(g(x̄))

⎫

⎬

⎭

+ NK(x̄) � S(x̄). (31)
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We claim that (3) must hold for ˜X (y) for all y ∈ X and u ∈ ˜X (y) sufficiently close
to x̄. If this were not true, sequences yk−→X x̄ and uk → x̄ with uk ∈ ˜X (yk) would exist
such that

0 ∈
m

∑

j=1

μk
j∂1g̃ j (uk; yk) + NK(uk), μk ∈ NR

m−(g̃(uk; yk)),

with ‖μk‖ = 1. Note that we use the iteration index k instead of ν not to create
confusionwith the algorithm iterates. Thus,wemust have, for every k,−∑m

j=1 μk
jξ

k
j ∈

NK
(

uk
)

, for some ξ kj ∈ ∂1g̃ j (uk; yk) and μk ∈ NR
m−(g̃(uk; yk)). Taking the limit and

renumbering if necessary, by G5 and the outer semicontinuity (relative to K) of the
mapping NK (•) (see e.g. [39, Proposition 6.6]), we get −∑m

j=1 μ̄ j ξ̄ j ∈ NK (x̄) ,

where ξ̄ j ∈ ∂g j (x̄) in view of G6, and μ̄ ∈ NR
m−(g(x̄)) with ‖μ̄‖ = 1, by G4, G2 and

the outer semicontinuity (relative toRm−) of the mapping NR
m−(•). This contradicts the

assumed MFCQ at x̄ ∈ X . Therefore, for all y ∈ X and u ∈ ˜X (y) sufficiently close
to x̄,

0 ∈
m

∑

j=1

μ j∂1g̃ j (u; y) + NK(u), μ ∈ NR
m−(g̃(u; y)) ⇒ μ = 0. (32)

In order to prove relation (31), take any η̄ in ˜N (x̄); we show that η̄ belongs to S(x̄).
By definition of ˜N (x̄), there exist sequences X � yk → x̄ and uk → x̄ such that
N

˜X(yk )(u
k) � ηk → η̄. We also have

N
˜X (yk )(u

k)=
⋃

⎧

⎨

⎩

m
∑

j=1

μk
j∂1g̃ j (uk; yk)|μk ∈ NR

m−(g̃(uk; yk))
⎫

⎬

⎭

+ NK(uk), (33)

where (33) comes from G1, the constraint qualification (32), and rather standard facts
in convex analysis (alternatively, see [39, Corollary 10.50] and [39, Theorem 9.13
along with Corollary 10.9 and Theorem 6.42]). Therefore

ηk =
m

∑

j=1

μk
jξ

k
j + ϑk, (34)

for some ξ ν
j ∈ ∂1g̃ j (uk; yk), μk ∈ NR

m−(g̃(uk; yk)) and ϑk ∈ NK(uk). By pass-

ing to subsequences, we can distinguish two cases: either (μk, ϑk) → (μ̄, ϑ̄) or
λk(μk, ϑk) → (μ̄, ϑ̄) �= (0, 0) for some sequence λk ↓ 0. The latter case cannot
actually occur; in fact, one would obtain λkηk = ∑m

j=1 λkμk
jξ

k
j +λkϑk,which would

entail 0 = ∑m
j=1 μ̄ j ξ̄ j + ϑ̄ , with ξ̄ j ∈ ∂g j (x̄) (by G6), μ̄ ∈ NR

m−(g(x̄)) (by G4, G2,

and the outer semicontinuity relative to Rm− of NR
m−(•)), and ϑ̄ ∈ NK(x̄) (by the outer

semicontinuity relative to K of NK(•)). This contradicts the assumed MFCQ (3) at
x̄. Hence, we are left with (μk, ϑk) → (μ̄, ϑ̄). Recalling G5 and taking the limit
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in (34), we have, without loss of generality, η̄ = ∑m
j=1 μ̄ j ξ̄ j + ϑ̄, where, as before,

ξ̄ j ∈ ∂g j (x̄), μ̄ ∈ NR
m−(g(x̄)), and ϑ̄ ∈ NK(x̄), thus concluding the proof. 
�

4.3 From lim inf to lim when a diminishing step-size is adopted

When a diminishing step-size (case (ii) in Proposition 3) is employed, in view of
Theorem 1, it appears that one can establish weaker convergence properties, compared
to the result for cases (i), (iii), and (iv) in Proposition 4: indeed we were only able to
show (14) instead of (12). Taking into account that the diminishing step-size rule is
arguably the best option in case of nonconvex parallel/distributed implementations,
see subsection 5.3, it is desirable to inquire whether we can improve the results for
case (ii). It turns out that the Hölder behavior of the best-response mapping x̂(•) plays
a key role.

Proposition 5 Under the assumptions of Proposition 3, if, in addition,

‖x̂(y) − x̂(z)‖ ≤ θ‖y − z‖β, (35)

for every y, z ∈ X and for positive scalarsβ and θ , then, also in case (ii) of Proposition
3, (12) holds, i.e. limν→∞ ‖x̂(xν) − xν‖ = 0.

Proof Denoting Δx̂(xν) � x̂(xν)−xν , by the statement (ii) of Proposition 3, we have
lim infν→∞ ‖Δx̂(xν)‖ = 0. Suppose by contradiction that lim supν→∞ ‖Δx̂(xν)‖ >

0. Then, there exists δ > 0 such that ‖Δx̂(xν)‖ > δ and ‖Δx̂(xν)‖ < δ/2 for infinitely
many νs. Therefore, there is an infinite subset of indices N such that, for each ν ∈ N ,
and some iν > ν, the following relations hold:

‖Δx̂(xν)‖ < δ/2, ‖Δx̂(xiν )‖ > δ (36)

and, if iν > ν + 1,
δ/2 ≤ ‖Δx̂(x j )‖ ≤ δ, ν < j < iν . (37)

Hence, for all ν ∈ N , we can write

δ/2 < ‖Δx̂(xiν )‖ − ‖Δx̂(xν)‖ ≤ ‖x̂(xiν ) − x̂(xν)‖ + ‖xiν − xν‖
(a)≤ ‖xiν − xν‖ + θ‖xiν − xν‖β

