
Math. Program., Ser. A (2017) 163:85–114
DOI 10.1007/s10107-016-1057-8

FULL LENGTH PAPER

Iteration complexity analysis of block coordinate
descent methods

Mingyi Hong1 · Xiangfeng Wang2 ·
Meisam Razaviyayn3 · Zhi-Quan Luo4,5

Received: 28 April 2015 / Accepted: 16 July 2016 / Published online: 19 August 2016
© Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2016

Abstract In this paper, we provide a unified iteration complexity analysis for a family
of general block coordinate descent methods, covering popular methods such as the
block coordinate gradient descent and the block coordinate proximal gradient, under

The authors would like to thanks Enbin Song for his valuable comments on an early version of the
manuscript.

Mingyi Hong: This author is supported by National Science Foundation (NSF) Grant CCF-1526078 and
by Air Force Office of Scientific Research (AFOSR) Grant 15RT0767.
Xiangfeng Wang: This author is supported by NSFC, Grant No.11501210, and by Shanghai YangFan,
Grant No. 15YF1403400.
Zhi-Quan Luo: This research is supported by NSFC, Grant No. 61571384, and by the Leading Talents of
Guang Dong Province program, Grant No. 00201510.

B Mingyi Hong
mingyi@iastate.edu

Xiangfeng Wang
xfwang@sei.ecnu.edu.cn

Meisam Razaviyayn
meisam@stanford.edu

Zhi-Quan Luo
luozq@umn.edu

1 Department of Industrial and Manufacturing Systems Engineering, Iowa State University,
Ames, IA, USA

2 Shanghai Key Laboratory of Trustworthy Computing, School of Computer Science and Software
Engineering, East China Normal University, Shanghai 200062, China

3 Department of Electrical Engineering, Stanford University, Palo Alto, CA, USA

4 School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China

5 Department of Electrical and Computer Engineering, University of Minnesota,
Minneapolis, MN, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-016-1057-8&domain=pdf

86 M. Hong et al.

various different coordinate update rules.Weunify these algorithmsunder the so-called
block successive upper-bound minimization (BSUM) framework, and show that for a
broad class of multi-block nonsmooth convex problems, all algorithms covered by the
BSUM framework achieve a global sublinear iteration complexity ofO(1/r), where r
is the iteration index. Moreover, for the case of block coordinate minimization where
each block is minimized exactly, we establish the sublinear convergence rate of O(1/r)
without per block strong convexity assumption.

Mathematics Subject Classification 49-90

1 Introduction

Consider the problem of minimizing a nonsmooth convex function f (x):

minimize f (x) := g (x1, . . . , xK) +
K∑

k=1

hk(xk)

subject to xk ∈ Xk, k = 1, . . . , K ,

(1.1)

where g(·) is a smooth convex function; hk is a closed nonsmooth convex function
(possibly with extended values); x = (xT

1 , . . . , xT
K)T ∈ R

n is a partition of the opti-
mization variable x , with xk ∈ Xk ⊆ R

nk . Let X := ∏K
k=1 Xk denote the feasible set

for x .
A well known family of algorithms for solving (1.1) is the block coordinate descent

(BCD) type method whereby, at every iteration a single block of variables is optimized
while the remaining blocks are heldfixed.Oneof the best knownalgorithms in theBCD
family is the block coordinate minimization (BCM) algorithm, where at iteration r ,
the blocks are updated by solving the following problem exactly [3]

xr
k ∈ arg min

xk∈Xk
g
(

xr
1, . . . , xr

k−1, xk, xr−1
k+1, . . . , xr−1

K

)
+ hk(xk), ∀ k. (1.2)

When problem (1.2) is not easily solvable, a popular variant is to solve an approximate
version of problem (1.2), yielding the block coordinate gradient descent (BCGD)
algorithm, or the block coordinate proximal gradient (BCPG) algorithm in the presence
of a nonsmooth function [2,28,32,36]. In particular, at a given iteration r , the following
problem is solved for each block k:

xr
k = arg min

xk∈Xk

〈
∇k g

(
xr
1, . . . , xr

k−1, xr−1
k , . . . , xr−1

K

)
, xk − xr−1

k

〉

+ Lk

2
‖xk − xr−1

k ‖2 + hk(xk),

where Lk > 0 is some appropriately chosen constant. Other variants of the BCD-type
algorithm include those that solve different subproblems [24], or those with different
block selection rules, such as the Gauss–Seidel (G–S) rule, the Gauss–Southwell (G–
So) rule [31], the randomized rule [22], the essentially cyclic (E-C) rule [29], or the
maximum block improvement (MBI) rule [6].

123

Iteration complexity analysis of block coordinate descent. . . 87

In all the above mentioned variants of BCD method, each step involves solving a
simple subproblem of small size, therefore the BCD method can be quite effective for
solving large-scale problems; see e.g., [10,22,24,26,28] and the references therein.
The existing analysis of the BCD method [4,5,23,29] requires the uniqueness of the
minimizer for each subproblem (1.2), or the pseudo-convexity of f [11]. Recently, a
unified BCD-type framework, termed the block successive upper-bound minimization
(BSUM)method, was proposed in [24]. At each iteration of the BSUMmethod, certain
approximate function of the per-block subproblem (1.2) is constructed and optimized.
Due to the flexibility in choosing the approximate function, the BSUM includes many
BCD-type algorithms as special cases. It is shown in [24] that the method converges
to stationary solutions for nonconvex problems and to global optimal solutions for
convex problems, as long as certain regularity conditions are satisfied for the per-
block subproblems.

The global rate of convergence for BCD-type algorithm has been studied exten-
sively. When the objective function is strongly convex, the BCM algorithm converges
globally linearly [18]. When the objective function is smooth and not strongly convex,
Luo and Tseng have shown that the BCD method with the classic G–S/G–So update
rules converges linearly, provided that a certain local error bound is satisfied around
the solution set [16–19]. In addition, such linear rate is global when the feasible set
is compact. This line of analysis has recently been extended to allow certain class
of nonsmooth functions in the objective [30,36]. For more general problems where
the objective is not strongly convex and the error bound condition does not hold,
several recent studies have established the O(1/r) iteration complexity for various
BCD-type algorithms including the randomized BCGD algorithm [22], and for more
general settings with nonsmooth objective as well [15,25,28]. When the coordinates
are updated according to the traditional G–S/G–So/E-C rule, however, the literature
on the iteration complexity for the BCD-type algorithm is scarce. In [26], Saha and
Tewari have proven the O(1/r) rate for the G–S BCPG algorithm when applied to
certain special �1 minimization problem. In [2], Beck and Tetruashvili have shown the
O(1/r) sublinear convergence for the G–S BCGD algorithm for constrained smooth
problems. In [1], Beck has shown the sublinear convergence for the G–S BCM algo-
rithm (termed Alternating Minimization method therein) when the number of blocks
is two. Although the BCD-type algorithm with G–S rule sometimes has been found to
perform better than its randomized counterpart (see, e.g., [26]), establishing its iter-
ation complexity in a general multi-block nonsmooth setting is challenging [22]. To
the best of our knowledge, the iteration complexity of the BCD-type algorithm with
the classic G–S update rule has not yet been characterized for multi-block nonsmooth
problems, not to mention other types of deterministic coordinate selection rules such
as G–So, E-C or MBI. Further, there has been no iteration complexity analysis for the
classic BCM iteration (1.2) when the number of variable blocks is more than two (i.e.,
K ≥ 3).

In this paper, we provide a unified iteration complexity analysis for K -block
BCD-type algorithm by utilizing the BSUM framework [24]. Our result covers many
different BCD-type algorithms such as BCM, BCPG, and BCGD under a number of
deterministic coordinate update rules. First, for a broad class of nonsmooth convex
problems, we show that the BSUM algorithm achieves a global sublinear convergence

123

88 M. Hong et al.

Table 1 Summary of the Results

Method Update Rule Problem Assumptions Rate

BSUM G–S/E-C NS+C+K uk valid upper-bound O(1/r)

BSUM G–So/MBI NS+C+K uk valid upper-bound, h Lipschitz O(1/r)

BSUM G–S NS+C+2 u1 valid upper-bound without BSC, u2 = g O(1/r)

BSUM N/A NS+C+1 u1 valid upper-bound without BSC O(1/r)

BCM MBI NS+C+K h Lipschitz, without BSC O(1/r)

BCM G–S/E-C NS+C+K uk = g, without BSC O(1/r)

rate of O(1/r), provided that each subproblem is strongly convex. Second, for the
BCM algorithm (1.2), we show the global convergence rate of O(1/r) without the
per-block strong convexity assumption. The main results of this paper are summarized
in the following Table 1.1

Notations: For a given matrix A, we use A[i, j] to denote its (i, j)th element. For
a symmetric matrix A use ρmax(A) to denote its spectral norm. For a given vector
x , we use x[j] to denote its j th component; use ‖x‖ to denote its �2 norm. We use
IX (·) to denote the indicator function for a given set X , i.e., IX (y) = 1 if y ∈ X ,
and IX (y) = ∞ if y /∈ X . Let x−k denote the vector x with xk removed. For a given
function f (x1, . . . , xK) which contains K block variables, we use ∇k f (x1, . . . , xK)

to denote the partial gradient with respect to its kth block variable.We use ∂ f to denote
the subdifferential set of a function f . For a given convex nonsmooth closed function
�(·), we define the proximity operator prox�(·) : Rn 	→ R

n as

proxβ
� (x) = argminu∈Rn �(u) + β

2
‖x − u‖2.

Similarly, for a given closed convex set X , the projection operator projX (·) : Rn 	→ X
is defined as

projX (x) = argminu∈X
1

2
‖x − u‖2.

