
Math. Program., Ser. A (2017) 164:1–27
DOI 10.1007/s10107-016-1069-4

FULL LENGTH PAPER

Linearly convergent away-step conditional gradient
for non-strongly convex functions

Amir Beck1 · Shimrit Shtern1

Received: 19 April 2015 / Accepted: 2 September 2016 / Published online: 21 September 2016
© Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2016

Abstract We consider the problem of minimizing the sum of a linear function and a
composition of a strongly convex function with a linear transformation over a com-
pact polyhedral set. Jaggi and Lacoste-Julien (An affine invariant linear convergence
analysis for Frank-Wolfe algorithms. NIPS 2013 Workshop on Greedy Algorithms,
Frank-Wolfe and Friends, 2014) show that the conditional gradient method with away
steps — employed on the aforementioned problem without the additional linear term
— has a linear rate of convergence, depending on the so-called pyramidal width of the
feasible set. We revisit this result and provide a variant of the algorithm and an analy-
sis based on simple linear programming duality arguments, as well as corresponding
error bounds. This new analysis (a) enables the incorporation of the additional linear
term, and (b) depends on a new constant, that is explicitly expressed in terms of the
problem’s parameters and the geometry of the feasible set. This constant replaces the
pyramidal width, which is difficult to evaluate.

Mathematics Subject Classification 90-08 · 90C25 · 65K10

B Amir Beck
becka@ie.technion.ac.il

Shimrit Shtern
shimrits@tx.technion.ac.il

1 Faculty of Industrial Engineering and Management, Technion - Israel Institute of Technology,
Haifa, Israel

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-016-1069-4&domain=pdf

2 A. Beck, S. Shtern

1 Introduction

Consider the minimization problem

min
x∈X { f (x) ≡ g(Ex) + 〈b, x〉} , (P)

where X ⊆ R
n is a compact polyhedral set, E ∈ R

m×n,b ∈ R
n and g : Rm → R

is strongly convex and continuously differentiable over Rm . Note that for a general
matrix E, the function f is not necessarily strongly convex.

When the problem at hand is large-scale, first-order methods, which have relatively
low computational cost per iteration, are usually utilized. These methods include,
for example, the class of projected (proximal) gradient methods. A drawback of these
methods is that under general convexity assumptions, they posses only a sublinear rate
of convergence [2,19], while a linear rate of convergence can be established only under
additional conditions such as strong convexity of the objective function [19]. Luo and
Tseng [21] show that the strong convexity assumption canbe relaxed and replacedby an
assumption on the existence of a local error bound, and under this assumption, certain
classes of algorithms, which they refer to as “feasible descent methods”, converge in
an asymptotic linear time. The model (P) with assumptions on strong convexity of g,
compactness and polyhedrality of X was shown in [21] to satisfy the error bound.Wang
and Lin [23] extend [21] and show that there exists a global error bound for problem
(P) with the additional assumption of compactness of X , and derive the exact linear
rate for this case. Note that the family of “feasible descent methods” includes the block
alternating minimization algorithm (under the assumption of block strong convexity),
as well as gradient projection methods, and therefore are usually at least as complex
as evaluating at each iteration the orthogonal projection operator onto the feasible
set X .

An alternative to algorithms based on projection (or proximal) operators are linear-
oracle-based algorithms such as the conditional gradient (CG) method. The CG
algorithm was presented by Frank and Wolfe [8] in 1956 for minimizing a convex
function over a compact polyhedral set. At each iteration, the algorithm requires a
solution to the problem of minimizing a linear objective function over the feasible set.
It is assumed that this solution is obtained by a call to a linear-oracle, i.e., a black box
which, given a linear function, returns an optimal solution of this linear function over
the feasible set (see an exact definition in Sect. 2.3). In some instances, and specifically
for certain types of polyhedral sets, obtaining such a linear-oracle can be done more
efficiently than computing the orthogonal projection onto the feasible set (see exam-
ples in [10]), and therefore the CG algorithm has an advantage over projection-based
algorithms. The original paper of Frank andWolfe also contains a proof of an O(1/k)
rate of convergence of the function values to the optimal value. Levitin and Polyak
[18] show that this O(1/k) rate can also be extended to the case where the feasible
set is a general compact convex set. Cannon and Culum [5] prove that this rate is in
fact tight. However, if in addition to strong convexity of the objective function, the
optimal solution is in the interior of the feasible set, then linear rate of convergence

123

Linearly convergent away-step conditional gradient... 3

of the CG method can be established [12].1 Epelman and Freund [7], as well as Beck
and Teboulle [1], show a linear rate of convergence of the conditional gradient with a
special stepsize choice in the context of finding a point in the intersection of an affine
space and a closed and convex set under a Slater-type assumption. Another setting in
which linear rate of convergence can be derived is when the feasible set is uniformly
(strongly) convex and the norm of the gradient of the objective function is bounded
away from zero [18].

Another approach for deriving a linear rate of convergence is to modify the algo-
rithm. For example, Hazan and Garber [10] use local linear-oracles in order to show
linear rate of convergence of a “localized” version of the conditional gradient method.
A different modification is to use a variation of the conditional gradient method that
incorporates away steps. This version of the conditional gradient method, which we
refer to as away steps conditional gradient (ASCG), was initially suggested by Wolfe
[24] and then studied by Guelat and Marcotte [12], where a linear rate of convergence
was established under the assumption that the objective function is strongly convex
and the set is a compact polytope, as well as an assumption on the location of the
optimal solution. A modified version of the away step method, which calculates the
away step on a simplex type representation of the problem, was studied by Jaggi and
Lacoste-Julien [16], which were able to show linear convergence for the more gen-
eral model (P) for the case where b = 0, without restrictions on the location of the
solution. Jaggi proves [15] that the rate of convergence of any method which only
adds or removes one atom at a time must be at least sublinear in the first n iterations
with n being the dimension of the space. Although the original ASCG suggested by
Wolfe and the modified ASCG discussed in [16] are closely related, they have some
significant differences. Specifically, as stated in recent work of Freund, Grigas and
Mazumder [9], in order to analyze the convergence of this new modification of the
ASCG algorithm, it is required that the linear-oracle produces outputs which reside in
a certain finite set of points (e.g., the set of extreme points in the case of a polytope),
while the analysis of the original ASCG in [12] does not require such an assumption.
In this paper we will refer to the variation presented in [16] as “the ASCG method”,
and call its required oracle a vertex linear-oracle (see the discussion in Sect. 3.1).

Contribution. In this work, our starting point and main motivation are the results of
Jaggi and Lacoste-Julien [16]. Our contribution is twofold:

(a) We extend the results given in [16] and show that the ASCG algorithm converges
linearly for the general case of problem (P), that is, for any value of E and b.
The additional linear term 〈b, x〉 enables us to consider much more gen-
eral models. For example, consider the l1-regularized least squares problem
minx∈S{‖Bx − c‖22 + λ‖x‖1}, where S ⊆ R

n is a compact polyhedral set,
B ∈ R

k×n, c ∈ R
k and λ > 0. Since S is compact, there exists a constant

M > 0 for which ‖x‖1 ≤ M for any optimal solution x.We can now rewrite the
model as

1 The paper [12] assumes that the feasible set is a bounded polyhedral, but the proof is actually correct for
general compact convex sets.

123

4 A. Beck, S. Shtern

min
x∈S,‖x‖1≤y,y∈[0,M] ‖Bx − c‖2 + λy,

which obviously fits the general model (P).
(b) We present an analysis based on simple linear programming duality arguments,

which are completely different than the geometric arguments in [16]. Conse-
quently, we obtain a computable constant for the rate of convergence, which is
explicitly expressed as a function of the problem’s parameters and the geometry
of the feasible set. This constant, which we call “the vertex-facet distance con-
stant”, replaces the so-called pyramidal width constant from [16], which reflects
the geometry of the feasible set and is obtained as the optimal value of a very
complex mixed integer saddle point optimization problem whose exact value is
unknown even for simple polyhedral sets.

Paper outline. The paper is organized as follows. Section 2 presents some prelimi-
nary results and definitions needed for the analysis. In particular, it provides a brief
introduction to the classical CG algorithm and linear oracles. Section 3 presents the
ASCG algorithm and the convergence analysis, and is divided into four subsections.
In Sect. 3.1 the concept of vertex linear-oracle, needed for the implementation of
ASCG, is presented, and the difficulties of obtaining a vertex linear-oracle on a linear
transformation of the feasible set are discussed. In Sect. 3.2 we present the ASCG
method with different possible stepsize choices. In Sect. 3.3, we provide the rate of
convergence analysis of the ASCG for problem (P), and present the new vertex-facet
distance constant used in the analysis. In Sect. 3.4, we demonstrate how to compute
this new constant for a few examples of simple polyhedral sets.