(b)≤
iν−1
∑

t=ν

γ t
(‖Δx̂(xt )‖ + ‖vt − x̂(xt )‖)

+ θ

[

iν−1
∑

t=ν

γ t
(‖Δx̂(xt )‖ + ‖vt − x̂(xt )‖)

]β

(38)

(c)≤ (δ + εmax)
iν−1
∑

t=ν

γ t + θ (δ + εmax)β

(

iν−1
∑

t=ν

γ t

)β

,
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where (a) is due to (35), (b) comes from the triangle inequality and the updating rule
of the algorithm and in (c) we used (37), ‖vt − x̂(xt )‖ ≤ εt and set εmax � maxν εν ,
which is well-defined because by (13), εν → 0. By (38) we have

lim inf
ν→∞

⎡

⎣

(

δ + εmax)
iν−1
∑

t=ν

γ t + θ
(

δ + εmax)β

(iν−1
∑

t=ν

γ t

)β
⎤

⎦ > 0. (39)

We prove next that (39) is in contradiction with the convergence of {F(xν)+ H(xν)},
which is established in Proposition 3. To this end, we first show that ‖Δx̂(xν)‖ ≥ δ/4,
for sufficiently large ν ∈ N . Reasoning as in (38), we have

‖Δx̂(xν+1)‖ − ‖Δx̂(xν)‖ ≤ ‖xν+1 − xν‖ + θ‖xν+1 − xν‖β

≤ γ ν(‖Δx̂(xν)‖ + εmax) + θ(γ ν)β(‖Δx̂(xν)‖ + εmax)β,

for any given ν. For ν ∈ N large enough so that γ ν(δ/4 + εmax) + θ(γ ν)β(δ/4 +
εmax)β < δ/4, suppose by contradiction that ‖Δx̂(xν)‖ < δ/4; this would give
‖Δx̂(xν+1)‖ < δ/2 and, thus, condition (37) (or (36)) would be violated. Then, it
must be ‖Δx̂(xν)‖ ≥ δ/4. From this, and using (23) we have, for sufficiently large
ν ∈ N ,

F(xiν ) + H(xiν ) ≤ F(xν) + H(xν) − ω
iν−1
∑

t=ν

γ t‖Δx̂(xt )‖2 +
iν−1
∑

t=ν

T t

≤ F(xν) + H(xν) − ω δ2

16

iν−1
∑

t=ν

γ t +
iν−1
∑

t=ν

T t .

(40)

Since
∑∞

ν=0 T
ν < ∞ andT ν ≥ 0 for every ν, the series

∑∞
ν=0 T

ν is convergent, so that
the Cauchy convergence criterion implies

∑iν−1
t=ν T t → 0. Therefore, recalling that

{F(xν) + H(xν)} converges, renumbering if necessary, (40) implies
∑iν−1

t=ν γ t → 0,
in contradiction with (39). 
�
In view of Proposition 5, we aim at deriving suitable sufficient conditions for (35) to
hold. Of course, one can draw on the vast literature on stability in optimization (see e.g.
[9,28], the recent [32,33] and references therein). In particular, in [33] a second-order
subdifferential characterization of Hölderian full stability (via the regular coderivative
of the subdifferential) is established. However, these conditions are hard to verify
in practice and, hence, below we prove the desired Hölderian behavior (35) under
assumptions that, while not minimal, are easy to check and, in our context, not difficult
to satisfy. We therefore require the following additional conditions; in the next section
we show that they are easily met in many practical cases.

Assumption B (F4) ∇1˜F(x; •) is Lipschitz continuous on Oy for every x ∈ X with
modulus of Lipschitz continuity independent of x;

(F5) ∇1˜F(•; y) is Lipschitz continuous on Ox for every y ∈ X with modulus of
Lipschitz continuity independent of y;
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(G7) each g̃ j (•; •) is locally Lipschitz continuous on Ox × Oy.
The following proposition, which builds on the results in [51], allows us to provide

suitable sufficient conditions that guarantee the Hölder behavior (35) of x̂(•) in the
case of a smooth objective function.

Proposition 6 Assume that F1, F2, F4, F5, G1 and G7 hold and that H ≡ 0. Suppose
further thatX is compact and theMFCQ holds at x̂(x̄) ∈ ˜X (x̄) for every x̄ ∈ X . Then,
there exists θ > 0 such that for every y, z ∈ X :

‖x̂(y) − x̂(z)‖ ≤ θ‖y − z‖ 1
2 . (41)

Proof Observing that, in view ofG1 andG7, by [12, Propositions 2.3.16 and 2.5.3], we
have ∂1g j (x̂(x̄); x̄) = ∂̄1g j (x̂(x̄); x̄) = πx∂̄g j (x̂(x̄); x̄), the MFCQ at x̂(x̄) ∈ ˜X (x̄),
for every x̄ ∈ X , implies by [51, Lemma 3.1] that the set-valued mapping ˜X has the
Aubin property relative to X at x̄ for x̂(x̄) for every x̄ ∈ X . Therefore, in view of [51,
Theorem 2.1], for every x̄ ∈ X , there exist ηx̄ > 0, θx̄ > 0 and a neighborhood Vx̄ of
x̄ such that, for every y, z ∈ Vx̄ ∩ X

‖x̂(y) − x̂(z)‖ ≤ ηx̄‖y − z‖ + θx̄‖y − z‖ 1
2 .

By the previous relation and the compactness of set X , (41) holds. 
�

5 Approximations and distributed implementation

In this section we show the wide applicability of our approach by defining functions ˜F ,
˜H , and g̃ satisfying Assumptions F, H, and G in an array of cases of practical interest.
We also briefly discuss how a suitable selection of ˜F , ˜H , and g̃ can lead to parallel and
distributed versions of our scheme. We remark that, given a specific application, it is
often possible to find ad hoc approximations that exploit the structure of the problem
at hand; Sect. 6 provides examples in this sense. While the functions we consider are
“common” and reflect what can be encountered in applications, the fact that these
approximations, even if natural-looking, satisfy our assumptions is by no means obvi-
ous; on the contrary, it is evidence of the heed given to the choice of Assumptions F,
H, and G. It is precisely because of these technical, but carefully selected assumptions
that we are able to deal, for the first time in INCA-type methods, with non subdiffer-
entially regular nonsmooth functions as those considered in Examples 2, 3, 4 and 7 in
Sect. 5.2 below, which, for example, cannot be dealt with the method proposed in [7].
We believe that our treatment of problems involving this kind of functions probably
provides in this context the most efficient solution method currently available.