2 The BSUM algorithm and preliminaries

2.1 The BSUM algorithm

In this paper, we consider a family of block coordinate descent methods (BCD) for
solving problem (1.1). The family of the algorithms we consider falls in the general
category of block successive upper-bound minimization (BSUM) method, in which

1 We have used the following abbreviations: NS=Nonsmooth, C=Constrained, K=K-block, BSC=Block-
wise Strongly Convex, G–So=Gauss–Southwell, G–S=Gauss–Seidel, E-C=Essentially Cyclic,
MBI=Maximum Block Improvement. The notion of valid upper-bound as well as the function uk will
be introduced in Sect. 2.

123

Iteration complexity analysis of block coordinate descent. . . 89

certain approximate version of the objective function is optimized one block variable
at a time, while fixing the rest of the block variables [24]. In particular, at iteration
r + 1, we first pick an index set Cr+1 ⊆ {1, . . . , K }. Then the kth block variable is
updated by

xr+1
k

{
∈ argminxk∈Xk uk

(
xk; xr+1

1 , . . . , xr+1
k−1, xr

k , . . . , xr
K

)
+ hk(xk), if k ∈ Cr+1;

= xr
k , if k /∈ Cr+1,

(2.1)

where uk(·; xr+1
1 , . . . , xr+1

k−1, xr
k , . . . , xr

K) is an approximation of g(x) at a given iterate

(xr+1
1 , . . . , xr+1

k−1, xr
k , . . . , xr

K). We will see shortly that by properly specifying the
approximation function uk(·) as well as the index set Cr+1, we can recover many
popular BCD-type algorithms such as the BCM, the BCGD, the BCPG methods and
so on.

To simplify notations, let us define a set of auxiliary variables

wr
k :=

[
xr
1, . . . , xr

k−1, xr−1
k , xr−1

k+1, . . . , xr−1
K

]
, k = 1, . . . , K ,

wr−k :=
[
xr
1, . . . , xr

k−1, xr−1
k+1, . . . , xr−1

K

]
, k = 1, . . . , K ,

x−k := [x1, . . . , xk−1, xk+1, . . . , xK
]
, k = 1, . . . , K .

Clearly we have wr
K+1 := xr , wr

1 := xr−1. Moreover, at each iteration r + 1, define

a set of new variables {x̂r+1
k }K

k=1 as follows

x̂r+1
k ∈ arg min

xk∈Xk
uk
(
xk; xr)+ hk(xk), k = 1, . . . , K . (2.2)

Clearly {x̂r+1
k }K

k=1 represents a “virtual” update where all variables are optimized in a
Jacobi manner based on xr .

The BSUM algorithm is described formally in the following table.

The Block Successive Upper-Bound Minimization (BSUM) Algorithm
At each iteration r + 1, pick an index set Cr+1;

For k = 1, . . . , K , do:

xr+1
k

{
∈ argminxk∈Xk uk

(
xk;wr+1

k

)
+ hk(xk), if k ∈ Cr+1;

= xr
k , if k /∈ Cr+1

.

End For.

In this paper, we consider the following well-known block selection rules:

1. Gauss–Seidel (G–S) rule At each iteration r + 1 all the indices are chosen, i.e.,
Cr+1 = {1, . . . , K }. Using this rule, the blocks are updated cyclically with fixed
order.

123

90 M. Hong et al.

2. Essentially cyclic (E-C) rule There exists a given period T ≥ 1 during which each
index is updated at least once, i.e.,

T⋃

i=1

Cr+i = {1, . . . , K }, ∀ r. (2.3)

We call this update rule a period-T essentially cyclic update rule. Clearly when
T = 1 we recover the G–S rule.

3. Gauss–Southwell (G–So) rule At each iteration r +1, Cr+1 contains a single index
k∗ that satisfies:

k∗ ∈
{

k

∣∣∣∣ ‖x̂r+1
k − xr

k‖ ≥ q max
j

‖x̂r+1
j − xr

j‖
}

, (2.4)

for some constant q ∈ (0, 1].
4. Maximum block improvement (MBI) rule At each iteration r + 1, Cr+1 contains a

single index k∗ that satisfies:

k∗ ∈ argmax
k

− f
(

xr−k, x̂r+1
k

)
, (2.5)

where f (xr−k, x̂r+1
k) means the function f (·) evaluated at the vector [xr−k, x̂r+1

k].

2.2 Main assumptions

Suppose f is a closed proper convex function in R
n . Let dom f denote the effective

domain of f and let int(dom f) denote the interior of dom f . We make the following
standing assumptions regarding problem (1.1):

Assumption A

(a) Problem (1.1) is a convex problem, and its global minimum is attained. The inter-
section X ∩ int(dom f) is nonempty. Each hk is a proper closed and convex
function (not necessarily smooth), and its subdifferential set is nonempty at the
relative boundary point of Xk .

(b) The gradient ∇g(·) is block-wise uniformly Lipschitz continuous

‖∇k g
([

x−k, xk
])− ∇k g

([
x−k, x ′

k

]) ‖
≤ Mk‖xk − x ′

k‖, ∀ xk, x ′
k ∈ Xk, ∀ x ∈ X, ∀ k (2.6)

where Mk > 0 is a constant. Define Mmax = maxk Mk .
The gradient of g(·) is also uniformly Lipschitz continuous

‖∇g(x) − ∇g(x ′)‖ ≤ M‖x − x ′‖, ∀ x, x ′ ∈ X (2.7)

where M > 0 is a constant.

123

Iteration complexity analysis of block coordinate descent. . . 91

Next we make the following assumptions regarding the approximation function
uk(·; ·) in (2.1).

Assumption B (a) uk(xk; x) = g(x), ∀ x ∈ X, ∀ k.

(b) uk(vk; x) ≥ g(vk, x−k), ∀ vk ∈ Xk, ∀ x ∈ X, ∀ k.

(c) ∇uk(xk; x) = ∇k g(x), ∀ x ∈ X, ∀ k, where the notation ∇uk(xk; x) represents
the partial derivative with respect to xk .

(d) uk(vk; x) is continuous in vk and x . Further, for any given x ∈ X , it is a proper,
closed and strongly convex function of vk , satisfying

uk(vk; x) ≥ uk(v̂k; x) + 〈∇uk(v̂k; x), vk − v̂k
〉+ γk

2
‖vk − v̂k‖2, ∀ vk, v̂k ∈ Xk,

where γk > 0 is independent of the choice of x .
(e) For any given x ∈ X , uk(vk; x) has Lipschitz continuous gradient, that is

‖∇uk(vk; x) − ∇uk(v̂k; x)‖ ≤ Lk‖vk − v̂k‖, ∀ v̂k, vk ∈ Xk, ∀ k, (2.8)

where Lk > 0 is some constant. Further, we have

‖∇uk(vk; x) − ∇uk(vk; y)‖ ≤ Gk‖x − y‖, ∀ vk ∈ Xk, ∀ k, ∀ x, y ∈ X. (2.9)

Define Lmax := maxk Lk ; Gmax := maxk Gk .

We refer to the uk’s that satisfy Assumption B as a valid upper-bound.
A few remarks are in order regarding to the assumptions made above.
First of all, Assumption B indicates that for any given x , each uk(·; x) is a locally

tight upper bound for g(x). When the approximation function is chosen as the original
function g(x), then we recover the classic BCM algorithm; cf. (1.2). In many practical
applications especially nonsmooth problems, minimizing the approximation functions
often leads to much simpler subproblems than directly minimizing the original func-
tion; see e.g., [12,14,33,34,37]. For example, if hk(·) = 0 for all k, and uk takes the
following form

uk

(
xk;wr+1

k

)
= g

(
wr+1

k

)
+
〈
∇k g

(
wr+1

k

)
, xk − xr

k

〉
+ Mk

2
‖xk − xr

k‖2, (2.10)

then we recover the well known BCGD method [2,18,22], in which xk is updated by

xr+1
k = projXk

[
xr

k − 1

Mk
∇k g

(
wr+1

k

)]
. (2.11)

When the nonsmooth components hk’s are present, the above choice of uk(·; ·) in
(2.10) leads to the so-called BCPG method [7,24,36], in which xk is updated by

xr+1
k = proxMk

hk+IXk

[
xr

k − 1

Mk
∇k g

(
wr+1

k

)]
. (2.12)

123

92 M. Hong et al.

For other possible choices of the approximation function, we refer the readers to
[20,24].

Secondly, the strong convexity requirement on uk(·; x) in Assumption B(d) is quite
mild, and is satisfied for the BCPG and BCGD algorithms; see the discussion in the
previous remark. When uk is chosen as the original function g(x), this requirement
says that g(x)must be block-wise strongly convex (BSC). The BSC condition is in fact
satisfied in many practical engineering problems. The following are two interesting
examples.

Example 1 Consider the rate maximization problem in an uplink wireless communi-
cation network, where K users transmit to a single base station (BS) in the network.
Suppose each user has nt transmit antennas, and the BS has nr receive antennas. Let
Ck ∈ R

nt ×nt denote user k’s transmit covariance matrix, Pk denote the maximum
transmit power for user k, and Hk ∈ R

nr ×nt denote the channel matrix between user
k and the BS. Then the uplink channel capacity optimization problem is given by the
following convex program [8,35]

min
{Ck }K

k=1

− log det

∣∣∣∣∣

K∑

k=1

HkCk H T
k + Inr

∣∣∣∣∣ , s.t. Ck � 0, Tr[Ck] ≤ Pk, ∀ k, (2.13)

where Inr is the nr ×nr identitymatrix. The celebrated iterative water-filling algorithm
(IWFA) [35] for solving this problem is simply the BSUM algorithm with exact block
minimization (i.e. the BCM algorithm) and G–S update rule. It is easy to verify that
when nt ≤ nr (i.e., the number of transmit antenna is smaller than that of the receive
antenna), and when the channels are generated randomly, then with probability one
H T

k Hk is of full rank, implying that the BSC condition is satisfied. We note that there
has been no iteration complexity analysis of the IWFA algorithm for any type of block
selection rules.

