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Abstract In this paper we identify strong facet defining inequalities for the master
knapsack polytope. Our computational experiments for small master knapsack prob-
lems show that 1/k-facets for small values of k (k ≤ 4) are strong facets for the
knapsack polytope. We show that this finding is robust by proving that the removal
of these facets from the master knapsack polytope significantly weakens the resulting
relaxation in the worst case. We show that the 1/k-facets for k = 1 are the strongest
in that their removal from the master knapsack polytope weakens the relaxation by
a factor of 3/2 in the worst case. We then show that the 1/k-facets with k = 3 or 4
are the next strongest. We also show that the strength of the 1/k-facets weakens as k
grows and that the 1/k-facets with k even are stronger than the 1/k-facets with k odd.

Mathematics Subject Classification 90C10 · 90C27

1 Introduction

For n > 0, define the vector λ = {λi , i = 1, . . . , n} where λi = i/n. The vector λ is
referred to as the lineality of n. A master knapsack problem of order n is defined to be
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466 S. Shim et al.

max vt, (1)

st
n∑

i=1

λi ti = 1, (2)

t ≥ 0, (3)

ti are integers, (4)

where v ≥ 0. The constraints (2), (3) and (4) define the master knapsack problem
K (n). The convex hull of the solutions to K (n) is denoted by P(K (n)) and referred
to as the master knapsack polytope. The dimension of P(K (n)) is n − 1 and the non-
negativity constraints (3) are facet defining for i ≥ 2: t1 ≥ 0 is not facet defining.
(See Shim [14] and Shim and Johnson [15].) We call the facet-defining non-negativity
constraints as trivial facets. The other facets are called knapsack facets. Since P(K (n))

is not full dimensional, each knapsack facet has infinitely many representations.
In Fulkerson’s blocking framework of the cyclic group and the knapsack problems,

Gomory [8] and Aráoz [1] preferred subadditive relations of π -variables for char-
acterizing the facets; in particular, knapsack facets are represented by π t ≥ πn for
P(K (n)), where π is the length n row vector of coefficients. In this paper, we use an
alternative characterization ξ = −π of knapsack facets ξ t ≤ 1 using superadditive
relations between components of the vector ξ once we fix ξ1 = 0 and ξn = 1. This
characterization is inspired by the characterization of packing knapsack facets in Hun-
saker [13]. The superadditive characterization of knapsack facets allows us to identify
some classes of strong facets for which Chopra et al. [4] develop efficient separation
algorithm. This would not be possible with the subadditive representation. Given our
representation, we define a coefficient vector ξ to be a 1/k-facet if k is the smallest
integer such that

ξi ∈ {0/k, 1/k, 2/k, . . . , k/k} for all i for k even,
ξi ∈ {0/k, 1/k, 2/k, . . . , k/k} ∪ {1/2} for all i for k odd.

}
(5)

1/k-facets build on 1-facets (k = 1) first defined by Aráoz et al. [2]. In Sect. 2, we
introduce the knapsack facets dealt with in this paper.

The ultimate value of studying themaster knapsack polytope comes fromour ability
to use this information to solve the general integer knapsack problem where some of
the variables ti are missing (or set to 0). We believe that 1/k-facets for small values of
k can play an important role in this regard. This paper shows that 1/k-facets for small
values of k are “strong” for themaster knapsack polytope. Ourwork in Chopra et al. [4]
shows that 1/k-facets can be separated effectively for small k. As a result 1/k-facets
for small k can be used effectively when solving the general knapsack problem.

There have been a variety of approaches used to define the strength of a facet
defining inequality. Gomory introduced the shooting experiment as a way to measure
the size of a facet (see Gomory et al. [12].) The shooting experiment shoots arrows
in random directions from the origin and counts the number of shots that hit each
facet. The size of each facet is proportional to the number of shots absorbed by it.
Goemans [7] provides an alternative approach to understand the strength of a class of
facet defining inequalities for the traveling salesman problem (TSP). In his approach,
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The worst case analysis of strong knapsack facets 467

if P and Q are polyhedra in R
n where P is a relaxation of Q obtained by dropping

some inequalities from Q, then the strength of the dropped inequalities from Q can
be measured by the ratio

t (P, Q) = sup
c∈Rn+

min{cx : x ∈ Q}
min{cx : x ∈ P} .

Given that our goal is to identify strong knapsack facets,we use a similar approach to
identify the strength of 1/k-facets. For any knapsack facet ξ t ≤ 1 define P(K (n)−ξ)

to be the polytope obtained by eliminating the inequality ξ t ≤ 1 from a minimal
complete inequality description of P(K (n)). UsingGoemans’ terminology, P(K (n)−
ξ) is a relaxation of P(K (n)). Let zLP(ξ)(v) = max{vt : t ∈ P(K (n) − ξ)} and
z I P (v) = max{vt : t ∈ P(K (n))}. We thus measure the strength of the knapsack
facet ξ t ≤ 1 through its ξ -relaxation gap given by the ratio

max
v∈Rn+

zLP(ξ)(v)

z I P (v)
.

Observe that the ξ -relaxation gap for an inequality ξ t ≤ 1 is obtained when v = ξ . If
ξ t ≤ 1 is a facet defining inequality, z I P (ξ) = 1. We thus obtain

max
v∈Rn+

zLP(ξ)(v)

z I P (v)
= zLP(ξ)(ξ)

z I P (ξ)
= zLP(ξ)(ξ). (6)

The larger the ξ -relaxation gap, the stronger the corresponding inequality is because
its removal from a complete inequality description increases the worst case objec-
tive function value by a large amount. In this paper, we use the ξ -relaxation gap to
characterize the strength of 1/k-facets.

We initiated our research by explicitly evaluating the ξ -relaxation gap for all knap-
sack facets of the master knapsack polytopes P(K (n)) for n ≤ 26. Our computational
analysis for n ≤ 26 showed the following patterns:

1. The ξ -relaxation gaps of all the knapsack facets are ≤ 1 + 1/2.
2. The 1-facets have ξ -relaxation gaps of 1 + 1/2, 1 + 1/3 or 1 + 1/4.
3. The 1-facets are strongest (i.e. have the largest ξ -relaxation gap) and all other

knapsack facets have ξ -relaxation gaps < 1 + 1/4.
4. The next strongest knapsack facets are 1/3-facets and 1/4-facets with ξ -relaxation

gap of 1 + 1/6.

In Sects. 4 and 5, we prove the ξ -relaxation gaps of the 1-facets to be 1+1/2, 1+1/3
or 1+1/4 for all n as suggested in Observation 2. In Sect. 6, we prove that ξ -relaxation
gap of 1/3-facets is at most 1+1/6 as mentioned in Observation 4. In Sect. 7, we prove
the ξ -relaxation gap of 1/4-facets is strictly less than 1+1/4. In Sect. 8, we show that
the ξ -relaxation gaps of the knapsack facets except the 1-facets are strictly less than
1+ 1/2. That is, the upper bound 1+ 1/2 is achieved only among the 1-facets, which
verifies Observation 1 and provides some support for Observation 3.
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468 S. Shim et al.

For large values of n it is very time consuming to evaluate the ξ -relaxation gap.
Thus, we used the shooting experiment to estimate the size of 1/k-facets for large
values of n (see Chopra et al. [4]). The shooting experiment results further validated
Observations 1–4 and provided the following further observations:

5. The size of 1/k-facets decreases as k grows.
6. The size of 1/k-facets is smaller for k odd and larger for k even.
7. There are spikes of the size of 1/k-facets at k where k + 1 divides n + 1.

While Observation 7 is previously known from Gomory et al. [12], all other Obser-
vations 1-6 are new. In Sect. 9, we perform the worst case analysis for a subset of
1/k-facets defined in closed form by Aráoz et al. [2]. Consistent with Observation 5,
we identify upper bounds of these 1/k-facets to be 1 + 1/k which decreases as k
grows. We identify tighter upper bounds 1 + 1/2k for k odd, providing support for
Observation 6.

