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Abstract It is known that when the set of Lagrange multipliers associated with a
stationary point of a constrained optimization problem is not a singleton, this set
may contain so-called critical multipliers. This special subset of Lagrange multipliers
defines, to a great extent, stability pattern of the solution in question subject to paramet-
ric perturbations. Criticality of a Lagrangemultiplier can be equivalently characterized
by the absence of the local Lipschitzian error bound in terms of the natural residual of
the optimality system. In this work, taking the view of criticality as that associated to
the error bound, we extend the concept to general nonlinear equations (not necessar-
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ily with primal–dual optimality structure). Among other things, we show that while
singular noncritical solutions of nonlinear equations can be expected to be stable only
subject to some poor “asymptotically thin” classes of perturbations, critical solutions
can be stable under rich classes of perturbations. This fact is quite remarkable, con-
sidering that in the case of nonisolated solutions, critical solutions usually form a thin
subset within all the solutions. We also note that the results for general equations lead
to some new insights into the properties of critical Lagrange multipliers (i.e., solutions
of equations with primal–dual structure).

Keywords Nonlinear equations · Error bound · Critical Lagrange multipliers ·
Critical solutions · Stability · Sensitivity · 2-Regularity

Mathematics Subject Classification 90C33 · 65K10 · 49J53

1 Introduction

Consider a generic nonlinear equation without any special structure:

Φ(u) = 0, (1)

where Φ : Rp → R
q is some given mapping.

As is well known, if Φ is differentiable at a solution ū ∈ R
p of Eq. (1), then

TΦ−1(0)(ū) ⊂ kerΦ ′(ū), (2)

where TU (u) stands for the contingent cone to the setU at a point u ∈ U , i.e. the tangent
cone as defined in [33, Definition 6.1]. The following notion of critical/noncritical
solutions of general nonlinear equations, formulated here for the first time, is the
key to this work; it employs Clarke-regularity of a set, for which we refer to [33,
Definition 6.4] (see also the original definition in [8, Definition 2.4.6]).

Definition 1 Assuming that Φ is differentiable at a solution ū of Eq. (1), this solution
is referred to as noncritical if the set Φ−1(0) is Clarke-regular at ū, and

TΦ−1(0)(ū) = kerΦ ′(ū). (3)

Otherwise, solution ū is referred to as critical.

We shall show that noncriticality of a solution ū is closely related to the local
Lipschitzian error bound:

dist(u, Φ−1(0)) = O(‖Φ(u)‖) (4)

holds as u ∈ R
p tends to ū. We shall also establish that singular noncritical solutions

can be expected to be stable only subject to some poor “asymptotically thin” classes
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of perturbations. By contrast, critical solutions can be stable under rich classes of
perturbations.

To explain the origins of the notion of critical/noncritical solutions for the general
Eq. (1), consider the equality-constrained optimization problem

minimize f (x)
subject to h(x) = 0,

(5)

where f : Rn → R and h : Rn → R
l are smooth. The Lagrangian L : Rn ×R

l → R

of this problem is given by

L(x, λ) = f (x) + 〈λ, h(x)〉.

Then stationary points and associated Lagrange multipliers of the problem (5) are
characterized by the Lagrange optimality system

∂L

∂x
(x, λ) = 0, h(x) = 0, (6)

with respect to x ∈ R
n and λ ∈ R

l . LetM (x̄) stand for the set of Lagrange multipliers
associated to a stationary point x̄ of the problem (5), i.e.,

M (x̄) =
{
λ ∈ R

l
∣∣∣∣ ∂L

∂x
(x̄, λ) = 0

}
.

When the multiplier set M (x̄) is nonempty but is not a singleton, it is an affine
manifold of a positive dimension. It has been observed that in the latter cases, there is
often a special subset of Lagrange multipliers, called critical; see Definition 2 below
(this notion was first introduced in [19]). It turned out that this kind of multipliers are
important for a good number of reasons, including convergence properties of Newton-
type methods, error bounds, and stability of problems under perturbations. We refer
to [12,20,23–25,27,29] and discussions therein; see also the book [26].

Definition 2 A Lagrange multiplier λ̄ ∈ R
l associated to a stationary point x̄ of the

optimization problem (5) is called critical if there

exists ξ ∈ ker h′(x̄)\{0} such that
∂2L

∂x2
(x̄, λ̄)ξ ∈ im(h′(x̄))T, (7)

and noncritical otherwise.

In other words, λ̄ is critical if the corresponding reduced Hessian of the
Lagrangian (i.e., the symmetric matrix H(λ̄) = H(x̄, λ̄) of the quadratic form
ξ → 〈 ∂2L

∂x2
(x̄, λ̄)ξ, ξ 〉 : ker h′(x̄) → R) is singular. As we shall show (see Proposi-

tion 2 below), if λ̄ is a noncritical Lagrange multiplier, then ū = (x̄, λ̄) is a noncritical
solution of the equation representing the Lagrange optimality system (6). Moreover,
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478 A. F. Izmailov et al.

if x̄ is an isolated stationary point of the optimization problem (5), then ū = (x̄, λ̄)

is a critical solution of the Lagrange system if and only if λ̄ is a critical Lagrange
multiplier.

For the purposes of this work, it is useful to point out the following characterization
of critical and noncritical Lagrange multipliers [26, Proposition 1.43]. A related result
can be found in [16, Lemma 2].

Theorem 1 Let f : Rn → R and h : Rn → R
l be twice differentiable at x̄ ∈ R

n.
Let x̄ be a stationary point of problem (5), and let λ̄ ∈ R

l be an associated Lagrange
multiplier.

Then the following three properties are equivalent:

(a) The multiplier λ̄ is noncritical.
(b) The error bound

‖x − x̄‖ + dist(λ, M (x̄)) = O

(∥∥∥∥
(

∂L

∂x
(x, λ), h(x)

)∥∥∥∥
)

holds as (x, λ) ∈ R
n × R

l tends to (x̄, λ̄).
(c) For every w = (a, b) ∈ R

n × R
l , any solution (x(w), λ(w)) of the canonically

perturbed Lagrange system

∂L

∂x
(x, λ) = a, h(x) = b,

which is close enough to (x̄, λ̄), satisfies the estimate

‖x(w) − x̄‖ + dist(λ(w), M (x̄)) = O(‖w‖)

as w → 0.

In particular, criticality of a Lagrange multiplier can be equivalently characterized
by the lackof theLipschitzian error bound (the boundon the distance to the primal–dual
solution set in terms of the residual of the Lagrange optimality system). This issue had
been emphasized in the discussion associated to [27] (see [28]), and it was conjectured
that the notion of critical solutions might be relevant beyond optimality systems with
primal–dual structure as in (6). The present work is devoted precisely to this subject.
It is taking the view of existence or not of a Lipschitzian error bound for the general
Eq. (1), that we arrived to the notion of criticality stated in Definition 1; for the precise
relations, see Sect. 2 and Theorem 2 in particular. We also show that this notion is
central to stability patterns of solutions of nonlinear equations subject to perturbations;
see Sect. 3. Going back to optimization and critical Lagrange multipliers, some new
insights are given in Sect. 4.

We finish this section with some words about our notation. Throughout, ‖ · ‖ stands
for the Euclidian norm; B(x, δ) is an open ball centered at x , of radius δ; dist(u, U ) =
inf{‖u − û‖ | û ∈ U }. Along with the contingent cone TU (u), we shall make use of
the regular tangent cone T̂U (u) toU at u, as defined in [33, Definition 6.25]. The polar
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(negative dual) cone to a cone K is denoted by K ◦. Then N̂U (u) stands for the regular
normal cone to U at u, as defined in [33, Definition 6.3], i.e., it is (TU (u))◦ (see [33,
Theorem 6.28 (a)]). For a smooth manifold S, its dimension is dim S = dim TS(u) for
all u ∈ S (in this case, TS(u) is a linear subspace). For a matrix A, ker A is its null
space and imA is its range space. By I we denote the identity matrix of any dimension
(always clear from the context). The orthogonal projector onto a linear subspace M is
denoted by P⊥

M .
Recall finally that a setU is called star-likewith respect to u ∈ U if t û+(1−t)u ∈ U

for all û ∈ U and all t ∈ [0, 1]. For such a set, v is referred to as an excluded direction
if u + tv /∈ U for all t > 0.

2 Noncritical solutions and the error bound

Given a solution ū of the Eq. (1), we shall be saying that Φ is strictly differentiable at
ū with respect to the null set Φ−1(0) if it is differentiable at ū, and

‖Φ(u) − Φ ′(ū)(u − û)‖ = o(‖u − û‖) (8)

as u ∈ R
p and û ∈ Φ−1(0) tend to ū. Note that this property is weaker than the

usual strict differentiability (for example, if ū is an isolated solution of (1), then strict
differentiability of Φ at ū with respect to the null set is equivalent to differentiability
of Φ at ū).

