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Abstract We propose a cutting-plane approach (namely, Benders decomposition) for
a class of capacitated multi-period facility location problems. The novelty of this
approach lies on the use of a specialized interior-point method for solving the Benders
subproblems. The primal block-angular structure of the resulting linear optimiza-
tion problems is exploited by the interior-point method, allowing the (either exact or
inexact) efficient solution of large instances. The consequences of different model-
ing conditions and problem specifications on the computational performance are also
investigated both theoretically and empirically, providing a deeper understanding of
the significant factors influencing the overall efficiency of the cutting-plane method.
The methodology proposed allowed the solution of instances of up to 200 potential
locations, one million customers and three periods, resulting in mixed integer linear
optimization problems of up to 600 binary and 600 millions of continuous variables.
Those problems were solved by the specialized approach in less than one hour and a
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half, outperforming other state-of-the-art methods, which exhausted the (144 GB of)
available memory in the largest instances.

Keywords Mixed integer linear optimization · Interior-point methods · Multi-period
facility location · Cutting planes · Benders decomposition · Large-scale optimization

Mathematics Subject Classification 90C06 · 90C11 · 90C51 · 90B80

1 Introduction

A dynamic facility location problem consists of defining a time-dependent plan for
locating a set of facilities in order to serve customers in some area or region. A finite
planning horizon is usually considered representing the time for which the decision
maker wishes to plan. In a multi-period setting, the planning horizon is divided into
several time periods each of which defining specific moments for making adjustments
in the system. The most common goal is the minimization of the total cost—for
the entire planning horizon—associated with the operation of the facilities and the
satisfaction of the demand.

This class of problems extends their static counterparts and emerges as appropriate
when changes in the underlying parameters (e.g., demands or transportation costs) can
be predicted. The reader can refer to the book chapter [36] for further details as well
as for references on this topic.

The study of multi-period facility location problems is far from new. Nevertheless,
the relevance of these problems is still quite notable since they are often found at
the core of more complex problems such as those arising in logistics (see, e.g., [3,
33]). Accordingly, their study is of major importance. In particular, having efficient
approaches for tackling those problems may render an important contribution to the
resolution of more comprehensive problems.

The purpose of this paper is to introduce an exact method for a class of multi-period
discrete facility location problems. In particular, we consider a pure phase-in setting
in which a plan is to be devised for progressively locating a set of capacitated facilities
over time. This is the “natural” extension to a multi-period context of the classical
capacitated facility location problem. In addition, we specify a maximum number of
facilities that can be operating in each time period. This is a means to control the
“speed” at which the system changes in case the decision maker finds this necessary.
A set of customers whose demand is known for every period is to be supplied from the
operating facilities in every period. Nevertheless, we assume that service level is not
necessarily 100 %; instead, this will be endogenously defined and a cost is assumed
for shortages at the customers. This cost may represent an opportunity loss or simply
a penalty incurred due to the shortage. In addition to this cost, we consider operating
costs for the facilities and transportation costs from the facilities to the customers. All
costs are assumed to be time-dependent. The goal of the problem is to decide where and
when to locate facilities in order to minimize the total cost over the planning horizon.

The above problem can be formulated as a mixed integer linear optimization prob-
lem with a set of binary variables (associated with the location decisions) and a set
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of continuous variables (associated with transportation for demand satisfaction and
shortage at the customers). Such type of problems are well-known to be particularly
suited for decomposition approaches based on cutting planes, namely Benders decom-
position [29,45]. In fact once the binary variables are fixed, the remaining problem
is a linear optimization problem which can be dualized for deriving optimality cuts.
We explore this structure in order to develop a very efficient Benders decomposition
approach for the problem.

1.1 Relation with the existing literature

From a methodological point of view, our work consists of using, extending, and
combining several methods in order to obtain an efficient exact solution procedure
for the problem that we are investigating. In particular, we make use of a structure-
exploiting interior-point method as a cut-generator for a Benders decomposition of
the problem. In this section we discuss previous literature on the relevant techniques
and their relation with the new methodology proposed.

We start by pointing out that the key idea of our specialized interior-point method
differs substantially from that of other existing interior-point based solvers, such as
the Object-Oriented Parallel Solver (OOPS) and the suite of parallel solvers PIPS.

The OOPS system, described in [19] and used in several applications (e.g., [13]),
is based on partitioned Cholesky factorizations, while our specialized interior-point
method eliminates the complicating linking constraints by combining both direct—
Cholesky factorizations—and iterative solvers—conjugate gradients. As it will be
discussed later, the particular advantage of the iterative solvers resulted to be instru-
mental for making the overall approach very effective when tackling instances of the
problem we are analyzing.

PIPS is an alternative exploiting-structure system, specialized for stochastic opti-
mization, that includes both linear and nonlinear interior-point [6,39] and simplex
solvers [27]. However, again, the interior-point methods of PIPS are significantly
different from our approach. Although the block-angular structure of the stochastic
optimization problems dealt with by PIPS is similar to ours, PIPS relies on high per-
formance computers that exploit parallel processing, and makes use of state-of-the-art
Cholesky solvers. Our approach runs (so far) in single thread mode, it requires much
less computing resources, and it is efficient enough if a standard Cholesky solver is
considered (and thus, there is room for improvement). From an algorithmic point of
view, the most significant difference between [39] and our approach is that we solve
the normal equations form of the KKT interior-point conditions, while PIPS considers
the augmented system form. This allows us to solve the resulting linear systems by
a combination of Cholesky for block constraints and a preconditioned conjugate gra-
dient for linking constraints—using the preconditioner detailed in [7,10]—whereas
in [39] the whole system (including all constraints) is solved by an iterative solver,
requiring an expensive factorization to obtain the preconditioner. The approach of [6]
also uses an iterative solver, but the preconditioner is tailored to stochastic optimization
problems, which is not our case. Compared to PIPS-S [27], our approach can solve our
linear optimization subproblems (those obtained after fixing the binary variables) with
hundreds of millions of variables using a few Gigabytes of RAM, while the highly
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efficient and parallel simplex implementation of PIPS-S required about 1000 GB of
RAM for stochastic optimization problems of similar sizes, which calls for the use of
supercomputers.

A second ingredient of our approach will be the use of suboptimal feasible solutions
in the Benders subproblems, obtaining ε-subgradients and thus ε-cuts. This idea was
first used in [20] for the solution of block-angular problems using the general solver
HOPDM [18]. The main two differences of that approach when compared to ours are:
(i) the problems in [20] were linear, while facility location includes binaries; (ii) the
cutting plane was applied in [20] for the solution of the block-angular problem (thus the
“master problem” was linear), whereas we use cutting planes for the binary-continuous
division (thus the “master problem” is binary), and the block-angular structure is
exploited in the subproblems using the specialized interior-point solver. The use of
inexact or ε-cuts in Benders decomposition was analyzed in [47] for linear problems,
confirming its good convergence properties. Its use in integer problems has been
recently studied and validated in [30,44].

Recent improvements have been also achieved in the solution of large facility loca-
tion problems with quadratic costs [16,17]. The approach proposed in [17] is also based
on an efficient and ad-hoc cut-generator (i.e., subproblem solution), which relies on
KKT conditions. However it deals with uncapacitated problems, while we focus on
capacitated and multi-period instances which require of an efficient simplex or interior-
point method as a cut generator. On the other hand the approach presented in [16] solves
instances of a quadratic capacitated facility location problem using a perspective refor-
mulation which, eventually, means solving a quadratically constrained problem with a
general purpose interior-point solver. We note that the specialized interior-point solver
used in our work could be extended to deal with the type of quadratically constrained
problems investigated in [16]—though the extension is nontrivial, and it would mean
a significant coding effort. Therefore, we think that combining the subproblem for-
mulation of [16] with an extended version of the specialized interior-point solver we
are using in our work, would allow solving extremely large facility location instances
with quadratic costs.

It is also worth noting that interior-point methods have already been used in the
past for the solution of integer optimization problem using cutting-plane approaches,
such as in [34] for linear ordering problems. More recently, primal-dual interior-point
methods have shown to be very efficient in the stabilization of column-generation
procedures for the solution of problems such as vehicle routing with time windows,
cutting stock, and capacitated lot sizing with setup times [21,35].

One important ingredient for the development of our new methodology has to do
with the fact that the Benders subproblems we will be dealing with can be separated
into block-angular structured linear programming problems. This same structure has
triggered the development of several well-known optimization techniques. Among
those, methods based upon Dantzig–Wolfe decomposition, namely column genera-
tion approaches ([12,26]) are possibly the most popular ones. As pointed out in Ref.
[43], such approaches can be looked at as a dual method based upon the Lagrangian
relaxation of the linking constraints. Alternatively, such Lagrangian relaxation can be
tackled directly as a non-smooth concave problem. Subgradient methods ([22,40]) are
one possibility that is quite popular. Another type of methods that have emerged as an
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alternative to subgradient optimization for non-smooth concave problems are the so-
called bundle methods ([25]). Robinson [42] developed a bundle method for tackling
block-angular structured convex problems. After dualizing the linking constraints, the
resulting non-smooth concave problem can be solved using a bundle-based decompo-
sition method. In Ref. [31] this possibility is studied more deeply and it is applied for
tackling large scale block-angular structured linear programming problems. Recently,
[38] considered so-called inexact bundle methods to two-stage stochastic programs.