Example 2 Consider the following LASSO problem:

min
x

‖Ax − b‖2 + λ‖x‖1,

where A ∈ R
M×K , b ∈ R

M , and x = [x1, . . . , xK]T , with xk ∈ R for all k. That
is, each block consists of a single scalar variable. In this case, as long as none of A’s
columns are zero (in which case we simply remove that column and the corresponding
block variable), the problem satisfies the BSC property. Prior to our work, there is no
iteration complexity analysis for applying BCD with deterministic block selection
rules such as G–S and E-C for LASSO (with general data matrix A).

Note that the BSC property, or more generally the strong convexity assumption on
the approximate function uk , is reasonable as it ensures that each step of the BSUM
algorithm is well-defined and has a unique solution. In the ensuing analysis of the
BSUM algorithm, we assume that either the BSC property holds true, or uk is a valid
upper-bound. Later in Sects. 4–6, wewill consider the case where the BSC assumption
is absent.

123

Iteration complexity analysis of block coordinate descent. . . 93

3 Convergence analysis for BSUM

In this section, we show that under assumptions A and B, the BSUM algorithm with
flexible update rules achieves global sublinear rate of convergence.

Let us define X∗ as the optimal solution set, and let x∗ ∈ X∗ be one of the optimal
solutions. For the BSUM algorithm, define the optimality gap as

Δr : = f (xr) − f (x∗). (3.1)

Despite the generality of the BSUM algorithm, our analysis of BSUMonly consists
of three simple steps: (S1) estimate the amount of successive decrease of the optimal-
ity gaps; (S2) estimate the cost yet to be minimized (i.e., the cost-to-go) after each
iteration; (S3) estimate the rate of convergence.

We first characterize the successive difference of the optimality gaps before and
after one iteration of the BSUM algorithm, with different update rules.

Lemma 1 (Sufficient Descent) Suppose Assumption A–B hold. Then

1. For BSUM with either G–S rule or the E-C rule, the following is true

Δr − Δr+1 ≥
K∑

k=1

γk

2
‖xr

k − xr+1
k ‖2 ≥ γ ‖xr − xr+1‖2, ∀ r ≥ 1, (3.2)

where the constant γ := 1
2 mink γk > 0.

2. For BSUM with G–So rule and MBI rule, the following is true

Δr − Δr+1 ≥ c1
K

γ ‖xr − x̂r+1‖2, ∀ r ≥ 1, (3.3)

where the constant γ := 1
2 mink γk > 0; For G–So rule, c1 = q, and for MBI rule,

c1 = 1.

Proof We first show part (1) of the proof. Suppose that k /∈ Cr+1, then we have the
following trivial inequality

f
(
wr+1

k

)
− f

(
wr+1

k+1

)
≥ γk

2
‖xr+1

k − xr
k‖2, (3.4)

as both sides of the inequality are zero.
Suppose k ∈ Cr+1. Then using Assumption B, we have that

f
(
wr+1

k

)
− f

(
wr+1

k+1

)

≥ uk

(
xr

k ;wr+1
k

)
+ hk

(
xr

k

)−
(

uk

(
xr+1

k ;wr+1
k

)
+ hk

(
xr+1

k

))

≥
〈
∇uk

(
xr+1

k ;wr+1
k

)
, xr

k − xr+1
k

〉
+ hk

(
xr

k

)− hk

(
xr+1

k

)
+ γk

2
‖xr+1

k − xr
k‖2

123

94 M. Hong et al.

≥
〈
∇uk

(
xr+1

k ;wr+1
k

)
+ ζ r+1

k , xr
k − xr+1

k

〉
+ γk

2
‖xr+1

k − xr
k‖2

≥ γk

2
‖xr+1

k − xr
k‖2 (3.5)

where the first inequality is due to Assumption B(a)–B(b); the second inequality is
due to Assumption B(d); in the third inequality we have defined ζ r+1

k ∈ ∂hk(xr+1
k) as

any subgradient vector in the subdifferential ∂hk(xr+1
k); in the last inequality we have

used the fact that xr+1
k is the optimal solution for the strongly convex problem

arg min
xk∈Xk

uk

(
xk;wr+1

k

)
+ hk(xk),

andwehave specialized ζ r+1
k to the subgradient that satisfying the optimality condition

of the problem above. Summing over k, we have

f (xr) − f (xr+1) ≥ γ ‖xr − xr+1‖2, (3.6)

where γ := 1
2 mink γk .

We now show part (2) of the claim. Suppose k ∈ Cr+1, then we have the following
series of inequalities for the G–So rule

f (xr) − f
(

xr+1
)

= f (xr) − f
(

xr−k, x̂r+1
k

)

≥ uk
(
xr

k ; xr)+ hk
(
xr

k

)− uk

(
x̂r+1

k ; xr
)

− hk

(
x̂r+1

k

)

≥ 1

2
γk‖xr

k − x̂r+1
k ‖2

≥ q min j γ j

2K

K∑

j=1

‖xr
j − x̂r+1

j ‖2 = q

K
γ ‖xr − x̂r+1‖2. (3.7)

Similar steps lead to the result for the MBI rule. ��
Next we show the second step of the proof, which estimates the gap yet to be

minimized after each iteration. Let us define the following constants:

R := max
x∈X

max
x∗∈X∗

{
‖x − x∗‖ : f (x) ≤ f (x1)

}
,

Q := max
x∈X

{
‖∇g(x)‖ : f (x) ≤ f (x1)

}
. (3.8)

When assuming that the level set {x : f (x) ≤ f (x1)} is compact, then all the above
constants are finite. Clearly we have

‖xr − x∗‖ ≤ R, ‖∇g(xr)‖ ≤ Q, ∀ r = 1, (3.9)

123

Iteration complexity analysis of block coordinate descent. . . 95

Occasionally we need to further make the assumption that the nonsmooth part h(x) is
Lipschitz continuous:

‖h(x) − h(y)‖ ≤ Lh‖x − y‖, ∀ x, y ∈ X, (3.10)

with some Lh > 0. Note that such assumption is satisfied by most of the popular
nonsmooth regularizers such as the �1 norm, the �2 norm and so on. Also note that
even with this assumption, our considered problem is still a constrained one, as the
convex constraints xk ∈ Xk have not been moved to the objective as nonsmooth
indicator functions.

Lemma 2 (Cost-to-go estimate) Suppose Assumptions A–B hold. Then

1. For the BSUM with G–S update rule, we have

(Δr+1)2 ≤ R2K G2
max‖xr+1 − xr‖2, ∀ x∗ ∈ X∗.

2. For the BSUM with period-T E-C update rule, we have

(Δr+T)2 ≤ T R2K G2
max

T∑

t=1

‖xr+t − xr+t−1‖2, ∀ x∗ ∈ X∗.

3. For the BSUM with G–So and MBI rules, further assume that h(·) is Lipschitz
continuous (cf. (3.10)). Then we have

(Δr)2 = (f (xr) − f (x∗)
)2

≤ 2
(
(Q + Lh)2 + L2

maxK R2
)

‖x̂r+1 − xr‖2, ∀ x∗ ∈ X∗.

Proof We first show part (1). We have the following sequence of inequalities

f (xr+1) − f (x∗) = g(xr+1) − g(x∗) + h(xr+1) − h(x∗)
≤
〈
∇g(xr+1), xr+1 − x∗〉+ h(xr+1) − h(x∗)

=
K∑

k=1

〈
∇k g(xr+1) − ∇uk

(
xr+1

k ;wr+1
k

)
, xr+1

k − x∗
k

〉

+
K∑

k=1

〈
∇uk

(
xr+1

k ;wr+1
k

)
, xr+1

k − x∗
k

〉
+ h(xr+1) − h(x∗).

(3.11)

Notice that xr+1
k is the optimal solution for problem: argminxk∈Xk

uk(xk;wr+1
k) +

hk(xk). It follows from the optimality condition of this problem that there exists some
ζ r+1

k ∈ ∂(hk(xr+1
k)) such that

123

96 M. Hong et al.

0 ≥
〈
∇uk

(
xr+1

k ;wr+1
k

)
+ ζ r+1

k , xr+1
k − x∗

k

〉

≥
〈
∇uk

(
xr+1

k ;wr+1
k

)
, xr+1

k − x∗
k

〉
+ hk

(
xr+1

k

)
− hk

(
x∗

k

)
, (3.12)

where in the last inequality we have used the definition of subgradient

hk

(
xr+1

k

)
− hk

(
x∗

k

) ≤
〈
ζ r+1

k , xr+1
k − x∗

k

〉
, ∀ xr+1

k , x∗
k ∈ Xk . (3.13)

Combining (3.11) and (3.12), we obtain

(
f (xr+1) − f (x∗)

)2 (i)≤
(

K∑

k=1

‖∇k g(xr+1) − ∇uk

(
xr+1

k ;wr+1
k

)
‖‖xr+1

k − x∗
k ‖
)2

(ii)≤
(

K∑

k=1

Gk‖xr+1 − wr+1
k ‖‖xr+1

k − x∗
k ‖
)2

≤ R2K G2
max‖xr+1 − xr‖2,

where in (i) we have used the Cauchy–Schwarz inequality and the Lipschitz continuity
of uk(·; ·) in (2.8); in (ii) we have used the Lipschitz continuity of ∇g(·) in (2.7), and
that ∇k g(xr+1) = ∇uk(xr+1

k ; xr+1) (cf. Assumption B(c)).
Next we show part (2) of the claim. Let us define an index set {rk} as:

rk := argmax
t

{xt
k �= xr+T

k } + 1, k = 1, . . . , K . (3.14)

