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Abstract Positive semidefinite rank (PSD-rank) is a relatively new complexity mea-
sure on matrices, with applications to combinatorial optimization and communication
complexity. We first study several basic properties of PSD-rank, and then develop
new techniques for showing lower bounds on the PSD-rank. All of these bounds are
based on viewing a positive semidefinite factorization of a matrix M as a quantum
communication protocol. These lower bounds depend on the entries of the matrix and
not only on its support (the zero/nonzero pattern), overcoming a limitation of some
previous techniques. We compare these new lower bounds with known bounds, and
give examples where the new ones are better. As an application we determine the
PSD-rank of (approximations of) some common matrices.
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1 Introduction

1.1 Background

We study the properties of positive semidefinite factorizations. Such a factorization
(of size r ) of a nonnegative m-by-n matrix A is given by r -by-r positive semidefinite
matrices E1, . . . , Em and F1, . . . , Fn satisfying A(i, j) = Tr(Ei Fj ) for all i, j . The
positive semidefinite rank (PSD-rank) of A is the smallest r such that A has a positive
semidefinite factorization of size r . We denote it by rankpsd(A). The notion of PSD-
rank has been introduced relatively recently because of applications to combinatorial
optimization and communication complexity [1,2]. These applications closely parallel
those of the nonnegative rank of A, which is the minimum number r such that there
exists anm-by-r nonnegative matrix B and an r -by-n nonnegative matrixC satisfying
A = BC.

In the context of combinatorial optimization, a polytope P is associated with a
nonnegative matrix known as the slack matrix of P . A classic result by Yannakakis
shows that the nonnegative rank of the slack matrix of P characterizes the size of a
natural way of formulating the optimization of a linear function over P as a linear
program [3]. More precisely, the nonnegative rank of the slack matrix of P equals
the linear extended formulation size of P , which is the minimum number of facets
of a (higher-dimensional) polytope Q that projects to P . Analogously, the PSD-rank
of the slack matrix of P captures the size of a natural way of optimizing a linear
function over P as a semidefinite program [1,2]. More precisely, the PSD-rank of the
slack matrix of P is equal to the positive semidefinite extension size of P , which is
the smallest r for which P can be expressed as the projection of an affine slice of the
cone of r -dimensional positive semidefinite matrices.

There have recently been great strides in understanding linear extended formula-
tions, showing that the linear extended formulation size for the traveling salesman and
matching polytopes is exponentially large in the number of vertices of the underlying
graph [2,4]. In a more recent breakthrough, it was similarly proved that the traveling
salesman polytope requires superpolynomial positive semidefinite extension complex-
ity, and showing this required showing strong lower bounds on the PSD-rank of the
corresponding slack matrix [5] (See also [6] for a simple proof for the special case of
rank-one positive semidefinite factorizations.)

In communication complexity, nonnegative and PSD-rank arise in the model of
computing a function f : {0, 1}m × {0, 1}n → R+ in expectation. In this model,
Alice has an input x ∈ {0, 1}m , Bob has an input y ∈ {0, 1}n and their goal is
to communicate in order for Bob to output a nonnegative random variable whose
expectation is f (x, y). The associated communication matrix for this problem is a
2m-by-2n matrix whose (x, y) entry is f (x, y). The nonnegative rank of the com-
munication matrix of f characterizes the amount of classical communication needed
to compute f in expectation [7]. Analogously, the PSD-rank of the communication
matrix of f characterizes the amount of quantum communication needed to compute
f in expectation [2]. Alternatively, one can consider the problemwhereAlice andBob
wish to generate a probability distribution P(x, y) using shared randomness or shared
entanglement, but without communication. The number of bits of shared randomness
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Some upper and lower bounds on PSD-rank 497

or qubits of shared entanglement are again characterized by the nonnegative rank and
PSD-rank, respectively [8,9]. Accordingly, providing lower and upper bounds on the
PSD-rank is interesting in the context of communication complexity as well. Among
other things, here we will pin down (up to constant factors) the PSD-rank of some
common matrices studied in communication complexity like the inner product and
non-equality matrices [10].

1.2 Our results

As PSD-rank is a relatively new quantity, even some basic questions about its behavior
remain unanswered. We address several properties here. First we show that, unlike
the usual rank, PSD-rank is not strictly multiplicative under tensor product: we give
an example of a matrix P where rankpsd(P ⊗ P) < rankpsd(P)2. We do this
by making a connection between PSD-rank and planar geometry to give a simple
sufficient condition for when the PSD-rank is not full.

The second question we address is the dependence of PSD-rank on the underlying
field. At the Dagstuhl Seminar 13082 (February 2013), Dirk Oliver Theis raised the
question if the PSD-rank where the factorization is by real symmetric PSD-matrices
is the same as that by complex Hermitian PSD-matrices. It is easy to see that the real
PSD-rank can be at most a factor of 2 larger than the complex PSD-rank; we give an
infinite family of matrices where the real PSD-rank is asymptotically a factor of

√
2

larger than the complex PSD-rank.
Ourmain goal in this paper is showing lower bounds on the PSD-rank, a task of great

importance to both the applications to combinatorial optimization and communication
complexity mentioned above. Unfortunately, at this point very few techniques exist
to lower bound the PSD-rank. For example, though the technique developed in [5] is
very powerful, it is very complicated and not easy to utilize generally.

One lower bound direction is to consider only the support of the matrix, that is
the pattern of zero/nonzero entries. For the nonnegative rank, this method can show
good lower bounds—in particular, support-based arguments sufficed to show expo-
nential lower bounds on the linear extension complexity of the traveling salesman
polytope [2]. For the PSD-rank, however, support-based arguments cannot show lower
bounds larger than the rank of the matrix [11]. This means that for cases like the
traveling salesman polytope, where the positive semidefinite extension complexity is
superpolynomial in the rank of the slack matrix, other techniques need to be devel-
oped.

We develop three easy-to-compute lower bounds on PSD-rank. All three depend
on the values of the matrix and not only on its support structure—in particular, they
can show nontrivial lower bounds for matrices with full support, i.e., without zero
entries. All three are derived from the viewpoint of PSD-rank of a nonnegative matrix
as a quantum communication protocol. We compare these lower bounds with previous
techniques and show examples where they are better.

Wealso give nearly tight bounds on thePSD-rankof (approximations of) the identity
matrix and on the PSD-rank of the matrix corresponding to the inner product and
nonequality functions.
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498 T. Lee et al.

It should be noted, however, that our new bounds do not take advantage of structural
aspects of matrices like their sparsity patterns, and hence will not give tight bounds
in many cases. For an example where the technique we develop here can be improved
using extra structural information of the problem, see [12].

2 Preliminaries

Let [n] = {1, 2, . . . , n}. Let M = [M(i, j)] be an arbitrary m-by-n matrix of rank r
with the (i, j)-th entry being M(i, j). The conjugate transpose of M is defined as an
n-by-m matrix M† with M†(i, j) = M( j, i), where M( j, i) is the complex conjugate
of M( j, i).

Let σ1, σ2, . . . , σr be the nonzero singular values of M . The trace norm of M is
defined as ‖M‖tr = ∑

i σi , and the Frobenius norm of M is defined as ‖M‖F =
(
∑

i σ
2
i )1/2; this equals (Tr(M†M))1/2 = (

∑
i, j M(i, j)2)1/2. Note that ‖M‖F ≤

‖M‖tr . By the Cauchy-Schwarz inequality we have

rank(M) ≥
(‖M‖tr

‖M‖F
)2

(1)

2.1 PSD-rank

Since it is the central topic of this paper, we repeat the definition of PSD-rank from
the introduction:

Definition 1 Let A be a nonnegative m-by-n matrix. A positive semidefinite factor-
ization of size r of A is given by r -by-r positive semidefinite matrices E1, . . . , Em and
F1, . . . , Fn satisfying A(i, j) = Tr(Ei Fj ). The positive semidefinite rank (PSD-rank,
rankpsd(A)) of A is the smallest integer r such that A has a positive semidefinite
factorization of size r .