FollowingGomory, several authors have studied polyhedra corresponding to binary
and cyclic groups. For example, Gomory and Johnson [9,10] defined two-slope facets
for master cyclic group polyhedra, and Cornuejols and Molinaro [6] and Basu et
al. [3] have defined other families of facets for such polyhedra, including three-slope
and (k + 1)-slope facets. Shu et al. [16] gave a new class of 1/3- and 1/4-facets with
no 0-valued coefficient for master binary group polyhedra. Araoz et al. [2] studied
the relation between cyclic group and knapsack facets, and defined strong families of
knapsack facets thatmainly came from2-slope facets in the subadditive representation.

2 Characterization of 1/k-facets

The work of Gomory [8] and Araoz [1] allows us to obtain all knapsack facets ξ t ≤ 1
as the extreme points of a polytope described by polynomially many relations:

Theorem 2.1 The coefficient vectors ξ of the knapsack facets ξ t ≤ 1 of P(K (n))with
ξ1 = 0 and ξn = 1 are the extreme points of the system of linear constraints

ξi + ξ j ≤ ξi+ j whenever i + j < n, (7)

ξi + ξn−i = 1 for 1 ≤ i ≤ n/2, (8)

ξ1 = 0, (9)

ξn = 1. (10)

All feasible solutions to the system give valid inequalities ξ t ≤ 1 for P(K (n)).

Fixing ξ1 = 0 is inspired by the characterization of the packing knapsack facets in
Hunsaker [13]. The knapsack facets become perpendicular to the first non-negativity
constraint t1 ≥ 0 by fixing ξ1 = 0.

The relations (7) and (8) are referred to as superadditivities and complementarities
respectively. Due to superadditivities (7) and the fact that ξ1 = 0, the coefficients of
every knapsack facet ξ must be a non-decreasing sequence, i.e.,

ξi = ξ1 + ξi ≤ ξi+1 for all i = 1, . . . , n − 1. (11)
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The worst case analysis of strong knapsack facets 469

If ξ is a 1/k-facet, due to the complementarities (8), ξ is symmetric in that if ξi = m/k
then ξn−i = (k − m)/k. Let ξ be a symmetric non-decreasing vector as defined in
(5). Then, ξ is uniquely determined by a non-decreasing sequence of indices (am =
min{i : ξi ≥ m/k}) (or (akm) if we need distinguish k from others) where am represents
the first index i such that ξi ≥ m/k. Such a vector ξ will be denoted by ξ k−(am). In this
paper, a 1/k-facet ξ t ≤ 1 will sometimes be denoted by ξ k−(am) and at other times in
terms of its individual components ξi or ξ(i).

Observe that k/2 is not an integer for k odd but is required to obtain the coefficient
1/2. Also, because of symmetry, the number of ξi ’s of value m/k must equal the
number of those of value (k − m)/k. Thus, am for m = 1, . . . , k/2 are enough to
define ξ k−(am ) where ak/2 corresponds to the first index i such that ξi = 1/2. For any
knapsack facet ξ k−(am), the interval ak/2 to n − ak/2 with all coefficients having value
1/2 is referred to as the half landing. We can easily see that ak/2 > n/3 (this implies
that n − ak/2 < 2n/3). A 1/k-facet is a special case for a 1/k-inequality defined in
Chopra et al. [4]. In the rest of this section we introduce a variety of 1/k-facets that
will be studied in the paper. Each special case introduced by us can be described in
closed form.

2.1 The 1-facets

The 1-facets are the 1/k-facets with k = 1. A 1-facet ξ1−(a1/2,a1) is thus defined by
the indices {a1/2, a1} where a1/2 is the first index with coefficient at least 1/2 and a1
is the first index with coefficient 1. If a1/2 = a1, there is no half landing. If a1/2 < a1,
the half-landing of the 1-facet is from a1/2 to n − a1/2 = a1 − 1. One of a1/2 and a1
is enough to decide the other and therefore define the 1-facet. Shim and Johnson [15]
defined the rank r of a 1-facet as

r =
⌈n
2

⌉
− a1/2.

The largest possible rank of a 1-facet is denoted by R(n) which is the largest integer
satisfying

R(n) <
⌈n
2

⌉
− n

3
.

Figure 1 illustrates the coefficients of the 1-facet of rank 2 for P(K (16)). Observe that
ξi = 0 for 0 ≤ i ≤ 5, ξi = 1/2 for 6 ≤ i ≤ 10, and ξi = 1 for 11 ≤ i ≤ 16.

2.2 The 1/3-facets and the 1/4-facets

The 1/3- and 1/4-facets are the 1/k-facets with k = 3 and k = 4 respectively.
Figure 2 illustrates a 1/3-facet of P(K (19)). A 1/3-facet ξ3−(am) is determined by
the first index i = a1 of ξi = 1/3 and the first index i = a3/2 of ξi ≥ 1/2. We see
that a2 = n − a3/2 + 1 and a3 = n − a1 + 1 and simply denote ξ3−(a1,a3/2,a2,a3) by
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0

1/2

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Fig. 1 The graph
(
i, ξ1−(6,11)

i

)
of a 1-facet of P(K (16))

0

1/3

2/3

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Fig. 2 Knapsack facet ξ3−(5,10) of P(K (19))

ξ3−(a1,a3/2). Chopra et al. [5] have given the following characterization of the 1/3-
facets by restrictions to and relations between a1 and a3/2.

Theorem 2.2 (Chopra et al. [5])Let ξ3−(a31 ,a
3
3/2) be a symmetric non-decreasing vector

given by a31 < a33/2 ≤ (n + 1)/2. It is a knapsack facet, if and only if

2a31 + a33/2 ≥ n + 1, and (12)

3a31 ≤ n. (13)

Likewise, a 1/4-facet ξ4−(a1,a2) is determined by a1 and a2 = a4/2. The 1/4-facets
can be characterized as follows:

Theorem 2.3 (Chopra et al. [5]) The vector ξ4−(a1,a2) is a knapsack facet, if and only
if
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1/3

1/2

2/3

5/6

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Fig. 3 The coefficients of the regular 1/6-facet of rank 1 for P(K (18))

a2 ≥ n − a1 + 1

2
, (14)

a2 ≤ 2a1, and (15)

a2 ≤ n − 2a1. (16)

2.3 The regular 1/k-facets

Aráoz et al. [2] defined regular 1/k-facets as follows. Let n = kd with divisors k ≥ 3
and d ≥ 3. The regular 1/k-facet ξ k−(am) of rank r is the 1/k-facet given by

am = md for m <
k

2
and (17)

n − d + 1

2
≤ ak/2 =

⌈n
2

⌉
− r ≤ n + 1

2
. (18)

The largest rank is denoted by Rk(n). Observe that regular 1/k-facets are a subset of
all 1/k-facets where each coefficientm/k for 1 ≤ m < k/2 (for k/2 < m ≤ n) begins
(ends) at regular intervals at the index md where n = kd. For general 1/k-facets the
starting index am for each coefficient m/k need not be regularly distributed.

Figure 3 illustrates the coefficients of the regular 1/6-facet of rank r = 1 for
P(K (18)). Observe that the coefficients of the facet coincide with the coefficients of
the lineality λ = (1/n, 2/n, . . . , n/n) for every index i = md for m ∈ {0, 1, .., k}.
Also observe that the coefficients to the left of the half landing are less than or equal
to the corresponding coefficients in the lineality λ. The coefficients to the right of the
half landing are greater than or equal to the corresponding coefficients in the lineality
λ. As k grows, the regular 1/k-facet of rank 0 converges to the lineality λ.