5.1 Approximating F

Finding suitable approximations for F is in general easy, since F is differentiable and
we do not need to impose any majorization property. Below we list a few possible
choices for ˜F . The verification of the validity of Assumption F, and F4 and F5 in
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Assumption B is straightforward and, therefore, omitted. For the sake of simplicity,
in all this sections we do not detail every time the sets Ox and Oy, as they are easily
determinable by the reader.

1. If F is convex, as assumed in [3,30], we can set

˜F(x; y) � F(x) + τ

2
‖x − y‖2 ,

where τ is a positive constant that can be taken to be 0 in case F is already strongly
convex. This ˜F is just a regularization of the original F .

2. In general, one can always resort to the first order approximation of F ,

˜F(x; y) � ∇F(y)T (x − y) + τ

2
‖x − y‖2 ,

where τ is a positive constant. Classical (proximal) gradient methods [6] use this
approximation but they are not applicable to (P1) because of the nonconvexity
of the feasible set. Note that if F ≡ 0, the above approximation boils down to
˜F(x; y) � τ

2‖x−y‖2.Thismeans that even ifU = H we still have a “contribution”
from F . Approximating F ≡ 0 with a proximal term is simply a way of requiring
the overallU � ˜F + ˜H to be strongly convex without making this assumption also
on ˜H .

3. In some cases, a certain degree of convexity may be present in F and it is useful to
preserve this feature as much as possible. Suppose that the vector of variables x is
partitioned in blocks x = (xi )Ii=1 and the function F is convex in each xi but not
jointly in x. A natural approximation is then

˜F(x; y) =
I

∑

i=1

˜Fi (xi ; y), with ˜Fi (xi ; y) � F(xi , y−i ) + τi

2
‖xi − yi‖2, (42)

where y � (yi )Ii=1, y−i � (y j ) j �=i and τi > 0. If F(•, y−i ) is already uniformly
strongly convex for all feasible y−i , the quadratic term in (42) can be dropped.

4. In some practical problems, for example in multi-agent scenarios, the objective
function F is given by the sum of the utilities fi (x1, . . . , xI ) of I agents, each
of them controlling the variable block xi : thus, F(x) �

∑I
i=1 fi (x1, . . . , xI ).

Typically, it may happen that some of the fi s are convex in some agents’ variables:
our purpose, following [16,45], is to employ an approximation such that, for each
agent i , the convex part of F w.r.t. xi is kept unaltered, while the nonconvex part
is linearized. Let

Si �
{

j = 1, . . . , I : f j (•, x−i ) is convex, ∀(xi , x−i ) ∈ K}

be the set of indices of all the functions f j (xi , x−i ) that are convex in xi , for any
feasible x−i , and Ci be any subset of Si ; one can set
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˜F(x; y) =
I

∑

i=1

˜FCi (xi ; y),

with

˜FCi (xi ; y) �
∑

j∈Ci
f j (xi , y−i )+

∑

k /∈Ci

[

fk(y) + ∇i fk(y)T (xi − yi )
]+ τi

2
‖xi −yi‖2,

where τi is a positive constant.
5. Assume that F is a saddle function, i.e., F depends on two groups of variables,

x1 and x2, with F(•, x2) convex for every fixed x2 and F(x1, •) concave for every
fixed x1. It is easy to check that

˜F(x1, x2; y1, y2) � F(x1, y2) + ∇2F(y1, y2)T (x2 − y2)

+τ

2
‖(x1, x2) − (y1, y2)‖2

satisfies Assumption F for any positive τ . Needless to say, if F(•, x2) is strongly
convex in x1, uniformly relative to x2, we can employ ‖x2 − y2‖2 instead of
‖(x1, x2) − (y1, y2)‖2.

6. If the set K is contained in Rn++ � {x ∈ R
n : xi > 0,∀i}, we can set

˜F(x; y) � F(y) + ∑

i :∇i F(y)≥0
∇i F(y)(xi − yi )

− ∑

i :∇i F(y)<0
∇i F(y)

(

y2i
xi

− yi

)

+ τ
2 ‖x − y‖2 ,

where τ is a positive constant. This kind of approximation is used in structural
optimization problems [19,47,48] for which it proves to be extremely effective.

5.2 Approximating H or g j

The approximations of the nondifferentiable component H of the objective function
and of the constraint g j must obey almost the same assumptions. In fact, Assumptions
HandGdiffer only in the additional conditionG4. Since all our examples do satisfyG4,
we deal with the approximations for H and g j together, referring to a generic locally
Lipschitz function h. In Assumption B we have also condition G7, which is slightly
harder to satisfy. We do not require the approximations of H or g j to be differentiable;
in fact, what matters is that the resulting subproblem (P1y), can be efficiently solved,
and this does not necessarily imply that ˜H or g̃ j should be differentiable, see e.g.
the discussion after (46). Below we provide several examples, discussing only those
properties (among G1-G6 and G7) that are not immediately obvious.

1. If h is convex, we can simply set h̃(x; y) � h(x). In particular, if h is a constraint
function, this means that such constraint can be incorporated in the convex set K.
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2. If h is concave, the linear approximation

h̃(x; y) � h(y) + ξ T (x − y),

for any ξ ∈ ∂h(y), satisfies G4-G6 thanks to the local boundedness and outer
semicontinuity of the subgradient set of the locally Lipschitz function h. In order
for G7 to hold, we must assume h to be continuously differentiable with locally
Lipschitz gradient.