In the definition of PSD-rank, we allow the matrices of the PSD-factorization to be
arbitrary Hermitian PSDmatrices, with complex-valued entries. One can also consider
the real PSD-rank, where the matrices of the factorization are restricted to be real
symmetric PSD matrices. For a nonnegative matrix A, we denote its real PSD-rank by
rankRpsd(A).

Note that for a nonnegative matrix A, the PSD-rank is unchanged when we remove
all-zero rows and columns. Also, for nonnegative diagonal matrices D1, D2, the PSD-
rank of D1AD2 is at most that of A. Throughout this paper we will use these facts
to achieve a particular normalization for A. In particular, we will frequently assume
without loss of generality that each column of A sums to one, i.e., that A is a stochastic
matrix.

The following lemma is very useful for giving upper bounds on the PSD-rank.

Lemma 1 ([1,8]) If A is a nonnegative matrix, then

rankpsd(A) ≤ min
M : M◦M=A

rank(M),
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Some upper and lower bounds on PSD-rank 499

where◦ is theHadamard product (entry-wise product) and M is the entry-wise complex
conjugate of M.

2.2 Quantum background

A quantum state ρ is a positive semidefinite matrix with trace Tr(ρ) = 1. If the rank
of ρ is 1, it can be written as ρ = |ψ〉〈ψ |, where |ψ〉 is a complex column vector, and
〈ψ | is its conjugate transpose. In this case, we call this a pure state, and denote it by
|ψ〉 directly. In order to express an arbitrary r -dimensional pure state, one can choose
an orthonormal basis of r unit vectors. A typical choice is the so-called computational
basis, {|0〉, |1〉, . . . , |r − 1〉}, where |i〉 is the vector that has only one nonzero entry
1, at position i + 1. If one concatenates two pure states |x〉 and |y〉, the state of the
joint system is expressed as their tensor product, i.e., |x〉 ⊗ |y〉, which is sometimes
abbreviated to |x〉|y〉 or |xy〉.

For an r -dimensional quantum system, one can use unitary operations to change
its quantum state. A unitary operation can be expressed as an r -by-r matrix U with
UU † = I , where I is the identity. As an example, in this paper we will use the

Hadamard gate for 2-dimensional quantum states, which can bewritten as 1√
2

[
1 1
1 −1

]

.

A POVM (“Positive Operator Valued Measure”) E = {Ei } consists of positive
semidefinite matrices Ei that sum to the identity. When measuring a quantum state ρ

with this POVM, the outcome is i with probability pi = Tr(ρEi ).
For our purposes, a (one-way) quantum protocol between two players Alice (with

input x) andBob (with input y) is the following: Alice sends a quantum state ρx to Bob,
who measures it with a POVM Ey = {Ei }. Each outcome i of this POVM is associated
with a nonnegative value, which is Bob’s output. We say the protocol computes an
m-by-n matrix M in expectation if, for every x ∈ [m] and y ∈ [n], the expected value
of Bob’s output equals M(x, y). Fiorini et al. [2] showed that the minimal dimension
of the states ρx in such a protocol is either rankpsd(M) or rankpsd(M) + 1, so the
minimal number of qubits of communication equals �log2 rankpsd(M) up to one
qubit.

For two quantum states ρ and σ , we definite the fidelity between them by

F(ρ, σ ) = ‖√σ
√

ρ‖tr .

See the excellent book [13, Chapter 9] for additional properties and equivalent formu-
lations of the fidelity. The fidelity between two probability distributions p = {pi } and
q = {qi } is F(p, q) = ∑

i
√
piqi .

The following two facts about fidelity will be useful for us.

Fact 1 If σ, ρ are quantum states, then Tr(σρ) ≤ F(σ, ρ)2.

Proof We have Tr(σρ) = Tr((
√

σ
√

ρ)(
√

σ
√

ρ)†) = ‖√σ
√

ρ‖2F ≤ ‖√σ
√

ρ‖2tr =
F(σ, ρ)2. ��
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Fact 2 ([13]) If σ, ρ are quantum states, then

F(σ, ρ) = min{Ei }
F(p, q),

where the minimum is over all POVMs {Ei }, and p and q are the probability distri-
butions when ρ and σ are measured by POVM {Ei } respectively, i.e., pi = Tr(ρEi ),
and qi = Tr(σ Ei ) for any i .

The (von Neuman) entropy of a state ρ is defined as H(ρ) = −Tr(ρ log ρ); equiva-
lently, it is the Shannon entropy of the probability distribution given by the eigenvalues
of ρ. If the joint state of Alice and Bob is ρAB (i.e., the state lives on the tensor product
of two Hilbert spaces, one for Alice and one for Bob), then we can define the local
state of Alice by the partial trace:1 ρA = TrB(ρAB). Similarly Bob’s local state is
ρB = TrA(ρAB), which traces out Alice’s part of the state. The mutual information
between A and B is defined as H(A : B) = H(ρA) + H(ρB) − H(ρAB).

2.3 Some existing lower bounds

We now review some existing lower bound for the PSD-rank. Firstly, it is well known
that the PSD-rank cannot be much smaller than the normal rank rank(A) of A.

Definition 2 For a nonnegative matrix A, define

B1(A) = √
rank(A) and B ′

1(A) = 1

2

(√
1 + 8rank(A) − 1

)
.

Fact 3 ([1]) rankpsd(A) ≥ B1(A) and rankRpsd(A) ≥ B ′
1(A).

This bound does not look very powerful since, as stated in the introduction, usually
our goal is to show lower bounds on the PSD-rank that are superpolynomial in the
rank. However, this bound can be nearly tight and we give two examples in Sect. 6
where this is the case.

Jain et al. [9] proved that the amount of quantum communication needed for two
separated players to generate a joint probability distribution P is completely charac-
terized by the logarithm of the PSD-rank of P . According to Holevo’s bound, if we
encode classical information through quantum states and transfer information by send-
ing them, then the amount of classical information that the receiver can retrieve, i.e.,
themutual information, is upper bounded by the total number of qubits communicated.
For more details on Holevo’s bound and mutual information, see [13, Chapter 12].
Combining these two results, a trivial lower bound for PSD-rank is given by mutual
information.

Definition 3 Let P = [P(i, j)]i, j be a two-dimensional probability distribution
between two players A and B. Define B2(P) = 2H(A:B), where H(A : B) is the
mutual information between the two players.

1 TrB (ρ ⊗ σ) = Tr(σ )ρ, which is extended linearly to states that are not tensor products.
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Some upper and lower bounds on PSD-rank 501

Fact 4 rankpsd(P) ≥ B2(P).

As an application of this lower bound, it is easy to see that the PSD-rank of a
diagonal nonnegative matrix is the same as its normal rank.

Gouveia et al. [1] introduced a very general result showing that lower bounds on
PSD-rank can be asymptotically larger than the rank. More precisely, they show the
following.

Fact 5 ([1]) Let P ⊆ R
d be a polytope with f facets and let SP be its associated

slack matrix. Let T = √
log( f )/d. Then

rankpsd(SP ) = Ω

(
T

√
log(T )

)

In particular, this shows that the slack matrix of a regular n-gon in R
2, which has n

facets and rank 3, has PSD-rank Ω(
√
log n/ log log n). The nonnegative rank of this

matrix is known to be �(log n) [14].

3 Some properties of PSD-rank

The PSD-rank is a relatively new quantity, and even some of its basic properties are
still not yet known. In this section we give a simple condition for the PSD-rank of a
matrix to not be full. We then use this condition to show that PSD-rank can be strictly
sub-multiplicative under tensor product. Finally, we investigate the power of using
complex Hermitian over real symmetric matrices in a PSD factorization.

3.1 A sufficient condition for PSD-rank to be less than maximal

We first need a definition and a simple lemma. Let v ∈ R
m be a vector. We say that

an entry vk is dominant if |vk | >
∑

j �=k |v j |.