The key features of noncritical solutions are exposed by the following Theorem 2.
After the proof, we shall illustrate this theorem by some examples, and discuss some
subtleties of its assertions and assumptions. In particular, we shall show that Clarke-
regularity and the equality (3) in the definitionof noncriticality are independent (neither
property implies the other); that the equivalent properties in Theorem 2 can hold even
whenΦ−1(0) is not a smoothmanifold near ū; and that in general strict differentiability
of Φ at ū with respect to the null set Φ−1(0) cannot be replaced by differentiability at
ū. See also Remark 3 below for another justification of the smoothness assumptions in
Theorem 2, coming from the context of the optimization problem (5) and Theorem 1.

Theorem 2 Let Φ : Rp → R
q be continuous near a solution ū ∈ R

p of Eq. (1), and
strictly differentiable at ū with respect to the null set Φ−1(0).

Then the following three properties are equivalent:

(a) Solution ū is noncritical.
(b) The error bound (4) holds as u ∈ R

p tends to ū.
(c) Any solution u(w) of the perturbed equation

Φ(u) = w, (9)

close enough to ū, satisfies the upper Lipschitzian property

dist(u(w), Φ−1(0)) = O(‖w‖)

as w ∈ R
q tends to 0.

123



480 A. F. Izmailov et al.

We emphasize that item (c) above does not claim the existence of solutions of
perturbed problems (the same concerns the corresponding part of Theorem 1). The
upper-Lipschitzian property only means that if a solution close enough to the basic
one exists, it satisfies the stated estimate.

For the proof we shall need the following.

Lemma 1 For any U ⊂ R
p, any u ∈ U and v ∈ R

p satisfying dist(v, TU (u)) > 0,
and any δ ∈ (0, dist(v, TU (u))), it holds that dist(u+ tv, U ) ≥ δt for all t > 0 small
enough.

Proof We argue by contradiction: suppose that there exists a sequence of reals {tk}
such that {tk} → 0+ and

dist(u + tkv, TU (u)) < δtk

for all k. Then for every k there exists ûk ∈ U such that ‖u + tkv − ûk‖ < δtk , and
hence,

‖v − (ûk − u)/tk‖ < δ. (10)

This implies, in particular, that the sequence {(ûk − u)/tk} is bounded, and thus, has
an accumulation point v̂, which belongs to TU (u) by the definition of the latter. Then
(10) yields

dist(v, TU (u)) ≤ δ,

contradicting the choice of δ. 
�
Proof (of Theorem 2) The equivalence between properties (b) and (c) is obvious, and it
is valid without any differentiability assumptions: for each u ∈ R

p, just setw = Φ(u)

by definition. We next prove the equivalence between items (a) and (b).
Suppose that (a) holds, but (b) does not, i.e., there exists a sequence {uk} ⊂

R
p\Φ−1(0) such that {uk} → ū, and

dist(uk, Φ−1(0))

‖Φ(uk)‖ → ∞ (11)

as k → ∞. By the continuity of Φ near ū, the set Φ−1(0) is closed near ū. Hence,
for each k sufficiently large there exists a projection of uk onto Φ−1(0). Let ûk be
any projection of uk onto Φ−1(0), and define vk = (uk − ûk)/‖uk − ûk‖ (recall that
uk /∈ Φ−1(0)). Then {ûk} converges to ū, andwithout loss of generality we can assume
that {vk} converges to some v ∈ R

p, ‖v‖ = 1. From strict differentiability of Φ at ū
with respect to the null set Φ−1(0), we then obtain that

‖Φ(uk) − Φ ′(ū)(uk − ûk)‖ = o(‖uk − ûk‖)

as k → ∞. Therefore,

‖Φ(uk)‖
dist(uk, Φ−1(0))

= ‖Φ ′(ū)vk‖ + o(‖uk − ûk‖)
‖uk − ûk‖ ,
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Critical solutions of nonlinear equations: stability issues 481

as k → ∞. According to (11), the left-hand side in the latter relation tends to 0, while
the right-hand side tends to Φ ′(ū)v. We conclude that v ∈ kerΦ ′(ū).

On the other hand, by [33, Example 6.16], for all k it holds that

uk − ûk ∈ N̂Φ−1(0)(û
k).

Therefore, vk ∈ N̂Φ−1(0)(û
k). Then, by Clarke-regularity of Φ−1(0) at ū (which is

part of item (a); recall Definition 1), we obtain that

v ∈ N̂Φ−1(0)(ū) = (TΦ−1(0)(ū))◦ = (kerΦ ′(ū))⊥,

where the last equality is by (3). Combining this with the inclusion v ∈ kerΦ ′(ū), we
get a contradiction, because v �= 0.

Suppose now that (b) holds. Using again the fact that Φ−1(0) is closed near ū, by
[33, Corollary 6.29 (b)] we conclude that the needed Clarke-regularity of Φ−1(0) at
ū is equivalent to the equality TΦ−1(0)(ū) = T̂Φ−1(0)(ū). The inclusion T̂Φ−1(0)(ū) ⊂
TΦ−1(0)(ū) is always valid [33, Theorem 6.26]. Thus we need to prove the converse
inclusion.

Let there exists v ∈ TΦ−1(0)(ū)\T̂Φ−1(0)(ū). Employing again [33, Theorem 6.26],
this implies the existence of a sequence {uk} ⊂ Φ−1(0) such that {uk} → ū, and
for any choices of vk ∈ TΦ−1(0)(u

k) the sequence {vk} does not converge to v. Then
passing onto a subsequence if necessary, we can assume that there exists γ > 0 such
that for all k

dist(v, TΦ−1(0)(u
k)) ≥ γ.

Then by Lemma 1 we conclude that for all k

dist(uk + tv, Φ−1(0)) ≥ γ

2
t

for all t > 0 small enough. This implies that we can choose a sequence of reals {tk}
such that {tk} → 0+, and for all k

dist(uk + tkv, Φ−1(0)) ≥ γ

2
tk . (12)

On the other hand, by strict differentiability of Φ at ū with respect to the null set
Φ−1(0), we have that

‖Φ(uk + tkv) − tkΦ
′(ū)v‖ = o(tk)

as k → ∞, where v ∈ kerΦ ′(ū) due to (2). Therefore,

‖Φ(uk + tkv)‖ = o(tk)

as k → ∞. Combining this estimate with (12), we get a contradiction with (4).
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482 A. F. Izmailov et al.

It remains to establish (3). This relation follows from (4) in a standard way (and
the only assumption needed is differentiability ofΦ at ū). Specifically, recalling again
that (2) is automatic, for every v ∈ kerΦ ′(ū) we have by (4) that

dist(ū + tv, Φ−1(0)) = O(‖Φ(ū + tv)‖) = O(t‖Φ ′(ū)v‖) + o(t) = o(t)

as t → 0, implying that v ∈ TΦ−1(0)(ū). 
�
We next illustrate Theorem 2 by some examples, and in particular discuss some

subtleties of its assertions and assumptions.
To beginwith, it was demonstrated in [6] that, assuming continuous differentiability

of Φ near ū, the error bound (4) implies that Φ−1(0) is a smooth manifold near ū.
Hence, in this case, it is automatically Clarke-regular at ū [33, Example 6.8]. We next
exhibit that under the smoothness assumptions of Theorem 2, the equivalent properties
(a–c) may hold even when Φ−1(0) is not a smooth manifold near ū.

Example 1 Consider the function ϕ : [−1, 1] → R whose graph is shown in [10, left
graph of Figure 1.7]. This function is continuous, it holds that ϕ(0) = 0, ϕ(±1/k) =
1/(k2), and it is affine on the intervals (−1/k, −1/(k + 1)) and (1/(k + 1), 1/k),
k = 1, 2, . . .. This function is strictly differentiable at 0, with ϕ′(0) = 0, but every
neighborhood of 0 contains pointswhereϕ is not differentiable. DefineΦ : R2 → R in
such away thatΦ(u) = u2−ϕ(u1)when u1 ∈ [0, 1]. ThenΦ is continuous near ū = 0
and strictly differentiable at ū, with Φ ′(ū) = (0, 1). Furthermore, the null set Φ−1(0)
near ū coincides with the graph of ϕ, and its intersection with any neighborhood of ū
is not a smooth manifold. At the same time, this set is evidently Clarke-regular at ū,
and (3) holds because TΦ−1(0)(ū) = kerΦ ′(ū) = {v ∈ R

2 | v2 = 0}. In other words,
ū is a noncritical solution of (1), and hence, by Theorem 2, error bound (4) and the
upper Lipschitzian property both hold for this solution. 
�

Evidently, regardless of any smoothness assumptions, Clarke-regularity does not
imply (3). Indeed, if Φ−1(0) is a singleton {ū}, it is certainly Clarke-regular at ū. But
if kerΦ ′(ū) �= {0}, then (3) is violated. (Take, e.g., Φ : R → R, Φ(u) = u2). The
converse implication [of Clarke-regularity by (3)] is also not valid, as demonstrated
by the next example. Therefore, Clarke regularity and (3) are indeed independent
ingredients of the definition of noncriticality.