3 A general approach to finding the ξ -relaxation gap

In this section we describe the general approach used in the rest of the paper to find
the ξ -relaxation gap and also give some preliminary results that are used later in the
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proofs. Assume that we know the complete inequality description of the polytope
P(K (n)). For any objective v ≥ 0, the primal linear program over P(K (n)) can be
written as

max
{
vt : λt = 1, t ≥ 0 and ξ l t ≤ 1 for l = 1, . . . , K

}
, (19)

where λ = (1/n, 2/n, . . . , n/n) and ξ l , l = 1, . . . , K , are all the knapsack facets.
The dual problem can be written as

min x0 + x1 + · · · + xK , (20)

st x0λ + x1ξ
1 + · · · + xK ξ K ≥ v, (21)

xi ≥ 0 for i = 1, . . . , K . (22)

Given any knapsack facet ξ l t ≤ 1 from the complete inequality description, define
P(K (n) − ξ l) to be the polytope obtained by deleting the inequality ξ l t ≤ 1 from
P(K (n)), where we keep all ti ≥ 0 including t1 ≥ 0 though it is not facet-defining for
P(K (n)). To obtain the ξ -relaxation gap zLP(ξ l )(ξ l) we proceed as follows. The first
step is to obtain a primal feasible solution t̂ (referred to as the primal certificate) to

max{ξ l t : t ∈ P(K (n) − ξ l)}.

The next step is to obtain a dual feasible solution x satisfying (21) and (22) with xl = 0
(referred to as the dual certificate) such that the primal and dual objectives have the
same value. We then obtain

zLP(ξ l )(ξ l) = ξ l t̂ .

3.1 Some useful results

In this section, we prove some lemmas that are used for proving theorems throughout
this paper. Our first result gives a minimal representation of the system (7)–(10):

Lemma 3.1 (Shim [14]) A minimal representation of the system (7)–(10) is given by
replacing the inequalities (7) with

ξi + ξ j ≤ ξi+ j for i ≤ j < i + j < n/2, (23)

ξi + ξ j + ξn−i− j ≤ 1 for i ≤ j ≤ n − i − j < n/2, (24)

and 2ξ
(n
4

)
≤ ξ

(n
2

)
= 1

2
if n ≡ 0 mod 4. (25)

The next lemmas give a sufficient condition for an inequality ξ k−(am) to be a
knapsack facet. Chopra et al. [4] discover that the super-additivity relations of ξi are
equivalent to the subadditivity relations of am . The main idea is that (m1 + m2)/k =
ξ(am1) + ξ(am2) ≤ ξ(am1 + am2) implies am1+m2 ≤ am1 + am2 by the definition of
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The worst case analysis of strong knapsack facets 473

am1+m2 . The next lemma is a special case for strict (including all multiples of 1/k)
1/k-inequalities ξ .

Lemma 3.2 Let ξ k−(am) have all the multiples of 1/k except 1/2; i.e.,

ξ k−(am)(am) = m

k
for all m �= k

2
. (26)

It satisfies (7) if and only if

am1 + am2 ≥ a�m1+m2	 for all m1 ≤ m2 with �m1 + m2	 ≤ k. (27)

Lemma 3.3 Let ξ k−(am) satisfy (26) and (27). The inequality ξ k−(am) is a knapsack
facet if

(a) ξ k−(am)(a1) + ξ k−(am )(am−1) = ξ k−(am)(a1 + am−1) for 1 < m < k/2, and
(b) ξ k−(am)(am1) + ξ k−(am)(am2) = ξ k−(am)(am1 + am2) for some m1 ≤ m2 < k/2

with k/2 ≤ m1 + m2 < k.

Proof Let ξ satisfy all binding constraints of ξ k−(am) among (7)–(10) as equalities.
We show that ξ is uniquely determined to be ξ = ξ k−(am), which will complete the
proof of the lemma.

We easily see that ξ1 + ξi−1 = ξi−1 = ξi for i �= am imply

ξi = ξ(am) for am ≤ i < am+1 for k even

ξi = ξ(am) for

{
am ≤ i < am+1,m + 1 ≤ 
 k

2�, for k odd
am ≤ i < ak/2,m = 
 k

2�, for k odd.
(28)

Now, we only need to show that ξ(am) = mξ(a1) = m/k form �= k/2, and ξ(ak/2) =
1/2 if ak/2 < a
k/2+1�.

From (28) and complementarities (8), we see

ξ(am) = 1 − ξ(ak−m) (in particular, ξ(ak/2) = 1 − ξ(ak/2) = 1/2) (29)

unless m = k/2 and ak/2 = a
k/2+1�. From (28), (a) implies that

ξ(a1) + ξ(am−1) = ξ(a1 + am−1) = ξ(am) for 1 < m < k/2

and therefore

ξ(am) = mξ(a1) for 1 < m < k/2. (30)

From (28), (b) is followed by

ξ(am1 + am2) = ξ(am1+m2). (31)
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474 S. Shim et al.

From (30), (31) and (29), (b) implies

(m1 + m2)ξ(a1) = ξ(am1) + ξ(am2) = ξ(am1 + am2)

= ξ(am1+m2) = 1 − ξ(ak−m1−m2)

= 1 − (k − m1 − m2)ξ(a1).

Thus, we have ξ(a1) = 1/k and so ξ(am) = m/k = ξ k−(am)(am), completing the
proof of the lemma. �

The next lemma shows that the 1-facets have the smallest support.

Lemma 3.4 Let a1/2(R(n)) be the first index of the half landing of the 1-facet of the
largest rank R(n). If a knapsack facet ξ with ξ1 = 0 and ξn = 1 has ξa1/2(R(n))−1 = 0,
then ξ is a 1-facet.

Proof Let ξ1−(a1/2) be the 1-facet with a1/2 equal to the index of the first non-zero
component (whichmust be 1/2 or 1) of ξ . That is, ξa1/2 > 0 and ξi = 0 for all i < a1/2.
The knapsack facet ξ satisfies n linearly independent equality constraints including
the equalities in (8)–(10) and binding constraints from (23) and (24). Note that ξ does
not satisfy (25) as equality because ξ

( n
4

) = 0 when n ≡ 0 mod 4.
We show that all the binding constraints from (23) and (24) are satisfied as equalities

by ξ1−(a1/2). Since i ≤ j < i + j < n/2 implies i < n/4 < a1/2(R(n)) and therefore
ξi = 0, every binding constraint from (23) is written as

ξi + ξ j = 0 + ξ j = ξi+ j .

Given that it is satisfied as equality by ξ1−(a1/2), we have

ξ
1−(a1/2)
i + ξ

1−(a1/2)
j = 0 + ξ

1−(a1/2)
j = ξ

1−(a1/2)
i+ j = 0 or

1

2
.

Since i ≤ j ≤ n − i − j < n/2 implies i ≤ n/3 < a1/2(R(n)) and therefore ξi = 0,
every binding constraint from (24) is of the form

ξi + ξ j + ξn−i− j = 0 + ξ j + ξn−i− j = 1.

From ξ j ≤ 1/2 and ξn−i− j ≤ 1/2, we have

ξ j = ξn−i− j = ξ
1−(a1/2)
j = ξ

1−(a1/2)
n−i− j = 1

2
.

The binding constraint is satisfied as equality by ξ1−(a1/2). Thus, the n constraints
uniquely determine ξ = ξ1−(a1/2) completing the proof. �
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The worst case analysis of strong knapsack facets 475

4 The 1-facet of rank 0

In this section, we show that the ξ -relaxation gap for any 1-facet ξ t ≤ 1 of rank 0 is
1+1/2 for n �≡ 0 mod 4 and 1+1/3 for n = 0 mod 4 as mentioned in Observation 2.
Given a 1-facet ξ1−(a1/2) of rank 0, let a1 be the index of the first coefficient equal to
1. We observe that a1 is the smallest integer that is larger than n/2.

To prove the worst case bound, we provide a primal certificate t̂ ∈ P(K (n)

− ξ1−(a1/2)) with objective function value 3/2 if n �≡ 0 mod 4 and 4/3 if n ≡ 0
mod 4. We then provide a dual certificate with only one non-zero component which
is shown to be 3/2 if n �≡ 0 mod 4 and 4/3 if n ≡ 0 mod 4. Thus, the primal objec-
tive value is the same as the dual objective value, proving the ξ -relaxation gap of the
1-facet of rank 0 by strong duality. We first prove the result for n �≡ 0 mod 4.

Lemma 4.1 Let n �≡ 0 mod 4 and let a1 denote the index of the first coefficient equal
to 1 of the 1-facet of rank 0. If a knapsack facet ξ satisfies

ξa1 > 2/3, (32)

then it must be the 1-facet of rank 0.