Lemma 2 Suppose that v ∈ R
m is nonnegative and has no dominant entries. Then

there exist complex units eiθ j such that
∑

j v j eiθ j = 0.

Proof Let v ∈ R
m . If m = 1 then v has a dominant entry and there is nothing to

prove. If m = 2 and v has no dominant entries, then v1 = v2 and the lemma holds as
v1 − v2 = 0.

The first interesting case is m = 3. That v has no dominant entries means there is a
triangle with side lengths v1, v2, v3, as these satisfy the triangle inequality with respect
to all permutations. Letting v1eiθ1 , v2eiθ2 , v3eiθ3 be the vectors in the complex plane
(oriented head to tail) defining the sides of this triangle givesv1eiθ1+v2eiθ2+v3eiθ3 = 0
as desired.
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502 T. Lee et al.

We can reduce the case m > 3 to the case m = 3. Without loss of generality, order
v such that v1 ≥ v2 ≥ · · · ≥ vm . Choose the least k such that

v1 +
k∑

j=2

v j ≥
m∑

j=k+1

v j .

Considering the order of v, and the fact that v has no dominant entries, such a 2 ≤
k < m must exist. The choice of k implies that

v1 +
k−1∑

j=2

v j < vk +
m∑

j=k+1

v j ,

which means that

2v1 +
k∑

j=2

v j < 2vk + v1 +
m∑

j=k+1

v j .

Combining with the fact that v1 ≥ vk , this gives that

k∑

j=2

v j < v1 +
m∑

j=k+1

v j .

Then v1,
∑k

j=2 v j ,
∑m

j=k+1 v j mutually satisfy the triangle inequality and we can
repeat the construction from the case m = 3 with these lengths. ��

Using the construction of Lemma 1, we can give a sufficient condition for A not to
have full PSD-rank.

Theorem 6 Let A be an m-by-n nonnegative matrix, and A′ be the entry-wise square
root of A (so A′ is nonnegative as well). If every column of A′ has no dominant entry,
then the PSD-rank of A is less than m.

Proof As each column of A′ has no dominant entry, by Lemma 2 there exist complex
units eiθ jk such that

∑
j A

′( j, k)eiθ jk = 0 for every k. Define M( j, k) = A′( j, k)eiθ jk .
Then M ◦ M = A and M has rank < m: as each column of M sums to zero, the sum
of the m rows is the 0-vector so they are linearly dependent. Lemma 1 then completes
the proof. ��

3.2 The behavior of PSD-rank under tensoring

In this subsection, we discuss how PSD-rank behaves under tensoring. Firstly, we have
the following trivial observation on PSD-rank.
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Lemma 3 If P1 and P2 are two nonnegative matrices, then it holds that

rankpsd(P1 ⊗ P2) ≤ rankpsd(P1)rankpsd(P2).

Proof Suppose {Ci } and {Dj } form a size-optimal PSD-factorization of P1, and {Ek}
and {Fl} forma size-optimal PSD-factorization of P2,where the indices are determined
by the sizes of P1 and P2. Then it can be seen that {Ci ⊗ Ek} and {Dj ⊗ Fl} form a
PSD-factorization of P1 ⊗ P2. ��

We now consider an example. Let x, y be two subsets of {1, 2, . . . , n}. The dis-
jointness function, DISJn(x, y), is defined to be 1 if x ∩ y = ∅ and 0 otherwise. We
denote its corresponding 2n-by-2n matrix by Dn , i.e., Dn(x, y) = DISJn(x, y). This
function is one of the most important and well-studied in communication complex-
ity. It can be easily checked that for any natural number k, Dk = D⊗k

1 . According
to the above lemma, we have that rankpsd(Dn) ≤ 2n , where we used the fact that
rankpsd(D1) = 2. This upper bound is trivial as the size of Dn is 2n , but in this case
it is tight as we show now.

The following lemmawas also found independently byBraun and Pokutta (personal
communication).

Lemma 4 Suppose A is an m-by-n nonnegative matrix, and has the following block
expression,

A =
[
B C
D 0

]

.

Then rankpsd(A) ≥ rankpsd(C) + rankpsd(D).

Proof Let the size of B be k-by-l. Suppose {E1, E2, . . . , Em} and {F1, F2, . . . , Fn}
form a size-optimal PSD-factorization of A. Then {E1, E2, . . . , Ek} and {Fl+1, Fl+2,

. . . , Fn} form a PSD-factorization of C , while {Ek+1, Ek+2, . . . , Em} and {F1, F2,

. . . , Fl} form a PSD-factorization of D.
Let the support of a Hermitian operator be the vector space spanned by its eigen-

vectors with non-zero eigenvalues. We claim that the dimension of the support of∑n
i=l+1 Fi , denoted by d, will be at least rankpsd(C). Suppose this is not the case,

i.e., d < rankpsd(C). We can find a unitary matrix U such that U (
∑n

i=l+1 Fi )U
† is

diagonal, has rank d, and is zero outside of the upper left d-by-d block.
We claim that each matrix in the set {UFl+1U †,UFl+2U †, . . . ,UFnU †} will also

be zero outside of the upper left d-by-d block. The (t, t) entry of each UF�+iU † is
non-negative as it is positive semidefinite. If t > d then the (t, t) entry of the sum of
UF�+iU † for i = 1, . . . , n − � is zero. Thus the (t, t) entry of each UF�+iU † must
be zero as well. The fact that all entries of UF�+iU † outside of the upper left d-by-d
block are zero now follows from the fact that Z(s, s)Z(t, t) ≥ |Z(s, t)|2 for a positive
semidefinite matrix Z .

Now let Xi be the upper left d-by-d block of UFl+iU † for i = 1, . . . , n − �

and similarly let Yi be the upper left d-by-d block of UEiU † for i = 1, . . . , k.
Then {Xi }, {Yi } form a PSD-factorization of C with size d. Since d is smaller than
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rankpsd(C), this is a contradiction. By a similar argument, the dimension of the
support of

∑m
i=k+1 Ei will be at least rankpsd(D).

On the other hand, for any i ∈ {k + 1, k + 2, . . . ,m} and j ∈ {l + 1, . . . , n},
Tr(Ei Fj ) = 0, so the support of

∑m
i=k+1 Ei is orthogonal to that of

∑n
i=l+1 Fi ,

meaning the kernel of
∑m

i=k+1 Ei has dimension at least rankpsd(C). Hence
rankpsd(A) ≥ rankpsd(C) + rankpsd(D). ��

Then we have that

Theorem 7 rankpsd(Dn) = 2n.

Proof Note that for any integer k, Dk+1 can be expressed as the following block
matrix.

Dk+1 =
[
Dk Dk

Dk 0

]

,

Then by Lemma 4 we have that rankpsd(Dk+1) ≥ 2rankpsd(Dk). Since
rankpsd(D1) = 2, it follows that rankpsd(Dn) ≥ 2n . Since rankpsd(Dn) ≤ 2n ,
this completes the proof, and the PSD-rank of Dn is full. ��

Based on this example and by analogy to the normal rank, onemight conjecture that
generally rankpsd(P1 ⊗ P2) = rankpsd(P1)rankpsd(P2). This is false, however,
as shown by the following counterexample.

Example 1 Let A =
[
1 a
a 1

]

for nonnegative a. Then A has rank 2, and therefore

PSD-rank 2, as long as a �= 1. On the other hand,

A ⊗ A =

⎡

⎢
⎢
⎣

1 a a a2

a 1 a2 a
a a2 1 a
a2 a a 1

⎤

⎥
⎥
⎦

satisfies the condition of Theorem 6 for any a ∈ [−1 + √
2, 1 + √

2]. Thus for
a ∈ [−1 + √

2, 1 + √
2] \ {1} we have rankpsd(A ⊗ A) < rankpsd(A)2.