Example 2 Take any closed set U ⊂ R
p such that it is not Clarke-regular at some

ū ∈ U , and it holds that TU (ū) = R
p (e.g., two closed balls in R

p with the only
common point ū). According to the remarkable theorem due to Whitney (see, e.g., [3,
Theorem 2.3.1]), there exists an infinitely differentiable function Φ : Rp → R such
that U = Φ−1(0). From (2) it then follows that Φ ′(ū) = 0. Hence, (3) holds, which
demonstrates that the latter does not imply Clarke-regularity under any smoothness
assumptions. Therefore, according to Theorem 2, error bound (4) (and the upper
Lipschitzian property) cannot hold for any choice of an appropriate mapping Φ. 
�

The next two examples demonstrate that strict differentiability with respect to the
null set in Theorem 2 cannot be replaced by only differentiability at the solution in
question.

123



Critical solutions of nonlinear equations: stability issues 483

Example 3 Define the function Φ : R2 → R,

Φ(u) =
⎧⎨
⎩

ϕ(u) if u2 ≥ u21,
u2ϕ(u) if 0 < u2 < u21,
u2 if u2 ≤ 0,

where ϕ : R2 → R, ϕ(u) = u2 − u21. This Φ is everywhere continuous, and

Φ−1(0) = {u ∈ R
2 | ϕ(u) = 0 or u2 = 0} (13)

consists of the parabola and the straight line which are tangent to each other at ū = 0.
The set Φ−1(0) is evidently Clarke-regular at every point.

We first show that Φ is differentiable at ū, with Φ ′(ū) = (0, 1). If this were not
the case, there would exist γ > 0 and a sequence {uk} ⊂ R

2\{0} such that {uk} → ū,
and for all k it holds that

γ ≤ Φ(uk) − 〈(0, 1), uk〉
‖uk‖ = Φ(uk) − uk2

‖uk‖ . (14)

Since infinitely many elements of the sequence {uk} satisfy at least one of the inequal-
ities uk2 ≥ (uk1)

2, 0 < uk2 < (uk1)
2, or uk2 ≤ 0, passing onto a subsequence if necessary,

we can assume without loss of generality that one of these inequalities holds for all k.
If the first inequality holds, then

Φ(uk) − uk2 = uk2 − (uk1)
2 − uk2 = −(uk1)

2,

which contradicts (14). If the second inequality holds, then

|Φ(uk) − uk2| = |uk2ϕ(uk) − uk2| = |uk2| + o(|uk2|) ≤ (uk1)
2 + o((uk1)

2),

which again contradicts (14). Finally, if the third inequality holds, then

Φ(uk) − uk2 = uk2 − uk2 = 0,

which again contradicts (14).
We conclude that Φ is differentiable at ū and Φ ′(ū) = (0, 1). In particular,

TΦ−1(0)(ū) = kerΦ ′(ū) = {v ∈ R
2 | v2 = 0} (the latter is evident, but also fol-

lows from [17, Theorem F]). Thus, (3) holds.
We next show that in spite of all the nice properties shown above, the error bound (4)

does not hold as u → ū. Observe first that the function ϕ is everywhere continuously
differentiable, and hence, Lipschitz-continuous near ū with some constant 	 > 0.
Denoting by û any projection of u onto ϕ−1(0), and observing that û → ū as u → ū,
we obtain that

|ϕ(u)| = |ϕ(u) − ϕ(û)| ≤ 	‖u − û‖ = 	dist(u, ϕ−1(0)) (15)

for all u ∈ R
2 close enough to ū.
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484 A. F. Izmailov et al.

For each k take uk = (1/k, 1/(2k2)). Since ûk = (1/k, 1/k2) ∈ ϕ−1(0), we have
that

dist(uk, ϕ−1(0)) ≤ ‖uk − ûk‖ = |uk2 − ûk2| = 1

2k2
.

Therefore, by (13) and (15), it holds that

dist(uk, Φ−1(0)) = min{dist(uk, ϕ−1(0)), |uk2|} = min

{
dist(uk, ϕ−1(0)),

1

2k2

}

= dist(uk, ϕ−1(0)) ≥ 1

	
|ϕ(uk)| = 1

2	k2
.

On the other hand, since 0 < uk2 < (uk1)
2, we have that

Φ(uk) = uk2ϕ(uk) = o(uk2) = o

(
1

k2

)
,

and hence, (4) cannot hold.
According to Theorem 2, in the current example the only possible reason for the

lack of the error bound can be that Φ is not strictly differentiable at ū, and even not
strictly differentiable with respect toΦ−1(0). Indeed, for the sequences defined above,

|Φ(uk) − Φ ′(ū)(uk − ûk)| = |uk2 − ûk2| + o

(
1

k2

)
= 1

2k2
+ o

(
1

k2

)
,

while ‖uk − ûk‖ = 1/(2k2), contradicting (8). 
�
Asmentioned at the very end of the proof of Theorem 2, the error bound (4) implies

(3) assuming only thatΦ is differentiable at ū. However, without strict differentiability
with respect to the null set, the error bound (4) does not necessarily imply Clarke-
regularity. We show this next.

Example 4 As in Example 1, define Φ : R2 → R as Φ(u) = u2 − ϕ(u1), where now
ϕ : R → R is given by

ϕ(t) =
{
t2 sin(1/t) if t �= 0,
0 if t = 0.

This Φ is everywhere continuous, and Φ−1(0) is the graph of ϕ, which is not Clarke-
regular at ū = 0.

It can be easily seen that Φ is differentiable at ū, with Φ ′(ū) = (0, 1), and as in
Examples 1 and 3, it holds that TΦ−1(0)(ū) = kerΦ ′(ū) = {v ∈ R

2 | v2 = 0}. In
particular, (3) holds.

Furthermore, no matter what is taken as ϕ, for every u ∈ R
2 it holds that

(u1, ϕ(u1)) ∈ Φ−1(0). Hence,

dist(u, Φ−1(0)) ≤ |u2 − ϕ(u1)| = |Φ(u)|,
giving the error bound (4).
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According to Theorem 2, the only possible reason for the lack of Clarke-regularity
is again the lack of strict differentiability of Φ with respect to the null set. Indeed, for
each k take ûk = (1/(πk), 0) ∈ Φ−1(0) and uk = (2/(π(1 + 2k)), 0). Then

|Φ(uk) − Φ ′(ū)(uk − ûk)| = |ûk2 − ϕ(uk1)| = |ϕ(uk1)| = (uk1)
2 = 4

(π(1 + 2k))2
,

while

‖uk − ûk‖ = |uk1 − ûk1| = 1

πk(1 + 2k)
= O

(
1

k2

)
,

contradicting (8). 
�
In both Examples 3 and 4, the regularity condition

rankΦ ′(ū) = q (16)

holds. Therefore, these examples demonstrate that in the absence of strict differen-
tiability with respect to the null set, the regularity condition (16) does not guarantee
neither the error bound, norClarke-regularity.However, from [17, TheoremF] it imme-
diately follows that (16) guarantees (3). At the same time, under strict differentiability
with respect to the null set, (16) implies the error bound, which (by Theorem 2) implies
Clarke-regularity, and thus noncriticality of the solution in question.

Theorem 3 Under the assumptions of Theorem 2, if the condition (16) is satisfied,
then the error bound (4) holds as u ∈ R

p tends to ū, and in particular, ū is a noncritical
solution of Eq. (1).

Proof Fix any matrix A ∈ R
(p−q)×p such that

kerΦ ′(ū) ∩ ker A = {0}

(such matrix exists due to (16)). Define the mapping F : Rp × R
p → R

p,

F(u, r) = (Φ(u + r), Ar). (17)

Then F(ū, 0) = 0, and
∂F

∂r
(ū, 0) =

(
Φ ′(ū)

A

)
(18)

is a nonsingular square matrix. Applying [17, Theorem C] (which is the implicit
function theorem not assuming strict differentiability), we obtain the existence of a
neighborhood O of ū and of a mapping r(·) : O → R

p such that r(ū) = 0, r is
continuous at ū, and

F(u, r(u)) = 0 ∀ u ∈ O. (19)
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According to (17), the last relation implies that

Φ(u + r(u)) = 0 ∀ u ∈ O. (20)

Furthermore, since the matrix in (18) is nonsingular, there exists γ > 0 such that

∥∥∥∥∂F

∂r
(ū, 0)v

∥∥∥∥ ≥ γ ‖v‖ ∀ v ∈ R
p.