Proof We show that if (32) holds or equivalently if it holds that

ξn−a1 = 1 − ξa1 < 1 − 2

3
= 1

3
, (33)

then ξ is the 1-facet of rank 0. For the knapsack facet ξ , consider the binding constraints
from (8)–(10) and (23)–(24). (Since n �≡ 0 mod 4, we don’t have to consider (25).)
We show that none of the binding constraints comes from (24) and therefore the 1-facet
of rank 0 is uniquely determined to be ξ by the binding constraints.

By complementarities (8), (24) is equivalent to

ξi + ξ j ≤ 1 − ξn−i− j = ξi+ j ,

where i ≤ j < n/2 < i + j implies

ξi + ξ j ≤ ξn−a1 + ξn−a1 <
1

3
+ 1

3
= 2

3
< ξa1 ≤ ξi+ j . (34)

Therefore, ξ does not satisfy any constraint in (24) as equality, and the 1-facet of rank
0 satisfies all binding constraints of ξ , completing the proof of ξ being the 1-facet of
rank 0. �

In the next result, we obtain our primal certificate.

Lemma 4.2 Let n �≡ 0 mod 4 and let a1 denote the index of the first coefficient equal
to 1 of the 1-facet ξ1−(a1/2) of rank 0. Then, t̂ given by

t̂i =
⎧
⎨

⎩

n − 3a1/2 for i = 1,
3/2 for i = a1,
0 for i �= 1 or a1

(35)
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is a feasible solution to theLPproblemmaximizing ξ1−(a1/2)t over P
(
K (n)−ξ1−(a1/2)

)
.

Proof Considering

ξ · t̂ = ξa1 · t̂a1 = ξa1 · 3
2
,

t̂ is feasible for P
(
K (n) − ξ1−(a1/2)

)
by Lemma 4.1. �

Wenow identify the inequalities over which our dual certificatewill have a non-zero
component.

Lemma 4.3 For n �≡ 0 mod 4,

ξ̂1 = ξ3−(q+1,2q+1) for n = 4q + 1, (36)

ξ̂2 = ξ6−(q,q+1,2q+1) for n = 4q + 2, (37)

ξ̂3 = ξ3−(q+1,2q+2) for n = 4q + 3, (38)

are knapsack facets.

Proof By Theorem 2.2, ξ̂1 and ξ̂3 are knapsack facets. By Lemmas 3.2 and 3.3, ξ̂2 is
a knapsack facet, where (b) of Lemma 3.3 may be satisfied by m1 = m2 = 2.

We now show that 3/2 is the non-zero component in the dual certificate.

Lemma 4.4 For n = 4q + i, i = 1, 2, 3, ξ̂ = ξ̂ i in (36)–(38) satisfies

ξ1−(a1/2) ≤ 3

2
ξ̂ .

Proof Note that ξ̂a1 = 2/3, where a1 is the first index larger than n/2.

We now prove that the ξ -relaxation gap is 1 + 1/2.

Theorem 4.5 For n �≡ 0 mod 4, the ξ -relaxation gap of the 1-facet ξ1−(a1/2) of rank
0 is 1 + 1/2.

Proof Lemma 4.2 gives a feasible solution t̂ with value 3/2 to the primal LP problem
ofmaximizing ξ1−(a1/2)t over P

(
K (n) − ξ1−(a1/2)

)
. Lemma 4.3 gives knapsack facets

ξ̂ such that

ξ̂a1 = 2/3 if n �≡ 0 mod 4.

Lemma 4.4 gives a dual feasible solution with only one nonzero component equal to
3/2 at the dual variable corresponding to ξ̂ . The dual objective value is 3/2 (equal to
the primal objective value) completing the proof of the theorem. �

The next set of results show the ξ -relaxation gap to be 4/3 if n ≡ 0 mod 4. The
proofs of Lemmas 4.6–4.8 are similar to those of Lemmas 4.1–4.3 (except that we use
Theorem 2.3 in the proof of Lemma 4.8) and are thus included in the “Appendix”.
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Lemma 4.6 Let n be a multiple of 4 and let a1 denote the index of the first coefficient
equal to 1 of the 1-facet of rank 0. If a knapsack facet ξ satisfies

ξa1 > 3/4, (39)

then it must be the 1-facet of rank 0.

The next result provides the primal certificate with objective function value 4/3 if
n ≡ 0 mod 4.

Lemma 4.7 Let n ≡ 0 mod 4 and let a1 denote the index of the first coefficient equal
to 1 of the 1-facet of rank 0. Let ξ t ≤ 1 be a knapsack facet of K (n) with ξ1 = 0 and
ξn = 1. Then, t̂ given by

t̂i =
⎧
⎨

⎩

n − 4a1/3 for i = 1,
4/3 for i = a1,
0 for i �= 1 or a1

(40)

is a feasible solution to theLPproblemmaximizing ξ1−(a1/2)t over P
(
K (n)−ξ1−(a1/2)

)
.

Lemma 4.8 For n = 4q, ξ̂ = ξ4−(q,2q) is a knapsack facet.

Thenext result provides the dual certificatewith 4/3as the only non-zero component
and thus an objective function value of 4/3.

Lemma 4.9 For n = 4q, ξ̂ = ξ4−(q,2q) satisfies

ξ1−(a1/2) ≤ 4

3
ξ̂ .

As in the proof of Theorem 4.5, we can show that the ξ -relaxation gap is 1+1/3
if n ≡ 0 mod 4 by showing the equality of the primal and dual objective function
values.

Theorem 4.10 For n ≡ 0 mod 4, the ξ -relaxation gap of the 1-facet of rank 0 is
1 + 1/3.

5 The 1-facets of positive rank

In this section, we show primal certificates (41) and dual certificates (53)–(54) which
prove the following theorem:

Theorem 5.1 The ξ -relaxation gap for any 1-facet ξ of rank r > 0 is 1 + 1/4.

5.1 A primal certificate

Given a 1-facet ξ1−(a1/2(r)) of rank r where 0 < r ≤ R(n), our first step is to obtain a
primal feasible solution for P

(
K (n) − ξ1−(a1/2(r))

)
. In Lemma 5.2 we define a primal
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feasible solution t̂ with objective function value ξ1−(a1/2(r)) t̂ = 1 + 1/4, which leads
to

zLP(ξ)(ξ) ≥ ξ1−(a1/2(r)) t̂ = 1 + 1

4
. (41)

Lemma 5.2 Let 0 < r ≤ R(n) and let a1/2(r) denote the first index of the half landing
of the 1-facet of rank r . A fractional solution

t̂ =
(
t1 = a1/2(r)

2
− 1; ta1/2(r) = 1

2
; tn−a1/2(r)+1 = 1; ti = 0 otherwise

)
,

(42)

is feasible for P(K (n) − ξ1−(a1/2(r))).

Proof Weassume ξ t ≤ 1 is a knapsack facet that is violated by t̂ , and only need to show
that ξ = ξ1−(a1/2(r)). This would prove that t̂ is feasible for P

(
K (n) − ξ1−(a1/2(r))

)
.

Our assumption that ξ t ≤ 1 is violated by t̂ can be written as

1

2
ξa1/2(r) + ξn−a1/2(r)+1 > 1.

By substituting complementarity ξa1/2(r)−1 + ξn−a1/2(r)+1 = 1, it is equivalent to

2ξa1/2(r)−1 < ξa1/2(r). (43)

There are n linearly independent binding constraints including the equalities in
(8)–(10). We may assume that the other binding constraints are from (23)–(25). We
show that (43) allows only three cases (44), (46) and (51) of the binding constraints,
and we see that they are all satisfied by ξ1−(a1/2(r)) as equalities.

For the indices in (23), there are four possible cases

i ≤ j < i + j < a1/2(r) < n/2 (44)

i ≤ j < a1/2(r) ≤ i + j < n/2 (45)

i < a1/2(r) ≤ j < i + j < n/2 (46)

a1/2(r) ≤ i ≤ j < i + j < n/2. (47)

Case (47) provides a contradiction because

n

3
< a1/2(r) ≤ i ≤ j < i + j < n/2.