3. Consider h(x) = mini {hi (x)}, with hi smooth and convex for every i = 1, . . . , p.
The constraint mini {hi (x)} ≤ 0 is a difficult disjunctive-type constraint requiring at
least one of the hi (x) ≤ 0 to be satisfied. In order to define a suitable approximation,
we derive first an exact formula for the subdifferential of the min function. To this
end, let I (y) � {i ∈ {1, . . . , p}|h(y) = hi (y)} be the set of active indices at y
and I e(y) � {i ∈ {1, . . . , p}|y ∈ cl int {x|h(x) = hi (x)} ⊆ I (y) be the set of
essentially active indices at y (cl and int indicate the closure and the interior of a
set).

Proposition 7 Let all hi be continuously differentiable (not necessarily convex). Then,

∂h(y) =
⋃

i∈I e(y)
{∇hi (y)}. (43)

Proof By [31, Proposition 1.113] and [41, Proposition 4.1.1], we have:

∂h(y) ⊆
⋃

i∈I e(y)
{∇hi (y)}.

We prove now that ∇hi (y) ∈ ∂h(y) for every i ∈ I e(y). Indeed, for any i ∈ I e(y),
we have y ∈ cl int {x|h(x) = hi (x)}. Thus, there exists a sequence wν converging to y
such thatwν ∈ int {x|h(x) = hi (x)} and ∂h(wν) = {∇h(wν)} = {∇hi (wν)} for every
ν. Therefore, thanks to [39, Theorem 9.61], ∇hi (y) ∈ ∂h(y) for every i ∈ I e(y) and
the thesis follows. 
�
In view of the previous considerations, we propose the approximation

h̃(x; y) � hiy(x), for any iy ∈ I e(y).

As regards G4, it is enough to recall that I (w) ⊆ I (y) for every w in some neighbor-
hood of y. Observing that ∂1h̃(x; y) = {∇hiy(x)} with iy ∈ I e(y), G5 holds trivially.
Turning to G6, we preliminarily check that I e(w) ⊆ I e(y) for every w sufficiently
close to y. We show that if i /∈ I e(y), then, for every w in some neighborhood of y,
we have i /∈ I e(w). Let i /∈ I e(y). Then, there exists a neighborhood V of y with
V ∩ int {x|h(x) = hi (x)} = ∅. If there were w ∈ intV such that i ∈ I e(w), we
would also have w ∈ cl int {x|h(x) = hi (x)}. Hence, there would be a sequence {vν}
converging to w with vν ∈ int {x|h(x) = hi (x)} and we would get vν /∈ V for every
ν, a contradiction. Therefore, I e(w) ⊆ I e(y) and this fact, together with Proposition
7, shows that also G6 holds. G7 does not hold for this approximation.
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More in general, if each hi is only smooth (i.e., not necessarily convex) and, for
every hi , there exists a differentiable convex approximation h̃i such that Assumption
G holds, the convex function given by

h̃(x; y) � h̃iy(x; y), for any iy ∈ I e(y),

satisfies Assumption G.
We conclude the analysis of this case by providing a very simple procedure that, in

most practical cases, provides an index in I e(y). Given y, we can easily compute I (y).
Now, generate a random nonzero direction d and set iy � argmini∈I (y){∇hi (y)T d}.
By using standard continuity arguments on Taylor expansions, it is easy to see that if
the minimum in the definition of iy is reached for a single index, then iy ∈ I e(y). If the
minimum is not unique, we can simply generate a different direction or use a second
order expansion if the hi s are twice continuously differentiable; we omit the details.

4. Suppose that h is the difference of a smooth convex function h+ and a possibly
nonsmooth, convex function h−, having thus the following nonsmooth DC struc-
ture: h(x) = h+(x) − h−(x). By linearizing the concave part −h− and keeping
the convex (smooth) part h+ unchanged, we obtain the following convex upper
approximation of h:

h̃(x; y) � h+(x) − h−(y) + ξ T (x − y),

for any ξ ∈ ∂(−h−(y)). Note that, by [39, Exercise 10.10], we have ∂h(y) =
∇h+(y) + ∂(−h−(y)) and ∂1h̃(x; y) = ∇h+(x) + ξ , with ξ ∈ ∂(−h−(y)). In
view of the local boundedness and outer semicontinuity of the subgradient set of
the locally Lipschitz function −h−, G4-G6 are valid. In order for G7 to hold, we
must assume h− to be continuously differentiable with locally Lipschitz gradient.
To make a concrete example, suppose that h−(x) � maxi {h−

i (x)}, with h−
i (x)

convex and smooth for every i = 1, . . . , p. We can then write h(x) = h+(x) +
mini {−h−

i (x)}, and thuswe can resort to Proposition 3 to compute ∂ mini {−h−
i (x)}.

5. On the other hand, when h is the difference of a convex nonsmooth function h+
and a convex smooth function h−, by linearizing the concave part h− and keeping
the convex (nonsmooth) part h+ unchanged, we obtain

h̃(x; y) � h+(x) − h−(y) − ∇h−(y)T (x − y).

We remark, again by [39, Exercise 10.10], that ∂h(y) = ∂h+(y) − ∇h−(y) and
∂1h̃(x; y) = ∂h+(x) − ∇h−(y). Therefore, G4-G6 hold. In this case G7 holds if
the gradient of h− is locally Lipschitz.

6. Let h(x) = s(f(x)), where s : R
m → R is a finite convex function such that

s(u1, . . . , um) is nondecreasing in each u j , and f : Rn → R
m is a smoothmapping,

with f(x) = ( f1(x), . . . , fm(x))T and fi concave for every i . Consider the convex
approximation

h̃(x; y) � s(f(y) + ∇f(y)(x − y)), (44)
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where ∇f(y) is the Jacobian of f at y. G1 holds by, e.g., [39, Exercise 2.20], and so
obviously do G2-G4. Furthermore, since, in view of [39, Theorem 10.6], ∂h(y) =
∇f(y)T ∂s(f(y)) and ∂1h̃(x; y) = ∇f(y)T ∂s(f(y)+∇f(y)(x− y)), also G5 and G6
are valid. Finally, G7 is clearly satisfied. This example can be expanded assuming
that the fi are smoothmappings, not necessarily concave, forwhich approximations
f̃i (x; y) satisfying Assumption G exist and such that each f̃i (•, y) is C1. In this
case, following the same steps above, it is easy to see that the approximation
h̃(x; y) � s( f̃1(x; y), . . . , f̃m(x; y)) satisfies Assumption G. If in addition all f̃i
satisfy G7, also h̃(x; y) satisfies G7.