That is, rk is the latest iteration index (up until r +T) in which the kth variable has been
updated. From this definition we have xrk

k = xr+T
k , for all k. We have the following

sequence of inequalities

f (xr+T) − f (x∗) = g(xr+T) − g(x∗) +
K∑

k=1

(
hk(xrk

k) − hk(x∗
k)
)

≤
〈
∇g(xr+T), xr+T − x∗〉+

K∑

k=1

(
hk(xrk

k) − hk(x∗
k)
)

(i)=
K∑

k=1

(〈
∇k g(xr+T) − ∇uk

(
xrk

k ;w
rk
k

)
, xr+T

k − x∗
k

〉

+ 〈∇uk
(
xrk

k ;w
rk
k

)
, xrk

k − x∗
k

〉)

+
K∑

k=1

(
hk
(
xrk

k

)− hk
(
x∗

k

))

(ii)≤
K∑

k=1

〈
∇k g(xr+T) − ∇uk

(
xrk

k ;w
rk
k

)
, xr+T

k − x∗
k

〉
,

123

Iteration complexity analysis of block coordinate descent. . . 97

where in (i) we have used the fact that xr+T
k = xrk

k , for all k; in (ii) we have used the
optimality of xrk

k . Taking the square on both sides, we obtain

(f (xr+T) − f (x∗))2 ≤
(

K∑

k=1

‖∇k g(xr+T) − ∇uk
(
xrk

k ;w
rk
k

) ‖‖xr+T
k − x∗

k ‖
)2

≤
(

K∑

k=1

Gk‖xr+T − w
rk
k ‖‖xr+T

k − x∗
k ‖
)2

≤
(

K∑

k=1

Gk

(
‖xr+T − xrk ‖ + ‖xrk − w

rk
k ‖
)

‖xr+T
k − x∗

k ‖
)2

≤ T K G2
maxR2

T∑

t=1

‖xr+t−1 − xr+t‖2.

Finally we show part (3). We have the following sequence of inequalities

f (xr) − f (x∗) = g(xr) − g(x∗) + h(xr) − h(x∗)
(i)≤ 〈∇g(xr), xr − x∗〉+ Lh‖xr − x̂r+1‖ + h(x̂r+1) − h(x∗)

= 〈∇g(xr), xr − x̂r+1〉+ 〈∇g(xr), x̂r+1 − x∗〉

+ Lh‖xr − x̂r+1‖ + h(x̂r+1) − h(x∗)

≤ (Lh + Q)‖xr − x̂r+1‖ +
K∑

k=1

〈
∇k g(xr) − ∇uk

(
x̂r+1

k ; xr
)
, x̂r+1

k − x∗
k

〉

+
K∑

k=1

〈
∇uk

(
x̂r+1

k ; xr
)
, x̂r+1

k − x∗
k

〉
+ h(x̂r+1) − h(x∗), (3.15)

where step (i) follows from the Lipschitz continuity assumption (3.10) and the con-
vexity of g(·). Similar to the proof of (3.12) in part (1), we can show that

K∑

k=1

〈
∇uk

(
x̂r+1

k ; xr
)

, x̂r+1
k − x∗

k

〉
+ h

(
x̂r+1

)
− h

(
x∗) ≤ 0. (3.16)

Moreover, it follows from Assumption B(c) and B(e) that
(

K∑

k=1

〈
∇k g(xr) − ∇uk

(
x̂r+1

k ; xr
)

, xr+1
k − x∗

k

〉)2

=
(

K∑

k=1

〈
∇uk

(
xr

k ; xr)− ∇uk

(
x̂r+1

k ; xr
)

, xr+1
k − x∗

k

〉)2

≤ K
K∑

k=1

L2
k‖xr

k − x̂r+1
k ‖2‖xr+1

k − x∗
k ‖2

123

98 M. Hong et al.

≤ K L2
max‖xr − x̂r+1‖2R2. (3.17)

Putting the above three inequalities together, we have

(f (xr) − f (x∗))2 ≤ 2
(
(Q + Lh)2 + K L2

maxR2
)

‖xr − x̂r+1‖2. (3.18)

This completes the proof. ��
Weare now ready to prove theO(1/r) iteration complexity for theBSUMalgorithm

when applied to problem (1.1). Our results below are more general than the recent
analysis on the iteration complexity for BCD-type algorithms. The generality of our
results can be seen from several fronts: (1) The family of algorithms we analyze is
broad; it includes the classic BCM (with the additional BSC condition), the BCGD
method, the BCPG methods as well as their variants based on different coordinate
selection rules as special cases, while the existing works only focus on one particular
algorithm; (2)When the coordinates are updated in aG–S fashion, our result covers the
general multi-block nonsmooth case, where hk(x) can take any proper closed convex
nonsmooth function, while existing works only cover some special cases [1,2,26]; (3)
When the coordinates are updated using other update rules such as G–So, MBI, E-C
fashion, our convergence results appear to be new.

Theorem 1 Suppose Assumption A(a), B hold true. We have the following.

1. Let {xr } be the sequence generated by the BSUM algorithm with G–S rule. Then
we have

Δr = f (xr) − f ∗ ≤ c1
σ1

1

r
, ∀ r ≥ 1, (3.19)

where the constants are given below

c1 = max{4σ1 − 2, f (x1) − f ∗, 2}, σ1 = γ

K G2
maxR2 . (3.20)

2. Let {xr } be the sequence generated by the BSUM algorithm with E-C rule. Then
we have

Δr = f (xr) − f ∗ ≤ c2
σ2

1

r − T
, ∀ r > T, (3.21)

where the constants are given below

c2 = max{4σ2 − 2, f (x1) − f ∗, 2}, σ2 = γ

K T R2G2
max

. (3.22)

3. Suppose the Lipschitz continuity assumption (3.10) holds true. Let {xr } be the
sequence generated by BSUM with G–So and MBI rule. Then we have

Δr = f (xr) − f ∗ ≤ 1

σ3r
, (3.23)

123

Iteration complexity analysis of block coordinate descent. . . 99

where

σ3 =
{ γ q

2K
(
(Q+Lh)2+L2

maxK R2
) , (G–So rule)

γ

2K
(
(Q+Lh)2+L2

maxK R2
) , (MBI rule)

. (3.24)

Proof We first show part (1) of the claim by mathematical induction on r . From
Lemmas 1 and 2, we have that for the G–S rule, we have

Δr − Δr+1 ≥ γ

K G2
maxR2 (Δr+1)2 := σ1(Δ

r+1)2, ∀ r ≥ 1, (3.25)

or equivalently

σ1(Δ
r+1)2 + Δr+1 ≤ Δr , ∀ r ≥ 1. (3.26)

By definition, we have Δ1 = f (x1) − f ∗. We first argue that

Δ2 ≤ c1
2σ1

, with c1 := max{4σ1 − 2, f (x1) − f ∗, 2}. (3.27)

From (3.26) and the fact that Δ1 ≤ c1, we have

Δ2 ≤ −1 + √
1 + 4σ1c1
2σ1

= 2c1
1 + √

1 + 4σ1c1
≤ 2c1

1 + |4σ1 − 1| ,

where in the last inequality we have used the fact that c1 ≥ 4σ1−2. Suppose 4σ1−1 ≥
0, then we immediately have Δ2 ≤ c1

2σ1
. Suppose 4σ1 − 1 < 0, then

Δ2 ≤ 2c1
2 − 4σ1

≤ 2c1
8σ1 − 4σ1

= c1
2σ1

. (3.28)

Next we argue that if Δr ≤ c1
rσ1

, then we must have

Δr+1 ≤ c1
(r + 1)σ1

. (3.29)

Using the condition (3.26) and the inductive hypothesis Δr ≤ c1
rσ1

, we have

Δr+1 ≤
−1 +

√
1 + 4c1

r

2σ1
= 2c1

rσ1

(
1 +

√
1 + 4c1

r

)

≤ 2c1

σ1

(
r + √

r2 + 4r + 4
) = c1

σ1(r + 1)
, (3.30)

123

100 M. Hong et al.

where the last inequality is due to the fact that c1 ≥ 2, and r ≥ 2. Consequently, we
have shown that for all r ≥ 1

Δr = f (xr) − f ∗ ≤ c1
σ1

1

r
. (3.31)

For the E-C rule, first note that from Lemma 1, we have

Δr − Δr+T ≥ γ

T K R2G2
max

(Δr+T)2 := σ2(Δ
r+T)2, ∀ r ≥ 1. (3.32)

Then using the similar argument as for the G–S rule, we can obtain the desired result.
Next we show part (3) of the claim. For the G–So rule, we have from Lemma 2, the

second part of Lemma 1, that for all r ≥ 1

Δr − Δr+1 ≥ q

K
γ ‖x̂r+1 − xr‖2 ≥ γ q

2K
(
(Q + Lh)2 + L2

maxK R2
) (Δr)2

:= σ3(Δ
r)2. (3.33)

Similar relation can be shown for the MBI rule as well. The rest of the proof follows
standard argument, see for example [22, Theorem 1]. ��

Below we provide further remarks on some special cases of BSUM.