Finally, we refer to the Volume algorithm introduced by [4] as a means for extending
the subgradient algorithm so that it also produces primal solutions. Those authors have
tested the new approach in linear optimization problems with a special structure includ-
ing a block-angular one. Recently, in Ref. [15], we observe a successful application of
the Volume algorithm in the context of large-scale two-stage stochastic mixed-integer
0–1 problems, namely when it comes to solving the Lagrangian dual resulting from
dualizing the non-anticipativity constraints in the splitting variable formulation of the
general problem.

1.2 The relevance of the contribution provided by the current work

The novelty in the Benders decomposition we propose has to do with the resolution of
the Benders subproblem, for which the specialized interior-point method for primal
block-angular structures of [7,8,10] will be customized. In short, this is a primal-dual
path-following method [46], whose efficiency relies on the sensible combination of
Cholesky factorization and preconditioned conjugate gradient for the solution of the
linear system of equations to be solved at each interior-point iteration.

This paper amplifies significantly the range of applicability of interior-point meth-
ods within the context of combinatorial optimization. This is accomplished by
optimally combining existing techniques that result in a new approach yielding remark-
able computational results. The methodological novelty can be detailed as follows:

• Benders subproblems are tackled using a specialized interior-point method, which
allows to fully take advantage of some unique factorization properties of the facility
location problem matrix structure. This has two main benefits:
– It becomes possible to efficiently solve very large linear subproblems (that can-

not be tackled by state-of-the-art optimization solvers such as IBM CPLEX).
– Since Benders decomposition does not require an optimal solution to the sub-

problem, a primal-dual feasible solution (i.e., a point of the primal-dual space
which is feasible for both the primal and dual pair of the subproblem) is enough
for generating an additional cut. The interior-point method is thus an excellent
choice, since it can quickly obtain such a primal-dual feasible point in the earlier
iterations, skipping the last ones which focus on reducing the complementarity
gap. In particular, avoiding the last interior-point iterations is instrumental for
the specialized algorithm considered in this work, since the performance of
the embedded preconditioned conjugate gradient solver degrades close to the
optimal solution.

• The multi-period capacitated facility location problem that we are investigating
is very general—it captures in a single modeling framework several particular
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cases which are at the core of many real-world logistics network design problems.
Accordingly, more than a specific problem, we are in fact investigating a broad
class of combinatorial optimization problems.

• Both from a theoretical and an empirical point of view, we show that the competitive
advantage of the proposed approach increases when the number of facilities and
customers grows large.

Overall, the new procedure represents a relevant breakthrough in terms of the res-
olution to optimality of multi-period capacitated facility location problems. In fact,
it has been able to solve problems of up to 200 potential locations, one million cus-
tomers and three periods, resulting in mixed integer linear problems of up to 600 binary
and 600 millions of continuous variables. To the best of the authors’ knowledge, the
solution of facility location instances of such sizes has never been reported in the
literature.

The remainder of this paper is organized as follows. In Sect. 2 the problem is
described in detail and formulated. The cutting plane method is presented in Sect. 3,
introducing the new approach for solving the subproblems. Computational tests are
reported in Sect. 4. The paper ends with an overview of the work done and some
conclusions that can be drawn from it.

2 Problem description and formulation

We consider a set of potential locations where facilities can be set operating during
a planning horizon divided into several time periods. Additionally, there is a set of
customers whose demand in each period is known and that are to be supplied from the
operating facilities. Facilities are capacitated and once installed they should remain
open until the end of the planning horizon. We specify the maximum number of
facilities that can be operating in each time period. Finally, demands are not required
to be fully satisfied; instead, we consider a service level not necessarily equal to 100 %;
its value is an outcome of the decision making process. We consider costs associated
with: (i) the operation of the facilities, (ii) the satisfaction of the demand and (iii)
the shortages at the customers. The goal is to decide where facilities should be set
operating and how to supply the customers in each time period from the operating
facilities in order to minimize the cost for the entire planning horizon.

Before presenting an optimization model for this problem we introduce some nota-
tion that will be used hereafter.
Sets:

T Set of time periods in the planning horizon with k = |T |.
I Set of candidate locations for the facilities with n = |I |.
J Set of customers with m = |J |.

Costs:

f ti Cost for operating a facility at i ∈ I in period t ∈ T .
cti j Unitary transportation cost from facility i ∈ I to customer j ∈ J in period t ∈ T .
htj Unitary shortage cost at customer j ∈ J in period t ∈ T .
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Other parameters:

dtj Demand of customer j ∈ J in period t ∈ T .
qi Capacity of a facility operating at i ∈ I .
pt Maximum number of facilities that can be operating in period t ∈ T .

The decisions to be made can be represented by the following sets of decision variables:

yti =
{

1 if a facility is operating at i ∈ I in period t ∈ T,

0 otherwise.
xti j = Amount shipped from facility i ∈ I to customer j ∈ J in period t ∈ T .
ztj = Shortage at customer j ∈ J in period t ∈ T .

The multi-period facility location problem we are working with can be formulated as
follows:

min
∑
t∈T

⎛
⎝∑

i∈I
f ti y

t
i +

∑
i∈I

∑
j∈J

cti j xi j +
∑
j∈J

htj z
t
j

⎞
⎠ , (1)

subject to
∑
i∈I

x ti j + ztj = dtj , t ∈ T, j ∈ J, (2)

∑
j∈J

xti j ≤ qi y
t
i , t ∈ T, i ∈ I, (3)

∑
i∈I

yti ≤ pt , t ∈ T, (4)

yti ≤ yt+1
i , t ∈ T \{k}, i ∈ I, (5)

yti ∈ {0, 1}, t ∈ T, i ∈ I, (6)

xti j ≥ 0, t ∈ T, i ∈ I, j ∈ J (7)

ztj ≥ 0, t ∈ T, j ∈ J. (8)

In the above model, the objective function (1) represents the total cost throughout
the planning horizon, which includes the cost for operating the facilities, the trans-
portation costs from facilities to customers and the costs for shortages at the customers.
Constraints (2) ensure that the demand of each customer in each period is divided into
two parts: the amount supplied from the operating facilities and the shortage. Inequal-
ities (3) are the capacity constraints for the operating facilities. Constraints (4) define
the maximum number of facilities that can be operating in each period. Relations (5)
ensure that we are working under a pure phase-in setting, i.e., once installed, a facility
should remain open until the end of the planning horizon. Finally, constraints (6)–(8)
define the domain of the decision variables.

The above model has several features which are worth emphasizing.

(i) By considering constraints (5) we are capturing a feature of major relevance
in many logistics network design problems which has to do with the need for
progressively install a system since it is often the case that such systems cannot
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be setup in a single step (the reader can refer to [32] for a deeper discussion on
this aspect).

(ii) Since the facilities are capacitated, the possibility of adjusting the set of operat-
ing facilities over time is a way for adjusting the overall capacity of the system,
which, in turn, can be looked at as a response to changes in demands and costs.
Some authors have explicitly considered capacity adjustments as part of the deci-
sion making process (e.g., [23,24]) within a multi-period modeling framework
for facility location problems.

(iii) By specifying the values of pt , t ∈ T , we are setting a maximum “speed” for
making adjustments in the system in terms of the operating facilities. When such
a feature is not relevant, one can simply set pt = n, t ∈ T and the model is
still valid. Since we are working with a pure phase-in problem we assume that
1 ≤ p1 ≤ p2 ≤ · · · ≤ pk ≤ n.

(iv) In our problem, the service level is not necessarily 100 %; instead, it will be
endogenously determined, resulting from a trade-off between the different costs
involved. The practical relevance of considering a service level below 100 %
in the context of facility location has been discussed by several authors, such
as [1,2,37]. Since we are working with a multi-period problem, the expression
“service level” is rather vague. In fact, we can, for instance, consider a service
level per time period or even a global service level for the entire planning horizon:

SL(t) =
∑

j∈J
∑

i∈I x ti j∑
j∈J d

t
j

, GSL =
∑

t∈T
∑

j∈J
∑

i∈I x ti j∑
t∈T

∑
j∈J d

t
j

.

In the first case, in order to obtain a “global” service level, we may simply
average the service level attained in the different periods yielding

ASL = 1

k

∑
t∈T

SL(t).

(v) The above model is still valid if some facilities are already operating before the
planning horizon and the goal is to expand a system already operating. In such a
case we can use the same model if we fix to 1 the location variables associated
with the existing facilities.

(vi) In order to present a model that is as general as possible, we are assuming all
parameters to be time-dependent. However, in practice this is not always the case.
For instance, when the transportation costs are a function of the distance between
the facilities and customers we may not observe a significant change from one
period to the following and thus we may assume them to be time-invariant.