7. Consider thewidely used soft thresholding function h(x) = min{x+a, max{0, x−
a}} with a > 0. We can resort to the following approximation

h̃(x; y) �
{

max{0, x − a}, y ≥ −a
x + a, y < −a.

Conditions G4-G6 trivially hold at any point different from (−a,−a). The same
happens also in this “problemati” point: indeed, lim supx,y→−a ∂1h̃(x; y) =
{0, 1} = ∂h(−a). Also G7 holds quite clearly. Note that, as in the previous case,
we can easily extend this approximation to the composition of the soft threshold-
ing function with a smooth function f for which a suitable approximation f̃ is
available; we leave the details to the reader.

8. In the case of a nonconvex function h with a Lipschitz continuous (with constant
L∇h) gradient, the following convex approximation is such that conditions G1-G7
hold:

h̃(x; y) � h(y) + ∇h(y)T (x − y) + L∇h

2
‖x − y‖2.

9. Whenever h : R → R is polynomial, thus,

h(x) = anx
n + an−1x

n−1 + . . . + a1x + a0,

relying on its Taylor series expansion around y, the approximation

h̃(x; y) � h(y) + h′(y)(x − y) + (n − 1) max
i=2,...,n

{

|h(i)(y)|
i !

}

×[(x − y)2 + (x − y)n̄],

where n̄ = n if n is even and n̄ = n + 1 otherwise, satisfies G1-G7. The procedure
adopted here for unidimensional polynomials can easily be extended to the mul-
tidimensional case, but the required computations can become very expensive for
dimensions greater than two.

5.3 Parallel/distributed implementations

AF 1 can be viewed as a double loop iterative scheme. Given an outer iteration xν , to
generate xν+1 one needs to (a) (approximatively) solve problem (P1xν ) and (b) choose
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a suitable γ ν . In this subsection, we make some high-level considerations on how
to perform in a parallel/distributed fashion operations (a) and (b) mentioned above,
leading to a parallel/distributed instance of AF 1; more detailed discussions could only
be made with reference to specific problems.

As far as task (b) is concerned, one can choose any of the rules (i)-(iii) in Propo-
sition 3 or (iv) in Proposition 4. Options (i), (ii) and (iv) are more suitable for a fully
parallel/distributed implementation than the line-search procedure (iii), which instead
requires a high degree of coordination among cores/nodes in a parallel/distributed
environment. Also, experience shows that, although theoretically attractive, option (i)
could perform poorly, since practical estimates of c

˜F/L∇F are usually very small,
leading at each iteration to little progress towards stationarity. On the other hand,
option (iv) can be used only in the presence of strongly convex objective functions.
Therefore, the diminishing step-size rule (ii) seems to be the more appropriate choice
for parallel/distributed environments. This is the main reason why in Sect. 4 special
attention was devoted to the study of (ii).

Referring to task (a), the design of parallel/distributed solution methods for (P1xν )
depends on the specific structure of the original problem (P1) as well as on the choice
of the approximations ˜F , ˜H , and g̃. The flexibility offered by our approach in the
definition of (P1xν ) is of great help to obtain alternative distributed solution methods.
Suppose that the feasible set of (P1) is block-separable, i.e.,K � K1 ×· · ·×Kp, with
each Ki ⊆ R

ni , and X � {x � (xi )
p
i=1, xi ∈ Ki , i = 1, . . . , p : ∑p

i=1 g
i
j (xi ) ≤

0, j = 1, . . . ,m}. Then, problem (P1) becomes

minimize
x

F(x) + H(x)

s.t.
p
∑

i=1
gij (xi ) ≤ 0, j = 1, . . . ,m

xi ∈ Ki , i = 1, . . . , p,

(45)

The structure of (45) naturally suggests approximations ˜F , ˜H , and g̃ij that are addi-
tively block-separable, like the examples given in case 2 and 3 in Sect. 5.1 and in case
2 and 8 in Sect. 5.2. This results in convex subproblems of the form

minimize
x

p
∑

i=1

˜Fi (xi ; xν) +
p
∑

i=1

˜Hi (xi ; xν)

s.t.
p
∑

i=1
g̃ij (xi ; xν) ≤ 0, j = 1, . . . ,m

xi ∈ Ki , i = 1, . . . , p,

(46)

that can be solved in a parallel/distributed way by standard techniques, see, e.g., [6]. It
is worth mentioning a special instance of (45), where the feasible set has a Cartesian
structure, i.e.,

minimize
x

F(x) + H(x)

s.t. gi (xi ) ≤ 0, i = 1, . . . , p
xi ∈ Ki , i = 1, . . . , p.

(47)
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Choosing separable approximations for F and H , in the form ˜F(x; xν) �
∑p

i=1
˜Fi (xi ; xν) and ˜H(x; xν) �

∑p
i=1

˜Hi (xi ; xν), lends itself to totally separable
convex subproblems that can be solved by tackling in parallel p strongly convex
problems. We point out that, even though the constraint functions g j s in (P1) are not
additively block-separable as in (45), it might still be possible to choose appropriate
approximations so that the resulting subproblems (P1xν ) can be solved in a paral-
lel/distributed fashion, see for example cases 2 and 8 in Sect. 5.2. It is also interesting
to observe that, when (P1) involves nondifferentiable functions, our approach pro-
vides a systematic way to possibly develop parallel and distributed solution methods
for classes of problems for which such option is not currently available.

6 Green communications: energy minimization in wireless systems

In this section we present an application of our algorithmic framework to an impor-
tant open problem in green communications, resulting in an efficient ad-hoc solution
method for this class of problems. Our numerical results show superior performance
with respect to recent proposals.