Then from (19) we obtain that

‖Φ(u)‖=‖F(u, 0)‖≥
∥∥∥∥∂F

∂r
(ū, 0)r(u)

∥∥∥∥−
∥∥∥∥F(u, 0) − F(u, r(u))+ ∂F

∂r
(ū, 0)r(u)

∥∥∥∥
≥ γ ‖r(u)‖ − ‖Φ(u) − Φ(u + r(u)) + Φ ′(ū)r(u)‖ = γ ‖r(u)‖ + o(‖r(u)‖)

as u → ū, where the second inequality is by (17), and the last equality is by (8) and
(20). This yields (4). 
�

Of course, under any smoothness assumptions, solution ū can be noncritical when
(16) does not hold. The simplest example is by taking Φ ≡ 0. We also note that a
mapping can be strictly differentiable with respect to the solution set but not strictly
differentiable in the classical sense, even when the regularity condition (16) holds.
To see this, augment the mapping from Example 4 by u1 as the second component
(i.e, the system now has two equations: one defined in Example 4, and the second is
u1 = 0). Then Φ ′(ū) is square and nonsingular (thus (16) holds), Φ is not strictly
differentiable, but it is strictly differentiable with respect to the null set because ū is
an isolated solution.

Relations between various properties involved in the discussion above are sum-
marized in Fig. 1. Full lines with arrows correspond to the established implications,
while dotted ones indicate implications which do not hold. The labels “D” (for dif-
ferentiability at the solution) and “SDNS” (for strict differentiability at the solution
with respect to the null set) indicate the smoothness requirements under which the
implication holds or does not hold. If this information is missing, the corresponding
implication does not hold under any smoothness assumptions.

We complete this section giving some more examples of noncritical and critical
solutions, which will be useful also further below to illustrate some stability results.
In all these examples the solutions are singular, by which we mean that the regularity
condition (16) is violated. In fact, this situation is the main case of interest in the rest of
this paper. Note that degeneracy is automatic if p = q and ū is a nonisolated solution
of Eq. (1).

Example 5 ConsiderΦ : Rp → R
p,Φ(u) = (u21, . . . , u2p). Then the unique solution

of (1) is ū = 0. As kerΦ ′(ū) = R
p, it is clear that ū is a critical solution. 
�

Weproceedwith examples where p = q (as in Example 5), but solution sets contain
manifolds of positive dimension.
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Fig. 1 Relations between the properties involved

Example 6 Consider Φ : R
2 → R

2, Φ(u) = (ϕ(u)ϕ1(u), ϕ(u)ϕ2(u)), where the
functions ϕ, ϕ1, ϕ2 : R

2 → R are continuously differentiable functions. Then
Φ−1(0) ⊃ ϕ−1(0), and if for some ū ∈ ϕ−1(0) it holds that ϕ′(ū) �= 0, then near ū, the
set ϕ−1(0) is a smooth manifold S of dimension 1. Furthermore, if for all u ∈ R

2\{ū}
close enough to ū it holds that ϕ1(u) �= 0 or ϕ2(u) �= 0 (e.g., when the gradients ϕ′

1(ū)

and ϕ′
2(ū) are linearly independent), then Φ−1(0) = S near ū. Since

Φ ′(ū) =
(

ϕ1(ū)ϕ′(ū)

ϕ2(ū)ϕ′(ū)

)
,

it holds that if ϕ1(ū) �= 0 or ϕ2(ū) �= 0, then dim kerΦ ′(ū) = 1 = dim S, implying
that ū is a noncritical solution. On the other hand, if ϕ1(ū) = ϕ2(ū) = 0, then
dim kerΦ ′(ū) = 2 > 1 = dim S, and hence, ū is a critical solution. 
�
Example 7 Consider Φ : R3 → R

3, Φ(u) = (u1u2, u1u3, u2u3). Then Φ−1(0) is
the union of three linear subspaces, all of dimension 1: {u ∈ R

3 | u1 = 0, u2 = 0},
{u ∈ R

3 | u1 = 0, u3 = 0}, and {u ∈ R
3 | u2 = 0, u3 = 0}. Any nonzero solution ū

in any of these subspaces is noncritical, since

Φ ′(ū) =
⎛
⎝ ū2 ū1 0
ū3 0 ū1
0 ū3 ū2

⎞
⎠ ,

implying that dim kerΦ ′(ū) = 1. However, ū = 0 belongs to all the specified sub-
spaces and is critical, since dim kerΦ ′(0) = 3 > 1. 
�
Example 8 Consider Φ : R3 → R

3, Φ(u) = (u1, u1u3, u2u3). Then Φ−1(0) is the
union of two linear subspaces, both of dimension 1: {u ∈ R

3 | u1 = 0, u2 = 0} and
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{u ∈ R
3 | u1 = 0, u3 = 0}. Any nonzero solution ū in any of these subspaces is

noncritical, since

Φ ′(ū) =
⎛
⎝ 1 0 0
ū3 0 ū1
0 ū3 ū2

⎞
⎠ ,

and hence, dim kerΦ ′(ū) = 1. However, ū = 0 belongs to both specified subspaces
and is critical, since dim kerΦ ′(0) = 2 > 1. 
�

3 Further stability issues

The next result is a generalization of [19, Proposition 7], which analyzed stability
properties of noncritical Lagrange multipliers. Here, we demonstrate that noncritical
singular solutions of general nonlinear equations can be stable subject to very special
perturbations only. In particular, see Remark 1 below.

Proposition 1 Let Φ : Rs ×R
p → R

q be continuous near (σ̄ , ū) ∈ R
s ×R

p, where
ū is a noncritical solution of the equation

Φ(σ̄ , u) = 0. (21)

Let Φ be strictly differentiable at (σ̄ , ū) with respect to its null set (in the space
R
s ×R

p). Let {σ k} ⊂ R
s\{σ̄ } and {uk} ⊂ R

p be any sequences such that {σ k} → σ̄ ,
{uk} → ū, and for each k it holds that

Φ(σ k, uk) = 0. (22)

For each k, let ûk be any projection of uk onto the solution set of the Eq. (21).
Then it holds that

‖uk − ûk‖ = O(‖σ k − σ̄‖) (23)

as k → ∞, the sequence {(σ k − σ̄ , uk − ûk)/‖σ k − σ̄‖} has accumulation points,
and any such accumulation point (d, v) satisfies the equality

∂Φ

∂σ
(σ̄ , ū)d + ∂Φ

∂u
(σ̄ , ū)v = 0. (24)

Proof Estimate (23) follows from (4), which holds under the stated assumptions,
according to Theorem 2. Indeed,

‖uk − ûk‖ = O(‖Φ(σ̄ , uk)‖) = O(‖Φ(σ̄ , uk) − Φ(σ k, uk)‖)
= O

(∥∥∥∥∂Φ

∂σ
(σ̄ , ū)(σ k − σ̄ )

∥∥∥∥
)

+ o(‖σ k − σ̄‖) = O(‖σ k − σ̄‖)
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as k → ∞, where the first equality is by the noncriticality of ū as a solution of
(21) (in particular, by (4)), the second equality is by (22), and the third is by strict
differentiability of Φ at (σ̄ , ū) with respect to the null set.

Note that, by its definition, {ûk} converges to ū. We then derive that

0 = ‖Φ(σ k, uk)‖ = ‖Φ(σ k, uk) − Φ(σ̄ , ûk)‖
=
∥∥∥∥∂Φ

∂σ
(σ̄ , ū)(σ k − σ̄ ) + ∂Φ

∂u
(σ̄ , ū)(uk − ûk)

∥∥∥∥+ o(‖(σ k − σ̄ , uk − ûk)‖)

as k → ∞, where the last equation is again by strict differentiability of Φ at (σ̄ , ū)

with respect to the null set. Taking into account (23), this implies (24). 
�
We next discuss why the results of Proposition 1 mean that singular noncritical

solutions can be expected to be stable only under some poor/special classes of pertur-
bations.

Remark 1 Note that (24) implies the inclusion

∂Φ

∂σ
(σ̄ , ū)d ∈ im

∂Φ

∂u
(σ̄ , ū). (25)

If the solution ū of (21) is singular, i.e.,

rank
∂Φ

∂u
(σ̄ , ū) < q,

then the right-hand side of (25) is a proper linear subspace in Rq . Hence, in this case,
(25) can hold only for very special sequences {σ k}, unless

im
∂Φ

∂σ
(σ̄ , ū) ⊂ im

∂Φ

∂u
(σ̄ , ū).