Notations.We denote the cardinality of set I by |I |. The difference, union and inter-
section of two given sets I and J are denoted by I\J = {a ∈ I : a /∈ J }, I ∪ J and
I ∩ J respectively. Subscript indices represent elements of a vector, while superscript
indices represent iterates of the vector, i.e., xi is the i th element of vector x, xk is
a vector at iteration k, and xki is the i th element of xk . The vector ei ∈ R

n is the
i th vector of the standard basis of Rn , 0 ∈ R

n is the all-zeros vector, and 1 ∈ R
n

is the vector of all ones. Given two vectors x, y ∈ R
n , their dot product is denoted

by 〈x, y〉. Given a matrix A ∈ R
m×n and vector x ∈ R

n , ‖A‖ denotes the spectral
norm of A, and ‖x‖ denotes the �2-norm of x, unless stated otherwise. AT , rank(A)

and Im(A) represent the transpose, rank and image of A respectively. We denote the
i th row of a given matrix A by Ai , and given a set I ⊆ {1, . . . ,m}, AI ∈ R

|I |×n is
the submatrix of A such that (AI) j = AI j for any j = 1, . . . , |I |. If A is a symmet-
ric matrix, then λmin (A) is its minimal eigenvalue. If a matrix A is also invertible,
we denote its inverse by A−1. Given matrices A ∈ R

n×m and B ∈ R
n×k , the matrix

[A,B] ∈ R
n×(m+k) is their horizontal concatenation. Given a point x and a closed con-

vex set X , the distance between x and X is denoted by d(x, X) = miny∈X ‖x − y‖. The
standard unit simplex inRn is denoted by�n = {

x ∈ R
n+ : 〈1, x〉 = 1

}
and its relative

interior by �+
n = {

x ∈ R
n++ : 〈1, x〉 = 1

}
. Given a set X ⊆ R

n , its convex hull is
denoted by conv(X). Given a convex set C , the set of all its extreme points is denoted
by ext(C).

123

Linearly convergent away-step conditional gradient... 5

2 Preliminaries

2.1 Mathematical preliminaries

Westart by presenting two technical lemmas. Thefirst lemma is thewell knowndescent
lemma which is fundamental in convergence rate analysis of first-order methods. The
second lemma isHoffman’s lemmawhich is used in various error bound analyses over
polyhedral sets.

Lemma 2.1 (The Descent Lemma [3, Proposition A.24]) Let f : Rn → R be a con-
tinuously differentiable function whose gradient is Lipschitz continuous with constant
ρ. Then for any x, y ∈ R

n we have

f (y) ≤ f (x) + 〈∇ f (x), y − x〉 + ρ

2
‖x − y‖2 .

Lemma 2.2 (Hoffman’s Lemma [14]) Let X be a polyhedron defined by X =
{x ∈ R

n : Ax ≤ a}, for someA ∈ R
m×n and a ∈ R

m , and let S =
{
x ∈ R

n : Ẽx = ẽ
}

where Ẽ ∈ R
r×n and ẽ ∈ R

r . Assume that X ∩ S = ∅. Then, there exists a constant
θ , depending only on A and Ẽ, such that any x ∈ X satisfies

d(x, X ∩ S) ≤ θ

∥
∥
∥Ẽx − ẽ

∥
∥
∥ .

A complete and simple proof of this lemma is given in [13, pg. 299–301]. Defining
B as the set of all matrices constructed by taking linearly independent rows from the

matrix
[
ẼT ,AT

]T
, we can write θ as

θ = max
B∈B

1

λmin
(
BBT

) .

We will refer to θ as the Hoffman constant associated with matrix
[
ẼT ,AT

]T
.

2.2 Problem properties

Throughout this paper we make the following assumption regarding problem (P).

Assumption 1 (a) f is continuously differentiable and has a Lipschitz continuous
gradient with constant ρ.

(b) g is strongly convex with parameter σg .
(c) X is a nonempty compact polyhedral set given by X = {x ∈ R

n : Ax ≤ a} for
some A ∈ R

m×n , a ∈ R
m .

We assume without loss of generality that A does not contain a row of zeros. We
denote the optimal solution set of problem (P) by X∗. The diameter of the compact

123

6 A. Beck, S. Shtern

set X is denoted by D, and the diameter of the set EX (the diameter of the image of X
under the linear mapping associated with matrix E) by DE. The two diameters satisfy
the following relation:

DE = max
x,y∈X ‖Ex − Ey‖ ≤ ‖E‖ max

x,y∈X ‖x − y‖ = ‖E‖ D,

We define G ≡ maxx∈X ‖∇g(Ex)‖ to be the maximal norm of the gradient of g over
EX .

Problem (P) possesses some properties, which we present in the following lemmas.

Lemma 2.3 (Lemma 14, [23]) Let X∗ be the optimal set of problem (P). Then, there
exists a constant vector t∗ and a scalar s∗ such that any optimal solution x∗ ∈ X∗
satisfies Ex∗ = t∗ and 〈b, x∗〉 = s∗.

Although the proof of the lemma in the given reference is for polyhedral sets, the
extension for any convex set is trivial.

Lemma 2.4 Let f ∗ be the optimal value of problem (P). Then, for any x ∈ X

f (x) − f ∗ ≤ C

where C = GDE + ‖b‖ D.

Proof Let x∗ be some optimal solution of problem (P), so that f (x∗) = f ∗. Then for
any x ∈ X , it follows from the convexity of f that

f (x) − f (x∗) ≤ 〈∇ f (x), x − x∗〉

= 〈∇g(Ex),Ex − Ex∗〉+ 〈
b, x − x∗〉

≤ ‖∇g(Ex)‖ ∥∥Ex − Ex∗∥∥+ ‖b‖ ∥∥x − x∗∥∥
≤ GDE + ‖b‖ D = C

where the last two inequalities are due to the Cauchy-Schwarz inequality and the
definition of G,D and DE. ��

The following lemma provides an error bound, i.e., a bound on the distance of any
feasible solution to the optimal set. This error bound will later be used as an alternative
to a strong convexity assumption on f , which is usually needed in order to prove a
linear rate of convergence. This is a different bound than the one given in [23], since
it relies heavily on the compactness of the set X , thus enabling to circumvent the use
of the so-called gradient mapping.

Lemma 2.5 For any x ∈ X,

d(x, X∗)2 ≤ κ(f (x) − f ∗),

where κ = θ2
(
‖b‖ D + 3GDE + 2(G2+1)

σg

)
, and θ is theHoffman constant associated

with the matrix
[
AT ,ET ,b

]T
.

123

Linearly convergent away-step conditional gradient... 7

Proof Lemma 2.3 implies that the optimal solution set X∗ can be defined as X∗ =
X ∩ S where S = {x ∈ R

n : Ex = t∗, 〈b, x〉 = s∗} for some t∗ ∈ R
m and s∗ ∈ R.

For any x ∈ X , applying Lemma 2.2 with Ẽ = [
ET ,b

]T
, we have that

d(x, X∗)2 ≤ θ2(
(〈b, x〉 − s∗)2 + ∥

∥Ex − t∗
∥
∥2), (2.1)

where θ is the Hoffman constant associated with matrix
[
AT ,ET ,b

]T
. Now, let x ∈ X

and x∗ ∈ X∗. Utilizing the σg-strong convexity of g, it follows that

〈∇g(Ex∗),Ex − Ex∗〉+ σg

2

∥
∥Ex − Ex∗∥∥2 ≤ g(Ex) − g(Ex∗). (2.2)

By the first-order optimality conditions for problem (P), we have (recalling that x ∈ X
and x∗ ∈ X∗) 〈∇ f (x∗), x − x∗〉 ≥ 0. (2.3)

Therefore,

σg

2

∥
∥Ex − t∗

∥
∥2 ≤ 〈∇ f (x∗), x − x∗〉+ σg

2

∥
∥Ex − Ex∗∥∥2

= 〈∇g(Ex∗),Ex − Ex∗〉+ 〈
b, x − x∗〉+ σg

2

∥
∥Ex − Ex∗∥∥2 .