From (43), case (45) is also forbidden, because it would be followed by

ξi + ξ j ≤ 2ξa1/2(r)−1 < ξa1/2(r) ≤ ξi+ j . (48)
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Since i = j = n
4 ≤ a1/2(r) − 1 and a1/2(r) < n

2 in (48), inequality (25) is forbidden
when n ≡ 0 mod 4. Therefore, only two cases (44) and (46) are possible for the
indices in (23).

For the indices in (24), there are four possible cases

i ≤ j ≤ n − i − j < a1/2(r) < n/2 (49)

i ≤ j < a1/2(r) ≤ n − i − j < n/2 (50)

i < a1/2(r) ≤ j ≤ n − i − j < n/2 (51)

a1/2(r) ≤ i ≤ j ≤ n − i − j < n/2. (52)

From (43), cases (49) and (50) are forbidden by

ξi + ξ j + ξn−i− j ≤ 2ξa1/2(r)−1 + 1

2
< ξa1/2(r) + 1

2
≤ 1

2
+ 1

2
= 1.

Case (52) provides a contradiction

n

3
< a1/2(r) ≤ i ≤ j ≤ n − i − j < n − n

3
− n

3
= n

3
.

Therefore, (51) is only possible case for the indices in (24).
Since inequalities (23) in cases (44) and (46) and inequalities (24) in case (51)

are satisfied by ξ1−(a1/2(r)) as equalities, the n binding constraints uniquely determine
ξ1−(a1/2(r)) completing the proof of the lemma. �

5.2 Dual certificates

Our next step is to identify dual feasible solutions with a weight of 0 on the deleted
1-facet ξ1−(a1/2(r)) and an objective value 5/4. For ξ = ξ1−(a1/2(r)) with r > 0, we
show that if n = 2 mod 3 and r = R(n),

ξ1−(a1/2(r)) ≤ 5

4
· ξ̂ for a knapsack facet ξ̂ . (53)

Thus a dual solution with weight 5/4 on ξ̂ and 0 elsewhere is feasible and has objective
value 5/4. For all other cases we show that

ξ1−(a1/2(r)) ≤ 1 · ξ̂ + 1

4
· ξ1−(a1/2(0)) for a knapsack facet ξ̂ . (54)

Thus a dual solution with weight 1 on ξ̂ , 1/4 on ξ1−(a1/2(0)) and 0 elsewhere is feasible
and has objective value 5/4. They certify that the ξ -relaxation gap of ξ1−(a1/2(r)) with
r > 0 is less than or equal to 1+ 1/4. We first consider the case when n ≡ 2 mod 3.
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5.2.1 The 1-facet of the largest rank R(n) in case n = 2 mod 3

If n ≡ 2 mod 3, then either n ≡ 2 mod 6 or n ≡ 5 mod 6. We show that (53)
holds in either case.

Lemma 5.3 Let n ≡ 2 mod 6 and let R(n) ≥ 2 be the largest rank of a 1-facet

for P(K (n)). Then, n = 6R(n) + 2 and the 1/5-facet ξ̂ = ξ
5−(a51 ,a

5
2 ,a

5
5/2) given by

a51 = R(n) + 1, a52 = 2R(n) + 1 and a55/2 = 3R(n) + 1 satisfies

ξ1−(a1/2(R(n))) ≤ 5

4
· ξ̂ .

Lemma 5.4 Let n = 5 mod 6 and let R(n) ≥ 2 be the largest rank of a 1-facet

for P(K (n)). Then, n = 6R(n) − 1 and the 1/5-facet ξ̂ = ξ
5−(a51 ,a

5
2 ,a

5
5/2) given by

a51 = R(n), a52 = 2R(n) and a55/2 = 3R(n) satisfies (53), i.e.

ξ1−(a1/2(R(n))) ≤ 5

4
· ξ̂ .

5.2.2 All the other 1-facets of rank r > 0

We now show that (54) holds in all other cases. Unless n = 2 mod 3 and r = R(n),
each rank r satisfies

r <
n + 1

6
whenever n is odd

r <
n − 2

6
whenever n is even,

which imply n + 1 − 2a1/2(r) < a1/2(r). We use this observation to define ξ̂ in the
following lemma.

Lemma 5.5 Assume that n �= 2 mod 3 or r �= R(n). Let a1/2(r) be the first index of
the half landing of the 1-facet of rank r and let

m = max

{⌈
a1/2(r)

2

⌉
, n + 1 − 2a1/2(r)

}
.

Then, m < a1/2(r) and therefore ξ̂ = ξ4−(m,a1/2(r)) is well-defined. It is a knapsack
facet satisfying (54), i.e.,

ξ1−(a1/2(r)) ≤ 1 · ξ̂ + 1

4
· ξ1−(a1/2(0)).

The results in Sects. 5.1 and 5.2 together prove Theorem 5.1.
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6 The 1
3-facets

In this section, consistent with Observation 4 we first show that the gap of a 1/3-facet
is less than or equal to 1+ 1/6. Then, we identify a strong 1/3-facet with gap 1+ 1/6
for every n ≡ 3 mod 4. It shows that 1+1/6 is the best achievable gap for 1/3-facets.

6.1 The bound of the gap of the 1/3-facets

Theorem 6.1 The ξ -relaxation gap of a 1
3 -facet ξ3−(a1,a3/2) is less than or equal to

1 + 1/6.

Proof To prove the result we need to find dual feasible solutionswith a value of 1+1/6
and a weight of 0 on the selected 1/3-facet. The case when a1 = n/3 is included in
the more general result in Theorem 9.2. We thus assume that a1 < n/3. From (12) in
Theorem 2.2we need to consider two cases, 2a1+a3/2−1 > n and 2a1+a3/2−1 = n.

Firstly, let 2a1 + a3/2 − 1 > n. Then, ξ3−(a1,a3/2−1) is a knapsack facet, and

ξ3−(a1,a3/2) ≤ ξ3−(a1,a3/2−1) + 1

6
ξ1−(a1/2(0))

follows from

ξ3−(a1,a3/2) − ξ3−(a1,a3/2−1)

= 0 ≤ 1

6
ξ
1−(a1/2(0))
i for i �= {1, . . . , n} \ {a3/2 − 1, n − a3/2 + 1},

= 1

3
− 1

2
= −1

6
≤ 0 = 1

6
ξ
1−(a1/2(0))
i for i = a3/2 − 1,

= 2

3
− 1

2
= 1

6
= 1

6
· 1 = 1

6
ξ
1−(a1/2(0))
i for i = n − a3/2 + 1.

The dual feasible solution thus assigns weight 1 to ξ3−(a1,a3/2−1) and weight 1/6 to
ξ1−(a1/2(0)). Thus, the theorem is true when 2a1 + a3/2 − 1 > n.

Secondly, let 2a1 +a3/2 −1 = n. Given a1, the half landing is then largest possible
and, therefore, ξ3−(a1,a3/2−1) is not a knapsack facet. Theorem 6.4 will show the ξ -
relaxation gap equals 1 + 1/6 if 2a1 + a3/2 − 1 = n and n ≡ 3 mod 4. We thus

assume here that n �≡ 3 mod 4. Instead of ξ3−(a1,a3/2−1), we consider ξ6−(a6m) given
by a61 = a1 − 1, a62 = a1 and a63 = a3/2. This inequality is a knapsack facet by
Lemmas 3.2 and 3.3 with m1 = m2 = 2 in (b) of Lemma 3.3. We then obtain

ξ3−(a1,a3/2) ≤ ξ6−(a6m) + 1

6
ξ1−(a1/2(0)).