(vii) Parameters f ti may convey more than the operating costs of the facilities in the
different periods. In fact, if we have, say, a fixed cost, oti , for opening a facility at
i in period t and we wish to include the corresponding term, oti (y

t
i − yt−1

i ), in the
objective function, it is easy to conclude that re-arranging the terms associated to
the location variables we obtain again each variable yti multiplied by a “modified”
operating cost (the reader can refer to [36] for additional insights).
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Considering the problem with k = 1 (one period), p1 = n and shortage costs arbi-
trarily large (thus ensuring that all z-variables are equal to 0), we obtain the well-known
capacitated facility location problem which generalizes the uncapacitated facility loca-
tion problem that is known to be NP-hard (see, e.g., [14]). Accordingly, the problem we
are investigating is also NP-hard. Nevertheless, developing efficient exact approaches
that can solve instances with a realistic size is always a possibility worth exploring.
This is what we propose next.

3 The cutting-plane approach

The problem described in the previous section is a good candidate for the application
of a Benders decomposition approach [5,28,41,45]. In fact, once a decision is made
for the binary y-variables, the remaining problem is a linear optimization problem.
Therefore, the problem can be projected onto the y-variables space yielding

min
∑
t∈T

∑
i∈I

f ti y
t
i + Q(y), (9)

subject to
∑
i∈I

yti ≤ pt , t ∈ T, (10)

yti ≤ yt+1
i , t ∈ T \{k}, i ∈ I, (11)

yti ∈ {0, 1}, t ∈ T, i ∈ I, (12)

where y = (yti , i ∈ I , t ∈ T ), and Q(y) is defined as

Q(y) = min
∑
t∈T

⎛
⎝∑

j∈J

∑
i∈I

cti j x
t
i j +

∑
j∈J

htj z
t
j

⎞
⎠ , (13)

subject to
∑
i∈I

x ti j + ztj = dtj , t ∈ T, j ∈ J, (14)

∑
j∈J

xti j ≤ qi y
t
i , t ∈ T, i ∈ I, (15)

xti j ≥ 0, t ∈ T, i ∈ I, j ∈ J, (16)

ztj ≥ 0, t ∈ T, j ∈ J. (17)

Q(y) is a convex piecewise linear function, so the overall problem can be solved by
some nondifferentiable cutting-plane approach. Benders decomposition can be seen
as a particular implementation of such an approach, where Q(y) is approximated from
below by cutting planes. These planes are obtained by evaluating Q(y) at some partic-
ular y values, i.e., solving the (Benders) subproblem induced by those values. The new
cuts replace Q(y) and are sequentially added to (9)–(12) leading to an updated (Ben-
ders) master problem. Benders master and subproblem provide, respectively, lower
and upper bounds to the optimal solution. Such a cutting-plane algorithm is iterated
until the gap between the lower and upper bound is either zero or small enough.
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Fixing the location variables yti (i ∈ I , t ∈ T ), the linear optimization problem
Q(y) is separable in terms of the time periods. A resulting family of k independent
linear optimization problems is obtained, which for a particular period t = 1, . . . , k
can be written as:

SubLP(y, t) = min
∑
j∈J

∑
i∈I

cti j x
t
i j +

∑
j∈J

htj z
t
j , (18)

subject to
∑
i∈I

x ti j + ztj = dtj , j ∈ J, (19)

∑
j∈J

xti j ≤ qi y
t
i , i ∈ I, (20)

xti j ≥ 0, i ∈ I, j ∈ J, (21)

ztj ≥ 0, j ∈ J. (22)

Therefore, the Benders subproblem can be written as Q(y) = ∑
t∈T SubLP(y, t). Its

optimal solution provides the information about the goodness of the designed location
decisions. That solution provides an upper bound to the original multi-period problem
(1)–(8). It is worth noting that, in theory, a primal-dual feasible suboptimal solution to
(18)–(22)—that is, an inexact solution to the subproblem, or an inexact Benders cut—
is enough for the Benders decomposition algorithm, though the upper bound obtained
may be higher, thus of worse quality. Inexact cuts have been studied and proven to
guarantee convergence of the Benders method, for instance, in [47] for linear problems.
In the case of mixed integer linear problems, to the best of the authors’ knowledge,
the few references existing in the literature exploring the use of inexact cuts are very
recent, namely [30] and [44].

Denoting by λtj ( j ∈ J ) and μt
i (i ∈ I ) the dual variables associated with constraints

(19) and (20), respectively, we can write the dual of SubLP(y, t) as follows:

DualSubLP(y, t) = max
∑
j∈J

λtj d
t
j +

∑
i∈I

μt
i qi y

t
i , (23)

subject to λtj + μt
i ≤ cti j , i ∈ I, j ∈ J, (24)

λtj ≤ htj , j ∈ J, (25)

μt
i ≤ 0, i ∈ I. (26)

Benders decomposition makes use of a cutting-plane method to transfer the infor-
mation about the goodness of the location decisions specified by the y-variables from
the subproblem to the master problem. Suppose that Q(y) was evaluated at a set of
points yv, v ∈ V . Denote by λ

t,v
j ( j ∈ J ) and μ

t,v
i (i ∈ I ) the corresponding solu-

tion for problem DualSubLP (yv, t). The Benders master problem can be written as
follows:
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min
∑
t∈T

∑
i∈I

f ti y
t
i + θ, (27)

subject to θ ≥
∑
t∈T

∑
j∈J

λ
t,v
j dtj +

∑
t∈T

∑
i∈I

μ
t,v
i qi y

t
i , v ∈ V (28)

∑
i∈I

yti ≤ pt , t ∈ T, (29)

yti ≤ yt+1
i , t ∈ T \{k}, i ∈ I, (30)

yti ∈ {0, 1}, t ∈ T, i ∈ I. (31)

The optimal objective function value of this problem provides a lower bound to the
original problem (1)–(8).

In the above model, we present the aggregated cuts (28). In fact, such cuts can be
disaggregated by considering one for each time period,

θ t ≥
∑
j∈J

λtj d
t
j +

∑
i∈I

μt
i qi y

t
i , t ∈ T,

and considering the objective function∑
i∈I

f ti y
t
i +

∑
t∈T

θ t .

In this work we considered the aggregated cuts (28), since some preliminary com-
putational experiments showed that this reduces significantly the size of the master
problem, yet producing high quality cuts.

For the particular case of the capacitated multi-period facility location problem
we are studying in this paper, the structure of the subproblem allows obtaining a
deeper insight into the quality of Benders cuts. In order to see this, consider an
ξ−parameterized version of the problem with m = k = 1 (one period and one cus-
tomer), where the demand and the capacities are specified as d = ξ and qi = (1 − ξ),
for i ∈ I . The corresponding subproblem can be written as follows (we simplify some
notation previously introduced since m = k = 1):

SubLP′(ξ) = min
∑
i∈I

ci xi + hz, (32)

subject to
∑
i∈I

xi + z = ξ, (33)

xi ≤ (1 − ξ)yi , i ∈ I, (34)

xi ≥ 0, i ∈ I, (35)

z ≥ 0. (36)

Denoting by λ, μi (i ∈ I ), νi (i ∈ I ), and γ the dual variables associated with
constraints (33), (34), (35), and (36), respectively, the dual of (32)–(36) can be written
as follows:
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DualSubLP′(ξ) = max ξλ +
∑
i∈I

(1 − ξ)yiμi , (37)

subject to λ + μi + vi = ci , i ∈ I, (38)

λ + γ = h, (39)

μi ≤ 0, i ∈ I, (40)

vi ≥ 0, i ∈ I, (41)

γ ≥ 0. (42)

Proposition 1 In a Benders iteration, let IA be the subset of I associated to the active
constraints xi = (1 − ξ)yi of SubLP′(ξ). The corresponding Benders cut is

θ ≥ ξ(h − γ ) − (1 − ξ)
∑
i∈IA

(h − ci − γ ) yi . (43)

Proof The dual feasibility of SubLP′(ξ) implies λ + μi + νi = ci , for i ∈ I , and
λ+γ = h. Note that, μi = ci +γ −h, for all i ∈ IA, and μi = 0, for all i ∈ I\IA. (In
the special case when yi = 0, either νi or μi can be arbitrarily fixed, and this relation
still holds.) Based on (28), we have:

θ ≥ ξλ + (1 − ξ)
∑
i∈I

μi yi

= ξ(h − γ ) − (1 − ξ)
∑
i∈IA

(h − ci − γ ) yi

��
Proposition 1 suggests two important elements which might substantially effect the

goodness of a Benders cut: (i) the relationship between demand and total capacity,
captured by ξ , (ii) the shortage cost h. When h is small enough, z > 0 and γ = 0, so
that θ ≥ ξh−(1−ξ)

∑
i∈IA (h − ci ) yi . In particular, when h < ci , for all i = 1 . . . n,

the Benders cut is θ ≥ ξh, since |IA| = 0. Similarly, when ξ approaches either zero
(the total capacity widely exceeds the demand) or one (the demand overcomes the total
capacity), the two limit cases reduce to θ ≥ −∑

i∈IA (h − ci − γ ) yi and θ ≥ (h−γ )

respectively. It turns out that the information transmitted by the Benders cut reduces
when the demand grows large with respect to the total capacity, as reflected by the
smaller size of the term (1−ξ)

∑
i∈IA (h − ci − γ ) yi . Nonetheless, when the demand

is too small |IA| = 0 and (1 − ξ)
∑

i∈IA (h − ci − γ ) yi = 0. Thus, both cases give
rise to conditions where the decisions of the subproblem poorly affect the decision to
be made in the master problem.