(2.4)

Now, using (2.2) we can continue (2.4) to obtain

σg

2

∥
∥Ex − t∗

∥
∥2 ≤ g(Ex) − g(Ex∗) + 〈b, x〉 − 〈

b, x∗〉 = f (x) − f (x∗). (2.5)

We are left with the task of upper bounding (〈b, x〉 − s∗)2. By the definitions of s∗
and f we have that

〈b, x〉 − s∗ = 〈
b, x − x∗〉

= 〈∇ f (x∗), x − x∗〉− 〈∇g(Ex∗),Ex − Ex∗〉

= 〈∇ f (x∗), x − x∗〉− 〈∇g(t∗),Ex − t∗
〉
. (2.6)

Therefore, using (2.3), (2.6) as well as the Cauchy-Schwarz inequality, we can con-
clude the following:

s∗ − 〈b, x〉 ≤ 〈∇g(t∗),Ex − t∗
〉 ≤ ∥

∥∇g(t∗)
∥
∥
∥
∥Ex − t∗

∥
∥ . (2.7)

On the other hand, exploiting (2.6), the convexity of f and the Cauchy-Schwarz
inequality, we also have that

〈b, x〉 − s∗ = 〈∇ f (x∗), x − x∗〉− 〈∇g(t∗),Ex − t∗
〉

≤ f (x) − f ∗ − 〈∇g(t∗),Ex − t∗
〉

≤ f (x) − f ∗ + ∥
∥∇g(t∗)

∥
∥
∥
∥Ex − t∗

∥
∥ . (2.8)

123

8 A. Beck, S. Shtern

Combining (2.7), (2.8), and the fact that f (x) − f ∗ ≥ 0, we obtain that

(〈b, x〉 − s∗)2 ≤ (
f (x) − f ∗ + ∥

∥∇g(t∗)
∥
∥
∥
∥Ex − t∗

∥
∥)2 . (2.9)

Moreover, the definitions of G and DE imply ‖∇g(t∗)‖ ≤ G, ‖Ex − t∗‖ ≤ DE,
and since x ∈ X , it follows from Lemma 2.4 that f (x) − f ∗ ≤ C = GDE + ‖b‖ D.
Utilizing these bounds, as well as (2.5) to bound (2.9) results in

(〈b, x〉 − s∗)2 ≤ (
f (x) − f ∗ + G

∥
∥Ex − t∗

∥
∥)2

= (f (x) − f ∗)2 + 2G
∥
∥Ex − t∗

∥
∥ (f (x) − f ∗) + G2

∥
∥Ex − t∗

∥
∥2

≤ (f (x) − f ∗)C + 2GDE(f (x) − f ∗) + G2 2

σg
(f (x) − f ∗)

= (f (x) − f ∗)
(
C + 2GDE + 2G2

σg

)

= (f (x) − f ∗)
(

‖b‖ D + 3GDE + 2G2

σg

)
. (2.10)

Plugging (2.5) and (2.10) back into (2.1), we obtain the desired result:

d(x, X∗)2 ≤ θ2
(

‖b‖ D + 3GDE + 2(G2 + 1)

σg

)
(f (x) − f ∗).

��

2.3 Conditional gradient and linear oracles

In order to present the CG algorithm, we first define the concept of linear oracles.

Definition 2.1 (Linear Oracle) Given a set X , an operator OX : Rn → X is called a
linear oracle for X , if for each c ∈ R

n it returns a vectorp ∈ X such that 〈c,p〉 ≤ 〈c, x〉
for any x ∈ X , i.e., p is a minimizer of the linear function 〈c, x〉 over X .

Linear oracles are black-box type functions, where the actual algorithm used in
order to obtain the minimizer is unknown. For many feasible sets, such as �p balls
and specific polyhedral sets, the oracle can be represented by a closed form solution
or can be computed by an efficient method.

The CG algorithm and its variants are linear-oracle based algorithms. The original
CG algorithm, presented in [8]—also known as the Frank-Wolfe algorithm — is as
follows.

123

Linearly convergent away-step conditional gradient... 9

Conditional Gradient Algorithm (CG)
Input: A linear oracle OX

Initialize: x1 ∈ X

For k = 1, 2, . . .

1. Compute pk := OX (∇ f (xk)).
2. Choose a stepsize γ k .

3. Update xk+1 := xk + γ k(pk − xk).

The algorithm is guaranteed to have an O(1k) rate of convergence for stepsize
determined according to exact line search [8], adaptive stepsize [18], which has a
closed form when the smoothness constant of the objective function is known, and
predetermined stepsize [6]. This upper bound on the rate of convergence is tight [5]
and therefore variants, such as the ASCG were developed.

3 Away steps conditional gradient

The ASCG algorithm was proposed by Wolfe in [24]. A linear convergence rate was
proven for problems consisting ofminimizing strongly convex objective functions over
polyhedral feasible sets in [12] under some restrictions on the location of the optimal
solution. Jaggi and Lacoste-Julien [16] suggested a variation on the original ASCG
algorithm, which assumes that a finite representation of the current point is maintained
throughout the algorithm, and this representation is used to calculate the away step.
The authors then showed that under this modification, it is possible to prove a linear
convergence result without a restriction on the optimal solution’s location; this result
is also applicable for the specific case of problem (P) where b = 0 [or more generally
b ∈ Im(E)], provided that an appropriate linear-oracle is available for the setEX . From
this point on we refer to the latter variant of the ASCG, where a thorough explanation
of the difference between the algorithms can be found in [9]. In this section, we extend
this result for the general case of problem (P), i.e., for any E and b. Furthermore, we
explore the potential issues with obtaining a linear-oracle for the set EX , and suggest
an alternative analysis, which only assumes existence of an appropriate linear-oracle
on the original set X . Moreover, our analysis differs from the one presented in [16]
by the fact that it is based on duality rather than geometric arguments. This approach
enables to derive a computable constant for the rate of convergence, which is explicitly
expressed as a function of the problem’s parameters and the geometry of the feasible
set.

We separate the discussion on the ASCGmethod into four sections. In Sect. 3.1 we
define the concept of vertex linear oracles, and the issues of obtaining such an oracle
for linear transformations of simple sets. Section 3.2 contains a full description of the
ASCGmethod itself, including the concept of vertex representation, and representation
reduction. In Sect. 3.3we present the rate of convergence analysis of theASCGmethod
for problem (P), as well as introduce the new computable convergence constant
X .
Finally, in Sect. 3.4 we demonstrate how to compute
X for three types of simple sets.

123

10 A. Beck, S. Shtern

3.1 Vertex linear oracles

In order to prove convergence, the ASCG algorithm requires a linear oracle which
output is within a finite set of points in X ; more specifically, in the case of a poly-
tope, it is natural to assume a vertex linear oracle,2 a concept that we now define
explicitly.

Definition 3.1 (Vertex Linear Oracle) Given a polyhedral set X with vertex set V , a
linear oracle ÕX : Rn → V is called a vertex linear oracle for X , if for each c ∈ R

n

it returns a vertex p ∈ V such that 〈c,p〉 ≤ 〈c, x〉 for any x ∈ X .

Notice that, according to the fundamental theorem of linear programming [4, Theo-
rem 2.7], the problem of optimizing any linear objective function over the compact set
X always has an optimal solution which is a vertex. Therefore, the vertex linear oracle
ÕX is well defined. We also note that in this paper the term “vertex” is synonymous
with the term “extreme point”.

In [16], Jaggi and Lacoste-Julien proved that both the CG and the ASCG algorithms
are affine invariant. This means that given the problem

min
x∈X g(Ex), (3.1)

where g is a strongly convex function and E is some matrix, applying the ASCG
algorithm on the equivalent problem

min
y∈Y g(y), (3.2)

where Y = EX , yields a linear rate of convergence, which depends only on the
strong convexity parameter of g and the geometry of the set Y (regardless of what
E generated it). However, assuming that E is not of a full column rank, i.e., f is not
strongly convex, retrieving an optimal solution x∗ ∈ X from the optimal solution
y∗ ∈ Y requires solving a linear feasibility problem, where we aim to find x∗ ∈ X
such that Ex∗ = y∗. This feasibility problem is equivalent to solving the following
constrained least squares problem:

min
x∈X

∥
∥Ex − y∗∥∥2

in the sense that the optimal set of the above problem comprises all vectors satisfying
x∗ ∈ X,Ex∗ = y∗. For a general E, solving the least squares problem might be
more computationally expensive than simply applying the linear oracle on set X .
Moreover, the entire algorithm is then applied on the transformed set Y = EX , which

2 This is how the algorithm is described in [16] although in [17] the authors extend this result to include
atom linear oracles, which are oracles whose output is within a predetermined finite set of points, called
atoms. This set of atoms includes but is not limited to the set of vertices.

123

Linearly convergent away-step conditional gradient... 11

might be geometrically more complicated than the set X , or may lie in a higher
dimension.