In this case, the dual feasible solution assignsweight 1 to ξ6−(a6m) and 1/6 to ξ1−(a1/2(0))

and 0 elsewhere. This completes the proof of the theorem. �
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6.2 Strong 1/3-facets with ξ -relaxation gap 1+ 1/6

Now we identify a set of 1/3-facets that achieve the upper bound gap of 1 + 1/6
showing that a gap of 1 + 1/6 is the best achievable for 1/3-facets. We show that the
1/3-facet ξ3−(q+1,2q+2) for n = 4q + 3 achieves the ξ -relaxation gap of 1 + 1/6,
the largest achievable for 1/3-facets. We do so by defining suitable primal and dual
certificates.

The first step is to obtain a primal certificate t̂ with objective function value
ξ3−(q+1,2q+2) t̂ = 7/6.

Lemma 6.2 Let n = 4q + 3. Then,

t̂ =
(
t̂1 = n − 7

2
(q + 1); t̂q+1 = 7

2
; t̂i = 0 for i �= 1 or q + 1

)
(55)

is feasible for P(K (n) − ξ3−(q+1,2q+2)).

Proof See the online appendix. �
The next step is to obtain a dual feasible solution with value 7/6 and weight 0 on

the inequality ξ3−(q+1,2q+2).

Lemma 6.3 Let n = 4q + 3. A 1/7-facet ξ̂ = ξ7−(a7m) given by a71 = q, a72 = q + 1,
a73 = 2q + 1 and a77/2 = 2q + 2 satisfy

ξ3−(q+1,2q+2) ≤ 7

6
· ξ̂ . (56)

Proof Inequality ξ7−(a7m) is a knapsack facet by Lemmas 3.2 and 3.3 withm1 = m2 =
2 in (b) of Lemma 3.3. Then, a72 = q + 1 and a77/2 = 2q + 2 imply (56).

Theorem 6.4 Let n = 4q + 3. The ξ -relaxation gap of 1/3-facet ξ3−(q+1,2q+2) is
1 + 1/6.

Proof Lemma 6.2 gives a feasible solution t̂ with value 7/6 to the primal LP problem
of maximizing ξ3−(q+1,2q+2)t over P

(
K (n) − ξ3−(q+1,2q+2)

)
. Lemma 6.3 gives a

dual feasible solution with only one nonzero component equal to 7/6 at the dual
variable corresponding to ξ̂ . The dual objective value is 7/6 completing the proof of
the theorem.

7 The 1
4 -facets

In this section, we show that the gap for a 1/4-facet is strictly less than 1+ 1/4. Then,
we identify a 1/4-facet with gap 1 + 1/6 for every n ≡ 4 mod 6. This still leaves
some room between 1 + 1/6 and 1 + 1/4 in terms of the best achievable gap for
1/4-facets. In our computational experiment we did not find any 1/4-facets with gap
larger than 1 + 1/6.
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7.1 A strict bound of the gap for 1/4-facets

Theorem 7.1 The ξ -relaxation gap for a 1/4-facet ξ4−(a1,a2) is strictly less than
1 + 1/4.

Proof To prove the result we identify a dual feasible solution with objective value
strictly less than 1+ 1/4. Given 1/4-facet ξ4−(a1,a2), there exists a 1-facet ξ1−(a1/2(r))

with a2 as the first index of the half landing; i.e.,

a1/2(r) = a2, (57)

because Theorem 2.3 implies n
5 < a1 < n

3 and (14) implies

a2 ≥ n − a1 + 1

2
= n + 1

2
− a1 · 1

2
>

n + 1

2
− n

3
· 1
2

= n

3
+ 1

2
>

n

3
.

Let ξ1−(a1/2(r)) satisfy (57). Given lineality λ, in order to prove the theorem, we
only need to show

n

4a1
· λ +

(
5

4
− n

4a1
− ε

)
· ξ1−(a1/2(r)) ≥ ξ4−(a1,a2) for a small ε > 0. (58)

If we can prove (58) we obtain the appropriate dual feasible solution by assigning

weight n
4a1

to the lineality λ,
(
5
4 − n

4a1
− ε

)
to ξ1−(a1/2(r)) and 0 to all other inequali-

ties. We prove (58) by showing

n

4a1
· i
n

+
(
5

4
− n

4a1
− ε

)
· 0 ≥ 1

4
for i ≥ a1 (59)

n

4a1
· i
n

+
(
5

4
− n

4a1
− ε

)
· 1
2

≥ 1

2
for i ≥ a2 (60)

n

4a1
· i
n

+
(
5

4
− n

4a1
− ε

)
· 1 ≥ 3

4
for i ≥ n − a2 + 1 (61)

n

4a1
· i
n

+
(
5

4
− n

4a1
− ε

)
· 1 ≥ 1 for i > n − a1. (62)

We can immediately see that (59) holds, because i
4a1

≥ 1
4 is equivalent to i ≥ a1.

We show (60) by (14) in Theorem 2.3 which implies

i ≥ a2 ≥ n − a1 + 1

2
= n − a1

2
+ 1

2
>

n − a1
2

.

The strict inequality i > n−a1
2 is equivalent to

i

4a1
+ 1

8
>

n

8a1
.
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It implies that

n

4a1
· i
n

+
(
5

4
− n

4a1

)
· 1
2

= i

4a1
+ 1

8
+ 1

2
− n

8a1
>

1

2
,

completing the proof of (60).
We show (61) by (15) in Theorem 2.3 which implies a2 ≤ 2a1 and therefore

i ≥ n − a2 + 1 > n − 2a1. The strict inequality i > n − 2a1 is equivalent to

i

4a1
+ 1

2
>

n

4a1
.

It implies that

n

4a1
· i
n

+
(
5

4
− n

4a1

)
· 1 = i

4a1
+ 1

2
+ 3

4
− n

4a1
>

3

4
,

completing the proof of (61).
We now show (62). The assumption i > n − a1 is equivalent to

i

4a1
+ 1

4
>

n

4a1
.

It implies that

n

4a1
· i
n

+
(
5

4
− n

4a1

)
· 1 = i

4a1
+ 1

4
+ 1 − n

4a1
> 1,

completing the proof of (62). Thus, (58) holds completing the proof of the theorem. �

7.2 Strong 1/4-facets with gap 1+ 1/6

We now define a set of 1/4-facets with a provable ξ -relaxation gap of 1 + 1/6. We
show that the ξ -relaxation gap for ξ4−(2q+1,2q+2) for n = 6q+4 is 1+1/6 by defining
suitable primal and dual certificates.

To prove the primal certificate, we restrict some components of the knapsack facet.

Lemma 7.2 Let n = 6q+4 and let a knapsack facet ξ with ξ1 = 0 and ξn = 1 satisfy

2

3
ξ2q+1 + 2ξ2q+2 > 1. (63)

Then, it holds that

ξ2q <
2

10
, (64)
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ξ2q+1 ≤ 3

10
, (65)

and ξ2q+2 >
4

10
. (66)

Proof Since (63) and (65) imply (66) and (64) by

ξ2q+2 >
1

2
×

(
1 − 2

3
ξ2q+1

)
≥ 1

2
×

(
1 − 2

3
× 3

10

)
= 4

10
and

ξ2q = 1 − ξ4q+4 ≤ 1 − (
ξ2q+2 + ξ2q+2

)
< 1 − 2 × 4

10
= 2

10
,

we only need to show (65). Since 3 × (2q + 1) ≤ 6q + 4 = n implies 3ξ2q+1 ≤ 1,
we have

ξ2q+1 ≤ 1

3
. (67)

We denote the initial upper bound in (67) by U 0
2q+1 = 1/3 and show a decreasing

sequence
(
Uk
2q+1

)∞
k=1

with ξ2q+1 < Uk
2q+1 converging to 3/10.