3.3 PSD-rank and real PSD-rank

In the original definition of PSD-rank, the matrices of the PSD-factorization can be
arbitrary complex Hermitian PSDmatrices. A natural and interesting question is what
happens if we restrict these matrices instead to be positive semidefinite real matrices.
We call this restriction the real PSD-rank, and for a nonnegative matrix A we denote it
byrankRpsd(A). The following observation shows that themultiplicative gap between
these notions cannot be too large.

Theorem 8 If A is a nonnegative matrix, then rankpsd(A) ≤ rankRpsd(A) ≤
2rankpsd(A).
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Proof It is trivial that rankpsd(A) ≤ rankRpsd(A), so we only need to prove the
second inequality. Suppose r = rankpsd(A), and {Ek} and {Fl} are a size-optimal
PSD-factorization of A. We now separate all the matrices involved into their real and
imaginary parts. Specifically, for any k and l, let Ek = Ck+i ·Dk , and Fl = Gl+i ·Hl ,
whereCk andGl are real symmetric matrices, and Dk and Hl are real skew-symmetric
matrices (i.e., DT

k = −Dk and HT
l = −Hl ). Then it holds that

Akl = Tr(Ek Fl) = (Tr(CkGl) − Tr(DkHl)) + i · (Tr(DkGl) + Tr(CkHl)).

Since Akl is real, we in fact have

Akl = Tr(CkGl) − Tr(DkHl).

Now for any k and l, define new matrices as follows: Sk = 1√
2

[
Ck Dk

−Dk Ck

]

, and

Tl = 1√
2

[
Gl Hl

−Hl Gl

]

. Then Sk and Tl are real symmetric matrices, and Tr(SkTl) =
Tr(CkGl) − Tr(DkHl) = Akl .

It remains to show that the matrices Sk and Tl are positive semidefinite. Suppose

u =
[
v1
v2

]

is a 2r -dimensional real vector, where v1 and v2 are two arbitrary r -

dimensional real vectors. Since Ek is positive semidefinite, we have

0 ≤ (vT2 − i · vT1 )Ek(v2 + i · v1)

= vT1 Ckv1 − vT2 Dkv1 + vT1 Dkv2 + vT2 Ckv2 = √
2uT Sku.

Hence Sk is positive semidefinite. Similarlywe can show that Tl is positive semidefinite
for every l. ��

Below in Example 9 we will exhibit a gap between rankpsd(A) and rankRpsd(A)

by a factor of
√
2.

4 Three new lower bounds for PSD-rank

In this section we give three new lower bounds on the PSD-rank. All of these bounds
are based on the interpretation of PSD-rank in terms of communication complexity.

4.1 A physical explanation of PSD-rank

For a nonnegative m × n matrix P = [P(i, j)]i, j , suppose rankpsd(P) = r . Then
there exist r × r positive semidefinite matrices Ei , Fj , satisfying that P(i, j) =
Tr(Ei Fj ), for every i ∈ [m] and j ∈ [n]. Fiorini et al. showed how a size-r PSD-
factorization of a matrix P induces a one-way quantum communication protocol with
(r + 1)-dimensional messages that computes P in expectation [2]. We will now show
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that without loss of generality the factors E1, . . . , Em, F1, . . . , Fn have a very par-
ticular form. Namely, we can assume that

∑
i Ei = I (so they form a POVM) and

Tr(Fj ) = 1 (so the Fj can be viewed as quantum states).We now give a direct proof of
this without increasing the size. This observation will be the key to our lower bounds.

Lemma 5 Let P be anm-by-n matrix where each column is a probability distribution.
If rankpsd(P) = r , then there exists a PSD-factorization for P(i, j) = Tr(Ei Fj )

such that Tr(Fj ) = 1 for each j and

m∑

i=1

Ei = I,

where I is the r-dimensional identity.

Proof Suppose r -by-r positive semidefinite matrices C1, . . . ,Cm and D1, . . . , Dn

form a PSD-factorization for P . Note that for any r -by-r unitary matrix U , it holds
that

Tr(Ci D j ) = Tr((UCiU
†)(UDjU

†)).

Therefore UCiU † and UDjU † also form a PSD-factorization for P . In the following,
we choose U as the unitary matrix that makes C ′ = UCU † diagonal, where C =∑

i Ci .
According to the proof for Lemma 4, the dimension of the support of C cannot

be smaller than r . Since the size of C is also r , C must be full-rank. Then C ′ is also
full-rank, and one can always find another full-rank nonnegative diagonal matrix V
such that VC′V† = I . Let Ei = VUCiU †V †, and Fj = (V−1)†UDjU †V−1. It is not
difficult to verify that Ei and Fj form another PSD-factorization for P with size r ,
satisfying

∑
i Ei = I .

Finally note that Tr(Fj ) = Tr(Fj I ) = ∑
i Tr(Ei Fj ) = 1 as each column of P

sums to one. ��

4.2 A lower bound based on fidelity

Definition 4 For nonnegative stochastic matrix P , define

B3(P) = max
q

1
∑

i, j qi q j F(Pi , Pj )2
,

where Pi is the i th column of P and the max is taken over probability distributions
q = {q j }.
Theorem 9 rankpsd(P) ≥ B3(P).

Proof Let {Ei }, {ρ j }be a size-optimal PSD-factorizationof P .According toLemma5,
we may assume that

∑
i Ei = I and Tr(ρ j ) = 1 for each j . For a probability distrib-

ution {q j }, let ρ = ∑
j q jρ j . Notice that the dimension of ρ is rankpsd(P), thus the
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rank of ρ will be at most rankpsd(P). We use the trace norm bound Eq. (1) to lower
bound the rank of ρ giving

rankpsd(P) ≥ ‖ρ‖2tr
‖ρ‖2F

= 1

‖ρ‖2F
.

Let us now proceed to upper bound ‖ρ‖2F . We have

‖ρ‖2F = Tr(ρ2) =
∑

i, j

qi q jTr(ρiρ j ) ≤
∑

i, j

qi q j F(ρi , ρ j )
2,

where we used Fact 1. As Pi is obtained from measuring ρi with the POVM {E j },
according to Fact 2 we have that F(ρi , ρ j ) ≤ F(Pi , Pj ), which gives the bound

rankpsd(P) ≥ max
q

1
∑

i, j qi q j F(Pi , Pj )2
. ��

We can extend the notation B3(P) to nonnegativematrices P that are not stochastic,
by first normalizing the columns of P to make it stochastic and then applying B3 to
the resulting stochastic matrix. As rescaling a nonnegative matrix by multiplying its
rows or columns with nonnegative numbers does not increase its PSD-rank, we have
the following definition and corollary.

Definition 5 For a nonnegative m × n matrix P = [P(i, j)]i, j , define

B ′
3(P) = max

q,D

1
∑

i, j qi q j F((DP)i , (DP) j )2
,

where q = {q j } is a probability distribution, D is a diagonal nonnegative matrix, and
(DP)i is the probability distribution obtained by normalizing the i th column of DP
via a constant factor.

Corollary 1 rankpsd(P) ≥ B ′
3(P).

We now see an example where rescaling can improve the bound.

Example 2 Consider the following n × n nonnegative matrix A, where n = 10, and
ε = 0.01.

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 · · · 1 1
ε 1 ε · · · ε ε

ε ε 1 · · · ε ε
...

...
...

. . .
...

...

ε ε ε · · · 1 ε

ε ε ε · · · ε 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Let P be the nonnegative stochastic matrix obtained by normalizing the columns of A.
P has the same PSD-rank as A. By choosing q as the uniform probability distribution,
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we can get a lower bound on B3(P) as follows. Note that for any i ∈ [n] \ {1}, we
have that

f1 := F(P1, Pi ) = 1 + √
ε + (n − 2)ε√

1 + (n − 1)ε · √
2 + (n − 2)ε

,

and for any distinct i, j ∈ [n] \ {1}, it holds that

f2 := F(Pi , Pj ) = 1 + 2
√

ε + (n − 3)ε

2 + (n − 2)ε
.

Then we get

B3(A) ≥ n2

n + 2(n − 1) · f12 + (n − 2)(n − 1) · f22
≈ 2.09.