– One popular choice of the upper bound function uk(·, ·) is [2,12,22,33,37]

uk(zk; x) := g(x) + 〈∇k g(x), zk − xk〉 + Lk

2
‖zk − xk‖2, (3.34)

where the constant Lk ≥ ρmax(∇2g(x)), is often chosen to be largest eigenvalue
of the Hessian of g(x). In this case, evidently we have γk = Lk = Mk ≤ M , for
all k, and Gmax ≤ M . We can also verify that Gk ≤ 2M for all k. Using this choice
of uk(·; ·) and Lk , the first result in Theorem 1 reduces to

Δr ≤ 2
c1K M2R2

Mmin

1

r
, (3.35)

where Mmin := mink Mk . Let us compare the order given in (3.35) with the
one stated in [2, Theorem 6.1], which is the best known complexity bound for
the G–S BCD algorithm for smooth problems (i.e., when hk is not present). The
bound derived in [2] for smooth constrained problem (resp. smooth unconstrained

problem) is in the order of K M2R2

Mmin

1
r (resp.

MmaxK M2R2

M2
min

1
r). These orders are approxi-

mately the same as (3.35). However, our proof covers the general nonsmooth cases,
and is simpler. Similarly, when uk(·; ·) takes the form (3.34), the bounds for the
BSUMwith the E-C/G–So/MBI rules shown in Theorem 1 can also be simplified.

123

Iteration complexity analysis of block coordinate descent. . . 101

– The results derived in Theorem 1 is equally applicable to the BCM scheme (1.2)
with various block selection rules discussed above. In particular, we can special-
ize the upper-bound function uk to be the original smooth function g. As long as
g(x1, . . . , xK) satisfies the BSC property, Theorem 1 carries over. Asmentioned in
Sect. 2.2, the BSCproperty is fairlymild and is satisfied inmany engineering appli-
cations. Nevertheless, we will further relax the BSC condition in the subsequent
sections.

4 The BSUM for single block problems

4.1 The SUM algorithm

In this section, we consider the following single-block problem with K = 1:

min f (x) := g(x) + h(x), s.t. x ∈ X. (4.1)

In this case the BSUM algorithm reduces to to the so-called successive upper-bound
minimization (SUM) algorithm [24], listed in the following table.

The Successive Upper-Bound Minimization (SUM) Algorithm
At each iteration r + 1, do:

xr+1 ∈ argmin
x∈X

u
(
x; xr)+ h(x). (4.2)

Let us make the following assumptions on the function u(v; x).

Assumption C (a) u(x; x) = g(x), ∀ x ∈ X.

(b) u(v; x) ≥ g(v), ∀ v ∈ X, ∀ x ∈ X.

(c) ∇u(x; x) = ∇g(x), ∀ x ∈ X .
(d) For any given x , u(v; x) is convex in v and satisfies the following

‖∇u(v; x) − ∇u(v̂; x)‖ ≤ L‖v − v̂‖, ∀ v̂, v ∈ X,∀ x ∈ X, (4.3)

where L > 0 is some constant.

Compared to Assumptions B and C does not require u(v; x) to be strongly convex
in v, nor ∇u(v; x) to be Lipschitz continuous over x .

Proposition 1 Suppose g(x) is convex, and u(v; x) satisfies Assumption C. Then we
must have

‖∇g(v) − ∇g(x)‖ ≤ L‖v − x‖, ∀ x, v ∈ X. (4.4)

That is, ∇g is Lipschitz continuous with the coefficient no larger than L.

123

102 M. Hong et al.

Proof Utilizing Assumption C, we must have

g(v) − g(x) ≤ u(v; x) − u(x; x)

≤ 〈∇u(x; x), v − x〉 + L

2
‖x − v‖2

= 〈∇g(x), v − x〉 + L

2
‖x − v‖2, ∀ x, v ∈ X.

Further, using the convexity of g we have

g(v) − g(x) ≥ 〈∇g(x), v − x〉, ∀ x, v ∈ X.

Combining these two inequalities we obtain

0 ≤ g(v) − g(x) − 〈∇g(x), v − x〉 ≤ L

2
‖x − v‖2, ∀ x, v ∈ X. (4.5)

Similar to [21, Theorem 2.1.5], we construct φ(x) := g(x) − 〈∇g(v), x〉. Clearly
v ∈ argmin φ(x). We have

φ(v) ≤ φ

(
x − 1

L
∇φ(x)

)
≤ φ(x) − 1

2L
‖∇φ(x)‖2, (4.6)

where the first inequality is due to the optimality of v and the second inequality uses
(4.5). Plugging in the definition of φ(x) and φ(v) we have

g(v) − 〈∇g(v), v〉 ≤ g(x) − 〈∇g(v), x〉 − 1

2L
‖∇g(v) − ∇g(x)‖2.

Since the above inequality is true for any x, v ∈ X , we can interchange x and v and
obtain

g(x) − 〈∇g(x), x〉 ≤ g(v) − 〈∇g(x), v〉 − 1

2L
‖∇g(v) − ∇g(x)‖2.

Adding these two inequalities we obtain

1

L
‖∇g(x) − ∇g(v)‖2 ≤ 〈∇g(x) − ∇g(v), x − v〉 ≤ ‖∇g(x) − ∇g(v)‖‖x − v‖.

Cancelling ‖∇g(x) − ∇g(v)‖ we arrive at the desired results. ��

We remark that this result is only true when g(·) is a convex function.
Ourmain result is that the SUM algorithm converges sublinearly under Assumption

C, without the strong convexity of the upper-bound function u(v; x) in v. The proof of

123

Iteration complexity analysis of block coordinate descent. . . 103

this claim is an extension of Theorem 1, therefore we will only provide its key steps.
Observe that the following is true

f (xr) − f (xr+1)
(i)≥ f (xr) −

(
u(xr+1; xr) + h(xr+1)

)

(ii)≥ f (xr) −
(

u(̃xr+1; xr) + h(̃xr+1)
) (iii)≥ γ

2
‖xr − x̃r+1‖2, (4.7)

where x̃r+1 is obtained by solving the following problem for any γ > 0

x̃r+1 = argmin
x∈X

u(x; xr) + h(x) + γ

2
‖x − xr‖2. (4.8)

In (4.7), (i) is true because u(x; y) is an upper-bound function for g(x) satisfying
Assumption C(b); (ii) is true because xr+1 is a minimizer of problem (4.2); (iii) is
true due to the fact that x̃r+1 is the optimal solution of (4.8) while xr is a feasible
solution.

Then we bound f (xr+1) using f (̃xr+1). We have

f (xr+1) ≤ u(xr+1; xr) + h(xr+1)
(i)≤ u(̃xr+1; xr) + h(̃xr+1)

(ii)≤ u(xr ; xr) +
〈
∇u(xr ; xr), x̃r+1 − xr

〉
+ L

2
‖x̃r+1 − xr‖2 + h(̃xr+1)

(iii)≤ g(̃xr+1) +
〈
∇u(xr ; xr), x̃r+1 − xr

〉
+
〈
∇g(̃xr+1), xr − x̃r+1

〉

+ L‖x̃r+1 − xr‖2 + h(̃xr+1)

(iv)= g(̃xr+1) +
〈
∇g(̃xr+1) − ∇g(xr), xr − x̃r+1

〉

+ L‖x̃r+1 − xr‖2 + h(̃xr+1)

(v)≤ f (̃xr+1) + L‖x̃r+1 − xr‖2,

where (i) is due to the optimality of xr+1 for problem (4.2); (ii) uses the gradient
Lipschitz continuity of u(·; xr); (iii) uses the fact that u(xr ; xr) = g(xr), the gra-
dient Lipschitz continuity of g(·) derived in Proposition 1; (iv) uses the fact that
∇u(xr ; xr) = ∇g(xr) (cf. Assumption C(c)); (v) uses the convexity of g(·).

Utilizing this bound, we derive the estimate of the cost-to-go

f (xr+1) − f (x∗) ≤ f (̃xr+1) − f (x∗) + L‖x̃r+1 − xr‖2

≤
〈
∇g(̃xr+1), x̃r+1 − x∗〉+ h(̃xr+1) − h(x∗) + L‖x̃r+1 − xr‖2

=
〈
∇g(̃xr+1) − ∇g(xr), x̃r+1 − x∗〉+ L‖x̃r+1 − xr‖2

+
〈
∇g(xr) − ∇

(
u(̃xr+1; xr) + γ

2
‖x̃r+1 − xr‖2

)
, x̃r+1 − x∗〉

+ h(̃xr+1) − h(x∗)

123

104 M. Hong et al.

+
〈
∇
(

u(̃xr+1; xr) + γ

2
‖x̃r+1 − xr‖2

)
, x̃r+1 − x∗〉

(i)≤
〈
∇g(̃xr+1) − ∇g(xr), x̃r+1 − x∗〉+ L‖x̃r+1 − xr‖2

+
〈
∇u(xr ; xr) − ∇u(̃xr+1; xr), x̃r+1 − x∗〉

− γ
〈
x̃r+1 − xr , x̃r+1 − x∗〉

(ii)≤ (2L+γ)‖x̃r+1−xr‖R+L‖x̃r+1−xr‖‖x̃r+1−x∗ + x∗ − xr‖
≤ (4L + γ)‖x̃r+1 − xr‖R.

Here (i) is due to the optimality of x̃r+1 to the problem (4.8); in (ii) we have used
(4.4), Cauchy–Schwartz inequality and the definition of R (it is easy to show that
f (̃xr+1) ≤ f (xr) ≤ f (x0), hence ‖x̃r+1 − x∗‖ ≤ R for all r).
Combining the above two inequalities, we obtain

Δr − Δr+1 ≥ γ

2R2(4L + γ)2
(Δr+1)2, ∀γ > 0. (4.9)

Maximizing over γ (with γ = 4L), we have

Δr − Δr+1 ≥ 1

32R2L
(Δr+1)2 := σ4(Δ

r+1)2. (4.10)

Using the same derivation as in Theorem 1, we obtain

Δr+1 ≤ c4
σ4

1

r
, with σ4 = 1

32R2L
, c4 := max{4σ4 − 2, f (x1) − f ∗, 2}.