From (63) and (67), we have that

ξ2q+2 >
1

2
×

(
1 − 2

3
ξ2q+1

)
≥ 1

2
×

(
1 − 2

3
U 0
2q+1

)
= 1

2
− 1

3
U 0
2q+1. (68)

Complementarity (8) and (68) imply

ξ4q+2 = 1 − ξ2q+2 < 1 −
(
1

2
− 1

3
U 0
2q+1

)
= 1

2
+ 1

3
U 0
2q+1. (69)

As a result we have

ξ2q+1 = 1

2

(
ξ2q+1 + ξ2q+1

) ≤ 1

2
ξ4q+2 <

1

2

(
1

2
+ 1

3
U 0
2q+1

)
= 1

4
+ 1

6
U 0
2q+1.

We now define new strict upper bound U 1
2q+1 given by

ξ2q+1 < U 1
2q+1 = 1

4
+ 1

6
U 0
2q+1. (70)

We repeat the process above to recursively define an infinite sequence
(
Uk
2q+1

)∞
k=1

of strict upper bounds of ξ2q+1 by

Uk
2q+1 = 1

4
+ 1

6
Uk−1
2q+1 = 5

6
× 3

10
+ 1

6
Uk−1
2q+1 for k = 1, 2, . . . (71)
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Since Uk
2q+1 is a convex combination of 3/10 and Uk−1

2q+1 in (71), we have

U 0
2q+1 = 1

3
> U 1

2q+1 > U 2
2q+1 > · · · >

3

10
.

For k = 0, 1, 2, . . ., we can write Uk
2q+1 explicitly as

Uk
2q+1 = 3

10
+

(
U 0
2q+1 − 3

10

)
×

(
1

6

)k

= 3

10
+

(
1

3
− 3

10

)
×

(
1

6

)k

= 3

10
+ 1

30
×

(
1

6

)k

.

Since
(
Uk
2q+1

)∞
k=1

is a decreasing sequence converging to 3/10 such that ξ2q+1 <

Uk
2q+1, it holds that

ξ2q+1 ≤ 3

10
,

completing the proof of the lemma. �
We now define our primal certificate t̂ :

Lemma 7.3 Let n = 6q + 4, q ≥ 1. Then,

t̂ =
(
t̂1=n − 16

3
q − 14

3
; t̂2q+1=2

3
; t̂2q+2 = 2; t̂i = 0 for i �= 1, 2q + 1or2q + 2

)

(72)

is feasible for P
(
K (n) − ξ4−(2q+1,2q+2)

)
.

Proof In order to show that t̂ in (72) is feasible for P
(
K (n) − ξ4−(2q+1,2q+2)

)
, we

only need to show that all knapsack facets ξ except ξ4−(2q+1,2q+1) satisfy

ξ t̂ = 2

3
ξ2q+1 + 2ξ2q+2 ≤ 1. (73)

Equivalently, we show that, if a knapsack facet ξ satisfies (63), then ξ =
ξ4−(2q+1,2q+2). Let ξ be a knapsack facet satisfying (63). Then, there are n lin-
early independent relations binding at ξ which include the equalities in (8)–(10)
and relations from (23)–(25). By Lemma 7.2, they are all shown to be equalities
at ξ = ξ4−(2q+1,2q+2), which will complete the proof of the lemma. (See the online
appendix for more details.) �

We now define the appropriate dual certificate.
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Lemma 7.4 Let n = 6q + 4, q ≥ 1. Then, ξ̂ = ξ10−(a10m ) defined by a101 = q,
a102 = q + 1, a103 = 2q + 1, a104 = 2q + 2 and a105 = 3q + 2 is a knapsack facet and
satisfies

ξ4−(2q+1,2q+2) ≤ 5

6
ξ̂ + 1

3
ξ1−(a1/2(R(n))). (74)

Proof We prove this lemma in a similar way to the proof of Lemma 6.3. �

Theorem 7.5 Let n = 6q+4, q ≥ 1. The ξ -relaxationgapof1/4-facet ξ4−(2q+1,2q+2)

is 1 + 1/6.

Proof Lemma 7.3 gives a feasible solution t̂ with value 7/6 for the primal LP problem
of maximizing ξ4−(2q+1,2q+2)t over P

(
K (n) − ξ4−(2q+1,2q+2)

)
. Lemma 7.4 gives a

dual feasible solution with two nonzero components, 5/6 and 1/3, as the dual vari-
ables corresponding to the knapsack facet ξ̂ (defined in Lemma 7.4) and the 1-facet
ξ1−(a1/2(R(n))) of the largest rank. The dual objective value is 7/6 = 5/6 + 1/3 com-
pleting the proof of the theorem. �

8 A global upper bound for the ξ -relaxation gap

Consistent with Observations 1 and 2, we show that 1 + 1/2 is an upper bound over
all the knapsack facets and can be achieved only among the 1-facets.

Proposition 8.1 Let ξ be a knapsack facet with ξ1 = 0 and ξn = 1, and let m ≥ 2.
Then,

ξi ≤ ξi0

m
whenever i ≤ i0

m
.

Proof By super-additivities (7),

mξi ≤ (m − 2)ξi + ξ2i ≤ (m − 3)ξi + ξ3i ≤ · · · ≤ ξi + ξ(m−1)i ≤ ξmi ≤ ξi0 .

�

Theorem 8.2 Let ξ be a knapsack facet with ξ1 = 0 and ξn = 1. If ξ is not a 1-facet,

zLP(ξ)(ξ) < 1 + 1

2
. (75)

Proof Recall that λ is the lineality of n. We first show that for i /∈ ( n
2 , 2n

3

)
,

ξi <

(
1 + 1

2

)
· i
n

=
(
1 + 1

2

)
· λi . (76)
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For n
m+1 < i ≤ n

m where m ≥ 2, substituting i0 = n for Proposition 8.1 gives

ξi ≤ 1

m
.

Since m ≥ 2 and i > n
m+1 , we obtain

ξi ≤ 1

m
≤ 3

2(m + 1)
<

3

2
· i · 1

n
.

Therefore, (76) holds for all i ≤ n/2. For i > 2n
3 ,

ξi ≤ 1 = 3

2
· 2n
3

· 1
n

<
3

2
· i · 1

n
= 3

2
· λi .

Since ξ is not a 1-facet, Lemma 3.4 implies

ξi < 1 = 3

2
· i
n

= 3

2
· λi

for i = 2n
3 when n is a multiple of 3. Thus, for every i ≤ n

2 and for every i ≥ 2n
3 , (76)

holds. If ξ satisfies (76) for n
2 < i < 2n

3 , it satisfies (75).
Now, we assume that ξ does not satisfy (76) for some n

2 < i < 2n
3 ; i.e.,

ξi ≥ 3

2
· i
n
. (77)

Let ī1 be the first index satisfying (77), and let i1 = n − ī1. Then, i1 is the last index
in n

3 < i1 < n
2 which satisfies

ξi1 ≤ 3

2
· i1
n

− 1

2
. (78)

Let î be the first index satisfying

ξî ≥ î

n
= λî .

Then, for all i < î ,

ξi <
i

n
= λi . (79)

We show that i1 < î , and that for all i ,

ξi < λi + 1

2
ξ
1−(a1/2(r))
i , (80)

123



The worst case analysis of strong knapsack facets 489

where the rank r of ξ1−(a1/2(r)) is set up for î to be the first index of the half-landing
of ξ1−(a1/2(r)) (r = 0 if î ≥ n

2 ).

Firstly, we show that i1 < î . For i ≤ i1
2 , (78) and Proposition 8.1 imply that for

i1
3 < i ≤ i1

2 with m = 2,

ξi ≤ 1

2
ξi1 ≤ 1

2
·
(
3

2
· i1
n

− 1

2

)
= 1

2
· i1
n

+ 1

4
· i1
n

− 1

4

<
1

2
· 1
2

+ i1
3

· 1
n

− 1

4
<

1

4
+ i · 1

n
− 1

4
= i

n
,

and that for i1
m+1 < i ≤ i1

m with m ≥ 3,

ξi ≤ 1

m
ξi1 ≤ 1

m
·
(
3

2
· i1
n

− 1

2

)
= 3i1 − n

2nm

<
3(m + 1)i − n

2nm
= 2mi + mi + 3i − n

2nm
= i

n
+ (m + 3)i − n

2nm

≤ i

n
+ 2mi − n

2nm
≤ i

n
+ 2i1 − n

2nm
<

i

n
+ 0

2nm
= i

n
.

For i1
2 < i ≤ i1,

ξi ≤ ξi1 ≤ 3

2
· i1
n

− 1

2
= 1

2
· i1
n

+ i1
n

− 1

2

<
1

2
· i1
n

+ 1

2
− 1

2
= i1

2
· 1
n

<
i

n
.