But the latter property is clearly atypical, and can only hold for very special (in a sense,
poor) parameterizations. For instance, it does not hold for parameterizations allowing
arbitrary right-hand side perturbations: singular noncritical solutions usually do not
“survive” such perturbations. In particular, stability of a noncritical solution subject
to arbitrary right-hand side perturbation implies the nondegeneracy condition (16). 
�

We proceed to give some illustrations of the discussion above.
Example 6 (continued) Consider the mapping Φ from Example 6 with ϕ(u) = u1,
ϕ1(·) ≡ 1, ϕ2(u) = u2. Then Φ−1(0) = ϕ−1(0) = {u ∈ R

2 | u1 = 0} is a linear
subspace of dimension 1. Since ϕ1 never equals zero, every solution ū is noncritical.
For any w ∈ R

2\{0}, the perturbed Eq. (9) is solvable only when w1 �= 0, in which
case the unique solution has the form

u(w) = (w1, w2/w1) . (26)

123



490 A. F. Izmailov et al.

Suppose that {wk} ⊂ R
2 converges to 0, wk

1 �= 0 for all k, and {u(wk)} converges to
some ū ∈ Φ−1(0). Then by (26), it necessarily holds thatwk

2/w
k
1 → ū2, implying that

for any accumulation point d of the sequence {wk/‖wk‖} it holds that d2 = ū2d1. This
fully agrees with (25), since imΦ ′(ū) = {w ∈ R

2 | w2 = ū2w1}. Therefore, each
solution (recall that they are all noncritical) can be stable only subject to perturbations
tangential to very special directions, forming a linear subspace imΦ ′(ū) of dimension
1 in the space of right-hand side perturbations, of dimension 2.

Now let ϕ(u) = ϕ1(u) = u1, ϕ2(u) = u2. Then the solution set is the same, but
the solution ū = 0 is now critical, with all the other solutions being noncritical. For
any w ∈ R

2\{0}, the perturbed Eq. (9) is solvable only when w1 > 0, in which case
the solutions have the form

u(w) =
(

±√
w1, ± w2√

w1

)
. (27)

Suppose that {wk} ⊂ R
2 converges to 0, wk

1 > 0 for all k, and {u(wk)} converges
to some ū ∈ Φ−1(0). Then by (27), it necessarily holds that |wk

2|/
√

wk
1 → ū2.

Therefore, if ū2 �= 0, then for any accumulation point d of the sequence {wk/‖wk‖}
it holds that either d = (0, 1) or d = (0, −1). This again fully agrees with (25),
since imΦ ′(ū) = {w ∈ R

2 | w1 = 0}. At the same time, it can be easily seen that
the unique critical solution ū = 0 is stable subject to a wide class of right-hand side
perturbations, and this fact is explained by Theorem 4 below. 
�

Wenext discuss some further examples, showing that our considerations are relevant
for perturbations of optimization problems with inequality constraints (at least if strict
complementarity holds), and even for generalized Nash equilibrium problems [11].

Example 9 (DEGEN 20103 [9]) Consider the canonically perturbed inequality-con-
strained optimization problem

minimize −x2 − χx
subject to x2 ≤ y,

(28)

where w = (χ, y) ∈ R × R is a parameter. For w = (0, 0), the unique solution of
this problem is x̄ = 0.

The Karush–Kuhn–Tucker (KKT) optimality system with respect to (x, μ) ∈ R×
R, characterizing stationary points and associated Lagrange multipliers of problem
(28), has the form

− 2x − χ + 2μx = 0, μ ≥ 0, x2 ≤ y, μ(x2 − y) = 0. (29)

This system has no solutions if y < 0, and if χ �= 0, y = 0. For w = (0, 0), the
solution set is {x̄} × R+. If y > 0, this system has the solution (x(w), μ(w)) =
(
√
y, 1 + χ/(2

√
y)) when −2

√
y ≤ χ ; the solution (x(w), μ(w)) = (−√

y, 1 −
χ/(2

√
y)) when χ ≤ 2

√
y; and also the solution (x(w), μ(w)) = (−χ/2, 0) when

−2
√
y < χ < 2

√
y. Solutions of the first two families tend to (x̄, 1) if χ = o(

√
y),
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while solutions of the last family always tend to (x̄, 0) as w → (0, 0). Therefore,
the two solutions (x̄, 1) and (x̄, 0) of the unperturbed KKT system are stable subject
to wide classes of specified perturbations. Other solutions can “survive” very special
perturbations only, i.e., those satisfying y = O(χ2). Observe that, for every sequence
{wk} ⊂ R×R such thatwk = (χk, yk), χk → 0, and yk = O(χ2

k ), any accumulation
point d of the sequence {wk/‖wk‖} is either d = (1, 0) or d = (−1, 0).

We next relate these observations about stability patterns in this problem to the
results obtained above. Note that for any μ̄ > 0, near the solution ū = (x̄, μ̄) of the
unperturbed KKT system, and for w close enough to (0, 0), system (29) reduces to
the system of Eqs. (9) with p = 2, u = (x, μ), w = (χ, y),

Φ(u) = (−2x(1 − μ), x2). (30)

It is easy to see that ū = (x̄, 1) is a critical solution of Eq. (1), since Φ ′(ū) = 0, while
TΦ−1(0)(ū) = {0} × R. Other solutions ū = (x̄, μ̄) with μ̄ > 0 are noncritical, with
imΦ ′(ū) = {w = (χ, y) ∈ R × R | y = 0}.

Furthermore, using the smooth complementarity function, we can equivalently
reformulate (29) as the parametric system of equations

Φ(σ, u) = 0, (31)

where σ = (χ, y) and

Φ(σ, u) = (−2x(1 − μ) − χ, −2μ(x2 − y) − (min{0, μ − x2 + y})2).
It is easy to see that both ū = (x̄, 1) and ū = (x̄, 0) are critical solutions of (31)
for σ = 0 (the latter solution corresponds to the unique multiplier violating strict
complementarity, and TΦ−1(0)(ū) = {0}×R+). All the other solutions are noncritical.


�
Example 10 ([11,Example 1.1]) Consider the canonically perturbedgeneralizedNash
equilibrium problem

minimizex1 (x1 − 1)2 − χ1x1
subject to x1 + x2 ≤ y1,

minimizex2 (x2 − 1/2)2 − χ2x2
subject to x1 + x2 ≤ y2,

(32)

where w = (χ, y) ∈ R
2 × R

2 is a parameter.
The KKT-type system of problem (32) has the form

2(x1 − 1)−χ1+μ1=0, 2(x2 − 1/2)−χ2 + μ2 = 0, (33)

μ1 ≥ 0, x1 + x2 ≤ y1, μ1(x1 + x2 ≤ y1) = 0,

μ2 ≥ 0, x1 + x2 ≤ y2, μ2(x1 + x2 ≤ y2) = 0. (34)

For w = (χ, y) ∈ R
2 × R

2 close enough to (0, 0), this system has the solution

(x(w), μ(w)) =
((

1

2
− 1

2
χ2 + y1,

1

2
− 1

2
χ2

)
, (1 + χ1 + χ2 − 2y1, 0)

)
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if y1 < y2; the set of solutions

⎧⎪⎪⎨
⎪⎪⎩

(x, μ)

∣∣∣∣∣∣∣∣
x = (t, 1 + y1 − t), μ =

(
2(1 − t) + χ1, 2

(
t − 1

2
− y1

)
+ χ2

)
,

t ∈
[
1

2
− 1

2
χ2 + y, 1 + 1

2
χ1

]
⎫⎪⎪⎬
⎪⎪⎭

if y1 = y2; and the solution

(x(w), μ(w)) =
((

1

2
+ 1

2
χ1, −1

2
χ1 + y2,

1

2
+ 1

2
χ2

)
, (0, 1 + χ1 + χ2 − 2y2)

)

if y1 > y2. In particular, for w = (0, 0), the solution set of system (33)–(34) has the
form

{
(x, μ)

∣∣∣∣ x = (t, 1 − t), μ =
(
2(1 − t), 2

(
t − 1

2

))
, t ∈

[
1

2
, 1

] }
.

Solutions of the first family tend to ((1/2, 1/2), (1, 0)), while solutions of the third
family tend to ((1, 0), (0, 1)) as w → (0, 0). Hence, the two specified solutions
of the unperturbed KKT-type system are stable subject to wide classes of specified
perturbations. Solutions of the remaining second family may tend to any solution of
the unperturbed KKT-type system, depending on the control of t , but this family exists
for very special perturbations only, i.e., those with y1 = y2.

All these observations fully agreewith the results obtained above, the sameway as in
Example 9, by considering separately those solutions satisfying strict complementarity
(corresponding to t ∈ (1/2, 1)), and by treating the remaining two solutions via the
smooth equation reformulation of the KKT-type system. 
�

We proceed to prove some formal results showing that, unlike noncritical solu-
tions, critical ones can indeed be expected to be stable under some rich classes of
perturbations. To this end, the notion of 2-regularity of a mapping will be useful.