We now multiply every row of A by 10 except that the first one is multiplied by
0, i.e., the matrix D in Corollary 1 is a diagonal nonnegative matrix with diagonal
(0, 10, . . . , 10). Then we obtain another nonnegative matrix Â = DA. By a similar
calculation as above, it can be verified that B3( Â) ≥ 4.88, hence we have B ′

3(A) ≥
4.88, which is a better lower bound than B3(A).

4.3 A lower bound based on the structure of POVMs

Definition 6 For nonnegative stochastic matrix P , define B4(P) = ∑
i max j P(i, j).

Theorem 10 rankpsd(P) ≥ B4(P).

Proof Let {Ei }, {ρ j } be a size-optimal PSD-factorization of P with
∑

i Ei = I and
Tr(ρ j ) = 1 for each j . Note that this condition on the trace of ρ j implies I � ρ j .
Thus

Tr(Ei ) = Tr(Ei · I ) ≥ max
j

Tr(Eiρ j ) = max
j

P(i, j).

On the other hand, since
∑

i Ei = I , we have

rankpsd(P) =
∑

i

Tr(Ei ) ≥
∑

i

max
j

P(i, j),

where we used that the size of I is rankpsd(P). ��
A variant of B4 involving rescaling can sometimes lead to better bounds:

Definition 7 For a nonnegative m × n matrix P = [P(i, j)]i, j , define

B ′
4(P) = max

D

∑

i

max
j

((DP) j )i ,

123



Some upper and lower bounds on PSD-rank 509

where D is a diagonal nonnegative matrix, (DP) j is the probability distribution
obtained by normalizing the j th column of DP via a constant factor, and ((DP) j )i is
the i th entry of (DP) j .

Corollary 2 rankpsd(P) ≥ B ′
4(P).

Example 3 We consider the same matrices A and D as in Example 2, and get that

B4(A) = 1

1 + (n − 1)ε
+ (n − 1) · 1

2 + (n − 2)ε
≈ 5.24.

Similarly, it can be checked that B ′
4(A) ≥ 8.33. The latter indicates that

rankpsd(A) ≥ 9, which is better than the bound 4 given by B1(A) or 6 by B2(A).

4.4 Another bound that combines B3 with B4

Here we will show that B4 can be strengthened further by combining it with the idea
that bounds Tr(σ 2) in B3, where σ is a quantum state that can be expressed as some
linear combination of ρi ’s.

Definition 8 For a nonnegative stochastic matrix P = [P(i, j)]i, j , define

B5(P) =
∑

i

max
q(i)

∑
k q

(i)
k P(i, k)

√∑
s,t q

(i)
s q(i)

t F(Ps, Pt )2
,

where Ps is the sth column of P , and for every i , q(i) = {q(i)
k } is a probability

distribution.

Theorem 11 rankpsd(P) ≥ B5(P).

Proof Wedefine {Ei } and {ρ j } as before. For an arbitrary i , we define σi = ∑
k q

(i)
k ρk .

This is a valid quantum state. Since Tr(Eiρ j ) = P(i, j), it holds that Tr(Eiσi ) =
∑

k q
(i)
k P(i, k). The Cauchy-Schwarz inequality gives Tr2(Eiσi ) ≤ Tr(E2

i )Tr(σ
2
i ).

This implies that

(
∑

k

q(i)
k P(i, k)

)2

≤ Tr2(Ei )
∑

s,t

q(i)
s q(i)

t F(Ps, Pt )
2,

whereweused the facts thatTr(E2
i ) ≤ Tr2(Ei ) andTr(σ 2

i ) ≤ ∑
s,t q

(i)
s q(i)

t F(Ps, Pt )2;
the latter has been proved in Theorem 9. Therefore, for any distribution q(i) it holds
that

Tr(Ei ) ≥
∑

k q
(i)
k P(i, k)

√∑
s,t q

(i)
s q(i)

t F(Ps, Pt )2
.
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Substituting this result into the fact that
∑

i Tr(Ei ) = rankpsd(P) completes the
proof. ��

We also have the following corollary that allows rescaling.

Definition 9 For a nonnegative m × n matrix P = [P(i, j)]i, j , define

B ′
5(P) = max

D

∑

i

max
q(i)

∑
k q

(i)
k ((DP)k)i

√∑
s,t q

(i)
s q(i)

t F((DP)s, (DP)t )2
,

where for every i ,q(i) = {q(i)
k } is a probability distribution, D is a diagonal nonnegative

matrix, (DP)k is the probability distribution obtained by normalizing the kth column
of P via a constant factor, and ((DP)k)i is the i th entry of (DP)k .

Corollary 3 rankpsd(P) ≥ B ′
5(P).

We now give an example showing that B5 can be better than B4.

Example 4 Consider the following n × n nonnegative matrix A, where n = 10, and
ε = 0.01.

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 ε · · · ε ε

ε 1 1 · · · ε ε

ε ε 1 · · · ε ε
...

...
...

. . .
...

...

ε ε ε · · · 1 1
1 ε ε · · · ε 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

It can be verified that B4(A) ≈ 4.81. In order to provide a lower bound for B5(A), for
any i we choose q(i) as {0, . . . , 0, 1/2, 1/2, 0, . . . 0}, where the positions of 1/2 are
exactly the same as those of 1 in the i th row of A. Straightforward calculation shows
that B5(A) ≥ 5.36, which is better than B4(A).

Even B5 can be quite weak in some cases. For example for the matrix in Example 7
one can show B5(A) < 1.1, which is weaker than B1(A) ≈ 3.16.

5 Comparisons between the bounds

In this section we give explicit examples comparing the three new lower bounds on
PSD-rank (B3, B4 and B5) and the two that were already known (B1 and B2). These
examples will show that: (1) for some cases the three new lower bounds are better
than B1 and B2; (2) the bounds B3 and B4 are incomparable.

All our examples will only use positive entries, which trivializes all support-based
lower bound methods, i.e., methods that only look at the pattern of zero and non-zero
entries in the matrix. Note that most lower bounds on nonnegative rank are in fact
support-based (one exception is [15]). Since PSD-rank is always less than or equal to
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nonnegative rank, the results obtained in the current paper could also serve as new lower
bounds for nonnegative rank that apply to arbitrary nonnegative matrices. Serving as
lower bounds for nonnegative rank, our bounds aremore coarse than the bounds in [15]
(this is natural, as we focus on PSD-rank essentially, and the gap between PSD-rank
and nonnegative rank can be very large [2]). On the other hand, our bounds are much
easier to calculate.

The first example indicates that in some cases B4 can be at least quadratically better
than each of B1, B2 and B3.

Example 5 Consider the following (n + 1) × (n + 1) nonnegative matrix A, where
ε = 1/n.

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 ε ε · · · ε ε

ε 1 ε · · · ε ε

ε ε 1 · · · ε ε
...

...
...

. . .
...

...

ε ε ε · · · 1 ε

ε ε ε · · · ε 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Theorem 14 (below) shows that B4(A) = n+1
2 , and by straightforward calculation

one can also get that B1(A) = √
n, B2(A) = n+1

2
√
n

≈
√
n
2 , and numerical calculation

indicates that B3(A) is around 4.

The second example shows that B3 can also be the best among the four lower
bounds B1, B2, B3, B4, indicating that B3 and B4 are incomparable.

Example 6 Consider the following n × n nonnegative matrix A, where n = 10, and
ε = 0.001.

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 ε · · · ε ε

1 1 1 · · · ε ε

ε 1 1 · · · ε ε
...

...
...

. . .
...

...

ε ε ε · · · 1 1
ε ε ε · · · 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

That is, A = (1 − ε) · B + ε · J , where B is the tridiagonal matrix with all nonzero
elements being 1, and J is the all-one matrix. By straightforward calculation, we find
that B1(A) ≈ 3.16, B2(A) ≈ 3.42, B4(A) ≈ 3.99, and the calculation based on
uniform probability distribution q shows that B3(A) ≥ 4.52. The result of B3(A)

shows that rankpsd(A) ≥ 5.