3.1 Solving the subproblem by a specialized interior-point method

As we have already shown, the Benders subproblem can be decomposed into k inde-
pendent linear optimization problems (18)–(22). For each t ∈ T , the corresponding
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problem can be written as the following linear problem with primal block-angular
constraints:

SubLP(y, t) = min
∑
j∈J

ctj
�xtj (44)

subject to

⎡
⎢⎢⎢⎢⎢⎣

e�
e�

. . .

e�
L L . . . L I

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

xt1
xt2
...

xtm
xt0

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

dt1
dt2
...

dtm
qt

⎤
⎥⎥⎥⎥⎥⎦ (45)

xtj ≥ 0, j = 0, 1, . . . ,m, (46)

where matrix L = [I | 0] ∈ R
n×(n+1) is made up by an identity matrix with a zero

column vector on the right; for each j ∈ J , ctj = [ct1 j , . . . , ctnj , htj ]� ∈ R
n+1 and

xtj = [xt1 j , . . . , xtnj , ztj ]� ∈ R
n+1 represent, respectively, the shipping and shortage

costs involving customer j and the amount of commodity shipped to and shortage
of customer j ; e ∈ R

n+1 is a vector of ones; xt0 ∈ R
n are the slacks of the linking

constraints; qt = [q1yt1, . . . , qn y
t
n]� ∈ R

n is the right-hand side vector for the linking
constraints which contains the supply capacities of the designed locations. Note that
the block constraints e�xtj = dtj , j ∈ J , correspond to (19), whereas the linking
constraints

∑
j∈J Lx

t
j + xt0 = qt refer to (20).

Formulation (44)–(46) exhibits a primal block-angular structure, and thus it can be
solved by the interior-point method of [7,10]. This method is a specialized primal-
dual path-following algorithm tailored for primal block-angular problems. A thorough
description of primal-dual path-following algorithms can be found in [46]. Shortly,
these type of methods follow the central path until they reach the optimal solution. The
central path is derived as follows. Formulation (44)–(46) can be written in standard
form as

min c�x, (47)

subject to Ax = b, (48)

x ≥ 0, (49)

where c, x ∈ R
(n+1)m+n contain, respectively, all the cost and decision variables

vectors ctj , x
t
j , and A ∈ R

(m+n)×[(n+1)m+n] and b ∈ R
m+n are, respectively, the

constraints matrix and right-hand-side vector of (44)–(46). Denoting by λ and s the
Lagrange multipliers of the equalities and inequalities, and considering a parameter
μ > 0, the perturbed Karush–Kuhn–Tucker optimality conditions of (47)–(49) are

Ax = b (50)

A�λ + s = c (51)

XS = μe, (x, s) ≥ 0 (52)
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where e is a vector of ones, and X and S are diagonal matrices whose (diagonal) entries
are those of x and s. The set of unique solutions of (50)–(52) for each μ is known as
the central path, and these solutions converge to those of (47)–(49) when μ → 0 (see
[46]).

Each iteration of a primal-dual path-following method computes a Newton direction
for (50)–(52). This requires the solution of the normal equations system AΘA�Δλ =
g, where Θ = XS−1 is diagonal and directly computed from the values of the primal
and dual variables at each interior-point iteration; Δλ ∈ R

m+n is the direction of
movement for the Lagrange multipliers λ; and g ∈ R

m+n is an appropriate right-
hand side. Solving the normal equations is the most expensive computational step of
the interior-point method. General interior-point solvers usually compute them by a
Cholesky factorization, while the specialized method considered in this work combines
Cholesky with preconditioned conjugate gradient (PCG). Exploiting the structure of
A in (45), and appropriately partitioning Θ and Δλ according to the m + 1 blocks of
variables and constraints, we have

AΘA�Δλ =

⎡
⎢⎢⎢⎣
e�Θ1e e�Θ1L�

. . .
...

e�Θme e�ΘmL�
LΘ1e . . . LΘme Θ0 + ∑

j∈J LΘ j L�

⎤
⎥⎥⎥⎦Δλ

=

⎡
⎢⎢⎢⎣

Tr(Θ1) ϕ�
1

. . .
...

Tr(Θm) ϕ�
m

ϕ1 . . . ϕm D

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

Δλ11
...

Δλ1m
Δλ2

⎤
⎥⎥⎥⎦=

[
B C
C� D

] [
Δλ1
Δλ2

]
=

[
g1
g2

]
,

(53)

where Tr(.) denotes the trace of a matrix, ϕ j = [Θ j11, . . . , Θ jnn ]�, for j ∈ J , and

D =

⎡
⎢⎢⎢⎢⎢⎣

Θ011 +
∑
j∈J

Θ j11

. . .

Θ0nn +
∑
j∈J

Θ jnn

⎤
⎥⎥⎥⎥⎥⎦ (54)

is diagonal.
By eliminating Δλ1 from the first group of equations, the system (53) reduces to

(
D − C�B−1C

)
Δλ2 =

(
g2 − C�B−1g1

)
(55)

BΔλ1 = (g1 − CΔλ2). (56)

Systems Bu = v with matrix B (for some u and v) in (55)–(56) are directly solved as

u j = v j

Tr(Θ j )
j = 1, . . . ,m.
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The only computational effort is thus the solution of system (55)—the Schur comple-
ment of (53)—, whose dimension is n, the number of candidate locations.

System (55) is computationally expensive if solved by Cholesky factorization,
because (i) it requires computing the matrix D − C�B−1C , and (ii) this matrix can
become very dense, as shown in [7]. As suggested in [7]—for multicommodity flow
problems—and in [8]—for general block-angular problems, this system can be solved
by PCG. A good preconditioner is instrumental for the performance of the conjugate
gradient. As shown in [7, Prop. 4], the inverse of D − C�B−1C for this kind of
block-angular problems can be computed as

(D − C�B−1C)−1 =
( ∞∑

i=0

(
D−1(C�B−1C)

)i)
D−1. (57)

The preconditioner, which will be denoted as M−1, is an approximation of (D −
C�B−1C)−1 obtained by truncating the infinite power series (57) at some term φ. As
shown in [9], in many applications the best results are obtained for φ = 0, i.e. the
preconditioner is just M−1 = D−1. This value, φ = 0, has been successfully used for
all the computational results of the paper. In such a case, the solution of (55) by the
conjugate gradient only requires matrix-vector products with matrix (D−C�B−1C)—
computationally cheap because of the structure of D, C and B—and the solution of
systems with matrix D—which are straightforward since D is diagonal.

It has been shown in [10] that the quality of the preconditioner depends on the
spectral radius (i.e., the maximum absolute eigenvalue) of matrix D−1(C�B−1C),
denoted as ρ, which is real and always in [0, 1). The farther from 1, the better is the
preconditioner. In practice it is observed that ρ comes closer to 1 as we approach
the optimal solution, degrading the performance of the conjugate gradient. Therefore,
since there is no need to optimally solve the Benders subproblem, the interior-point
algorithm can be prematurely stopped for some not-too-small μ > 0. The suboptimal
primal-dual point will guarantee the primal and dual feasibility conditions (50) and
(51), and its optimality gap can be controlled through μ. This way we can avoid
the most expensive conjugate gradient iterations, providing at the same time a good
primal-dual feasible point to generate a new cut for the master problem. We note
that this cannot be (efficiently) achieved using the simplex algorithm for the Benders
subproblem, since in that case the points are either primal feasible (primal simplex)
or dual feasible (dual simplex), and primal-dual feasibility is not reached until the
optimal solution has been found.

An alternative to the Newton direction is to compute Mehrotra’s predictor–corrector
direction (see, for instance, [46, Ch.10] for the details), which in practice significantly
reduces the number of interior-point iterations. However, this means to compute two
systems with the matrix of the normal equations, for two different right-hand-sides.
This is not a main drawback when normal equations are solved by Cholesky, since the
factorization—the most expensive part of the solution of the system—is reused for
the two backward–forward substitutions. Predictor–corrector directions (even higher-
order directions) are the default in state-of-the art interior-point solvers (such as
CPLEX). On the other hand, computing the predictor–corrector direction with the
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specialized interior-point means solving two different systems with PCG, which can
drastically increase the solution time. In other applications it was observed [7,10] that
the predictor–corrector direction was not competitive compared to the Newton direc-
tion using the specialized interior-point method. However, as it will be seen in Sect.
4.2, in the context of the multi-period facility location problem that we are investi-
gating in this paper, the predictor–corrector direction provided the best results for the
largest and most difficult instances. This is explained by the good behaviour of PCG
in this particular application.