(4.11)

4.2 Application

To see the importance of the above result, consider the well-knownmethod of iterative
reweighted least squares (IRLS) [1,9]. The IRLS is a popular algorithm used for
solving problems such as sparse recovery and Fermat-Weber problem; see [1, Section
4] for applications. Consider the following problem

min
x

h(x) +
�∑

j=1

‖A j x + b j‖2, s.t. x ∈ X, (4.12)

where A j ∈ R
ki ×m , b j ∈ R

ki , X ⊆ R
m , and h(x) is some convex function not neces-

sarily smooth. Let us introduce a constant η > 0 and consider a smooth approximation
of problem (4.12):

123

Iteration complexity analysis of block coordinate descent. . . 105

min
x

h(x) + g(x) := h(x) +
�∑

j=1

√
‖A j x + b j‖22 + η2, s.t. x ∈ X. (4.13)

The IRLS algorithm generates the following iterates

xr+1 = argmin
x∈X

⎧
⎨

⎩h(x) + 1

2

�∑

j=1

‖A j x + b j‖2 + η2
√

‖A j xr + b j‖2 + η2

⎫
⎬

⎭ . (4.14)

It is known that the IRLS is equivalent to a BCM method applied to the following
two-block problem (i.e., the first block is x and the second is {z j }�j=1)

min h(x) + 1

2

�∑

j=1

(‖A j x + b j‖2 + η2

z j
+ z j

)

s.t. x ∈ X, z j ∈ [η/2,∞), ∀ j. (4.15)

Utilizing such two-block BCM interpretation, the author of [1] shows that the IRLS
converges sublinearly when h(x) has Lipschitz continuous gradient; see [1, Theorem
4.1].

Differently from [1], here we take a new perspective. We argue that the IRLS is in
fact the SUM algorithm in disguise, therefore our simple iteration complexity analysis
given in Sect. 4.1 for SUM can be directly applied.

Let us consider the following function:

u(x; xr) = 1

2

�∑

j=1

⎛

⎝ ‖A j x + b j‖2 + η2
√

‖A j xr + b j‖2 + η2
+
√

‖A j xr + b j‖2 + η2

⎞

⎠ . (4.16)

It is clear that g(xr) = u(xr ; xr), so Assumption C(a) is satisfied. To verify Assump-
tion C(b), we apply the arithmetic-geometric inequality, and have

u(x; xr) = 1

2

�∑

j=1

⎛

⎝ ‖A j x + b j‖2 + η2
√

‖A j xr + b j‖2 + η2
+
√

‖A j xr + b j‖2 + η2

⎞

⎠

≥
�∑

j=1

√
‖A j x + b j‖2 + η2 = g(x), ∀ x ∈ X.

Assumptions C(c), (d) are also easy to verify. Note that the matrices A j ’s do not
necessarily have full column rank, so u(x; xr)may not be strongly convex over x ∈ X .
Nevertheless, u(x; xr) defined in (4.16) is indeed an upper bound function for the
smooth function g(x), and we have shown that it satisfies Assumptions C. It follows
that the iteration (4.14) corresponds to a single-block BSUM algorithm. Our analysis

123

106 M. Hong et al.

leading to (4.11) suggests that this algorithm converges in a sublinear rate, even when
h(x) is a nonsmooth function. To be more specific, for this problem we have

L = 1

η
ρmax

⎛

⎝
�∑

j=1

AT
j A j

⎞

⎠ .

Therefore the rate can be expressed as

Δr+1 ≤ max{4σ4 − 2, f (x1) − f (x∗), 2}
32R2ρmax

(∑�
j=1 AT

j A j

)

ηr
. (4.17)

Note that compared with the result derived in [1, Theorem 4.1] which is based on
transforming the IRLS algorithm to the two-block BCM problem (4.15), our analysis
is based on the key insight of the equivalence between IRLS and the single block
BSUM, and it is significantly simpler. Further we do not require h(x) to be smooth,
while the result in [1, Theorem 4.1] additionally requires that the gradient of h(x) is
Lipschitz continuous.2

5 The BSUM for two block problems

5.1 Iteration complexity for 2-block BSUM

In this section, we consider the following two-block problem (K = 2), which is a
special case of problem (1.1):

min f (x1, x2) := g(x1, x2) + h1(x1) + h2(x2)

s.t. x1 ∈ X1, x2 ∈ X2. (5.1)

This problem has many applications, such as the special case of Example 1 with
two users, the two-block formulation of the IRLS algorithm (4.15) or the example
presented in [1, Section 5]. Throughout this section, we assume that Assumption A(a)
is true. We make the following additional assumptions about problem (5.1).

Assumption D (a) The problem minx2∈X2 f (x1, x2) has a unique solution.
(b) The gradient of g(x1, x2) with respect to x1 is Lipschitz continuous, i.e.,

‖∇1g(x1, x2) − ∇1g(v1, x2)‖ ≤ M1‖x1 − v1‖.

Note that here we do not require that the gradient of g(·) with respect to the second
block to be Lipschitz continuous.

2 It appears that the proof in [1, Theorem 4.1] can be modified to allow nonsmooth h, just that it is not
explicitly mentioned in the paper. But as it stands, the bound in [1, Theorem 4.1] is explicitly dependent on
the Lipschitz constant of the gradient of h, while the bound we derived here in (4.17) is not.

123

Iteration complexity analysis of block coordinate descent. . . 107

We show that for this problem BSUM with G–S update rule is able to achieve
sublinear rate without the BSC condition or the Lipschitz continuity of ∇2g(x1, x2).
In the table given below we list the two-block BSUM algorithm with G–S update rule.

The G–S 2-block BSUM for problem (5.1)

At each iteration r + 1, update the variable blocks by:

xr+1
2 = arg min

x2∈X2
u2
(
x2; xr

1, xr
2

)+ h2(x2)

xr+1
1 ∈ arg min

x1∈X1
u1

(
x1; xr

1, xr+1
2

)
+ h1(x1).

(5.2)

Unfortunately for the problem of interest here the rate analysis provided in Theorem
1 is no longer applicable because ∇2g(x1, x2) may not be Lipschitz continuous, and
both subproblems may not be strongly convex. To analyze the convergence rate, let
us consider the following special choices of the upper bound where u1(x1; x) satisfies
Assumption B(a)–(c) and the Lipschtiz continuous gradient condition (2.8), restated
below for convenience

‖∇u1(x1; x) − ∇u1(v1; x)‖ ≤ L1‖x1 − v1‖, ∀ x1, v1 ∈ X1, ∀ x ∈ X. (5.3)

By utilizing the argument in Proposition 1, we can show that L1 ≥ M1, and therefore
the following is true as well

‖∇1g(x1, x2) − ∇1g(v1, x2)‖ ≤ L1‖x1 − v1‖.

Further we do not use any upper bound for the second block, i.e., we let

u2(v2; x) = g(v2, x1), ∀ x1 ∈ X1, v2 ∈ X2.

This suggests that the x2-block is minimized exactly.
To analyze the algorithm, it is convenient to consider an equivalent single-block

problem, which only takes x1 as its variable:

min
x1∈X1

�(x1) + h1(x1) := min
x1∈X1

min
x2∈X2

f (x1, x2), (5.4)

wherewe have defined �(x1) := minx2∈X2 g(x1, x2)+h2(x2). Let us denote an optimal
solution of the inner problemminx2∈X2 f (x1, x2) by the mapping: x∗

2 (x1) : X1 → X2,
which is a singleton for any x1 ∈ X1 by Assumption D(a). Next we analyze problem
(5.4).

Let us define a new function

u(v1; x1) := u1
(
v1; x1, x∗

2 (x1)
)+ h2

(
x∗
2 (x1)

)
. (5.5)

123

108 M. Hong et al.

First we argue that for all x1, v1 ∈ X1, u(v1; x1) is an upper bound for �(v1), and it
satisfies Assumption C given in Sect. 4.1. Clearly Assumption C(a) is true because

�(x1) = g
(
x1, x∗

2 (x1)
)+ h2

(
x∗
2 (x1)

)

= u1
(
x1; x1, x∗

2 (x1)
)+ h2

(
x∗
2 (x1)

) = u(x1; x1) (5.6)

where the second equality is due to the fact that u1(x1; x) is an upper bound function
for g(·, x2). The last equality is from the definition of u(·; ·).

Assumption C(b) is true because

u(v1; x1) = u1
(
v1; x1, x∗

2 (x1)
)+ h2

(
x∗
2 (x1)

)

≥ g
(
v1, x∗

2 (x1)
)+ h2

(
x∗
2 (x1)

) ≥ min
x2

g(v1, x2) + h2(x2). (5.7)

To verify Assumption C(c), recall that by Assumption D, minx2∈X2 f (x1, x2) has a
unique solution, or equivalently for any given x1 ∈ X1, the mapping x∗

2 (x1) is a
singleton. By applying [13, Corollary 4.5.2–4.5.3], we obtain

∇�(x1) = ∇1g (x1, x̃2) , ∀ x1 ∈ X1, (5.8)

where x̃2 = argminx2∈X2 f (x1, x2). Therefore, we must have

∇�(x1) = ∇1g (x1, x̃2) = ∇u1(x1; x1, x̃2) = ∇u1
(
x1; x1, x∗

2 (x1)
) = ∇u(x1; x1),

where the second equality comes from the fact that u1(·; ·) satisfies Assumption B(c);
the third inequality is because x̃2 = x∗

2 (x1) by definition; the last equality is from
(5.9). This verifies Assumption C(c).