Unfortunately, sometimes B3 and B4 can be very weak bounds,2 and even the trivial
rank-based bound B1 can be much better than both of them.

2 Even though a nonnegative matrix has the same PSD-rank as its transposition, the bounds given by B3
(or B4) can be quite different, for instance for the matrix A of Example 2.
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Example 7 Consider the following n × n nonnegative matrix A, where n = 10, and
ε = 0.9.

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 ε ε · · · ε ε

ε 1 ε · · · ε ε

ε ε 1 · · · ε ε
...

...
...

. . .
...

...

ε ε ε · · · 1 ε

ε ε ε · · · ε 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

It can be verified that B2(A) ≈ 1.0005, and B4(A) ≈ 1.099. For B3(A), numerical
calculation indicates that it is also around 1. However, B1(A) = √

10 ≈ 3.16. Thus,
the best lower bound is given by B1(A), i.e., rankpsd(A) ≥ 4.

Example 8 For slack matrices of regular polygons, the two new bounds B3 and B4 are
not good either, and inmany cases they are atmost 3.Moreover, numerical calculations
show that rescaling probably cannot improve them by much. Note that the two trivial
bounds B1 and B2 are also very weak for these cases. As an example, consider the
canonical slack matrix of the regular hexagon

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 1 2 2 1
1 0 0 1 2 2
2 1 0 0 1 2
2 2 1 0 0 1
1 2 2 1 0 0
0 1 2 2 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

It can be verified that B1(A) ≈ 1.73, B2(A) ≈ 1.59, B4(A) = 6× 2
6 = 2, and choosing

q in the definition of B3(A) as the uniform distribution gives that B3(A) > 2.1.
Furthermore, our numerical calculations showed that choosing other distributions or
using rescaling could not improve the results much, and never gave lower bounds
greater than or equal to 3. Note that the exact PSD-rank of this matrix is 4 [1].

6 PSD-factorizations for specific functions

In this sectionwe show the surprising power of PSD-factorizations by giving nontrivial
upper bounds on the PSD-ranks of the matrices defined by two important functions
in theoretical computer science, i.e., the nonequality and the inner product functions.
These bounds are tight up to constant factors.

6.1 The nonequality function

The nonequality function defines an n-by-n matrix An with entries An(i, i) = 0 and
An(i, j) = 1 if i �= j . In other words, An = Jn − In where Jn is the all-ones matrix
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and In is the identity of size n. This is also known as the “derangement matrix.” Note
that for n > 1 it has full rank.

The basic idea of our PSD factorization is the following. We first construct n2

Hermitian matrices Gi j of size n with spectral norm at most 1. Then the matrices
I +Gi j and I −Gi j will be positive semidefinite, and these will form the factorization.
Note that

Tr((I + Gi j )(I − Gkl)) = Tr(I ) + Tr(Gi j ) − Tr(Gkl) − Tr(Gi jGkl).

Thus if we can design the Gi j such that Tr(Gi j ) = Tr(Gkl) for all i, j, k, l and
Tr(Gi jGkl) = δikδ jln (where δi j = 1 if i = j , and δi j = 0 otherwise), this will give
a factorization proportional to the nonequality matrix.

For the case where n is odd, we are able to carry out this plan exactly.

Lemma 6 Let n be odd. Then there are n2 Hermitian matrices Gi j of size n such that

– Tr(Gi j ) = Tr(Gkl) for all i, j, k, l ∈ {0, . . . , n − 1}.
– Tr(Gi jGkl) = δikδ jln.
– G2

i j = In.

Proof We will use two auxiliary matrices in our construction. We will label matrix
entries from {0, . . . , n − 1}. Let L be the addition table of Zn , that is L(i, j) = i + j
mod n. Notice that L is a symmetric Latin square3 with distinct entries along the main
diagonal. Let V be the n × n Vandermonde matrix where V (k, l) = e−2π ikl/n for
k, l ∈ {0, . . . , n − 1}. Note that VV† = nIn .

We now define the matrices Gi j for i, j ∈ {0, . . . , n − 1}. The matrix Gi j will be
nonzero only in those (k, l)-entries where L(k, l) = i . Thus the zero/nonzero pattern
of each Gi j forms a permutation matrix with exactly one 1 on the diagonal. These
nonzero entries will be filled in from the j-th row of V . We do this in a way to ensure
that Gi j is Hermitian. Thus V ( j, 0) = 1 will be placed on the diagonal entry of Gi j .
Now fix an ordering of the �n/2� other pairs (k, l), (l, k) of nonzero entries of Gi j

(say that each (k, l) is above the diagonal). In the t-th such pair we put the conjugate
pair V ( j, t), V ( j, n− t). In this way, Gi j is Hermitian, and as the ordering is the same
for all j we have that Tr(Gi jGik) = (〈Vj |, 〈Vk |) = nδ j,k , where 〈Vj | is the j-th row
of V , and (〈Vj |, 〈Vk |) is the inner product of the two complex vectors 〈Vj | and 〈Vk |.

To finish, we check the other properties. Each Gi j has trace one. If i �= k then
Tr(Gi jGkl) = 0, because the zero/nonzero patterns are disjoint. Finally, as the
zero/nonzero pattern of each Gi j is a permutation matrix, and entries are roots of
unity, G2

i j = In . ��

This gives the following theorem for the n2-by-n2 nonequality matrix.

Theorem 12 Suppose n is odd, and let An2 be the nonequality matrix of size n
2. Then

rankpsd(An2) ≤ n.

3 A Latin square is an n-by-n matrix in which each row and each column is a permutation of {0, . . . , n−1}.
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Proof Suppose n2 Hermitian matrices Gi j have been constructed as in Lemma 6. We
now define the matrices Xi j = 1√

n
(I + Gi j ) and Yi j = 1√

n
(I − Gi j ). Note that the

spectral norm of each Gi j is 1, so Xi j and Yi j are PSD. Also, we have

Tr(Xi jYkl) = 1

n

(
Tr(I ) + Tr(Gi j ) − Tr(Gkl) − Tr(Gi jGkl)

)

= 1

n

(
n − δikδ jln

) = 1 − δikδ jl .

��
We now turn to the case that n is even. The result is slightly worse here.

Lemma 7 Let n be even. Then there are n2 − 1 Hermitian matrices Gi j such that

– Tr(Gi j ) = Tr(Gkl) for all i, j, k, l.
– Tr(Gi jGkl) = δikδ jln.
– G2

i j = In.

Proof The construction is similar. Again let V be the Vandermonde matrix of roots
of unity. This time we take a symmetric Latin square L ′ which is different from the
L used above. The entries of L ′ are from {0, . . . , n − 1} and the diagonal has all
entries equal to 0. Note that constructing this kind of L ′ is always possible, and can be
obtained as follows.We first find a symmetric Latin square A of size n−1 with entries
from {1, 2, . . . , n−1}, whose diagonal entries are distinct (this kind of matrices exists
according to the proof for Lemma 6). Then we add an n-th row and n-th column to
A by setting A(n, k) = A(k, n) = A(k, k) for 1 ≤ k < n. Finally we change all the
diagonal entries to 0 and let L ′ be the resulting matrix, which is a symmetric Latin
square.

For i > 0, the matrix Gi j is defined as before, i.e., Gi j is nonzero only in those
(k, l)-entries where L ′(k, l) = i , and the nonzero entries are filled in from the j-th
row of V . Since i > 0, according to the construction of L ′ the nonzero entries of Gi j

will not be on the diagonal. Once again, we choose conjugate pairs from these entries
and put each pair in symmetrical positions to make the matrix obtained Hermitian.
An additional subtlety is that if j is odd then V ( j, 0) = 1 and V ( j, n/2) = −1. They
are not conjugate, but we choose them as a pair and change them to be (i,−i) in the
matrix Gi j , where i denotes the imaginary unit (not to be confused with the index i).
Then the new pair is conjugate, and it can be verified that this change does not affect
the inner product between this matrix and the others.