As stated above, the dimension of the Schur complement system (55) is n, the
number of candidate locations. Therefore, we can expect a high performance of this
approach when the number of potential facilities is small, even if the number of
customers is very large. This assertion is supported by the empirical evidence provided
in the next section, where problems of a few hundreds of locations and up to one million
of customers are efficiently solved. We should emphasize that this “few locations and
many customers” situation is the most usual in practice.

In addition, from a theoretical point of view, the method is also very efficient when
the number of candidate locations becomes large. In this case, as stated by the next
proposition, in the limit, the diagonal preconditioner M−1 = D−1 provides the inverse
of the matrix in the Schur complement system (55). We will assume the interior-point
(x, s) of the current iteration is not too close to the optimal solution, such that it can be
uniformly bounded away from 0 (in fact, at every iteration the current point is known
to be greater than 0 [46]).

Proposition 2 Let us assume that there is a 0 < ε ∈ R such that the current interior-
point (x, s) satisfies x > ε and s > ε. Then, when n → ∞ (the number of candidate
locations grows larger) we have D − C�B−1C → D.

Proof This reduces to showing that matrix C�B−1C → 0 when n → ∞. From the
definition of C and B in (53) and since B is diagonal, we have that entry (h, l) of
C�B−1C is

C�B−1Chl =
m∑
j=1

Θ j,hhΘ j,ll∑n

i=1
Θ j,i i

≤ 1

n

m∑
j=1

Θ j,hhΘ j,ll

min
i

Θ j,i i
.

Since Θ j = X j S
−1
j and x j > ε > 0 and s j > ε > 0, we get

lim
n→∞

1

n

m∑
j=1

Θ j,hhΘ j,ll

min
i

Θ j,i i
= 0.

��
A major consequence of this proposition is that for large n, the number of PCG
iterations required for the solution of (55) is very small using M−1 = D−1 as precon-
ditioner. However, this was also empirically observed when the parameter that grows
larger is the number of customers, m, as shown in the next section.
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For the computational tests of next section we used the solver BlockIP, which
is an efficient C++ implementation of the above specialized interior-point method,
including many additional features [9] (among them, the computation of both Newton
and Mehrotra’s predictor–corrector directions). Unlike most state-of-the-art solvers,
BlockIP does not offer preprocessing capabilites. Because of that, we only considered
in (45) the linking constraints of open facilities at period t , since the shipments xti j
from the non-open ones are 0. The size of the systems to be solved by PCG is thus
the number of open facilities instead of n, which simplifies the solution of the Schur
complement system. However, in order to appropriately build the Benders cut we still
need the Lagrange multipliers μt

i of the constraints (20) that are associated to non-open
facilities (i.e., those with yti = 0). Since these Lagrange multipliers have to satisfy
constraints (24) and (26) of the dual subproblem, they are computed according to

μt
i = min

{
0, min

{
cti j ∀ j ∈ J

}
− max

{
λtj ∀ j ∈ J

}}
i ∈ I : yti = 0, t ∈ T .

4 Computational tests

In this section we describe a series of computational experiments designed to empir-
ically validate the efficiency of the proposed cutting-plane approach for capacitated
multi-period facility location using the specialized interior-point method for block
angular problems. All the runs were carried out on a Fujitsu Primergy RX300 server
with 3.33 GHz Intel Xeon X5680 CPUs (24 cores) and 144 GB of RAM, under a
GNU/Linux operating system (Suse 11.4), without exploitation of multithreading
capabilities, i.e., a single core was used—runs were carried out sequentially. CPLEX
branch-and-cut (release 12.4) was used for solving the Benders master problems;
Benders subproblems were solved with both the barrier algorithm of CPLEX and
BlockIP. The CPLEX barrier—which will be denoted as “BarOpt”—was used since
it resulted more efficient than simplex variants for these large subproblems. For run-
ning the CPLEX barrier we considered one thread, and no crossover (otherwise the
CPU time would significantly increase). For BlockIP again a single thread was used.
Both for the interior-point method and for the overall cutting plane approach the gap
was computed according to (UB− LB)/UB, where UB and LB denote respectively
an upper and lower bound for the optimal value either of the subproblem or of the
overall multi-period facility location problem. For the very large-scale instances the
optimality tolerance in the subproblems was the same for CPLEX and for BlockIP:
either 10−3 or 10−2 depending on the particular type of instances.

4.1 The effect of parameter specification

Consider a capacitated multi-period facility location problem of the form (1)–(8) and
the demands, capacities and costs reported in Table 1. Geometrically, this parameter
specification can be looked at as resulting from a setting where facilities and customers
are distributed along two (possibly piecewise) lines with a random perturbation ζ ∼
uni f orm(�, 1) in a two-dimensional plane. This is not far from real-world, where pop-
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Table 1 Parameter specification for the instances to be used in the computational tests

f ti = 10 + 1000i

n(δ f )
−t , for i = 1 . . . n, t = 1 . . . k. The building costs depend on

the specific location i and
vary over time due to a
discount factor

cti j = η + |i − jζ | + |i − ζ( j − ϑ/m)|
2(n + m)(δc)−t , for i = 1 . . . n, j = 1 . . .m,

t = 1 . . . k.
The transportation costs

depend on the distance
between location i and
destination and vary over
time according to a
discount factor

htj = n × m, for j = 1 . . .m, t = 1 . . . k. The unitary shortage cost at
customer j is chosen to
overcome the maximum
building cost

dtj = (1 − α)t
10 + j

|T | , for j = 1 . . . |J |, t = 1 . . . |T | The demands increase over
time and vary depending on
the customer

qti = α
100 + 2i

n
, for i = 1 . . . n, t = 1 . . . k. The capacities do not vary

over time and only depend
on the specific location i

pt = βn, for t = 1 . . . k. The maximum number of
facilities that can be
operating in period t does
not vary over time

ulation is mostly concentrated around coastlines. Parameter ϑ ∈ [0, 1] is responsible
for the angle between the two lines: customers and facilities are collinear or orthogonal
when ϑ = 0 or ϑ = 1 respectively. Instances with ϑ = 0 will be referred to as one-
dimensional or 1D instances; for ϑ > 0 the instances will be called two-dimensional
or 2D instances. The tuning parameter η controls the extent to which the distance mea-
sures are heterogeneous. Hence, the transportation costs reflect some distance measure
between the facilities and the customers, whereas the cost for operating a facility
increases along a line. Discount factors 0 < δc ≤ 1 and 0 < δ f ≤ 1 are included
to compute the present value of transportation and building costs respectively—thus
discounting future costs back to the present values. Concerning customer demands, a
similar increasing pattern along a line is considered, so that more expensive locations
are geometrically closer to customers with higher demand. The capacity of a location
grows linearly with respect to its cost and is time-invariant. The tuning parameters α

and β presented in Table 1 allow (un)balancing the relation between the total demand
and the total capacity in the system. Parameter α is used for defining the capacities,
while β controls the maximum number of facilities that can be open in each period.

The first computational tests performed involved 150 instances of problem (1)–(8)
divided into six groups of 25 instances. These instances were generated according to
the parameter specification of Table 1. For these instances we considered ϑ = 0 (1D
instances with collinear customers and facilities), � = 1 (no random perturbation), and
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η = 20. Each group of 25 instances is associated with a specific combination of m, n
and k. The 25 instances in each group correspond to different combinations of α and
β—which have been chosen to take the values 0.1, 0, 3, 0.5, 0.7 and 0.9, resulting
in 25 possible combinations. The first two groups instantiate the static problem (a
single period in the planning horizon—k = 1); the third and fourth groups correspond
to instances with a 3-period planning horizon (k = 3); the fifth and sixth groups
correspond to instances with a 6-period planning horizon (k = 6). Next, we summarize
the results obtained. The detailed results are presented in “Appendix”. All the instances
have been solved by the cutting-plane algorithm that we are proposing in this paper
using both CPLEX BarOpt and BlockIP.

Figure 1 depicts the CPU time (seconds)—averaged over 25 instances—for each of
the six groups. We computed the arithmetic average since each group of 25 instances
is associated with the same number of potential locations, customers and time periods.
Accordingly, the order of magnitude of the results within groups does not call for the
use of other average or aggregation measure. The vertical axis shows the CPU time
(seconds), whereas the horizontal axis presents the five different values of α (for the
left plots) and β (for the right plots). The straightforward interpretation of these results
is that, for almost all values of m, n, k, α and β, BlockIP significantly outperformed
BarOpt when solving the Benders subproblems. Another interesting and relevant fact
is the non-linear effect of α, which is consistent with what we claimed when discussing
the implications of Proposition 1: extreme values of α are associated to a poor effect
of the second stage decision and transportation costs (subproblem solution) upon the
goodness of the first stage decisions (master problem solution).