It is interesting to note that the vertex oracle property is not preservedwhen changing
the representation. As an example, let us take a naive approach to construct a general
linear oracle OEX , given ÕX , by the formula

OEX (c) = EÕX (ET c). (3.3)

However, the output p̃ = OEX (c) of this linear oracle is not guaranteed to be a
vertex of EX and incurs an additional computational cost associated with the matrix
vector multiplications. As an example, take X to be the unit box in three dimensions,
X = [−1, 1]3 ⊆ R

3, and let E be given by

E =
⎡

⎣
1 1 1
1 1 −1
0 0 2

⎤

⎦ .

We denote the vertex set V of the set X by the letters A–H as follows:

A = (1, 1, 1)T , B = (1, 1, −1)T , C = (1, −1, −1)T , D = (1,−1, 1)T ,

E = (−1, 1, 1)T , F = (−1, −1, 1)T , G = (−1, 1, −1)T , H = (−1,−1, −1)T ,

and the linear mappings of these vertices by the matrix E by A’–H’:

A′ = (3, 1, 2)T , B ′ = (1, 3,−2)T , C ′ = G ′ = (−1, 1,−2)T ,

F ′ = (−1,−3, 2)T , H ′ = (−3,−1,−2)T , D′ = E ′ = (1,−1, 2)T .

The vertex set of EX is ext(EX) = {A′, B ′, F ′, H ′}.
The sets X andEX are presented in Fig. 1. Notice that finding a vertex linear oracle

for X is trivial, while finding one for EX is not. In particular, a vertex linear oracle
for X may be given by any operator ÕX (·) satisfying

ÕX (c) ∈ argmin
x∈V

{〈c, x〉} =
{
x ∈ {−1, 1}3 : xi ci = −|ci |, ∀i = 1, . . . , n

}
, ∀ c ∈ R

3.

(3.4)
Given the vector c = (−1, 1, 3)T , we want to find

p ∈ argmin
y∈ext(EX)

〈c, y〉 .

Using the naive approach, described in (3.3), we obtain a vertex of X by applying
the vertex linear oracle ÕX described in (3.4) with parameterET c = (0, 0, 1), which
may return either one of the vertices B, C, G or H. If vertex C is returned, then its
mapping C’ does not yield a vertex in EX .

We aim to show that given a vertex linear oracle for X , the ASCG algorithm con-
verges in a linear rate for the more general problem (P). Since in our analysis we do

123

12 A. Beck, S. Shtern

−3 −2 −1 0 1 2 3

−3
−2

−1
0

1
2

3
−3

−2

−1

0

1

2

3

C

D
A

B

Set X

F

H

E

G

−3 −2 −1 0 1 2 3

−3
−2

−1
0

1
2

3
−3

−2

−1

0

1

2

3 A’

D’,E’

F’

Set EX

B’

C’,G’

H’

Fig. 1 The sets X and EX

not assume the existence of a linear oracle for EX , but rather a vertex linear oracle for
X , the computational cost per iteration related to the linear oracle is independent of
the matrix E, and depends only on the geometry of X .

3.2 The ASCG method

We will now present the ASCG algorithm. In the following we denote the vertex set
of X as V = ext(X). Moreover, as part of the ASCG algorithm, at each iteration k
the iterate xk is represented as a convex combination of points in V . Specifically, xk

is assumed to have the representation

xk =
∑

v∈V
μk
vv,

where μk ∈ �|V |. Let Uk = {
v ∈ V : μk

v > 0
}
; then Uk and

{
μk
v
}
v∈Uk provide a

compact representation of xk , and xk lies in the relative interior of the set conv(Uk).
Throughout the algorithmwe updateUk andμk via the vertex representation updating
(VRU) scheme. The ASCG method has two types of updates: a forward step, used
in the classical CG algorithm, where a vertex is added to the representation, and an
away step, unique to this algorithm, in which the coefficient of one of the vertices used
in the representation is reduced or even nullified. Specifically, the away step uses the
direction (xk − uk) where uk ∈ Uk and stepsize γ k > 0 so that

xk+1 = xk + γ k(xk − uk)

=
(
xk − μk

uku
k
)

(1 + γ k) +
(
μk
uk − γ k

(
1 − μk

uk

))
uk

=
∑

v∈Uk/{uk}
(1 + γ k)μvv +

(
μk
uk (1 + γ k) − γ k

)
uk,

123

Linearly convergent away-step conditional gradient... 13

and so μk+1
uk

= μk
uk − γ k

(
1 − μk

uk

)
< μk

uk . Moreover, if γ k = μk
uk

1−μk
uk
, then μk+1

uk

is nullified, and consequently, the vertex uk is removed from the representation. This
vertex removal is referred to as a drop step.

The full description of the ASCG algorithm and the VRU scheme is given as
follows.

Away Step Conditional Gradient algorithm (ASCG)
Input: A vertex linear oracle ÕX

Initialize: x1 ∈ V where μ1
x1 = 1, μ1

v = 0 for any v ∈ V/
{
x1
}
and U 1 = {x1}

For k = 1, 2, . . .

1. Compute pk := ÕX (∇ f (xk)).
2. Compute uk ∈ argmaxv∈Uk

〈∇ f (xk), v
〉
.

3. If
〈∇ f (xk),pk − xk

〉≤ 〈∇ f (xk), xk − uk
〉
, then set dk := pk −xk and γ k :=1.

Otherwise, set dk := xk − uk and γ k := μk
uk

1−μk
uk

4. Choose a stepsize γ k ∈ [0, γ̄ k].
5. Update xk+1 := xk + γ kdk .
6. Employ theVRUprocedurewith input (xk ,Uk,μk,dk, γ k,pk, vk) andobtain

an updated representation (Uk+1,μk+1).

The stepsize in theASCGalgorithm can be chosen according to one of the following
stepsize selection rules, where dk and γ k are as defined in the algorithm.

γ k

⎧
⎪⎪⎨

⎪⎪⎩

∈ argmin
0≤γ≤γ k

f (xk + γdk) Exact line search

= min

{
−
〈∇ f (xk),dk

〉

ρ‖dk‖2 , γ k
}

∈ argmin
0≤γ≤γ k

{
γ
〈∇ f (xk),dk

〉+ γ 2 ρ
2

∥
∥dk

∥
∥2
}
Adaptive [18].

(3.5)

Remark 3.1 It is simple to show that under the above two choices of stepsize strategies,
the sequence of function values { f (xk)}k≥1 is nonincreasing.

Since the convergence rate analyses for both of these stepsize options is similar, we
chose to conduct a unified analysis for both cases. Following is exact definition of the
VRU procedure.

123

14 A. Beck, S. Shtern

Vertex Representation Updating (VRU) Procedure
Input: xk - current point.
(Uk,μk) - vertex representation of xk ,
dk, γ k - current direction and stepsize,

pk, vk - candidate vertices.
Output: Updated vertex representation (Uk+1,μk+1) of xk+1 = xk + γ kdk .
If dk = xk − uk (away step) then

1. Update μk+1
v := μk

v(1 + γ k) for any v ∈ Uk/
{
uk
}
.

2. Update μk+1
uk := μk

uk (1 + γ k) − γ k .

3. Ifμk+1
uk

=0 (drop step), then updateUk+1:=Uk/
{
uk
}
; otherwiseUk+1:=Uk .

Else (dk = pk − xk - forward step)
1. Update μk+1

v := μk
v(1 − γ k) for any v ∈ Uk/

{
pk
}
.

2. Update μk+1
pk

:= μk
pk (1 − γ k) + γ k .

3. If μk+1
pk = 1, then update Uk+1 = {

pk
}
; otherwise update Uk+1 := Uk ∪

{
pk
}
.

Update (Uk+1,μk+1) := R(Uk+1,μk+1) with R being a representation reduc-

tion procedure with constant N .

The VRU scheme uses a representation reduction procedureRwith constant N , which
is a procedure that takes a representation (U,μ) of a point x and replaces it by a
representation (Ũ , μ̃) of x such that Ũ ⊆ U and |Ũ | ≤ N . We consider two possible
options for the representation reduction procedure:

1. R is the trivial procedure, meaning it does not change the representation, in which
case its constant is N = |V |.

2. The procedure R is some implementation of the Carathéodory theorem [22,
Sect. 17], inwhich case its constant is N = n+1.Although this representation does
not influence the convergence results, dealing with more compact representations
will reduce the storage space needed for the algorithm, as well as the cost of stage 2
of the ASCG algorithm. This is especially significant when the number of vertices
is not polynomial in the problem’s dimension. A full description of the incremental
representation reduction (IRR) scheme, which applies the Carathéodory theorem
efficiently in this context, is presented in the appendix.