Consider a mapping Φ : Rp → R
q , which is twice differentiable at ū ∈ R

p. Let
Π be the projector in Rq onto an arbitrary fixed complementary subspace of imΦ ′(ū)

along this subspace. For each v ∈ R
p, define the q × p-matrix

Ψ (ū; v) = Φ ′(ū) + ΠΦ ′′(ū)[v]. (35)

The mapping Φ is referred to as 2-regular at the point ū in the direction v ∈ R
p if

rankΨ (ū; v) = q.

It can be easily seen that the 2-regularity property is invariant with respect to the
choice of Π , and to the norm of v, and it is stable subject to small perturbations of
v. Moreover, 2-regularity in a direction v implies 2-regularity in the direction −v as
well.
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The notion of 2-regularity proved to be a useful tool in nonlinear analysis and
optimization theory; see, e.g., the book [2] and references therein. If Φ is regular at ū
in the sense of (16), then it is 2-regular at this point in every direction. However, in the
singular case when (16) does not hold, the linear approximation of Φ is not adequate,
and second-order information needs to be employed. This is where the notion of 2-
regularity comes into play, and helps to extend various results to the singular case (for
some applications, see, e.g., [4,14,15,21,22]).

Here, we use 2-regularity in the context of implicit function theorems. One impor-
tant theorem of this kind was derived in [5], but it is not applicable in the irregular
case with p = q, which is the setting of principal interest in the present work. A
more general implicit function theorem was established in [18]. It is free from the
above disadvantage, and contains the result of [5] as a particular case. The following
assertions are obtained applying the implicit function theorem of [18] to the case of
the right-hand side perturbations.

Theorem 4 LetΦ : Rp → R
q be twice differentiable near ū ∈ R

p, and let its second
derivative be continuous at ū. Let ū be a solution of Eq. (1). Let K ⊂ R

p be a closed
cone such that the mapping Φ is 2-regular at ū in every direction v ∈ K\{0}. Let
Π be the projector in R

q onto some complementary subspace of imΦ ′(ū) along this
subspace. Define the set

W = W (K , Π) = Φ̃(K ), (36)

where Φ̃ : Rp → R
q ,

Φ̃(u) = Φ ′(ū)u + 1

2
ΠΦ ′′(ū)[u, u].

Then there exist ε = ε(K , Π) > 0 and C = C(K , Π) > 0 such that for every
w ∈ W ∩ B(0, ε) the equation Φ(u) = w has a solution u(w) such that

‖u(w) − ū‖ ≤ C(‖(I − Π)w‖ +√‖Πw‖). (37)

We next provide some examples showing that, unlike for noncritical solutions,
Theorem 4 can guarantee stability of critical solutions subject to wide classes of per-
turbations, allowing for star-like domains of “good” parameter values, with nonempty
interior (and in particular, not “asymptotically thin”).
Example 6 (continued) Consider again the mapping Φ from Example 6 with ϕ(u) =
u1, ϕ1(·) ≡ 1, ϕ2(u) = u2. Consider any noncritical solution, say ū = (0, 1). Let Π
be the orthogonal projector onto (imΦ ′(ū))⊥ = {w ∈ R

2 | w1 + w2 = 0}. We have
that

Π =
(

1/2 −1/2
−1/2 1/2

)
, Φ ′′(ū)[v] =

(
0 0
v2 v1

)
, Ψ (ū; v) =

(
1 − v2/2 −v1/2
1 + v2/2 v1/2

)
.

Therefore, detΨ (ū; v) = v1, and hence, Φ is 2-regular at ū in any direction v such
that v1 �= 0. In particular, for every γ > 0, the mapping Φ is 2-regular at ū in any
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direction v from the closed cone

Kγ = {v ∈ R
2 | |v1| ≥ γ |v2|}. (38)

Furthermore,

Φ̃(u) = (u1 − u1u2/2, u1 + u1u2/2) ,

and hence, the equation
Φ̃(u) = w (39)

is solvable for w �= 0 if and only if w1 + w2 �= 0, with the unique solution being

u(w) =
(
1

2
(w1 + w2),

w2 − w1

w1 + w2

)
.

This readily implies that, for the cone Kγ defined in (38), the set defined according to
(36) has the form

W (Kγ , Π) =
{
w ∈ R

2
∣∣∣ (w1 + w2)

2/2 ≥ γ |w2 − w1|
}

.

This set is shown in Fig. 2 as the area between the two symmetric parabolas; it
is “asymptotically thin” near 0, which means that the ratio of the “size” (e.g., the
Lebesgue measure) of the intersection of this area with B(0, δ) and the “size” of
B(0, δ) tends to zero as δ → 0+. Theorem 4 can be applied with K = Kγ , and it
claims that for every γ > 0 there exist ε(γ ) > 0 and C(γ ) > 0 such that for every
w ∈ W (Kγ , Π) satisfying ‖w‖ < ε(γ ), the perturbed Eq. (9) has a solution u(w)

satisfying
‖u(w) − ū‖ ≤ C(γ )(|w1 + w2| +√|w1 − w2|). (40)

Smaller values of γ > 0 give larger sets W (Kγ , Π) (see Fig. 2), and in the limit as
γ → 0, they give the entire plane with excluded nonzero points on the linew1+w2 =
0. However, the domain of “appropriate” values of w remains “asymptotically thin”,
even if we give up with the estimate (40): according to Proposition 1, for every d ∈ R

2

with d1 �= d2 it holds that w(t) = td does not belong to this domain for all t > 0
small enough.

We next turn to the case when ϕ(u) = ϕ1(u) = u1, ϕ2(u) = u2. Consider
any noncritical solution, say ū = (0, 1). Let Π be the orthogonal projector onto
(imΦ ′(ū))⊥ = {w ∈ R

2 | w1 = 0}. We have that

Π =
(
0 0
0 1

)
, Φ ′′(ū)[v] =

(
2v1 0
v2 v1

)
, Ψ (ū; v) =

(
2v1 0
1 0

)
.

This matrix is singular whatever is taken as v, and hence, Φ is not 2-regular at ū in
any direction. Therefore, Theorem 4 is not applicable at such solutions.

Consider now the unique critical solution ū = 0. We have: Φ ′(ū) = 0, Π = I ,
Ψ (ū; v) = Φ ′′(ū)[v]. Therefore, detΨ (ū; v) = v1, and hence, Φ is 2-regular at ū in

123



Critical solutions of nonlinear equations: stability issues 495

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3
W (Kγ , Π)

γ = 1

γ = 0.1

w1

w2

Fig. 2 Set W (Kγ , Π)

any direction v such that v1 �= 0. Furthermore, Φ̃ = Φ and for the cone Kγ defined
in (38), we have that

W (Kγ , Π) = {w ∈ R
2 | w1 ≥ γ |w2|}.

Observe that, as a consequence of full degeneracy, in this case W (Kγ , Π) is always
a cone; see Fig. 3. Theorem 4 applied with K = Kγ claims that for every γ > 0
there exist ε(γ ) > 0 and C(γ ) > 0 such that for every w ∈ W (Kγ , Π) satisfying
‖w‖ < ε(γ ), the perturbed Eq. (9) has a solution u(w) satisfying

‖u(w) − ū‖ ≤ C(γ )
√‖w‖. (41)

In the limit as γ → 0, the sets W (Kγ , Π) cover the entire open right half-plane
with the added zero point. More precisely, for every d ∈ R

2 with ‖d‖ = 1 and
d1 > 0 there exists γ = γ (d) > 0 such that d ∈ W (Kγ , Π). Fix any β > 0, set
ε̃(d) = min{ε(γ ), 1/(C(γ ))2(1+β)}, and define the set

W =
{
w ∈ R

2 | w1 > 0, ‖w‖ < ε̃ (w/‖w‖)
}

.

Observe that this set is star-like with respect to 0, with the excluded directions being
only those d ∈ R

2 satisfying d1 ≤ 0; see Fig. 3. Then for every w ∈ W the perturbed
Eq. (9) has a solution u(w) satisfying (41) with γ = γ (w/‖w‖). This implies that
u(w) → ū asw → 0. Indeed, consider any sequence {wk} ⊂ W converging to zero. If
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the sequence {C(γ (wk/‖wk‖))} is bounded, then {u(wk)} converges to ū according to
(41). On the other hand, if {C(γ (wk/‖wk‖))} → ∞, then from (41) and the definition
of ε̃(wk/‖wk‖) we have

‖u(wk) − ū‖ ≤ (C(γ (wk/‖wk‖)))−β → 0

as k → ∞.
Observe, however, that the estimate (41) with C(γ ) replaced by some C > 0

independent of γ does not hold for all w ∈ W . Specifically, for any choice of C > 0,
such estimate does not hold along any sequence {wk} ⊂ W convergent to zero and
such that wk

1 = o(‖wk
2‖). Indeed, from (27) we then have

|u2(wk)| = |wk
2|√
wk
1

=
√

|wk
2|

wk
1

√
|wk

2| > C
√

‖wk‖

for all k large enough. 
�
Motivated by the example above, in the rest of this section we shall provide condi-

tions ensuring that a given solution is stable subject to the right-hand side perturbations
in a star-like domain with nonempty interior, in particular, not “asymptotically thin”.