The aggregated results for the six groups of instances (averaged over 25 single prob-
lems) are presented in Table 2. In addition to the values of n, m and k, the table reports
the number of constraints (“const.”), binary variables (“bin. var”) and continuous
variables (“cont. var”) of the resulting optimization problems. Columns “BarOpt” and
“BlockIP” report the average CPU time (seconds) and, within parentheses, the average
number of Benders iterations. The column “Branch-and-cut” reports the average CPU
time (seconds) and the average number of simplex iterations required by the CPLEX
branch-and-cut solver for the solution of the monolithic formulation (1)–(8). It should
be noted that the larger the instances, the more efficient the cutting-plane method—
with either BarOpt or BlockIP—compared to branch-and-cut. BlockIP seems to be
approximately two times faster than BarOpt for all the instances sizes.

Since the CPU times were obtained for different combinations of α, β, n, m and
k, a full factorial experiment was performed allowing the estimation of the effect of
each parameter on the CPU time as well as on the number of Benders iterations. A
linear regression was applied to the collection of 150 numeric observations reported
in “Appendix”. The two response variables are given by the CPU time and either the
number of Benders iterations—for Table 3—or the number of simplex iterations—for
Table 4. Based on the non-linear effect of α, observed in Fig. 1, the regression model
includes the linear effect |α − 0.5| (which is related to the excess of demand or excess
of capacities), rather than α.

From Table 3 we conclude that the length of the planning horizon is the main
feature responsible for the number of Benders iterations (0.44965), but its effect is
comparatively reduced when the CPU time is taken into account. This is consistent
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Fig. 1 Comparisons of the CPU times of Benders-with-BarOpt (dashed-black) and Benders-with-BlockIP
(continuous-grey) for different values of α and β, corresponding to the parameter specification of Table 1.
Each plot averages values for each β when α varies, and for each α when β varies. a m = n = 500, k = 1.
b m = n = 500, k = 1. c m = n = 1000, k = 1. d m = n = 1000, k = 1. e m = n = 500, k = 3.
f m = n = 500, k = 3. g m = n = 1000, k = 3. h m = n = 1000, k = 3. i m = n = 500, k = 6. j
m = n = 500, k = 6. k m = n = 1000, k = 6. l m = n = 1000, k = 6

123



A cutting-plane approach for large-scale capacitated. . . 431

Ta
bl
e
2

A
ve

ra
ge

C
PU

tim
es

fo
r

th
e

th
re

e
ta

bl
es

in
“A

pp
en

di
x”

n
m

k
C
on

st
.

B
in

.v
ar

.
C

on
t.

va
r.

B
en

de
rs

de
co

m
po

si
tio

n
B

ra
nc

h-
an

d-
cu

t

B
ar

O
pt

B
lo

ck
IP

50
0

50
0

1
10

01
50

0
25

0,
50

0
8.

1
(3

.2
8)

4.
9

(3
.1

6)
27

.3
(3

6,
95

0)

10
00

10
00

1
20

01
10

00
1,

00
1,

00
0

62
.2

(3
.5

2)
44

.5
(3

.4
8)

25
7.

0
(8

2,
63

2)

50
0

50
0

3
40

03
15

00
75

1,
50

0
17

.0
(4

.9
2)

7.
2

(4
.3

6)
11

8.
6

(1
52

,7
92

)

10
00

10
00

3
80

03
30

00
3,

00
3,

00
0

11
5.

7
(4

.4
8)

48
.0

(4
.2

8)
14

40
.1

(3
84

,9
06

)

50
0

50
0

6
85

06
30

00
1,

50
3,

00
0

56
.1

(7
.7

6)
19

.1
(7

.5
2)

43
3.

8
(2

91
,3

45
)

10
00

10
00

6
17

,0
06

60
00

6,
00

6,
00

0
25

3.
6

(6
.4

0)
14

0.
1

(6
.4

4)
29

36
.0

(7
83

,9
83

)

T
he

av
er

ag
e

nu
m

be
r

of
B

en
de

rs
ite

ra
tio

ns
(f

or
B

en
de

rs
de

co
m

po
si

tio
n)

or
si

m
pl

ex
ite

ra
tio

ns
(f

or
B

ra
ch

-a
nd

-c
ut

)
is

re
po

rt
ed

w
ith

in
pa

re
nt

he
si

s

123



432 J. Castro et al.

Table 3 Linear regression of Benders iterations and CPU time

Factor Iterations CPU

Effect p value Effect p value

Intercept 3.19E−16 1.00000 −9.15E−17 1.00000

|α − 0.5| −0.20418 0.00428 −0.31078 3.26E−06

β 0.19115 0.00739 0.23008 0.00046

m = n −0.04309 0.54113 0.39638 6.30E−09

k 0.44965 2.11E−09 0.30965 3.52E−06

Table 4 Linear regression of simplex iterations and CPU time

Factor Iterations CPU

Effect p value Effect p value

Intercept −1.05E−16 1.00000 1.65E−16 1.00000

|α − 0.5| −0.03690 0.34926 0.19710 0.00895

β −0.188437 3.98E−06 −0.24829 0.00011

m = n 0.472138 1.63E−23 0.43848 7.98E−11

k 0.718540 1.77E−39 0.37580 1.39E−08

with the fact that the size of the subproblems per each time period is exclusively
determined by the number of potential locations and customers and this is the reason
why the effect of m and n plays the strongest role (0.39638). Another interesting
insight that can be deduced from the regression analysis performed is the fact that the
excess of demand or capacities (captured by parameter |α − 0.5|) gives rise to two
different outcomes in the computational performance of the Benders decomposition
and the branch-and-cut algorithm. In fact, reinterpreting Proposition 1, high values of
|α − 0.5| should result in a poor dependency between the second stage and first stage
decisions. Clearly, the same reasoning does not apply to the branch-and-cut algorithm,
whose generation of valid inequalities follow a completely different logic.

4.2 Solution of very large-scale instances

In addition to the instances analyzed in the previous section, we generated a collection
of very large-scale instances to test the efficiency of the proposed approach. These addi-
tional instances were obtained by considering all the combinations for n ∈ {100, 200},
m ∈ {100000, 500000, 1000000} and k ∈ {1, 2, 3}. The parameters α and β were set
to 0.9999 and to 1, respectively, for all the instances, in order to avoid problems with
large shortages resulting from lack of capacity. Due to the large number of customers,
in these instances, transportation costs were divided by a scaling factor to reduce their
“weight” in the objective function. A time limit of 7200 s was used in those executions,
although it was never reached.

The dimensions of these instances are inspired by real-world location problems
that may be faced, for instance, by internet-based retailer multinational companies.
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Such problems call for a few dozens or hundreds of locations spread around the world
for the warehousing activities, and hundreds of thousands of “customers” related,
for instance, to cities over some threshold population. To the best of the authors’
knowledge, the resolution of facility location problems with such dimensions have
never been reported in the literature.

The first set of experiments corresponds to large-scale 1D instances (ϑ = 0) with no
random perturbation (� = 1). We ran those instances with the cutting-plane approach
using an optimality tolerance 10−3 for the interior-point solver in the subproblems. As
we pointed out in the previous sections, inexact solutions to subproblems save the last
and thus often the most “expensive” interior-point iterations with BlockIP since the
performance of PCG degrades near the optimal solution. For a fair comparison with
the off-the-shelf solver in use, these same optimality tolerances were set for CPLEX
BarOpt, although its performance should not be significantly affected by this tolerance
since it does not rely on PCG. The master problems were also suboptimally solved
with CPLEX branch-and-cut by using a positive optimality tolerance to avoid too
expensive solutions (from the perspective of the CPU time required); this tolerance
was reduced in each Benders iteration multiplying it by a factor in the interval (0, 1)

(in particular, we used 0.95). A positive small optimality gap was also used for the
global Benders decomposition; Benders iterations stop when the relative difference
between the best lower and upper bounds falls below this tolerance.

Table 5 reports the results obtained. The information contained in the columns
headed by “m”, “n”, “k”, “const.”, “bin. var” and “cont. var” is the same as in Table
2. Columns “iter.”, “gap” and “CPU” contain the number of interior-point iterations,
the achieved Benders optimality gap, and the CPU time (seconds), respectively, for
both BlockIP and BarOpt. In column “rel. diff” we report the relative difference in
terms of the best solutions (i.e., best Benders upper bounds) obtained by BlockIP and
BarOpt. A negative value indicates that the upper bound obtained when using BlockIP
was smaller (and thus better) than that obtained when using BarOpt. Although these
values are omitted in the table, it is worth noting that, as it was mentioned in Sect. 3.1,
BlockIP required in average only two PCG iterations for the solution of system (55)
in the largest instances. (Analogous results for primal block-angular problems with
the form (44)–(46) have been also observed in the field of complex network problems
[11].) Finally, the last column in Table 5 (headed by “open”) contains the number of
facilities operating in each period.