Energy efficiency and Quality-of-Service (QoS) have been two key aspects in the
design of modern multiuser communication systems. Energy efficiency is a growing
concern due to energy costs and associated environmental issues. It has been reported
that ICT infrastructures account for more than 3% of the world energy consumptions
[22].

Moreover, given the rate at which wireless connected devices are increasing, as
well as the mass deployment of 5G systems, mobile communications are expected
to consume significantly more energy, if no countermeasures are taken. On the other
hand, the explosive growth of data andmultimedia services inwireless networks (video
conferencing, streaming, mobile TV, 3D services) entails strict guarantees on QoS,
such as delay anddata rates,which contrastwith the needof energy saving.These issues
have motivated in the past few years a growing interest in energy-aware optimization
design of wireless communication networks, under general QoS constraints [24,29,
53]. This emerging research area is called green communications; see [52] for a recent
overview of the state of the art. Although there are substantial differences between the
many, often specialized, formulations of problems in this field, all approaches share
the definition of the energy efficiency as fractional functions and leverage fractional
programming as a key tool for the analysis and design of solution methods.

In this section, we consider a very general and challenging energy-efficient design
in green communications, namely: the minimization of the sum-energy in MIMO
multiuser interference networks, subject to rate profile constraints. The resulting opti-
mization problem is nonconvex, with nonconvexities occurring both in the objective
function and in the constraints. The multiuser nature of the system, along with concur-
rent interfering communications, prevent one to apply fractional programming-based
methods, leaving the design of efficient solution methods an open problem [52]. Fur-
thermore, the proposed formulation uses complex variables and calls for a solution
method that preserves feasibility of the iterates, thus ruling out off-the-shelf solvers.

We remark that, although in this sectionwe focus on a specific setup (MIMO ad-hoc
interference networks) and formulation (the energy minimization subject to QoS con-
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straints), the proposed methodology and framework open the way to the solution of a
variety of currently open resource allocation problems in (green) communications [52].
Examples include (i) energy efficient designs in relay MIMO interference networks,
multi-cell cellular systems, or densely deployed small cells; (ii) max-min multicast
(capacity) multi-stream beamforming-like problems; and (iii) joint optimization of
precoders, receive filters, and power allocation in the scenarios described in (i)-(ii).

6.1 Problem formulation

In this subsection, we freely use standard facts in communications (see, e.g., [49]).
The reader interested mainly in the mathematical formulation of the problem can take
(50) as starting point of the subsequent discussion.

Consider a wireless ad-hoc network composed of I multiple antenna pairs
transmitter-receiver, communicating over MIMO channels; we denote by I �
{1, . . . , I } the set of active pairs (also termed users) in the system. Each transmitter and
receiver i is equipped with Ti and Ri antennas, respectively. The optimization vari-
ables of each transceiver i are given by the transmit covariance matrix Qi ∈ C

Ti×Ti ,
which is a positive semi-definite matrix. Each transmitter i is subject to the power
constraint tr(Qi ) ≤ Pi , where Pi is the maximum average transmit power, and tr(Qi )

denotes the trace of Qi . Since no a-priori multiple access scheme is assumed for the
users (like, e.g., OFDMA, TDMA, or CDMA), multiuser interference is experienced
at each receiver. Under standard information theoretical assumptions, the maximum
achievable rate ri on eachMIMO link i (measured in bit/s/Hz) can bewritten as follows
[49]: given Q � (Q1, . . . ,QI ), with each Qi � 0,

ri (Q) � log2 det
(

I + Hi iQiHH
ii Ri (Q−i )

−1
)

, (48)

where Hi j ∈ C
Ri×Tj is the channel matrix between the transmitter of user j and

the receiver of link i ; Ri (Q−i ) � σ 2
i · I + ∑

j �=i Hi jQ jHH
i j is the covariance

matrix of the Gaussian noise σ 2
i · I (assumed to be proportional to the identity

matrix, without loss of generality, otherwise one can always pre-whiten the chan-
nel matrices) plus the interference at the receiver i due to the other transmitters; and
Q−i � (Q1, . . . ,Qi−1,Qi+1, . . . QI ) is the tuple of the covariance matrices of all the
transmitters except the i-th one. If the transmission of each user i takes Ti seconds to
complete (implying thus ri (Q) > 0), the energy consumed by user i per bit that can
be reliably transmitted is

Ei (Q) �
Ti

(

μi tr(Qi ) + Pc,i
)

Ti Wi ri (Q)
=

(

μi tr(Qi ) + Pc,i
)

Wi ri (Q)
[J/bit], (49)

where Wi is the communication bandwidth of user i , 1/μi is the efficiency of the
power amplifier at transmitter i , while Pc,i includes the power dissipated in all other
circuit blocks of the transmitter and receiver i to operate the terminals (assumed to
be constant [2]). The QoS of each communication is measured in terms of a given

123



84 F. Facchinei et al.

minimum achievable rate r̄i > 0, leading to constraints of the type ri (Q) ≥ r̄i . The
energy-efficient design of the wireless system consists then in minimizing the sum of
the users’ energy consumption while guaranteeing the rate QoS:

minimize
Q

E(Q) �
I
∑

i=1
Ei (Q)

s.t. gi (Q) � r̄i − ri (Q) ≤ 0, ∀i = 1, . . . , I,

Qi � 0, tr(Qi ) ≤ Pi , ∀i = 1, . . . , I. (50)

Note that in the above formulation, the gi s define the noncovex constraints whereas
Qi � 0 and tr(Qi ) ≤ Pi are convex constrains and define the set K in (P1). Hereafter,
we denote by Q the feasible set of problem (50). We also assume that Pi s and r̄i s are
set so that Q is nonempty.