Consider any w ∈ W (K , Π) for some cone K ⊂ R
p satisfying K = −K , i.e.,

there exists u ∈ K satisfying (39). For convenience, let Π be the orthogonal projector
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onto (imΦ ′(ū))⊥. Then for every t ∈ R,

Φ̃(tu) = tΦ ′(ū)u + 1

2
t2ΠΦ ′′(ū)[u, u] = t (I − Π)w + t2Πw.

Therefore, for the function ωw : R → R
q ,ωw(t) = t (I −Π)w+ t2Πw, we conclude

that the parabolic curve defined by this function, passing through w (for t = 1), is
contained in W (K , Π), i.e., ωw(t) ∈ W (K , Π) for all t ∈ R.

Another observation is the following. For a given v̄ ∈ R
p such that Φ is 2-regular

at ū in this direction, set
w̄ = Φ̃(v̄). (42)

Then Φ̃ ′(v̄) = Ψ (ū; v̄) has rank q, and applying the standard covering theorem to Φ̃ at
v̄, we obtain the existence of δ > 0 such that for everyw ∈ R

q satisfying ‖w−w̄‖ < δ,
Eq. (39) has a solution u(w) tending to v̄ as w tends to w̄. By stability of 2-regularity
with respect to small perturbations of a direction, there exists a closed cone K ⊂ R

p

such that Φ is 2-regular at ū in every direction v ∈ K\{0}, and v̄ ∈ intK . Therefore,
if δ > 0 is taken small enough, then

B(w̄, δ) ⊂ W (K , Π). (43)

Assume now that Φ is 2-regular at ū in a direction v̄ ∈ kerΦ ′(ū). We next show
that if p = q, this assumption can be expected to hold only if ū is a critical solution
of Eq. (1). Indeed, if ū is a noncritical solution, then for every v ∈ kerΦ ′(ū) it holds
that v ∈ TΦ−1(0)(ū), by (3). Thus, there exist a sequence {tk} of positive reals and a
sequence {rk} ⊂ R

p such that {tk} → 0, ‖rk‖ = o(tk), and for all k it holds that

0 = ‖Φ(ū + tkv + rk)‖ =
∥∥∥∥Φ ′(ū)rk + 1

2
t2k Φ ′′(ū)[v, v]

∥∥∥∥+ o(t2k ).

Hence,

1

2
t2k ‖ΠΦ ′′(ū)[v, v]‖ = ‖ΠΦ ′(ū)rk‖ + o(t2k ) = o(t2k ),

so that

ΠΦ ′′(ū)[v, v] = 0.

Then, from (35) we obtain that v ∈ kerΨ (ū; v). If v �= 0, the latter implies that
Ψ (ū; v) is singular, and hence, Φ cannot be 2-regular at ū in the direction v. In
particular, if Φ ′(ū) is singular, then Φ cannot be 2-regular at ū in any direction v ∈
kerΦ ′(ū). Therefore, for a singular (e.g., nonisolated) but noncritical solution ū, there
exists no v̄ with the needed properties.

On the other hand, if ū is a critical solution, the needed v̄ can exist even when
p = q. In the last example considered above, for the unique critical solution ū = 0
any v̄ ∈ R

2 with v̄1 �= 0 is appropriate. For the mapping Φ from Example 7, for
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Fig. 4 Illustration of Lemma 2

ū = 0 the appropriate v̄ ∈ R
3 are those satisfying v̄1v̄2v̄3 �= 0. At the same time, for

the mapping Φ from Example 8, for the unique critical solution ū = 0 there are no
appropriate v̄. For the mapping Φ from Example 5, for the unique solution ū = 0 the
appropriate v̄ ∈ R

p are those satisfying v̄1 . . . v̄p �= 0.
Let w̄ be defined according to (42) (and hence, w̄ = ΠΦ ′′(ū)[v̄, v̄]/2). From

inclusion (43), which holds in this case with some δ > 0, it further follows that
W (K , Π) contains the entire collection of parabolic curves specified above, passing
through every point of the ball B(w̄, δ):

Ω(w̄, δ) ⊂ W (K , Π), (44)

where
Ω(w̄, δ) = {ωw(t) | w ∈ B(w̄, δ), t ∈ R}. (45)

The following Lemma 2, and its proof, are illustrated in Fig. 4.

Lemma 2 Let Φ : Rp → R
q be differentiable at ū ∈ R

p, and let w̄ ∈ (imΦ ′(ū))⊥.
Then for every δ > 0 the set Ω(w̄, δ), defined in (45), is star-like with respect to 0.

Proof We need to show that for every ω ∈ Ω(w̄, δ) and every τ ∈ [0, 1], it holds
that τω ∈ Ω(w̄, δ).

Take any w ∈ B(w̄, δ) and t ∈ R such that ω = ωw(t) [they exist according to
(45)], and define wτ = √

τ(I − Π)w + Πw. Since w̄ ∈ (imΦ ′(ū))⊥, we have that
(I −Π)w̄ = 0, Πw̄ = w̄. Using also that Π and I −Π are the orthogonal projectors

123



Critical solutions of nonlinear equations: stability issues 499

onto two subspaces which are orthogonal complements to each other, we obtain that

‖wτ − w̄‖2 = τ‖(I − Π)(w − w̄)‖2 + ‖Π(w − w̄)‖2
≤ ‖(I − Π)(w − w̄)‖2 + ‖Π(w − w̄)‖2 = ‖w − w̄‖2 < δ2.

Therefore, wτ ∈ B(w̄, δ), and hence, by (45), we conclude that

Ω(w̄, δ) � ωwτ (t
√

τ) = tτ(I − Π)w + t2τΠw = τωw(t) = τω.


�

Remark 2 If w̄ = 0, then Ω(w̄, δ) = R
q . On the other hand, if w̄ �= 0 and

rankΦ ′(ū) = q − 1, then for every d ∈ R
q satisfying 〈w̄, d〉 > 0, it holds that

τd ∈ Ω(w̄, δ) for all τ > 0 small enough, and therefore, Ω(w̄, δ) is asymptotically
dense within the half-space {w ∈ R

q | 〈w̄, w〉 ≥ 0}. 
�

Combining Theorem 4 with (44) and Lemma 2, we finally obtain the following.

Theorem 5 LetΦ : Rp → R
q be twice differentiable near ū ∈ R

p, and let its second
derivative be continuous at ū. Let ū be a solution of Eq. (1). Let Φ be 2-regular at ū
in a direction v̄ ∈ kerΦ ′(ū). Let Π be the orthogonal projector onto (imΦ ′(ū))⊥.

Then there exist a set W = W (v̄) ⊂ R
q and C = C(v̄) > 0 such that W is star-like

with respect to 0, estimate (37) holds for every w ∈ W, and there exist ε = ε(v̄) > 0
and δ = δ(v̄) > 0 such that B(εΠΦ ′′(ū)[v̄, v̄], δ) ⊂ W.

4 Back to Lagrange multipliers

We now get back to the Lagrange optimality system (6) for the equality-constrained
optimization problem (5). We shall relate our new results for general equations to the
notions of critical/noncritical Lagrange multipliers [20,23–25,27] (see also the book
[26]), and derive some new insights into properties of the latter.

The Lagrange optimality system (6) is a special case of Eq. (1), setting p = q =
n + l, u = (x, λ),

Φ(u) =
(

∂L

∂x
(x, λ), h(x)

)
. (46)

If x̄ ∈ R
n is a stationary point of problem (5), thenΦ−1(0) contains the affinemanifold

S = {x̄} × M (x̄). Therefore,

TS(ū) ⊂ TΦ−1(0)(ū), (47)

where ū = (x̄, λ̄), for every λ̄ ∈ M (x̄). Furthermore,

dim S = dim ker(h′(x̄))T = l − rankh′(x̄).
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In particular, dim S > 0 if and only if the regularity condition

rankh′(x̄) = l (48)

is violated.
Since

Φ ′(u) =
⎛
⎝ ∂2L

∂x2
(x, λ) (h′(x))T

h′(x) 0

⎞
⎠ , (49)

we obtain that

kerΦ ′(ū) =
{
(ξ, η) ∈ Q(x̄, λ̄) × R

l
∣∣∣∣ (h′(x̄))Tη = −∂2L

∂x2
(x̄, λ̄)ξ

}
, (50)

where the linear subspace Q(x̄, λ̄) is given by

Q(x̄, λ̄) =
{
ξ ∈ ker h′(x̄)

∣∣∣∣ ∂2L

∂x2
(x̄, λ̄)ξ ∈ im

(
h′(x̄)

)T}
. (51)

From (50) and (51), it can be readily seen that

dim kerΦ ′(ū) = dim Q(x̄, λ̄) + dim ker(h′(x̄))T. (52)

Hence, dim kerΦ ′(ū) > dim S if and only if Q(x̄, λ̄) �= {0}, which is equivalent to
saying that λ̄ is a critical Lagrange multiplier (see (7)). In particular, by (2) and (47), if
λ̄ is a noncritical multiplier, then ū is necessarily noncritical as a solution of (1) with
Φ given by (46). Moreover, if x̄ is an isolated stationary point, then Φ−1(0) = S near
ū = (x̄, λ̄) for every λ̄ ∈ M (x̄). Hence, in this case, ū is a critical solution of (1) if
and only if λ̄ is a critical Lagrange multiplier.