The results presented in Table 5 require some extra explanation: although subprob-
lems were solved with an optimality tolerance of 10−3, the Benders cuts generated
in those instances were good enough to obtain a solution with a sufficiently small
optimality gap. In fact, if Benders cuts were not accurate enough, the current solution
could not be properly separated, and the master problem would have reported the same
binary solution in two consecutive iterations (that is, the inexact solution of the Ben-
ders subproblem would be providing just a valid inequality for the master problem,
not really a cut). In such a case, the Benders subproblem would generate the same new
constraint for the master and the algorithm would iterate forever. We also see that, in
general, optimality gaps were smaller—thus better—with BlockIP than with CPLEX,
though both solvers used the same subproblem tolerance.
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Regarding efficiency, from Table 5 we see that Benders with BlockIP outperformed
Benders with CPLEX BarOpt in all the instances. Concerning the memory require-
ments we conclude that BlockIP was far superior to CPLEX BarOpt. Benders with
BlockIP was able to provide a good solution to the largest instances, while CPLEX
with BarOpt ran out of memory. Remarkably, Benders with BlockIP was able to solve
the largest cases, namely those with a number of opened facilities equal to 181 in
period 3. This means that the dimension of the subproblems solved by BlockIP was
up to 181 million of continuous variables. CPLEX exhausted the 144 GB of RAM of
the computer in the largest instances (executions marked with†), while BlockIP just
required a small fraction of the available memory.

The second set of experiments performed corresponds to large-scale 2D instances
obtained with ϑ = 0.5, keeping unchanged all the previously defined parameteriza-
tions. We tested instances with a deterministic distribution of customers (� = 1) as
well as instances with a random distribution (� = 0.5). The corresponding results are
reported in Tables 6 and 7 respectively, where the competitive advantage of combin-
ing Benders decompositions with the specialized interior-point method appears once
again. The number of open facilities in each period remains almost the same as in
the case of 1D instances, due to the unchanged demand requirements and location
capacities.

From Tables 6 and 7 we see that 2D instances were in general more difficult than 1D
ones, requiring more CPU time. This is clearly seen in Table 7 which reports results
for 2D instances with a random distribution of customers along the line. In fact,
the random parameter considered (� = 0.5) means that customers may be located
very far from the line. Those instances could not be solved with BlockIP using the
standard Newton direction, and we were forced to use Mehrotra’s predictor–corrector
direction (see the discussion in Sect. 3.1) with a loose optimality tolerance of 10−2

for the subproblems; tighter optimality gaps reported long execution times. However,
even in those unfavorable circumstances, Benders using BlockIP was able to compute
solutions with small enough gaps for these big instances. Looking into these results
we can also conclude that random instances listed in Table 7 are more difficult than
the deterministic ones in Table 6 due to the average number of PCG iterations required
at each interior-point iteration: two are required for the deterministic instances (as for
the 1D instances reported in Table 5) while 4–6 are needed for those of Table 7. As
it was observed for 1D instances, CPLEX could not solve the largest ones since the
144 GB of RAM available were exhausted.

5 Conclusions

In this work we exploited the use of a specialized interior-point method for solving the
Benders subproblems associated with the decomposition of large-scale capacitated
multi-period discrete facility location problems. This was accomplished by taking
advantage from the primal block-angular structures of the underlying constraints matri-
ces. The computational tests performed and reported in the paper show that this led to
a substantial decrease in the computational effort for the overall Benders procedure.
The effect of different modeling conditions on the computational performance was
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also investigated, which provided a deeper understanding of the significant factors
influencing the overall efficiency.

The extensive computational results reported in Sect. 4 show that in all the instances
tested, a Benders decomposition approach embedding BlockIP clearly outperformed
other approaches, such as branch-and-cut or Benders using a generic interior-point
method, even when the latter makes use of the full strength of an off-the-shelf solver
such as IBM CPLEX. Furthermore, the specialized interior-point method was able to
solve the Benders subproblems of the largest instances, namely, those in which the
number of open facilities in the last period is 181 and thus with subproblems involving
up to 181 million of continuous variables.

The research presented in this paper opens new possibilities for solving exactly
large instances of more comprehensive multi-period facility location problems, A
straightforward extension that can be considered is the combined phase-in/phase-out
problem in which, in addition to the features considered in this paper, it is assumed
that some facilities are already operating before the beginning of the planning horizon,
which can be closed in any period. Another challenging area in which the developments
proposed in this work may have a strong impact concerns stochastic single- and multi-
period discrete facility location problems.

Our results show that the new methodology proposed in this paper works extremely
well for problems with a structure such as the one we are considering. It is worth noting
that the approach is relevant even if the Benders decomposition does not converge in a
few iterations. In fact, even if some spatial distributions called for a larger number of
Benders iterations, the benefits of using this specialized interior-point solver are still
valid: (i) it may be early stopped with a suboptimal but feasible primal-dual point; (ii)
it allows computing valid cuts even for huge subproblems, providing a solution with
a given duality gap.
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Appendix: Tables of numerical experiments of Sect. 4.1

Tables 8, 9 and 10 contain the CPU times (seconds) required by the Benders decom-
position and the branch-and-cut to solve instances of (1)–(8), with one, three and six
time periods respectively. The parameter specification has been defined in Table 1, with
different combinations of α and β and for two sizes m = n = 500 and m = n = 1000.

One period

See Table 8.
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Table 8 CPU time of instances of two sizes m = n = 500 and m = n = 1000, with one time period
(k = 1)

β, α 0.1 0.3 0.5 0.7 0.9

500 facility locations—500 destinations

Benders-with-BlockIP

0.1 3.04 (2) 7.62 (2) 3.95 (3) 2.59 (3) 3.84 (5)

0.3 3.25 (2) 8.22 (2) 5.14 (3) 4.59 (5) 3.78 (4)

0.5 3.68 (2) 8.45 (2) 7.00 (4) 3.63 (4) 3.79 (4)

0.7 4.25 (2) 9.03 (2) 9.12 (4) 3.72 (4) 3.68 (4)

0.9 5.02 (2) 11.52 (2) 9.14 (4) 3.27 (4) 3.11 (4)

Benders-with-Baropt

0.1 4.52 (2) 7.85 (2) 5.84 (3) 6.06 (3) 9.60 (5)

0.3 4.59 (2) 7.76 (2) 6.79 (3) 9.61 (5) 8.68 (4)

0.5 5.35 (2) 7.90 (2) 10.71 (5) 8.26 (4) 8.39 (4)

0.7 5.86 (2) 9.11 (2) 15.88 (5) 8.15 (4) 8.25 (4)

0.9 6.08 (2) 10.93 (2) 15.52 (5) 8.09 (4) 8.23 (4)

Branch-and-cut (CPLEX)

0.1 24.78 (23534) 24.39 (35422) 28.20 (29337) 30.16 (46270) 29.31 (44764)

0.3 26.64 (24741) 22.83 (36596) 25.90 (32865) 28.45 (46158) 29.99 (44584)

0.5 26.41 (27408) 22.18 (36994) 26.09 (35442) 27.92 (44459) 30.07 (44584)

0.7 26.24 (27394) 22.76 (39697) 23.10 (29404) 27.91 (44459) 30.18 (44584)

0.9 26.36 (27147) 22.14 (39457) 24.02 (29404) 27.70 (44459) 31.06 (44584)

1000 facility locations—1000 destinations

Benders-with-BlockIP

0.1 3.04 (2) 7.62 (2) 3.95 (3) 2.59 (3) 3.84 (5)

0.3 3.25 (2) 8.22 (2) 5.14 (3) 4.59 (5) 3.78 (4)

0.5 3.68 (2) 8.45 (2) 7.00 (4) 3.63 (4) 3.79 (4)

0.7 4.25 (2) 9.03 (2) 9.12 (4) 3.72 (4) 3.68 (4)

0.9 5.02 (2) 11.52 (2) 9.14 (4) 3.27 (4) 3.11 (4)

Benders-with-Baropt

0.1 4.52 (2) 7.85 (2) 5.84 (3) 6.06 (3) 9.60 (5)

0.3 4.59 (2) 7.76 (2) 6.79 (3) 9.61 (5) 8.68 (4)

0.5 5.35 (2) 7.90 (2) 10.71 (5) 8.26 (4) 8.39 (4)

0.7 5.86 (2) 9.11 (2) 15.88 (5) 8.15 (4) 8.25 (4)

0.9 6.08 (2) 10.93 (2) 15.52 (5) 8.09 (4) 8.23 (4)

Branch-and-cut (CPLEX)

0.1 24.78 (23534) 24.39 (35422) 28.20 (29337) 30.16 (46270) 29.31 (44764)

0.3 26.64 (24741) 22.83 (36596) 25.90 (32865) 28.45 (46158) 29.99 (44584)

0.5 26.41 (27408) 22.18 (36994) 26.09 (35442) 27.92 (44459) 30.07 (44584)

0.7 26.24 (27394) 22.76 (39697) 23.10 (29404) 27.91 (44459) 30.18 (44584)

0.9 26.36 (27147) 22.14 (39457) 24.02 (29404) 27.70 (44459) 31.06 (44584)

The three tables report the CPU times of the three analyzed solution methods: Benders-with-BlockIP,
Benders-with-BarOpt and Branch-and-cut. The values inside the parenthesis are either the number of Ben-
ders iterations (for the first two tables) or the number of MIP simplex iterations (for the last table)
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Three periods

See Table 9.