3.3 Rate of convergence analysis

Wewill now prove the linear rate of convergence for the ASCG algorithm for problem
(P). In the following we use I (x) to denote the index set of the active constraints at x,

123

Linearly convergent away-step conditional gradient... 15

I (x) = {i ∈ {1, . . . , n} : Aix = ai } .

Similarly, for a given set U , the set of active constraints for all the points in U is
defined as

I (U) = {i ∈ {1, . . . , n} : Aiv = ai , ∀v ∈ U } =
⋂

v∈U
I (v).

We present the following technical lemma, which is similar to a result presented
by Jaggi and Lacoste-Julien [16].3 In [16] the proof is based on geometrical consid-
erations, and utilizes the so-called “pyramidal width constant”, which is the optimal
value of a complicated optimization problem. In contrast, the proof below relies on
simple linear programming duality arguments, and in addition, the derived constant

X , which replaces the pyramidal width constant, is computable for many choices of
sets X .

Lemma 3.1 Let U ⊆ V and c ∈ R
n. If there exists z ∈ R

n such that AI (U)z ≤ 0 and
〈c, z〉 > 0, then

max
p∈V,u∈U 〈c,p − u〉 ≥
X

(n + 1)

〈c, z〉
‖z‖ ,

where

X = min
v∈V,i∈{1,...,m}:ai>Aiv

ai − Aiv
‖Ai‖ . (3.6)

Proof By the fundamental theorem of linear programming [11], we can maximize the
function 〈c, x〉 on X instead of on V and get the same optimal value. Similarly, we
can minimize the function 〈c, y〉 on conv(U) instead of on U , and obtain the same
optimal value. Therefore,

max
p∈V,u∈U 〈c,p − u〉 = max

p∈V 〈c,p〉 − min
u∈U 〈c,u〉

= max
x∈X 〈c, x〉 − min

y∈conv(U)
〈c, y〉

= max
x:Ax≤a

〈c, x〉 + max
y∈conv(U)

{− 〈c, y〉} . (3.7)

Since X is nonempty and bounded, the problem in x is feasible and bounded above.
Therefore, by strong duality for linear programming,

max
x:Ax≤a

〈c, x〉 = min
η∈Rm+:AT η=c

〈a, η〉 . (3.8)

3 This was done as part of the proof of [16, Lemma 6], and does not appear as a separate lemma.

123

16 A. Beck, S. Shtern

Plugging (3.8) back into (3.7) we obtain:

max
p∈V,u∈U 〈c,p − u〉 = min

η∈Rm+:AT η=c
〈a, η〉 + max

y∈conv(U)
{− 〈c, y〉}

= min
η∈Rm+:AT η=c

max
y∈conv(U)

〈a − Ay, η〉 . (3.9)

Let ỹ = 1
|U |
∑

v∈U v. Then by Carathéodory theorem there exists a set Ũ ⊆ U with

cardinality |Ũ | ≤ (n + 1) such that ỹ ∈ conv(Ũ). We will prove that I (Ũ) = I (U).
Since Ũ ⊆ U we have I (U) ⊆ I (Ũ). To prove the reverse inclusion, let i /∈ I (U),
then it follows from the definition of ỹ that

ai − Ai ỹ = 1

|U |
∑

u∈U
(ai − Aiu) ≥ 1

|U | max
u∈U (ai − Aiu) > 0,

and so, since ỹ ∈ conv(Ũ), there exists λ ≥ 0 where 1Tλ = 1 such that ỹ =∑
u∈Ũ λuu; consequently,

max
u∈Ũ

(ai − Aiu) ≥
∑

u∈Ũ
λu(ai − Aiu) = ai − Ai ỹ > 0

which implies that i /∈ I (Ũ). Thus, I (Ũ) ⊆ I (U), establishing the fact that I (Ũ) =
I (U). We define ȳ = 1

|Ũ |
∑

v∈Ũ v. Since y ∈ conv(Ũ) ⊆ conv(U), we have that

max
y∈conv(U)

〈a − Ay, η〉 ≥ 〈a − Ay, η〉

for any value of η, and therefore,

min
η∈Rm+:AT η=c

max
y∈conv(U)

〈a − Ay, η〉 ≥ min
η∈Rm+:AT η=c

〈a − Ay, η〉 . (3.10)

Using strong duality on the RHS of (3.10), we obtain that

min
η∈Rm+:AT η=c

〈a − Ay, η〉 = max
x

{〈c, x〉 : Ax ≤ (a − Ay)} . (3.11)

Denote J = I (Ũ) and J = {1, . . . ,m} /J . From the definition of I (Ũ), it follows
that

aJ − AJv = 0 (3.12)

for all v ∈ Ũ , and that for any i ∈ J there exists at least one vertex v ∈ Ũ such that
ai − Aiv > 0, and hence,

123

Linearly convergent away-step conditional gradient... 17

ai − Aiv ≥ min
u∈V :ai>Aiu

(ai − Aiu),

which in particular implies that

1

‖Ai‖
∑

v∈Ũ
(ai − Aiv) ≥ 1

‖Ai‖ min
u∈V :ai>Aiu

(ai − Aiu) ≥
X . (3.13)

We denote Ai = Ai/ ‖Ai‖ and ai = ai/ ‖Ai‖, and similarly, āJ denotes the vector
comprising the components ai , i ∈ J and AJ stands for the matrix whose rows are
Ai , i ∈ J . From the choice of y, we can conclude from (3.12) and (3.13) that

aJ − AJy = 0,

aJ − AJy = 1

|Ũ |
∑

v∈Ũ
(aJ − AJv) ≥ 1

X

|Ũ | .
(3.14)

Therefore, replacing the RHS of the set of inequalities Ax ≤ (a − Ay) in (3.11) by
the bounds given in (3.14), we obtain that

max
x

{〈c, x〉 : Ax ≤ (a − Ay)} ≥ max
x

{
〈c, x〉 : AJx ≤ 0, AJx ≤ 1

X

|Ũ |
}

.

(3.15)
Combining (3.9),(3.10), (3.11) and (3.15) it follows that

max
p∈V,u∈U 〈c,p − u〉 ≥ Z∗, (3.16)

where

Z∗ = max
x

{
〈c, x〉 : AJx ≤ 0, AJx ≤ 1

X

|Ũ |
}

. (3.17)

We will now show that it is not possible for z to satisfy AJ z ≤ 0 [(recall that
J = I (U) = I (Ũ)]. Suppose by contradiction that z satisfies does satisfy AJ z ≤ 0.
Then xα = αz is a feasible solution of problem (3.17) for any α > 0, and since
〈c, z〉 > 0 we obtain that 〈c, xα〉 → ∞ as α → ∞, and thus Z∗ = ∞. However, since
V contains a finite number of points, the LHS of (3.16) is bounded from above, and
so Z∗ < ∞ in contradiction. Therefore, there exists i ∈ J such that Aiz > 0. Since
z = 0, the vector x = z

‖z‖

X

|Ũ | is well defined. Moreover, x satisfies

AJx =
X

‖z‖ |Ũ |AJ z ≤ 0, (3.18)

and (recalling that ‖Ai‖ = 1)

Aix = Aiz

X

|Ũ | ‖z‖ ≤ ∥
∥Ai

∥
∥ ‖z‖
X

|Ũ | ‖z‖ =
X

|Ũ | , ∀i ∈ J , (3.19)

123

18 A. Beck, S. Shtern

where the inequality follows from the Cauchy-Schwarz inequality. Consequently,
(3.18) and (3.19) imply that x is a feasible solution for problem (3.17). Therefore,
Z∗ ≥ 〈c, x〉, which by (3.16) yields

max
p∈V,u∈U 〈c,p − u〉 ≥ 〈c, x〉 =
X

|Ũ |
〈c, z〉
‖z‖ ≥
X

n + 1

〈c, z〉
‖z‖ ,

where the last inequality utilizes the fact that |Ũ | ≤ n + 1. ��
Theconstant
X represents a normalizedminimal distancebetween the hyperplanes

that contain facets of X and the vertices of X which do not lie on those hyperplanes.
We will refer to
X as the vertex-facet distance of X . Examples for the derivation of

X for some simple polyhedral sets can be found in Sect. 3.4.

The following lemma is a technical result stating that the active constraints at a
given point are the same as the active constraints of the set of vertices in its compact
representation.

Lemma 3.2 Let x ∈ X and the set U ⊆ V satisfy x = ∑
v∈U μvv, where μ ∈ �+

|U |.
Then I (x) = I (U).

Proof It is trivially true that I (U) ⊆ I (x) since x is a convex combination of points
in the affine space defined by

{
y : AI (U)y = aI (U)

}
. We will prove that I (x) ⊆ I (U).