Thus, (79) holds for all i ≤ i1, and therefore by the definition of î

n

3
< i1 < î . (81)

It implies that ξ1−(a1/2(r)) with î as the first index of its half-landing (r = 0 if î ≥ n
2 )

is well-defined and (80) holds for all i < î . Thus,

ξi < λi = λi + 1

2
· 0 < λi + 1

2
ξ
1−(a1/2(r))
i .

Secondly, we show that (80) holds for all i ≥ î . If î ≥ n
2 , (80) is trivial for all i ≥ î .

We assume that î < n
2 . For î ≤ i ≤ n

2 , (81) implies that

ξi ≤ 1

2
= 1

3
+ 1

6
<

i

n
+ 1

3
· 1
2

= i

n
+ 1

3
ξ
1−(a1/2(r))
i

<
i

n
+ 1

2
ξ
1−(a1/2(r))
i = λi + 1

2
ξ
1−(a1/2(r))
i .
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For n
2 < i ≤ n − î , (81) implies that

ξi ≤ ξn−î = 1 − ξî < 1 − 1

3
= 1

2
+ 1

6
<

i

n
+ 1

3
· 1
2

= i

n
+ 1

3
· ξ

1−(a1/2(r))
i

<
i

n
+ 1

2
· ξ

1−(a1/2(r))
i = λi + 1

2
· ξ

1−(a1/2(r))
i .

For i > n − î > n
2 ,

ξi ≤ 1 = 1

2
+ 1

2

<
i

n
+ 1

2
· 1 = i

n
+ 1

2
· ξ

1−(a1/2(r))
i = λi + 1

2
· ξ

1−(a1/2(r))
i ,

completing the proof of the theorem. �

9 A decreasing and oscillating bound for the ξ -relaxation gap

In this section, we prove two results. Consistent with Observation 5, we provide
a bound for the ξ -relaxation gap of regular 1/k-facets that decreases as k grows.
Consistent with Observation 6 we show that the bound for the ξ -relaxation gap for
regular 1/k-facets is smaller for k odd compared to k even.

Theorem 9.1 Let k ≥ 3. The ξ -relaxation gap of the regular 1/k-facets ξ k−(am) is
strictly less than 1 + 1/k.

Proof Let ak/2 denote the first index of the half landing of ξ k−(am). For i < ak/2 and
ε > 0,

ξ
k−(am)
i − λi = 1

k
·
⌊
i

d

⌋
− i

kd
= 1

k
·
(⌊

i

d

⌋
− i

d

)

≤ 1

k
· 0 = 0 =

(
1

k
− ε

)
· 0 =

(
1

k
− ε

)
ξ
1−(a1/2(r))
i . (82)

Let the 1-facet ξ1−(a1/2(r)) of rank r have the same half landing as that of ξ k−(am);
i.e.,

a1(r) = ak/2.

For ak/2 ≤ i ≤ n − ak/2, the lower bound in (18) implies

ξ
k−(am)
i − λi = 1

2
− i

n
≤ 1

2
− ak/2

n

<
1

2
− 1

2
·
(
1 − 1

k

)
= 1

k
· 1
2

= 1

k
ξ
1−(a1/2(r))
i . (83)
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For i > n − ak/2,

ξ
k−(am)
i − λi = 1 − 1

k
·
⌊
n − i

d

⌋
− i

n

=
(
1 − i

n

)
− 1

k
·
⌊
n − i

d

⌋
= n − i

n
− 1

k
·
⌊
n − i

d

⌋

= n − i

kd
− 1

k
·
⌊
n − i

d

⌋
= 1

k
·
(
n − i

d
−

⌊
n − i

d

⌋)

<
1

k
· 1 = 1

k
ξ
1−(a1/2(r))
i . (84)

From (82), (83) and (84), we have

ξ k−(am) − λ ≤
(
1

k
− ε

)
ξ1−(a1/2(r))

for a small ε > 0, completing the proof of the theorem. �
Theorem 9.1 shows that as k gets larger, the ξ -relaxation gap approaches 1. In other

words a regular 1/k-facet for small k is much stronger than a 1/k-facet with large k.

Theorem 9.2 If k ≥ 3 is odd, the ξ -relaxation gap of the regular 1/k-facets ξ k−(akm(r))

of any rank r are less than or equal to 1 + 1/(2k).

Proof If r < Rk(n), we easily see that

ξ k−(akm(r)) ≤ ξ k−(akm(r+1)) + 1

2k
ξ1−(a1/2(0)).

We assume r = Rk(n). Then, ξ2k−(a2km ) given by a2kk = akk/2 and

a2k2m = akm = md and a2k2m−1 = akm − 1 = md − 1 for 1 ≤ m <
k

2
,

is a knapsack facet by Lemmas 3.2 and 3.3. This facet satisfies

ξ k−(akm(Rk(n))) ≤ ξ2k−(a2km ) + 1

2k
ξ1−(a1/2(0)),

completing the proof of the theorem. �
Comparing Theorems 9.1 and 9.2 we see that the bound for the ξ -relaxation gap

for regular 1/k-facets with k odd is less than that for k even. This provides support
for Observation 6 from our computational experiments that 1/k-facets for k even are
“stronger” than 1/k-facets for k odd.

Acknowledgements We thank two referees for thoughtful comments that significantly improved our paper.
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Appendix: Lemmas 4.6–4.9

Lemmas 4.6–4.9 Let n be a multiple of 4 and let a1 = n
2 + 1 denote the smallest

integer that is larger than n/2. Let ξ t ≤ 1 be a knapsack facet of K (n) with ξ1 = 0
and ξn = 1. If it holds that

ξa1 > 3/4, (85)

then ξ is the 1-facet of rank 0. There is a knapsack facet ξ̂ t ≤ 1 with ξ̂a1 = 3/4,
ξ̂1 = 0 and ξ̂n = 1. Therefore,

t̂ = (
t̂a1 = 4/3; t̂1 = n − a1 t̂a1; t̂i = 0 for i �= 1 or a1

)
(86)

is a feasible solution to the LP problem maximizing ξ1−(a1/2)t over the system of
the knapsack equation, the non-negativity constraints and all knapsack facets except
ξ1−(a1/2)t ≤ 1. Its objective value is

ξ1−(a1/2) t̂ = 4/3.

Proof We show that if (39) holds or equivalently if it holds that

ξ
(n
2

− 1
)

= ξn−a1 = 1 − ξa1 < 1 − 3

4
= 1

4
, (87)

then ξ is the 1-facet of rank 0. For the knapsack facet ξ , consider the binding constraints
of ξ from (8)–(10) and (23)–(25). If ξ satisfied (25) as equality, it would hold

1

4
= ξ

(n
4

)
≤ ξ

(n
2

− 1
)

,

contradicting to (87). Therefore, ξ does not satisfy any constraint in (25) as equality.
We show that ξ does not satisfy any constraint in (24) as equality and therefore the
1-facet of rank 0 satisfies all binding constraints of ξ as equalities, which will prove ξ

is the 1-facet of rank 0.
By complementarities (8), (24) is equivalent to

ξi + ξ j ≤ 1 − ξn−i− j = ξi+ j ,

where i ≤ j < n/2 < i + j implies

ξi + ξ j ≤ ξn−a1 + ξn−a1 <
1

4
+ 1

4
= 1

2
≤ ξa1 ≤ ξi+ j . (88)

Therefore, ξ does not satisfy any constraint in (24) as equality, and the 1-facet of rank
0 satisfies all binding constraints of ξ , completing the proof of ξ being the 1-facet of
rank 0.

Let n = 4q. From Theorem 2.3,

ξ̂ = ξ4−(q,2q)
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is a knapsack facet satisfying ξ̂a1 = 3/4, ξ̂1 = 0 and ξ̂n = 1. And, we see that t̂ in
(40) satisfies the knapsack equation, the non-negativity constraints and all knapsack
facets except the 1-facet of rank 0. �
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