Table 9 CPU time of instances of two sizes m = n = 500 and m = n = 1000, with three time periods
(k = 3)

β, α 0.1 0.3 0.5 0.7 0.9

500 facility locations—500 destinations

Benders-with-BlockIP

0.1 2.41 (2) 2.40 (2) 2.45 (2) 2.67 (3) 4.22 (6)

0.3 2.49 (2) 2.72 (2) 7.19 (5) 9.88 (7) 3.58 (6)

0.5 2.57 (2) 5.81 (3) 17.65 (8) 7.05 (6) 3.57 (6)

0.7 2.71 (2) 18.32 (3) 15.10 (6) 7.97 (6) 3.55 (6)

0.9 2.90 (2) 27.39 (4) 15.12 (6) 7.89 (6) 3.59 (6)

Benders-with-Baropt

0.1 4.97 (2) 4.86 (2) 5.06 (2) 7.64 (3) 15.97 (6)

0.3 5.23 (2) 5.53 (2) 16.09 (5) 30.91 (9) 16.34 (6)

0.5 5.84 (2) 11.05 (3) 41.81 (10) 28.07 (8) 16.25 (6)

0.7 6.84 (2) 15.12 (3) 41.36 (8) 28.12 (8) 16.09 (6)

0.9 8.05 (2) 23.98 (4) 41.39 (8) 28.15 (8) 15.93 (6)

Branch-and-cut (CPLEX)

0.1 75.80 (82767) 91.62 (145763) 121.33 (162566) 141.96 (199826) 119.93 (161368)

0.1 77.37 (88267) 99.69 (156288) 117.77 (158843) 441.77 (236393) 121.26 (157888)

0.1 83.79 (86095) 95.19 (143148) 1027.8 (361530) 122.68 (166711) 120.32 (157888)

0.1 77.61 (84922) 93.10 (141979) 102.11 (129615) 122.58 (166711) 120.77 (157888)

0.1 79.98 (88707) 85.02 (130412) 102.23 (129615) 122.32 (166711) 122.2 (157888)

1000 facility locations—1000 destinations

Benders-with-BlockIP

0.1 18.04 (2) 18.15 (2) 18.07 (2) 19.25 (3) 29.09 (7)

0.3 18.38 (2) 18.82 (2) 27.71 (3) 63.34 (8) 27.21 (6)

0.5 18.09 (2) 27.84 (2) 70.03 (5) 53.83 (6) 27.33 (6)

0.7 19.46 (2) 74.71 (3) 208.92 (8) 54.00 (6) 27.05 (6)

0.9 20.16 (2) 100.52 (3) 157.41 (6) 53.89 (6) 27.87 (6)

Benders-with-Baropt

0.1 35.09 (2) 36.20 (2) 36.72 (2) 59.44 (3) 144.28 (7)

0.3 40.30 (2) 41.18 (2) 72.47 (3) 216.97 (8) 140.21 (7)

0.5 42.69 (2) 48.20 (2) 164.24 (5) 193.69 (7) 140.30 (7)

0.7 48.32 (2) 96.80 (3) 267.14 (7) 192.33 (7) 140.55 (7)

0.9 53.19 (2) 115.36 (3) 249.55 (6) 192.58 (7) 141.01 (7)
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Table 9 continued

β, α 0.1 0.3 0.5 0.7 0.9

Branch-and-cut (CPLEX)

0.1 1092.41 (190,457) 1128.3 (497,498) 1341.32 (433,991) 1771.85 (521,141) 3140.49 (364,098)

0.3 1083.25 (183,858) 1432.37 (503,591) 1341.28 (398,657) 2371.77 (517,030) 1040.00 (366,078)

0.5 1048.64 (185,015) 1344.06 (477,182) 1328.27 (431,055) 1384.44 (446,753) 1218.97 (366,078)

0.7 1113.06 (183,404) 1215.51 (491,545) 1505.74 (409,296) 1753.35 (446,753) 1036.53 (366,078)

0.9 1066.31 (185,925) 1199.02 (447,635) 1256.25 (396,701) 1361.38 (446,753) 1118.97 (366,078)

The three tables report the CPU times of the three analyzed solution methods: Benders-with-BlockIP,
Benders-with-BarOpt and Branch-and-cut. The values inside the parenthesis are either the number of Ben-
ders iterations (for the first two tables) or the number of MIP simplex iterations (for the last table)

Six periods

See Table 10.

Table 10 CPU time of instances of two sizes m = n = 500 and m = n = 1000, with six time periods
(k = 6)

β, α 0.1 0.3 0.5 0.7 0.9

500 facility locations—500 destinations

Benders-with-BlockIP

0.1 4.86 (2) 4.85 (2) 5.29 (3) 6.21 (5) 15.62 (10)

0.3 5.01 (2) 6.81 (3) 18.32 (8) 30.85 (12) 8.59 (9)

0.5 5.32 (2) 14.53 (4) 75.02 (19) 20.54 (9) 8.59 (9)

0.7 15.30 (2) 39.33 (5) 95.68 (18) 20.53 (9) 8.34 (9)

0.9 27.09 (3) 108.11 (7) 95.76 (18) 20.50 (9) 8.16 (9)

Benders-with-Baropt

0.1 9.86 (2) 10.02 (2) 15.12 (3) 27.63 (5) 112.91 (20)

0.3 10.28 (2) 17.66 (3) 46.21 (7) 98.39 (14) 53.49 (10)

0.5 11.82 (2) 31.66 (4) 172.06 (20) 81.40 (11) 53.48 (10)

0.7 14.15 (2) 51.10 (5) 103.71 (10) 78.04 (11) 53.07 (10)

0.9 27.95 (3) 90.66 (7) 100.21 (10) 77.86 (11) 53.82 (10)

Branch-and-cut (CPLEX)

0.1 160.15 (174,912) 237.84 (306,138) 305.12 (320,752) 358.98 (363,900) 281.51 (311002)

0.3 162.65 (171,758) 240.52 (312,191) 314.58 (324,738) 475.19 (307,862) 498.59 (315,966)

0.5 169.77 (174,745) 272.58 (322,766) >3600 (611,082) 282.61 (299,578) 490.38 (315,966)

0.7 170.17 (170,519) 233.78 (294,001) 251.62 (266,350) 313.44 (299,578) 495.00 (315,966)

0.9 166.23 (168,989) 199.87 (252,973) 277.84 (266,350) 321.92 (299,578) 499.23 (315,966)
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Table 10 continued

β, α 0.1 0.3 0.5 0.7 0.9

1000 facility locations—1000 destinations

Benders-with-BlockIP

0.1 35.19 (2) 36.11 (2) 36.29 (2) 40.02 (4) 105.62 (10)

0.3 36.93 (2) 48.30 (3) 62.84 (4) 253.28 (18) 63.02 (9)

0.5 38.27 (2) 85.19 (4) 269.69 (7) 145.83 (9) 65.63 (9)

0.7 39.52 (2) 200.53 (4) 670.59 (14) 145.77 (9) 64.11 (9)

0.9 44.90 (2) 388.82 (5) 415.43 (11) 145.03 (9) 64.86 (9)

Benders-with-Baropt

0.1 76.39 (2) 73.05 (2) 74.45 (2) 153.22 (4) 233.15 (10)

0.3 81.84 (2) 134.18 (4) 195.97 (4) 298.28 (16) 103.91 (9)

0.5 87.89 (2) 225.99 (4) 458.89 (7) 275.83 (10) 174.63 (9)

0.7 100.74 (2) 274.54 (4) 1129.83 (14) 235.77 (9) 179.04 (9)

0.9 118.49 (2) 422.32 (5) 831.57 (10) 221.14 (9) 178.31 (9)

Branch-and-cut (CPLEX)

0.1 2806.43 (438,667) 2615.41 (947,346) >3600 (1,037,026) >3600 (936,011) 3234.75 (703,221)

0.1 2699.30 (458,865) 3379.19 (946,117) 3416.73 (1,055,603) >3600 (1,030,661) 2195.65 (709,446)

0.1 2261.68 (447,090) 3450.16 (931,857) >3600 (970,240) >3600 (765,625) 2199.04 (709,446)

0.1 2449.55 (432,943) 3572.15 (980,130) 3144.12 (912,201) >3600 (792,742) 2192.47 (709,446)

0.1 2223.04 (405,934) 2626.27 (871,642) 3571.51 (918,625) >3600 (779,241) 2194.18 (709,446)

The three tables report the CPU times of the three analyzed solution methods: Benders-with-BlockIP,
Benders-with-BarOpt and Branch-and-cut. The values inside the parenthesis are either the number of Ben-
ders iterations (for the first two tables) or the number of MIP simplex iterations (for the last table)
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