Remark 2 Problem (50) contains complex variables. One could reformulate the prob-
lem into the real domain by using separate variables for the real and imaginary parts
of the complex variables, but this would lead to awkward reformulations wherein all
the desirable structure of the original functions gets lost. Following a well-established
path in the signal processing community, we work directly with complex variables
by means of “Wirtinger derivatives”. The main advantage of this approach is that we
can use “Wirtinger calculus” to easily compute in practice derivatives of the rate (and
energy) functions in (50) directly in the complex domain. It can be shown that all
results in this paper extend to the complex domain when using Wirtinger derivatives
instead of classical gradients. In what follows we freely use the Wirtinger calculus
and refer the reader to [23,26,42] for more information on this topic.

Problem (50) represents an open problem in the wireless communication community,
see [52]. Furthermore, the constraints Qi � 0 and gi (Q) ≤ 0 cannot be violated,
since the objective function could be not defined outside the feasible set Q, calling
thus for the use of a feasible method. Since (50) is a special case of (P1), one can
readily resort to our approach to efficiently compute stationary solutions. We propose
next a novel nontrivial ad-hoc approximation of the objective function, opening the
way to an efficient INCA-based solution method, which exhibits very good numerical
performances.

6.2 Ad-hoc approximations

In this section we define suitable approximations Ẽ and g̃i for (50). We remark that,
while the proposed approximations satisfy Assumptions F, G and B, the one of the
objective function is substantially different from those in Sect. 5 and exploits the partial
convexity of E in each of the users’ variables Qi s.

Given Qν � (Qν
i )

I
i=1 such that each ri (Qν) > 0, observe that: (i) setting

Q−i = Qν−i , each term Ei (Qi ,Qν−i ) of the sum in E(Q) is the product of a lin-
ear and a convex function in Qi , namely μi tr(Qi ) + Pc,i and 1/Wi ri (Qi ,Qν−i ); and
(ii) the other summands,

∑

j �=i E j (Qi ,Qν− j ), are nonconvex inQi . Exploiting such a
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structure, a convex approximation of E can be obtained for each user i by convexifying
(

μi tr(Qi ) + Pc,i
)

/(Wi ri (Qi ,Qν−i )), while retaining the partial convexity in Qi and
linearizing the nonconvex part

∑

j �=i E j (Qi ,Qν− j ). More formally, let us define

Ẽi (Qi ;Qν) � μi tr(Qi ) + Pc,i
Wi ri (Qν)

+ μi tr(Qν
i ) + Pc,i

Wi ri (Qi ,Qν−i )

+
∑

j �=i

〈

∇Q∗
i
E j (Qν),Qi − Qν

i

〉

+ τi‖Qi − Qν
i ‖2F ,

(51)

where the first two terms on the right-hand-side are the convexification of (μi tr(Qi )

+Pc,i
)

/(Wi ri (Qi ,Qν−i )); the third one comes from the linearization of
∑

j �=i E j (Qi ,Qν− j ), with 〈A,B〉 � Re{tr(AHB)} and ∇Q∗
i
E j (Qν) denoting the con-

jugate gradient of E j w.r.t. Qi evaluated at Qν (see [42]), given by

(

μ j tr(Q j ) + Pc, j
)

Wj r2j (Q
ν)

HH
ji

(

R j (Qν− j )
−1 −

(

R j (Qν− j ) + H j jQν
jH

H
j j

)−1
)

H j i ;

and the fourth term is added to make Ẽi (Qi ;Qν) uniformly strongly convex in Qi .
Thus, the sum-energy surrogate function Ẽ(Q;Qν) is defined as:

Ẽ(Q;Qν) =
I

∑

i=1

Ẽi (Qi ;Qν). (52)

In order to build an upper convex approximation of each (nonconvex) gi , one can
readily exploit the DC structure of the rate function ri (Q), that is,

ri (Q) = r+
i (Q) − r−

i (Q−i ),

r+
i (Q) � log2 det

(

Ri (Q−i ) + Hi iQiHH
ii

)

and r−
i (Q−i ) � log2 det(Ri (Q−i )).

(53)

Following Example 4 in Sec. 5.2 and adapting it to the complex case, a tight lower
bound of ri (Q) [and thus upper bound of gi (Q)] can be obtained by retaining the
concave part in (53) and linearizing the convex function −r−

i , which leads to the
following rate approximation function:

ri (Q) ≥ r̃i (Q;Qν) � r+
i (Q) − r̃−

i (Q−i ;Qν), (54)

r̃−
i (Q−i ;Qν)�r−

i (Qν−i ) + ∑

j �=i

〈

∇Q∗
j
r−
i (Qν−i ),Q j − Qν

j

〉

, (55)

where ∇Q∗
j
r−
i (Qν−i ) = HH

i jRi (Qν−i )
−1Hi j is the conjugate gradient of r

−
i w.r.t. Q j .

Using (52) and (54), the convex approximation of the nonconvex problem (50) reads:
given the feasible point Qν , let
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minimize
Q

Ẽ(Q;Qν)

s.t. g̃i (Q;Qν) � r̄i − r̃i (Q;Qν) ≤ 0, ∀i = 1, . . . , I,
Qi � 0, tr(Qi ) ≤ Pi , ∀i = 1, . . . , I.

(56)

The following proposition, whose proof is omitted because of space limitations, sum-
marize the main properties of problems (50) and (56).

Proposition 8 Given problems (50) and (56), the following hold:

(i) any feasible point of (50) satisfies the MFCQ;
(ii) convex surrogates Ẽ and g̃i s in (56) satisfy Assumptions F, G and B.

Hence, (56) is an instance of problem (P1y) and AF 1 can be readily applied.