The Lipschitz continuous gradient condition (with constant L1) inAssumptionC(d)
can be verified by combining (5.3) and the following equality

∇u1
(
v1; x1, x∗

2 (x1)
) = ∇u(v1; x1), ∀ v1, x1 ∈ X1. (5.9)

Now that we have verified that u(v1; x1) given in (5.5) satisfies Assumption C, then
Proposition 1 implies �(·) also has Lipschitz continuous gradient with constant L1,
that is

‖∇�(x1) − ∇�(v1)‖ ≤ L1‖x1 − v1‖, ∀ v1, x1 ∈ X.

At this point it is clear that the 2-block BSUM algorithm with G–S update rule is
in fact the SUM algorithm given in Sect. 4.1, where the iterates are generated by

xr+1
1 ∈ argmin u

(
x1; xr

1

)
. (5.10)

By applying the argument leading to (4.11), we conclude that the 2-block BSUM
in which the second block performs an exact minimization converges sublinearly.
Also note that neither subproblems in (5.1) is required to be strongly convex, which

123

Iteration complexity analysis of block coordinate descent. . . 109

suggests that the BCM applied to problem (5.1) converges sublinearly without block
strong convexity. The precise statement is given in the following corollary.

Corollary 1 Assume that Assumption A(a) and D hold for problem (5.1). Then we
have the following.

1. Suppose that u2(v2; x) = g(x1, v2) for all v2 ∈ X2, x ∈ X and that u1(v1; x)

satisfies Assumption B(a)–(c) and the Lipschtiz continuous gradient condition
(2.8). Then the 2-block BSUM algorithm with G–S rule is equivalent to the SUM
algorithm and converges sublinearly, i.e.,

Δr+1 ≤ c4
σ4

1

r
, (5.11)

where c4 and σ4 is given in (4.11), with L in (4.11) replaced by L1.
2. The BCM algorithm applied to (5.1) converges sublinearly with the same rate,

again with L in (4.11) replaced by L1.

To conclude this section, we note that the schemes and analysis developed in this
section are special in the sense that they heavily rely on the fact that K = 2, and
the resulting transformation to the single block problem. At this point, it is unclear
whether the sameO(1/r) iteration complexity holds for a general K without the BSC
condition. In the next section we will address the first issue and show that without
BSC one can still achieve O(1/r) complexity.

6 Analysis of the BCM without per-block strong convexity

In this section, we consider the BCM algorithm below, which is the BSUM algorithm
without using approximation for each block. We analyze its iteration complexity with-
out the BSC assumption.

The Block Coordinate Minimization (BCM) Algorithm

At each iteration r + 1, pick an index set Cr+1; update the variable blocks:

xr+1
k

{
∈ argminxk∈Xk g

(
xk, w

r+1
−k

)
+ hk(xk), if k ∈ Cr+1;

= xr
k , if k /∈ Cr+1.

In the absence of the BSC property, there can be multiple optimal solutions for each
subproblem. This makes it tricky to establish the convergence rate of BCM. Specifi-
cally, in the context of the three-step analysis framework presented herein, it is difficult
to bound the sufficient descent of the objective using the size of of the successive iter-
ates (as per Lemma 1). In this section, we overcome this obstacle by developing a
variant of the sufficient descent estimate step. We will show that BCMwithMBI, G–S
and E-C rules has an iteration complexity of O(1/r) for problem (1.1) without the
BSC condition. Throughout this section we will impose Assumption A.

123

110 M. Hong et al.

We first consider the MBI rule. We notice that the following is true

f (xr) − f (xr+1)
(i)≥ f (xr) − f (x̄r+1)

(ii)≥ γ

K
‖xr − x̂r+1‖2, (6.1)

where x̄r+1 is the iterates obtained by any BSUM algorithm with MBI rule; x̂r+1 is
defined in (2.2). In the above expression (ii) can be obtained using Lemma 1, while (i)
is true because we used the exact minimization in each step. Then it is straightforward
to establish, using the additional assumption that h is Lipschitz continuous, the same
rate stated in part (3) of Theorem 1.

Next we show that the BCM algorithm with the G–S and E-C rules also achieves an
O(1/r) iteration complexity, without the BSC assumption. These are the key results
of this section.

The main difficulty in analyzing the BCM without the BSC is that the size of the
difference of the successive iterates is no longer a good measure of the “sufficient
descent”. Indeed, due to the lack of per-block strong convexity, it is possible that a
block variable travels a long distance without changing the objective value (e.g., it
stays in the per-block optimal solution set).

Below we analyze the iteration complexity of BCM. We need to make use of
the following key inequality due to Nesterov [21]; also see (4.5) for a proof. From
Assumption A we know that g is convex and has Lipschitz continuous gradient with
constant M , then we must have

g(x) − g(v) ≥ 〈∇g(v), x − v〉 + 1

2M
‖∇g(v) − ∇g(x)‖2, ∀ v, x ∈ X. (6.2)

Utilizing this inequality, the sufficient descent estimate is given by the following
lemma.

Lemma 3 Suppose Assumption A holds. Then for BCM with either G–S rule or the
E-C rule, we have that for all r ≥ 1

Δr − Δr+1 ≥ 1

2M

K∑

k=1

‖∇g
(
wr+1

k

)
− ∇g

(
wr+1

k+1

)
‖2. (6.3)

Proof Suppose that k /∈ Cr+1, then we have the following trivial inequality

f
(
wr+1

k

)
− f

(
wr+1

k+1

)
≥ 1

2M
‖∇g

(
wr+1

k

)
− ∇g

(
wr+1

k+1

)
‖2 (6.4)

as both sides of the inequality are zero.
Suppose k ∈ Cr+1. Then by (6.2), we have that

f
(
wr+1

k

)
− f

(
wr+1

k+1

)

≥
〈
∇g
(
wr+1

k+1

)
, wr+1

k − wr+1
k+1

〉
+ hk

(
wr+1

k

)
− hk

(
wr+1

k+1

)

123

Iteration complexity analysis of block coordinate descent. . . 111

+ 1

2M
‖∇g

(
wr+1

k

)
− ∇g

(
wr+1

k+1

)
‖2

(i)≥ 〈∇k g
(
wr+1

k+1

)
, xr

k − xr+1
k 〉 + hk

(
xr

k

)− hk

(
xr+1

k

)

+ 1

2M
‖∇g

(
wr+1

k

)
− ∇g

(
wr+1

k+1

)
‖2

(ii)≥ 1

2M
‖∇g

(
wr+1

k

)
− ∇g

(
wr+1

k+1

)
‖2, (6.5)

where (i) is because wr+1
k+1 and wr+1

k only differs by a single block; (ii) is due to the

optimality of xr+1
k . Summing over k, we have

f (xr) − f (xr+1) ≥
K∑

k=1

1

2M
‖∇g

(
wr+1

k

)
− ∇g

(
wr+1

k+1

)
‖2. (6.6)

This completes the proof of this lemma. ��
Lemma 4 Suppose Assumptions A is satisfied. Then

1. For the BCM with the G–S update rule, we have

(Δr+1)2 ≤ 2K 2R2
K∑

k=1

‖∇g
(
wr+1

k+1

)
− ∇g

(
wr+1

k

)
‖2, ∀x∗ ∈ X∗.

2. For the BCM with the period-T E-C update rule, we have

(Δr+T)2 ≤ 2T K 2R2
K∑

k=1

T∑

t=1

‖∇g
(
wr+t

k+1

)− ∇g
(
wr+t

k

) ‖2, ∀ x∗ ∈ X∗.

Proof We only show the second part of the claim, as the proof for the first part is
simply a special case. Define a new index set {rk} as in (3.14). Recall that we have
xrk

k = xr+T
k , for all k. We have the following series of inequalities

f (xr+T) − f (x∗) ≤
K∑

k=1

〈
∇k g(xr+T), xr+T

k − x∗
k

〉
+

K∑

k=1

hk
(
xrk

k

)− hk
(
x∗

k

)

=
K∑

k=1

〈
∇k g(xr+T) − ∇k g

(
w

rk
k+1

)
, xr+T

k − x∗
k

〉

+
〈
∇k g

(
w

rk
k+1

)
, xr+T

k − x∗
k

〉
+ hk

(
xrk

k

)− hk
(
x∗

k

)

(i)≤
K∑

k=1

〈
∇k g(xr+T) − ∇k g

(
w

rk
k+1

)
, xr+T

k − x∗
k

〉

123

112 M. Hong et al.

≤
K∑

k=1

‖∇g(xr+T) − ∇g
(
w

rk
k+1

) ‖‖xr+T
k − x∗

k ‖

≤
K∑

k=1

T∑

t=1

K∑

j=1

‖∇g
(
wr+t

j+1

)
− ∇g

(
wr+t

j

)
‖‖xr+T

k − x∗
k ‖

≤
T∑

t=1

K∑

j=1

‖∇g
(
wr+t

j+1

)
− ∇g

(
wr+t

j

)
‖

K∑

k=1

‖xr+T
k − x∗

k ‖

where in (i) we have used the optimality of xrk
k and xrk

k = xr+T
k , for all k. Then taking

the square on both sides, we obtain

(
f (xr+T) − f (x∗)

)2 ≤ T K 2R2
T∑

t=1

K∑

k=1

‖∇g
(
wr+t

k+1

)− ∇g
(
wr+t

k

) ‖2. (6.7)

The proof is complete. ��
Combining these two results, and utilizing the technique in Theorem 1, we readily

have the following main result for BCM.

Theorem 2 Suppose Assumption A holds true. We have the following.