For i = 0, all the nonzero entries of Gi j will be on the diagonal. For each j , we fill
these entries with a real unit vector that sums to 0. Furthermore, the vectors chosen for
different j are orthogonal to each other. By induction, it can be proved that the size of
the largest set of such n-dimensional vectors is n− 1. In this way, we construct n2 − 1
matrices that satisfy the requirements. ��

Aswith the case where n is odd, we have the following theorem based on Lemma 7.

Theorem 13 Suppose n is even, and let An2−1 be the nonequality matrix of size n
2−1.

Then it holds that rankpsd(An2−1) ≤ n.
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The nonequality function gives a family of matrices where PSD-rank is smaller than
the real PSD-rank.

Example 9 We have seen that for odd n, the PSD-rank of the nonequality matrix of
size n2 is at most n. This is tight by Fact 3, since the rank of the nonequality matrix
of this size is n2. On the other hand, also by Fact 3, the real PSD-rank is at least⌈√

2n − 1/2
⌉
. This shows a multiplicative gap of approximately

√
2 between the real

and complex PSD-rank. The rank lower bound on the real PSD-rank is in fact tight,
as shown by [16, Example 5.1].

Fawzi–Gouveia–Parrilo–Robinson–Thomas [16, Section 2.2] independently obser-
ved that the real and complex PSD-rank are not the same, showing that the 4-by-4
derangement matrix has complex PSD-rank 2, while by Fact 3 the real PSD-rank is at
least 3.

It should bepointedout that the results in the current subsection reveal a fundamental
difference between PSD-rank and the normal rank. Recall that for the normal rank we
have that rank(A − B) ≥ rank(B) − rank(A). Thus if A is a rank-one matrix,
the ranks of A − B and B cannot be very different. The results above, on the other
hand, indicate that the situation is very different for PSD-rank, where A − B and B
can have vastly different PSD-ranks even for a rank-one matrix A. This fact shows
that the PSD-rank is not as robust to perturbations as the normal rank, a contributing
reason to why the PSD-rank is difficult to bound.

Proposition 1 There exist nonnegative matrices A and B, such that A − B is also
nonnegative, and

rankpsd(A − B) < rankpsd(B) − rankpsd(A).

Proof Choose A = J and B = I , where their common size is n, and J is the all-
one matrix. Then we have that rankpsd(A − B) ≈ √

n, rankpsd(B) = n, while
rankpsd(A) = 1. Choosing n large enough gives the desired separation. ��

6.2 Approximations of the identity

Here we first consider the PSD-rank of approximations of the identity. We say that an
n-by-n matrix A is an ε-approximation of the identity if A(i, i) = 1 for all i ∈ [n]
and 0 ≤ A(i, j) ≤ ε for all i �= j . The usual rank of approximations of the identity
has been well studied by Alon [17].

In particular, it is easy to show that if A is an ε-approximation of the identity then

rank(A) ≥ n

1 + ε2(n − 1)
.

Using the bound B4 we can show a very analogous result for PSD-rank.
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Theorem 14 If an n-by-n matrix A is an ε-approximation of the identity, then

rankpsd(A) ≥ n

1 + ε(n − 1)
.

In particular, if ε ≤ 1/n then rankpsd(A) > n/2.

Proof We first normalize each column of A to a probability distribution, obtaining a
stochastic matrix P . Each column will be divided by a number at most 1 + ε(n − 1).
Thus the largest entry of each column is at least 1/(1+ ε(n − 1)). Hence the method
B4 gives the claimed bound. ��

We now show that this bound is tight in the case of small ε. If ε ≥ 1/(n− 1)2, then
by Theorem 6 the PSD-rank of the n-by-n matrix with ones on the diagonal and ε off
the diagonal is not full. On the other hand, if ε < 1/(n−1)2 then any ε-approximation
of the identity has full PSD-rank, by Theorem 14. This gives the following proposition.

Proposition 2 Suppose A(i, i) = 1 for all i ∈ [n] and A(i, j) = ε for i �= j , then
rankpsd(A) = n if and only if ε < 1/(n − 1)2.

Combining this proposition and Lemma 3, we immediately have the following propo-
sition.

Proposition 3 Let m divide n and consider the m-by-m matrix B where B(i, i) = 1
and B(i, j) = 1/(m − 1)2. Then A = In/m ⊗ B is an ε-approximation of the identity,
and rankpsd(A) ≤ n − n

m , where ε = 1/(m − 1)2.

Proof Note that rankpsd(B) ≤ m − 1. ��
As a generalization of approximations of the identity with the same off-diagonal

entries, we now turn to consider the PSD-rank of the following class of matrices

Mc =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c 1 1 · · · 1 1
1 c 1 · · · 1 1
1 1 c · · · 1 1
...

...
...

. . .
...

...

1 1 1 · · · c 1
1 1 1 · · · 1 c

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where c could be any nonnegative real number, and suppose the size of Mc is n-by-
n. For c = 0, Mc is exactly the matrix corresponding to the Nonequality function.
Besides, if c > (n − 1)2, Proposition 2 implies that the PSD-rank of Mc will be full.
In both of these two cases, our results are very tight. Then a natural question is, how
about the case when 0 < c < (n − 1)2 (excluding c = 1)? For this case, it turns
out that we have the following theorem. Combined with B1(Mc) = √

n, this result
indicates that when c is not very large, rankpsd(Mc) is very small, which is much
stronger than Proposition 3.
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Theorem 15 If c > 2, rankRpsd(Mc) ≤ 2�c · �√n. If c ∈ [0, 2], rankRpsd(Mc) ≤
�√2n + 1.

Proof Note that rankRpsd(Mc) ≤ n, which means that when c ≥ √
n/2, the above

theorem is trivially true. Therefore, we only consider the case that c <
√
n/2. We

first suppose c is an integer in the interval (2,
√
n/2). For a fixed r ≥ c, we consider

the largest set S of subsets of [r ] such that every subset has exactly c elements and
the intersection of any two subsets contains at most one element in [r ]. Suppose the
cardinality of S is p(r, c), and the elements of S are {S1, S2, . . . , Sp(r,c)}, i.e., for any
i ∈ [p(r, c)], Si is a subset of [r ] with size c.

For any i ∈ [p(r, c)], we now construct two r -by-r matrices Ei and Fi based on
Si as follows. In Ei , we first choose the submatrix whose row index set and column
index set are Si , and let this submatrix be a c-by-c all-one matrix. All the other entries
of Ei are set to 0. Fi is similar to Ei except that all its diagonal entries are 1. Thus,
for every i , both Ei and Fi are positive semidefinite.

It is not difficult to verify that for any x, y ∈ [p(r, c)], if x = y thenTr(Ex Fy) = c2,
and if x �= y then Tr(Ex Fy) = c. That is, if we choose r properly such that p(r, c) ≥ n,
then { 1c E1, . . . ,

1
c En} and {F1, . . . , Fn} form a size-r PSD-factorization of Mc, which

shows that rankRpsd(Mc) ≤ r .

We have the following lemma to provide bounds on p(r, c).

Lemma 8 Let c be a positive integer and r ≥ c be a prime number. There exists a
family of r2 many c-element sets over a universe of size cr , such that any two distinct
sets from this family intersect in at most one point.

Proof Since r is a prime number, Fr is a finite field. With each (a, b) ∈ Fr × Fr we
associate the following set in the universe [c] × Fr . It is a c-element subset of the
graph of the line y = ax + b.

Sab = {(x, ax + b) : x ∈ [c]}.

We have r2 such sets, one for each choice of a, b. Since two distinct lines can intersect
in at most one (x, y)-pair, we have |Sab ∩ Sa′b′ | ≤ 1 if (a, b) �= (a′, b′). ��

Let us go back to the proof for Theorem 15. Let r be the smallest prime number
greater than or equal to �√n, then we know r ≤ 2�√n. Now r > c, and by the
above lemma there exist r2 ≥ n c-element sets over a universe of size cr . This results
in a PSD-factorization for Mc of size cr , hence rankRpsd(Mc) ≤ cr ≤ 2c · �√n.