Any v ∈ U ⊆ X satisfies AI (x)v ≤ aI (x). Assume to the contrary, that there exists
i ∈ I (x) such that some u ∈ U satisfies Aiu < ai . Since μu > 0 and

∑
v∈U μv = 1,

it follows that

Aix =
∑

v∈U
μvAiv <

∑

v∈U
μvai = ai ,

in contradiction to the assumption that i ∈ I (x). ��
Corollary 3.1 For any x ∈ X/X∗ which can be represented as x = ∑

v∈U μvv for
some μ ∈ �+

|U | and U ⊆ V , it holds that,

max
u∈U,p∈V 〈∇ f (x),u − p〉 ≥
X

(n + 1)
max
x∗∈X∗

〈∇ f (x), x − x∗〉
‖x − x∗‖ .

Proof For any x ∈ X/X∗ define c = −∇ f (x). It follows from Lemma 3.2 that
I (U) = I (x). For any x∗ ∈ X∗, the vector z = x∗ − x satisfies

AI (U)z = AI (x)z = AI (x)x∗ − AI (x)x ≤ aI (x) − aI (x) = 0,

and, from the convexity of f , as well as the optimality of x∗, 〈c, z〉 = −〈∇ f (x)
x∗ − x〉 ≥ f (x) − f (x∗) > 0. Therefore, invoking Lemma 3.1 achieves the desired
result. ��

123

Linearly convergent away-step conditional gradient... 19

We now present the main theorem of this section, which establishes the linear rate
of convergence of the ASCG method for solving problem (P). This theorem is an
extension of [16, Thorem 7], and the proof follows the same general arguments, while
incorporating the use of the error bound from Lemma 2.5 and the new constant
X .

Theorem 3.1 Let {xk}k≥1 be the sequence generated by the ASCG algorithm for
solving problem (P), and let f ∗ be the optimal value of problem (P). Then for any
k ≥ 1

f (xk) − f ∗ ≤ C(1 − α†)(k−1)/2, (3.20)

where

α† = min

{
(
X)2

8ρκD2(n + 1)2
,
1

2

}
, (3.21)

κ = θ2
(
‖b‖ D + 3GDE + 2(G2+1)

σg

)
with θ being the Hoffman constant associated

with thematrix
[
AT ,ET ,b

]T
, C = GDE+‖b‖ D, and
X is the vertex-facet distance

of X given in (3.6).

Proof For each k we will denote the stepsize generated by exact line search as γ k
e and

the adaptive stepsize as γ k
a . Then

f
(
xk + γ k

e d
k
)

≤ f (xk+1) ≤ f
(
xk + γ k

a d
k
)

. (3.22)

From Lemma 2.1 (the descent lemma), we have that

f
(
xk + γ k

a d
k
)

≤ f (xk) + γ k
a 〈∇ f (xk),dk〉 +

(
γ k
a

)2
ρ

2
‖dk‖2. (3.23)

Assuming that xk /∈ X∗, then for any x∗ ∈ X∗ we have that

〈∇ f (xk),dk〉 = min
{
〈∇ f (xk),pk − xk〉, 〈∇ f (xk), xk − uk〉

}

≤ 〈∇ f (xk),pk − xk〉
≤ 〈∇ f (xk), x∗ − xk〉
≤ f ∗ − f (xk), (3.24)

where the first equality is derived from the algorithm’s specific choice of dk , the third
line follows from the fact that pk = ÕX (∇ f (xk)), and the fourth line follows from
the convexity of f . In particular, dk = 0, and by (3.5), γ k

a is equal to

γ k
a = min

{
−〈∇ f (xk),dk〉

ρ‖dk‖2 , γ k
}

. (3.25)

We now separate the analysis to three cases: (a) dk = pk − xk and γ k
a = γ k , (b)

dk = xk − uk and γ k
a = γ k , and (c) γ k

a < γ k .

123

20 A. Beck, S. Shtern

In cases (a) and (b), it follows from (3.25) that

γ kρ‖dk‖2 ≤ −〈∇ f (xk),dk〉. (3.26)

Using inequalities (3.22), (3.23) and (3.26), we obtain

f (xk+1) ≤ f (xk) + γ k
a 〈∇ f (xk),dk〉 + (γ k

a)2ρ

2
‖dk‖2

≤ f (xk) + γ k

2
〈∇ f (xk),dk〉.

Subtracting f ∗ from both sides of the inequality and using (3.24), we have that

f (xk+1) − f ∗ ≤ f (xk) − f ∗ + γ k

2
〈∇ f (xk),dk〉

≤ (f (xk) − f ∗)
(

1 − γ k

2

)

. (3.27)

In case (a), γ k = 1, and hence

f (xk+1) − f ∗ ≤ f (xk) − f ∗

2
. (3.28)

In case (b), we have no positive lower bound on γ k , and therefore we can only
conclude, by the nonnegativity of γ k , that

f (xk+1) − f ∗ ≤ f (xk) − f ∗.

However, case (b) is a drop step, meaning in particular that |Uk+1| ≤ |Uk | − 1,
since before applying the representation reduction procedure R, we eliminate one
of the vertices in the representation of xk . Denoting the number of drop steps until
iteration k as sk , and the number of forward steps until iteration k as lk , it follows
from the algorithm’s definition that lk + sk ≤ k − 1 (at each iteration we add a vertex,
remove a vertex, or neither) and sk ≤ lk (the number of removed vertices can not
exceed the number of added vertices), and therefore sk ≤ (k − 1)/2.

We arrive to case (c). In this case, (3.25) implies

γ k
a = −〈∇ f (xk),dk〉

ρ‖dk‖2 ,

which combined with (3.22) and (3.23) results in

f (xk+1) ≤ f (xk) + γ k
a 〈∇ f (xk),dk〉 +

(
γ k
a

)2
ρ

2
‖dk‖2 = f (xk) − 〈∇ f (xk),dk〉2

2ρ‖dk‖2 .

(3.29)

123

Linearly convergent away-step conditional gradient... 21

From the algorithm’s specific choice of dk , we obtain that

0 ≥ 〈∇ f (xk),pk − uk〉 = 〈∇ f (xk),pk − xk〉 + 〈∇ f (xk), xk − uk〉
≥ 2〈∇ f (xk),dk〉. (3.30)

Applying the bound in (3.30) and the inequality
∥
∥dk

∥
∥ ≤ D to (3.29), it follows that

f (xk+1) ≤ f (xk) − 〈∇ f (xk),dk〉2
2ρ‖dk‖2 ≤ f (xk) − 〈∇ f (xk),pk − uk〉2

8ρD2 . (3.31)

By the definitions of uk and pk , Corollary 3.1 implies that for any x∗ ∈ X∗,

〈∇ f (xk),uk − pk〉 = max
p∈V,u∈Uk

〈∇ f (xk),u − p〉 ≥
X

n + 1

〈∇ f (xk), xk − x∗〉
‖xk − x∗‖ .

(3.32)
Lemma 2.5 implies that there exists x∗ ∈ X∗ such that ‖xk − x∗‖2 ≤ κ(f (xk) −

f ∗), which combined with convexity of f , bounds (3.32) from below as follows:

〈∇ f (xk),uk − pk〉2 ≥
(

X

n + 1

)2 〈∇ f (xk), xk − x∗〉2
∥
∥xk − x∗∥∥2

≥
(

X

n + 1

)2
(f (xk) − f (x∗))2
∥
∥xk − x∗∥∥2

≥
(

X

n + 1

)2
(f (xk) − f ∗)2

κ(f (xk) − f ∗)

= (
X)2

(n + 1)2κ
(f (xk) − f ∗),

which along with (3.31) yields

f (xk+1) − f ∗ ≤ f (xk) − f ∗ − 〈∇ f (xk),uk − pk〉2
8ρD2

≤ (f (xk) − f ∗)
(
1 − (
X)2

8ρκD2(n + 1)2

)
(3.33)

Therefore, if either of the cases (a) or (c) occurs, then by (3.28) and (3.33), it follows
that

f (xk+1) − f ∗ ≤ (1 − α†)(f (xk) − f ∗), (3.34)

where α† is defined in (3.21). We can therefore conclude from cases (a)–(c) that until
iteration k we have at least k−1

2 iterations for which (3.34) holds, and therefore

f (xk) − f ∗ ≤ (f (x1) − f ∗)(1 − α†)(k−1)/2. (3.35)

123

22 A. Beck, S. Shtern

Applying Lemma 2.4 for x = x1 we obtain f (x1)− f ∗ ≤ C , and the desired result
(3.20) follows. ��

Remark 3.2 Notice that while the Hoffman constant enables us to conduct the analysis
despite the existence of the linear term in the objective function, the convergence result
that follows is no longer affine invariant. This is a direct result from Lemma 2.5, which
is needed in order to deal with the linear part of the objective.