6.3 Numerical results

In this section we present numerical results to assess the effectiveness of our solution
method, which we term Partial Linearization INCA (PL-INCA). We implemented
PL-INCA, based on AF 1 and convex subproblems (56), in MATLAB. We used the
diminishing step-size rule γ ν+1 = γ ν(1 − αγ ν), for all ν ≥ 0, with γ 0 = 1 and
α = 1e−3. The proximal coefficients τi in (51) are set equal to 10−2. As wementioned
earlier, standard methods cannot be used to solve problem (50), since feasibility is to
be maintained throughout the iterations. This fact restricts drastically the possible
choices for a comparison; we decided to settle for the very recent approach proposed
in [1,7], which we adapted to deal with complex variables. The method in [7] is based
on the solution of a sequence of convex subproblems wherein the nonconvex objective
function and constraints are replaced by convex global upper approximations. While
the nonconvex constraints gi (Q) ≤ 0 can be approximated as in our method [see g̃i
in (56)], obtaining a convex upper bound of E is less immediate. The only available
option seems to set

Ẽup(Q;Qν) �
I

∑

i=1

I
∑

j=1

〈

∇Q∗
j
Ei (Qν),Q j − Qν

j

〉

+
I

∑

i=1

Li‖Qi − Qν
i ‖2F , (57)

where Li is the Lipschitz constant of ∇Q∗Ei (•) on Q. An exact expression of Li is
not easy to compute. The following is an upper bound of Li over Q (the proof is quite
tedious and is omitted):

Lup
i =

(

I
∑

i=1

μi Pi + Pc,i
Wi r̄i

)

· λmax

⎛

⎝

I
∑

j=1

(

4

r̄2j
+ 1

r̄ j

)

HH
jiH j i ⊗ HH

jiH j i

⎞

⎠ , (58)

where λ(A) is the maximum eigenvalue of matrix A, and ⊗ denotes the Kronecker
product. We refer to the scheme in [7] tailored to the complex problem (56) and
based on (57)-(58), as Linearized Upper INCA (L-Up-INCA). In L-Up-INCA, given
an iteration Qν , the new iteration is the solution of subproblem
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minimize
Q

Ẽup(Q;Qν)

s.t. g̃i (Q;Qν) ≤ 0, ∀i = 1, . . . , I,
Qi � 0, tr(Qi ) ≤ Pi , ∀i = 1, . . . , I,

(59)

where g̃i (Q;Qν) is defined as in (56).
Both methods solve a convex optimization problem at each iteration: PL-INCA

solves (56) and then takes a step-size γ ν in the direction given by the solution of the
subproblem, while L-Up-INCA solves (59) and takes its solution as the new iteration
(or, equivalently, takes a step-size of 1). In our implementations, the two algorithms
differ in (i) the choice of the objective function in the subproblems and (ii) the step-
size. While Li = Lup

i guarantees theoretical convergence of L-Up-INCA, in principle
it might not be a tight bound of Li , a fact that could hamper progresses of L-Up-INCA;
and indeed L-Up-INCAwith Li = Lup

i performed very poorly in all problem instances
we tested, as we discuss shortly. Therefore, we also considered other instances of L-
Up-INCA, obtained by progressively reducing the value of Li . Note that if Li falls
below the Lipschitz constant of ∇Q∗Ei (•), theoretical convergence of L-Up-INCA is
no longer guaranteed.

We simulated a network composed of I = 10 randomly deployed users (pairs),
whose transceivers are equipped with Ti = Ri = 2 antennas for each i . The MIMO
channels are simulated according to the Rayleigh channel model [49]; the transmit
powers Pi s and the rate thresholds r̄i s are chosen to guarantee that the feasible set of
(50) is nonempty. Both algorithms, PL-INCA and L-Up-INCA, are initialized from
the same randomly chosen feasible point. In this setting we generated 10 independent
channel realizations and initial feasible points Q0 and run both algorithms on the
resulting 10 problems.1 We used cvx in MATLAB to solve, at each iteration, the
strongly convex subproblems. Since the original problem is nonconvex, we measured
the progresses of the algorithms toward convergence using the “stationarity measure”
‖Q̂(Qν)−Qν‖∞, where Q̂(Qν) is the unique solution of subproblem (56) and ‖ • ‖∞
denotes the infinity norm. Note that ‖Q̂(Qν)−Qν‖∞ is a continuous function, which
is zero if and only if Qν is a stationary point.

The results of our experiments are summarized in Fig. 1. In Fig. 1a, b we plot the
average (over the 10 realizations) of the normalized stationarity measure ‖Q̂(Qν) −
Qν‖∞/Smax and of the normalized sum-energy E(Qν)/Emax, respectively, achieved
by PL-INCAandL-Up-INCAversus the number of iterations (note that we use the log-
scale for the x-axis),where Smax and Emax are themaximumof the stationaritymeasure
and of E over all the randomly chosen initial points, respectively. The normalizations
are done just for the purpose of a simpler graphical representation.Wedid not terminate
the algorithms but let them run for 5000 iterations. The figures clearly show that the
performance of PL-INCA is vastly superior to that of L-Up-INCA: the stationarity
measure (as well as the objective function) associated with L-Up-INCA does not
decrease significantly over 5000 iterations, remaining thus much higher than that of
PL-INCA. Finally, note the behavior of L-Up-INCAwhen Li is set to Lmin

i , the largest
value empirically found to make the algorithm divergent on all 10 instances: for this

1 The data of the problems are available from the authors on request.
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Fig. 1 PL-INCA and two instances of L-Up-INCA (the x-axis is in log scale). a Normalized average
stationarity measure ‖Q̂(Qν) −Qν‖∞/Smax versus iterations ν. b Normalized sum-energy E(Qν)/Emax

versus iterations ν

value of Li , the stationarity measure and the objective function progressively increase,
see Fig. 1. We also tested L-Up-INCA for intermediate values of Li , between Lup

i and
Lmin
i , but in all cases where clear divergence did not occur, the resulting behavior

is still very poor and is described by lines very close to the ones of L-Up-INCA
(L1 = Lup

i ) (in Fig. 1a, b), with a slightly better diminishing slope. While we reported
only averages, we remark that the average curves are representative of the behavior of
the single realizations and in no case we observed large deviations from the average
behavior. With regard to the cpu times, the main computational burden per iteration
is given, for both algorithms, by the solution of the respective convex subproblems,
(56) for PL-INCA and (59) for L-Up-INCA. Although (59) is marginally a simpler
problem than (56), we found that, on average, the time needed by cvx to solve an
instance of (56) is less than twice the time to solve one of (59). In practice, this means
that the huge gap between PL-INCA over L-Up-INCA in terms of iterations translates
in a similar superiority in terms of computational times.
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