1. Let {xr } be the sequence generated by BCM with G–S rule. Then we have

Δr = f (xr) − f ∗ ≤ c5
σ5

1

r
, ∀ r ≥ 1, (6.8)

where the constants are given below

c5 = max{4σ5 − 2, f (x1) − f ∗, 2}, σ5 = 1

2M K 2R2 , (6.9)

2. Let {xr } be the sequence generated by BCM with E-C rule. Then we have

Δr = f (xr) − f ∗ ≤ c6
σ6

1

r − T
, ∀ r > T, (6.10)

where the constants are given below

c6 = max{4σ6 − 2, f (x1) − f ∗, 2}, σ6 = 1

2K 2T R2M
. (6.11)

Remark 1 Our analysis above implies that when using the BCM (or equivalently the
IWFA algorithm [35]) to solve the rate optimization problem given in Example 1, a
sublinear rate can be obtained regardless of the rank of the channel matrices {Hk}. In
fact, it is easy to check thatAssumptionA is satisfied for this problem; see for example a

123

Iteration complexity analysis of block coordinate descent. . . 113

related discussion in [27, Section V-A]. Then Theorem 2 implies that IWFA converges
in a rate O(1/r), regardless of the rank of the channel matrices. Prior to our work, no
convergence rate analysis has been done for the IWFA when solving problem (2.13).

7 Discussion and concluding remarks

In this paper we have analyzed the iteration complexity of a family of BCD-type
algorithms for solving general convex nonsmooth problems of the form (1.1). Using a
three-step argument, we show that the family of BCD-type algorithms, which includes
BCM, BCGD, BCPG algorithms with G–S, E-C, G–So and MBI update rules, con-
verges globally in a sublinear rate of O(1/r). It should be noted that in case of the
classical BCMalgorithm, the sublinear rate can be achieved evenwithout the per-block
strong convexity.

We note that the structure of the three-step approach, i.e., estimate the sufficient
descent, estimate the cost-to-go and obtain the rate of convergence, is not new. For
example Luo and Tseng in [18] has developed a three-step argument for proving linear
convergence rate of certain descent method (including BCD) for certain non-strongly
convex problems. Beck and Tetruashvili [2] has used such argument for showing
sublinear convergence for using cyclic BCPG to solve smooth constrained problem.
However it is important to note that these works differ significantly in how each step is
proved. For example, the proof of cost-to-go in Lemma 2 differs from its counterpart
in [2] and [18] because we have to take into consideration the nonsmooth function
hk’s, as well as various different update rules. The proof of both sufficient descent and
cost-to-go steps in Lemmas 3–4 differ from those in [2,18], because without per-block
strong convexity a different measure is used to show sufficient descent, which to the
best of our knowledge has not been used in any related analysis before.

As a future work, it will be interesting to see whether the three-step approach can
be extended to establish the iteration complexity bounds for other first order methods.
Also we will investigate whether the problem dependent constants in front of the 1/r
can be further reduced, or even be made independent of problem dimension K .

References

1. Beck, A.: On the convergence of alternating minimization with applications to iteratively reweighted
least squares and decomposition schemes. SIAM J. Optim. 25(1), 185–209 (2015)

2. Beck, A., Tetruashvili, L.: On the convergence of block coordinate descent type methods. SIAM J.
Optim. 23(4), 2037–2060 (2013)

3. Bertsekas, D.P.: Nonlinear Programming, 2nd edn. Athena Scientific, Belmont (1999)
4. Bertsekas, D.P., Tsitsiklis, J.N.: Neuro-Dynamic Programming. Athena Scientific, Belmont (1996)
5. Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and Distributed Computation: Numerical Methods, 2nd edn.

Athena Scientific, Belmont (1997)
6. Chen, B., He, S., Li, Z., Zhang, S.: Maximum block improvement and polynomial optimization. SIAM

J. Optim. 22(1), 87–107 (2012)
7. Combettes, P., Pesquet, J.-C.: Proximal splitting methods in signal processing. In: Bauschke, H.H.,

Burachik, R., Combettes, P.L., Elser, V., Luke, D.R., Wolkowicz, H. (eds.) Fixed-Point Algorithms
for Inverse Problems in Science and Engineering, Springer Optimization and Its Applications, pp.
185–212. Springer, New York (2011)

8. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley, Hoboken (2005)

123

114 M. Hong et al.

9. Daubechies, I., DeVore, R., Fornasier, M., Gunturk, C.S.: Iteratively reweighted least squares mini-
mization for sparse recovery. Commun. Pure Appl. Math. 63(1), 1–38 (2010)

10. Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordi-
nate descent. J. Stat. Softw. 33(1), 1–22 (2010)

11. Grippo, L., Sciandrone, M.: On the convergence of the block nonlinear Gauss–Seidel method under
convex constraints. Oper. Res. Lett. 26, 127–136 (2000)

12. He, B., Liao, L., Han, D., Yang, H.: A new inexact alternating directions method for monotone varia-
tional inequalities. Math. Program. 92(1), 103–118 (2002)

13. Hiriart-Urruty, J.-B., Lemarechal, C.: ConvexAnalysis andMinimization Algorithms I: Fundamentals.
Springer, Berlin (1996)

14. Hong, M., Razaviyayn, M., Luo, Z.-Q., Pang, J.-S.: A unified algorithmic framework for block-
structured optimization involving big data. IEEE Signal Process. Mag. 33(1), 57–77 (2016)

15. Lu, Z., Xiao, L.: On the complexity analysis of randomized block-coordinate descent methods. Math.
Program. 152(1), 615–642 (2015)

16. Luo, Z.-Q., Tseng, P.: On the convergence of the coordinate descent method for convex differentiable
minimization. J. Optim. Theory Appl. 72(1), 7–35 (1992)

17. Luo, Z.-Q., Tseng, P.: On the linear convergence of descent methods for convex essentially smooth
minimization. SIAM J. Control Optim. 30(2), 408–425 (1992)

18. Luo, Z.-Q., Tseng, P.: Error bounds and convergence analysis of feasible descent methods: a general
approach. Ann. Oper. Res. 46–47, 157–178 (1993)

19. Luo, Z.-Q., Tseng, P.: On the convergence rate of dual ascent methods for strictly convexminimization.
Math. Oper. Res. 18(4), 846–867 (1993)

20. Mairal, J.: Optimization with first-order surrogate functions. In: The Proceedings of the International
Conference on Machine Learning (ICML) (2013)

21. Nesterov, V.: Introductory Lectures on Convex Optimization: A Basic Course. Springer, Berlin (2004)
22. Nesterov, Y.: Efficiency of coordiate descent methods on huge-scale optimization problems. SIAM J.

Optim. 22(2), 341–362 (2012)
23. Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Aca-

demic Press, Cambridge (1972)
24. Razaviyayn, M., Hong, M., Luo, Z.-Q.: A unified convergence analysis of block successive minimiza-

tion methods for nonsmooth optimization. SIAM J. Optim. 23(2), 1126–1153 (2013)
25. Richtárik, P., Takáč, M.: Iteration complexity of randomized block-coordinate descent methods for

minimizing a composite function. Math. Program. 144, 1–38 (2014)
26. Saha, A., Tewari, A.: On the nonasymptotic convergence of cyclic coordinate descent method. SIAM

J. Optim. 23(1), 576–601 (2013)
27. Scutari, G., Facchinei, F., Song, P., Palomar, D.P., Pang, J.-S.: Decomposition by partial linearization:

parallel optimization of multi-agent systems. IEEE Trans. Signal Process. 63(3), 641–656 (2014)
28. Shalev-Shwartz, S., Tewari, A.: Stochastic methods for �1 regularized loss minimization. J. Mach.

Learn. Res. 12, 1865–1892 (2011)
29. Tseng, P.: Convergence of a block coordinate descent method for nondifferentiable minimization. J.

Optim. Theory Appl. 103(9), 475–494 (2001)
30. Tseng, P.: Approximation accuracy, gradient methods, and error bound for structured convex optimiza-

tion. Math. Program. 125(2), 263–295 (2010)
31. Tseng, P., Yun, S.: Block-coordinate gradient descent method for linearly constrained nonsmooth

separable optimization. J. Optim. Theory Appl. 140, 513–535 (2009)
32. Tseng, P., Yun, S.: A coordinate gradient descent method for nonsmooth separableminimization.Math.

Program. 117, 387–423 (2009)
33. Wang, X., Yuan, X.: The linearized alternating direction method of multipliers for dantzig selector.

SIAM J. Sci. Comput. 34(5), 2792–2811 (2012)
34. Yang, J., Zhang, Y., Yin, W.: A fast alternating direction method for TVL1-L2 signal reconstruction

from partial fourier data. IEEE J. Sel. Top. Signal Process. 4(2), 288–297 (2010)
35. Yu, W., Rhee, W., Boyd, S., Cioffi, J.M.: Iterative water-filling for Gaussian vector multiple-access

channels. IEEE Trans. Inf. Theory 50(1), 145–152 (2004)
36. Zhang, H., Jiang, J., Luo, Z.-Q.: On the linear convergence of a proximal gradient method for a class

of nonsmooth convex minimization problems. J. Oper. Res. Soc. China 1(2), 163–186 (2013)
37. Zhang, X., Burger, M., Osher, S.: A unified primal-dual algorithm framework based on Bregman

iteration. J. Sci. Comput. 46(1), 20–46 (2011)

123

	Iteration complexity analysis of block coordinate descent methods
	Abstract
	1 Introduction
	2 The BSUM algorithm and preliminaries
	2.1 The BSUM algorithm
	2.2 Main assumptions

	3 Convergence analysis for BSUM
	4 The BSUM for single block problems
	4.1 The SUM algorithm
	4.2 Application

	5 The BSUM for two block problems
	5.1 Iteration complexity for 2-block BSUM

	6 Analysis of the BCM without per-block strong convexity
	7 Discussion and concluding remarks
	References