3.4 Examples of computing the vertex-facet distance �X

In this section, we demonstrate how to compute the vertex-facet distance constant
X

for a few simple polyhedral sets. We consider three sets: the unit simplex, the �1 ball
and the �∞ ball. We first describe each of the sets as a system of linear inequalities of
the form X = {x : Ax ≤ a}. Then, given the parameters A and a, as well as the vertex
set V ,
X can be computed by its definition, given by (3.6). For the unit simplex
and the �∞ ball we also compare the constant that arises from our analysis and the
pyramidal width constant presented in [16], with values presented more recently in
[17], and discuss both tightness and ease of computation of each.

The �∞ ball. The �∞ ball is represented by

A =
[
I

−I

]
∈ R

2n×n, a =
[
1
1

]
∈ R

2n . (3.36)

The set of extreme points is given by V = {−1, 1}n , which in particular implies
that |V | = 2n . Therefore, for large-scale problems, using the representation reduction
procedure, which is based on Carathéodory theorem, is crucial in order to obtain a
practical implementation.

From the definition of A and V , it follows that

‖Ai‖ = ‖−An+i‖ = ‖ei‖ = 1, i = 1, . . . , n

and so

X = min
i∈{1,...,n}, v∈{−1,1}n :〈ei ,v〉<1

(1 − 〈ei , v〉) = 2.

Comparing this result with the pyramidal width of the cube, which by [17] is equal
to 2/

√
n for the given two-unit cube, we must recall that the pyramidal width is

compared to the
X/n = 2/n since the latter is actually a lower bound on the former.
Thus we lose a factor of

√
n using the looser bound
X . However, looking at the

proof in [17], the calculation of the pyramidal width relies strongly on geometrical
considerations (e.g., symmetry of the cube), and the properties of the algorithm (the
forward step being the maximizer over the chosen direction), while the computation
of
X is straightforward.

123

Linearly convergent away-step conditional gradient... 23

The unit simplex. The unit simplex �n can be represented by

A =
⎡

⎣
−In×n

1Tn
−1Tn

⎤

⎦ ∈ R
(n+2)×n, a =

⎡

⎣
0n
1
1

⎤

⎦ ∈ R
(n+2). (3.37)

The set of extreme points is given by V = {ei }ni=1. Notice that since there are
only n extreme points which are all affinely independent, using a rank reduction
procedure which implements the Carathéodory theorem is the same as applying the
trivial procedure that does not change the representation. In order to calculate
X , we
first note that I (V) = {n + 1, n + 2}, and therefore

‖Ai‖ = ‖ei‖ = 1, i = 1, . . . n

and

X = min
v∈{e j}nj=1,i∈{1,...,n}:−〈ei ,v〉<0

〈ei , v〉 = min
i∈{1,...,n} ‖ei‖

2 = 1.

Comparing this result with the pyramidal width of the unit simplex, which by [17]
is given by 2/

√
n, while we show
X/n = 1/n and again we lose a factor of

√
n

using the looser bound
X . The proof in [17] relies on a geometrical result discussing
the width of the simplex, which is not easily derived, while the computation of
X is
a direct result of V being the standard basis in Rn .

The �1 ball. The �1 ball is given by the set

X =
{

x ∈ R
n :

n∑

i=1

|xi | ≤ 1

}

= {
x ∈ R

n : 〈w, x〉 ≤ 1,∀w ∈ {−1, 1}n} .

Therefore a = 1 ∈ R
2n and each row of the matrix A ∈ R

2n×n is a vector in
{−1, 1}n . The set of extreme points is given by V = {ei }ni=1

⋃ {−ei }ni=1, and therefore
has cardinality of |V | = 2n.

Finally, we have that

‖Ai‖ = √
n, i ∈ {1, . . . , 2n} ,

and so

X = 1√
n

min
v∈V,w∈{−1,1}n :〈v,w〉<1

(1 − 〈v,w〉)

= 1√
n

min
i∈{1,...,n}, w∈{−1,1}n :〈ei ,w〉<1

(1 − 〈ei ,w〉)

= 1√
n

min
w∈{−1,1}n(1 + |wi |) = 2√

n
.

The pyramidal width of the �1 ball is obviously smaller than that of the simplex,
and it is difficult to calculate via the approach suggested in [17].

123

24 A. Beck, S. Shtern

A recent work of Peña and Rodríguez [20], which appeared after the submition of
this paper, showed that the pyramidal width is equal to a quantity referred to as the
facial distance of the polytope. This quantity is actually a refinement of the vertex-
facet distance, since it calculates the distance between any face of the polytope and
the polytope generated by the convex-hull of the vertices not contained in that face.
The vertex-facet distance is the distance from a vertex to the hyperplane containing
a single polytope facet, disregarding the additional information about the polytope.
Therefore, it follows that the bound generated by the vertex-facet distance can be arbi-
trarily smaller than the facial distance. However, the combinatorial cost of computing
the vertex-facet distance is generally linearly dependent on the the number of vertices
and facets, while the facial distance generally requires a computation which is expo-
nentially dependent on the number of vertices (equivalent to the number of polytope
faces).

Acknowledgements The research of Amir Beck was partially supported by the Israel Science Foundation
grant 1821/16

Appendix: Incremental representation reduction using the Carathéodory
theorem

In this section we will show a way to efficiently and incrementally implement the
constructive proof of Carathéodory theorem, as part of the VRU scheme, at each iter-
ation of the ASCG algorithm. We note that this reduction procedure does not have
to be employed, and instead the trivial procedure, which does not change the rep-
resentation can be used. In that case, the upper bound on the number of extreme
points in the representation is just the number of extreme points of the feasible
set X .

The implementation described in this section will allow maintaining a vertex rep-
resentation setUk , with cardinality of at most n+ 1, at a computational cost of O(n2)
operations per iteration. For this purpose, we assume that at the beginning of iteration
k, xk has a representation with vertex set Uk = {

v1, . . . , vL
} ⊆ V , such that the vec-

tors in the set are affinely independent. Moreover, we assume that at the beginning of
iteration k, we have at our disposal two matrices Tk ∈ R

n×n andWk ∈ R
n×(L−1). We

defineVk ∈ R
n×(L−1) to be the matrix whose i th column is the vectorwi = vi+1−v1

for i = 1, . . . , L − 1, where v1 is called the reference vertex. The matrix Tk is a
product of elementary matrices, which ensures that the matrix Wk = TkVk is in row
echelon form. The implementation does not require to save the matrix Vk , and so at
each iteration, only the matrices Tk and Wk are updated.

LetUk+1 be the vertex set and letμk+1 be the coefficients vector at the end of itera-
tion k, before applying the rank reduction procedure. Updating the matricesWk+1 and
Tk+1, as well asUk+1 and μk+1, is done according to the following Incremental Rep-
resentation Reduction scheme, which is partially based on the proof of Carathéodory
theorem presented in [22, Sect. 17].

123

Linearly convergent away-step conditional gradient... 25

Incremental Representation Reduction (IRR)
Input: Representation (Uk+1,μk+1) of point xk+1, set Uk = {

v1, . . . , vL
}
of

affinely independent vectors, and matrices Tk ∈ R
n×n and Wk ∈ R

n×(L−1).

Output: Updated representation (Uk+1,μk+1) of xk+1, and matrices Tk+1 ∈
R
n×n and Wk+1 ∈ R

n×(|Uk+1|−1).

1. Set L := |Uk |.
2. Update Tk+1 := Tk .

3. If |Uk+1| = 1, then set the matrixWk+1 to be empty and Tk+1 := I.
4. Else, if |Uk+1| = L , then set Wk+1 := Wk .

5. Else, if |Uk+1| = L − 1 > 1 (drop step), then

(a) Find i∗ ∈ {1, . . . , L} such that vi
∗ ∈ Uk/Uk+1.

(b) If i∗ = 1 (the reference vertexwas removed), then remove the first column

of Wk and change reference vertex to v2, using the update formula

Wk+1 := Wk
[
0 I(L−2)×(L−2)

]T + Tk(v1 − v2)1T ,

where 1, 0 ∈ R
L−2.

(c) Else (a non-reference vertex was removed), remove column i∗ − 1 from

Wk+1.

6. Else, if |Uk+1| = L + 1 (forward step), then

(a) Find vL+1 ∈ Uk+1/Uk .