We now turn to the case that c ∈ (2,
√
n/2) and c is not an integer. Firstly, we

construct the PSD-factorization for M�c as above. Then we replace all the nonzero
off-diagonal entries of the Ei ’s (which are 1’s) by a = c−1

�c−1 , and obtain E ′
i ’s. Now

{E ′
1, . . . , E

′
n} and {F1, . . . , Fn} form a PSD-factorization for Mc.

Finally, in order to settle the case that c ∈ [0, 2], we first focus on the special
case that c = 2. It is easy to see that in this case, if r is a positive integer, p(r, c) =
1
2r(r − 1). Thus if we choose r = �√2n + 1, it holds that p(r, c) ≥ n, and we have
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rankRpsd(M2) ≤ �√2n+1.When c ∈ [0, 2), we replace all the nonzero off-diagonal
entries of the Ei ’s (which are 1’s) by c − 1, and obtain E ′

i ’s. It can be verified that
{E ′

1, . . . , E
′
n} and {F1, . . . , Fn} form a valid PSD-factorization for Mc. ��

We now consider a more general approximation of the identity than Mc, where the
diagonal entries do not have to be 1, and the off-diagonal entries do not have to be
equal. Alon [17] proved:

Theorem 16 ([17]) There exists an absolute positive constant c so that the following
holds. Let A = [a(i, j)] be an n-by-n real matrix with |a(i, i)| ≥ 1/2 for all i and
|a(i, j)| ≤ ε for any i �= j , where 1

2
√
n

≤ ε ≤ 1/4. Then the rank of A satisfies

rank(A) ≥ c log n

ε2 log (1/ε)
.

Combining the above theorem and Fact 3, we immediately obtain that

Theorem 17 There exists an absolute positive constant c so that the following holds.
Let A = [a(i, j)] be an n-by-n real matrix with |a(i, i)| ≥ 1/2 for all i and |a(i, j)| ≤
ε for any i �= j , where 1

2
√
n

≤ ε ≤ 1/4. Then the PSD-rank of A satisfies

rankpsd(A) ≥ c
√
log n

ε
√
log (1/ε)

.

We do not know if this lower bound on PSD-rank is tight. It is not hard to show
that there are ε-approximations of the n-by-n identity matrix with ε ≈ 1/2 for which
the nonnegative rank is O(log n). For example, we can take a set of n random �-
bit words C1, . . . ,Cn ∈ {0, 1}�. For � = c log n and c a sufficiently large constant,
〈Ci |C j 〉 will be close to �/2 for all i = j and close to �/4 for all i �= j . Hence if we

associate both the i th row and the i th column with the �-dimension vector
√

2
�
Ci , we

get an � = O(log n)-dimensional nonnegative factorization of an approximation of
the identity.

6.3 The inner product function

Let x, y ∈ {0, 1}n be two n-bit strings. The inner product function is defined as
IP(x, y) = ∑n

i=1 xi yi mod 2. We denote the corresponding N -by-N matrix by IPn ,
where N = 2n . We have the following theorem.

Theorem 18 rankRpsd(IPn) ≤ c
√
N, where c = 2 if n is even, and c = 2

√
2 if n is

odd.

Proof We will design a one-way quantum protocol to compute IPn in expectation
and then invoke the equivalence between rankpsd and communication complexity
mentioned in Section 2.2. We will actually prove the bound for more general 0/1-
matrices, of which IPn is a special case. Let W be an N -by-N 0/1-matrix, with rows
and columns indexed by n-bit strings x and y respectively. We first consider the case
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that n is even. View x = x0x1 as concatenation of two n/2-bit strings x0 and x1.
Suppose there exist two Boolean functions f, g : {0, 1}n/2+n → {0, 1} such that
W (x, y) = f (x0, y)+ g(x1, y) mod 2. Then IPn is a special case of such aW , where
f (x0, y) = IP(x0, y0) and g(x1, y) = IP(x1, y1).We now show there exists a one-way
quantumprotocol that computesW in expectation andwhose quantum communication
complexity is at most n/2 + 1 qubits. This implies rankpsd(W ) ≤ 2n/2+1 = 2

√
N .

For any input x , Alice sends the following state of 1 + n/2 qubits to Bob:

|ψx 〉 := 1√
2
(|0, x0〉 + |1, x1〉).

Then by a unitary operation, Bob turns the state into

|ψxy〉 := 1√
2
((−1) f (x0,y)|0, x0〉 + (−1)g(x1,y)|1, x1〉).

Bob then applies the Hadamard gate to the last n/2 qubits and measures those in
the computational basis. If he gets any outcome other than 0n/2, he outputs 0. With
probability 1/

√
2n he gets outcome 0n/2, and then the first qubit will have become

1√
2
((−1) f (x0,y)|0〉 + (−1)g(x1,y)|1〉). By another Hadamard gate and a measurement

in the computational basis, Bob learns the bit f (x0, y) + g(x1, y) mod 2 = W (x, y).
Then he outputs that bit times

√
2n . The expected value of the output is 1√

2n
·(W (x, y)·√

2n) = W (x, y).
For the case that n is odd, Alice can make the length of x even by appending the bit

0 to the end of x , and Bob can do the same change to y. Then we go back to the case
where the inputs have even length, and the inner product remains unchanged. Now
the quantum communication complexity is at most (n+ 1)/2+ 1 qubits, implying for
odd n that rankpsd(W ) ≤ 2(n+1)/2+1 = 2

√
2 · √

N . ��
We give another proof of this theorem by explicitly providing a PSD-factorization

for IPn . Note that the factors in the following PSD-factorization are rank-1 real matri-
ces.

Theorem 19 rankRpsd(IPn) ≤ c
√
N. If n is even, c = 2, and if n is odd, c = 3

2

√
2.

Proof For any k we have IPk+1 =
[
IPk IPk
IPk Jk − IPk

]

, where Jk is the k-by-k all-one

matrix. Using this relation twice, we have that

IPk+2 =

⎡

⎢
⎢
⎣

IPk IPk IPk IPk
IPk Jk − IPk IPk Jk − IPk
IPk IPk Jk − IPk Jk − IPk
IPk Jk − IPk Jk − IPk IPk

⎤

⎥
⎥
⎦ .

Repeating this procedure, it can be seen that IPn can be expressed as a blockmatrixwith
each block being IPk or Jk − IPk for some k < n to be chosen later. We now consider
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a new block matrix Mn with the same block configuration as IPn generated as follows.
The blocks in the first block row of Mn are the same as IPn , that is they are IPk’s. In
the rest of the block rows, if a block of IPn is IPk , then we choose the corresponding
block of Mn to be −IPk , and if a block of IPn is Jk − IPk , the corresponding block of
Mn is also Jk − IPk . It is not difficult to check that Mn ◦ Mn = IPn , and since Mn is
real, we have that rankRpsd(IPn) ≤ rank(Mn).

In order to upper bound the rank of Mn , we add its first block row to the other block
rows, and obtain another matrix M ′

n , with the same rank as Mn , in which all the blocks
are 0 or Jk except those in the first row are still IPk’s. Since the rank of M ′

n can be
upper bounded by the sum of the rank of the first block row and that of the remaining
block rows, we have that

rankRpsd(IPn) ≤ rank(Mn) = rank(M ′
n) ≤ 2k − 1 + N

2k
,

where 2k − 1 comes from the rank of IPk , and N
2k

comes from the number of blocks
in every row of M ′

n . If n is even, we choose k = n/2, and the inequality above is
rankRpsd(IPn) ≤ 2

√
N − 1. If n is odd, we choose k = (n + 1)/2, and the inequality

becomes rankRpsd(IPn) ≤ ( 32

√
2)

√
N − 1. ��
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