(b) Compute wL := vL+1 − v1.
(c) Update the matrixWk+1 := [Wk,TkwL].
(d) Compute M - the row rank of Wk+1.

(e) If L > M , then

i. Find a solution λ of the following system

Wk+1λ = 0, λL = −1.

ii. Set the vector λ̃ ∈ R
L+1 to be

λ̃i :=
⎧
⎨

⎩
−∑L+1

i=2 λi−1 i = 1

λi−1 i = 2, . . . , L + 1
.

123

26 A. Beck, S. Shtern

iii. Compute α := mini :λ̃i<0 −μk
i

λ̃i
and α := maxi :λ̃i>0 −μk

i

λ̃i
and set

α =
{

α λ̃1 ≥ 0

α λ̃1 < 0.
.

iv. Update μk+1
vi := μk+1

vi + αλ̃i for all i = 1, . . . , L + 1.

v. Compute I =
{
i ∈ {1, . . . , L + 1} : μk+1

vi = 0
}
.

vi. For each i ∈ I remove column i − 1 matrixWk+1.
vii. Update Uk+1 = Uk+1/ {vi }i∈I .
7. IfWk+1 is not in rowechelon form, then construct amatrix T̃, as a composition

of elementary matrices, such that T̃Wk+1 is row echelon form, and update
Wk+1 := T̃Wk+1 and Tk+1 := T̃Tk+1.

Notice that in order to compute the row rank of the matrix Wk+1 in step 6(d), we
may simply convert the matrix to row echelon form, and then count the number of
nonzero rows. This is done similarly to step 7, and requires ranking of at most one
column. We will need to rerank the matrix in step 7 only if L > M , and subsequently
at least one column is removed in step 6(e)vi.

The IRR schememay reduce the size of the inputUk+1 only in the case of a forward
step, since otherwise the vertices in Uk+1 are all affinely independent. Nonetheless,
the IRR scheme must be applied at each iteration in order to maintain the matrices
Wk and Tk .

The efficiency of the scheme relies on the fact that only a small number of vertices
are either added to or removed from the representation. The potentially computation-
ally expensive steps are: step 5(b)—replacing the reference vertex, step 6(d)—finding
the row rank ofWk+1, step 6(e)i—solving the system of linear equalities, step 6(e)vi—
removing columns correspondingwith the vertices eliminated from the representation,
and step 7—the ranking of the resulting matrixWk+1. Step 5(b) can be implemented
without explicitly using matrix multiplication and therefore has a computational cost
of O(n2). Since Wk was in row echelon form, step 6(d) requires a row elimination
procedure, similar to step 7, to be conducted only on the last column ofWk+1, which
involves at most O(n) operations and an additional O(n2) operation for updating
Tk+1. Moreover, since Wk was full column rank, the IRR scheme guarantees that in
step 6(e)i the vector λ has a unique solution, and sinceWk+1 is in row echelon form,
it can be found in O(n2) operations. Moreover, in step 6(e)i, the specific choice of α

ensures that the reference vertex v1 is not eliminated from the representation, and so
there is no need to change the reference vertex at this stage. Furthermore, it is reason-
able to assume that the set I satisfies |I | = O(1), since otherwise the vector xk+1,
produced by a forward step, can be represented by significantly less vertices than xk ,
which, although possible, is numerically unlikely. Therefore, assuming that indeed

123

Linearly convergent away-step conditional gradient... 27

|I | = O(1), the matrix T̃, calculated in step 7, applies a row elimination procedure
to at most O(1) rows (one for each column removed fromWk+1) or one column (if a
column was added toWk+1). Conducting such an elimination on either row or column
takes at most O(n2) operations, which may include row switching and at most n row
addition andmultiplication. Therefore, the total computational cost of the IRR scheme
amounts to O(n2).

References

1. Beck, A., Teboulle, M.: A conditional gradient method with linear rate of convergence for solving
convex linear systems. Math. Methods of Oper. Res. 59(2), 235–247 (2004)

2. Beck, A., Teboulle, M.: Gradient-based algorithms with applications to signal recovery problems. In:
Palomar, D., Eldar, Y. (eds.) Convex Optimization in Signal Processing and Communications, pp.
139–162. Cambridge University Press, Cambridge (2009)

3. Bertsekas, D.P.: Nonlinear Programming, 2nd edn. Athena Scientific, Belmont, MA, USA (1999)
4. Bertsimas, D., Tsitsiklis, J.N.: Introduction to Linear Optimization, vol. 6. Athena Scientific, Belmont

(1997)
5. Canon,M.D., Cullum, C.D.: A tight upper bound on the rate of convergence of Frank-Wolfe algorithm.

SIAM J. Control 6(4), 509–516 (1968)
6. Dunn, J., Harshbarger, S.: Conditional gradient algorithms with open loop step size rules. J. Math.

Anal. Appl. 62(2), 432–444 (1978)
7. Epelman, M., Freund, R.M.: Condition number complexity of an elementary algorithm for computing

a reliable solution of a conic linear system. Math. Program. 88(3), 451–485 (2000)
8. Frank,M.,Wolfe, P.: An algorithm for quadratic programming.Nav. Res. Logist. Quart. 3(1–2), 95–110

(1956)
9. Freund, R.M., Grigas, P., Mazumder, R.: An extended frank-wolfe method with “in-face” directions,

and its application to low-rank matrix completion. arXiv preprint; arXiv:1511.02204 (2015)
10. Garber, D., Hazan, E.: A linearly convergent conditional gradient algorithmwith applications to online

and stochastic optimization. arXiv preprint; arXiv:1301.4666 (2013)
11. Goldfarb, D., Todd, M.J.: Chapter ii: Linear programming. In: Nemhauser, G., Kan, A.R., Todd, M.

(eds.) Optimization, volume 1 of Handbooks in Operations Research and Management Science, pp.
73–170. Elsevier, Amsterdam (1989)

12. Guelat, J., Marcotte, P.: Some comments onWolfe’s away step. Math. Program. 35(1), 110–119 (1986)
13. Güler, O.: Foundations of Optimization. Graduate Texts in Mathematics, vol. 258. Springer, New York

(2010)
14. Hoffman, A.J.: On approximate solutions of systems of linear inequalities. J. Res. Natl. Bur. Stand.

49(4), 263–265 (1952)
15. Jaggi, M.: Sparse Convex Optimization Methods for Machine Learning. Ph.D. thesis, ETH Zurich

(2011)
16. Lacoste-Julien, S., Jaggi, M.: An affine invariant linear convergence analysis for Frank-Wolfe algo-

rithms. In: NIPS 2013 Workshop on Greedy Algorithms, Frank-Wolfe and Friends (2014)
17. Lacoste-Julien, S., Jaggi, M.: On the global linear convergence of frank-wolfe optimization variants.

In: Advances in Neural Information Processing Systems, pp. 496–504 (2015)
18. Levitin, E., Polyak, B.T.: Constrained minimization methods. USSR Comput. Math. Math. Phys. 6(5),

787–823 (1966)
19. Nesterov, Y.: Introductory Lectures on Convex Optimization: A Basic Course, vol. 87. Springer, Berlin

(2004)
20. Pena, J., Rodriguez, D.: Polytope conditioning and linear convergence of the frank-wolfe algorithm.

arXiv preprint; arXiv:1512.06142 (2015)
21. Luo, Z.Q., Tseng, P.: Error bounds and convergence analysis of feasible descent methods: a general

approach. Ann. Oper. Res. 46–47(1), 157–178 (1993)
22. Rockafellar, R.T.: Convex Analysis, 2nd edn. Princeton University Press, Princeton (1970)
23. Wang, P.-W., Lin, C.-J.: Iteration complexity of feasible descent methods for convex optimization. J.

Mach. Learn. Res. 15, 1523–1548 (2014)
24. Wolfe, P.: Chapter 1:Convergence Theory in Nonlinear Programming. In: Abadie J. (ed.) Integer and

nonlinear programming, pp. 1–36. North-Holland Publishing Company, Amsterdam (1970)

123

http://arxiv.org/abs/1511.02204
http://arxiv.org/abs/1301.4666
http://arxiv.org/abs/1512.06142

	Linearly convergent away-step conditional gradient for non-strongly convex functions
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Mathematical preliminaries
	2.2 Problem properties
	2.3 Conditional gradient and linear oracles

	3 Away steps conditional gradient
	3.1 Vertex linear oracles
	3.2 The ASCG method
	3.3 Rate of convergence analysis
	3.4 Examples of computing the vertex-facet distance ΩX

	Acknowledgements
	Appendix: Incremental representation reduction using the Carathéodory theorem
	References