We summarize the above relations in the following.

Proposition 2 Let f : R
n → R and h : R

n → R
l be twice differentiable at a

stationary point x̄ ∈ R
n of optimization problem (5), and let λ̄ ∈ R

l be an associated
Lagrange multiplier.

If λ̄ is a noncritical Lagrange multiplier, then ū = (x̄, λ̄) is a noncritical solution
of Eq. (1) with Φ defined in (46).

Moreover, if x̄ is an isolated stationary point, then ū = (x̄, λ̄) is a critical solution
of (1) if and only if λ̄ is a critical Lagrange multiplier.

However, if x̄ is a nonisolated stationary point, λ̄ can be critical when ū = (x̄, λ̄)

is noncritical. This is illustrated by the following.

Example 11 Consider f : R2 → R, f (x) = x21 , h : R2 → R, h(x) = x21 x2. Then
x̄ = 0 is a (nonisolated) stationary point of problem (5), M (0) = R, and every
multiplier in this set is critical.
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We have thatΦ(u) = (2x1(1+λx2), λx21 , x
2
1 x2), andΦ−1(0) is the linear subspace

of dimension 2, defined by the equation x1 = 0. As for ū = (x̄, λ̄) we have

Φ ′(ū) =
⎛
⎝ 2 0 0
0 0 0
0 0 0

⎞
⎠ ,

it holds that dim kerΦ ′(ū) = 2, whatever is taken as λ̄. Therefore, ū is noncritical. 
�

Another useful observation is the following.

Remark 3 Note that twice differentiability of f and h at an isolated stationary point
x̄ of problem (5) implies strict differentiability of Φ defined in (46), at ū = (x̄, λ̄)

for every λ̄ ∈ M (x̄), with respect to its null set which locally coincides with S =
{x̄} × M (x̄). Indeed,

∥∥∥∥∂L

∂x
(x, λ) − ∂2L

∂x2
(x̄, λ̄)(x − x̄) − (h′(x̄))T(λ − λ̂)

∥∥∥∥
=
∥∥∥∥∂L

∂x
(x, λ̂) + (h′(x))T(λ − λ̂) − ∂2L

∂x2
(x̄, λ̄)(x − x̄) − (h′(x̄))T(λ − λ̂)

∥∥∥∥
=
∥∥∥∥∂L

∂x
(x, λ̂) − ∂L

∂x
(x̄, λ̂) − ∂2L

∂x2
(x̄, λ̄)(x − x̄)

∥∥∥∥+ o(‖x − x̄‖)

=
∥∥∥∥∂2L

∂x2
(x̄, λ̂)(x − x̄) − ∂2L

∂x2
(x̄, λ̄)(x − x̄)

∥∥∥∥+ o(‖x − x̄‖)
= o(‖x − x̄‖),
‖h(x) − h(x̄) − h′(x̄)(x − x̄)‖ = o(‖x − x̄‖)

as x ∈ R
n tends to x̄ , andλ ∈ R

l and λ̂ ∈ M (x̄) tend to λ̄, yielding the needed property.
In particular, it follows that Theorem 2 implies Theorem 1, while Proposition 1 implies
the corresponding result in [19].

Observe that any stronger smoothness properties of Φ, like strict differentiability
at ū, are not implied by twice differentiability of f and h. 
�

The next task is to understand what the 2-regularity conditions, used above in the
case of general equations, mean when the Lagrange optimality system is considered.

Observe that, when p = q (as in the case in question), according to (35), Φ is not
2-regular at ū in a direction v ∈ R

p if and only if there exists u ∈ R
p\{0} such that

u ∈ kerΦ ′(ū), Φ ′′(ū)[v, u] ∈ imΦ ′(ū). (53)

Let Φ be defined in (46). We first derive the characterization of 2-regularity of Φ

at ū = (x̄, λ̄) in a direction v = (ξ, η) ∈ R
n × R

l , where λ̄ ∈ M (x̄).
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Define the linear operator Λ(x̄, λ̄) : Q(x̄, λ̄) → imh′(x̄) putting in correspon-
dence to every ξ ∈ Q(x̄, λ̄) the unique solution of the linear system

(h′(x̄))Tη = −∂2L

∂x2
(x̄, λ̄)ξ (54)

in imh′(x̄) = (ker(h′(x̄))T)⊥. [This operator is correctly defined, due to (51).] It has
been shown in [19, Proposition 3] that

imΦ ′(ū) =
{
(x, y) ∈ R

n × imh′(x̄)
∣∣∣ x + (Λ(x̄, λ̄))∗y ∈ (Q(x̄, λ̄))⊥

}
, (55)

where Λ∗ stands for the adjoint of a linear operator Λ.
Assuming that f and h are three times differentiable, from (49) we obtain that for

v = (ξ, η) ∈ R
n × R

l and u = (x, λ) ∈ R
n × R

l it holds that

Φ ′′(ū)[v, u] =
⎛
⎝ ∂3L

∂x3
(x̄, λ̄)[ξ, x] + (h′′(x̄)[x])Tη + (h′′(x̄)[ξ ])Tλ

h′′(x̄)[ξ, x]

⎞
⎠ . (56)

Therefore, according toΦ is not 2-regular in a direction v = (ξ, η) if and only if there
exists (x, λ) ∈ (Rn × R

l)\{(0, 0)} such that

x ∈ ker h′(x̄), ∂2L

∂x2
(x̄, λ̄)x + (h′(x̄))Tλ = 0, (57)

∂3L

∂x3
(x̄, λ̄)[ξ, x] + (h′′(x̄)[x])Tη

+(h′′(x̄)[ξ ])Tλ + (Λ(x̄, λ̄))∗h′′(x̄)[ξ, x] ∈ (Q(x̄, λ̄))⊥, (58)

h′′(x̄)[ξ, x] ∈ imh′(x̄). (59)

The next lemma gives a sufficient condition for 2-regularity.

Lemma 3 Let f : Rn → R and h : Rn → R
l be three times differentiable at x̄ ∈ R

n.
For a given pair (ξ, η) ∈ R

n × R
l , and for some λ̄ ∈ R

l , assume that

∂3L

∂x3
(x̄, λ̄)[ξ, x, x] + 〈η, h′′(x̄)[x, x]〉 + 2〈Λ(x̄, λ̄)x, h′′(x̄)[ξ, x]〉 �= 0 (60)

for all x ∈ Q(x̄, λ̄)\{0} satisfying (59), and

imh′(x̄) + h′′(x̄)[ξ, Q(x̄, λ̄)] = R
l . (61)

Then the mapping Φ defined in (46) is 2-regular at ū = (x̄, λ̄) in the direction
v = (ξ, η).
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Proof Suppose that, on the contrary, there exists (x, λ) ∈ (Rn ×R
l)\{(0, 0)} satisfy-

ing (57)–(59). Multiplying the left-hand side of (58) by x (which belongs to Q(x̄, λ̄)

according to (51) and (57)), we then obtain

∂3L

∂x3
(x̄, λ̄)[ξ, x, x] + 〈η, h′′(x̄)[x, x]〉 + 〈λ + Λ(x̄, λ̄)x, h′′(x̄)[ξ, x]〉 = 0.

By the second relation in (57), λ is a solution of Eq. (54). Hence, by (59) and the
definition of Λ(x̄, λ̄), it holds that

〈λ, h′′(x̄)[ξ, x]〉 = 〈Λ(x̄, λ̄)x, h′′(x̄)[ξ, x]〉.

Hence, the left-hand side of (60) equals zero, which is only possible if x = 0. Then
from (57)–(58) we obtain that

(h′(x̄))Tλ = 0, (h′′(x̄)[ξ ])Tλ ∈ (Q(x̄, λ̄))⊥.

By (61), this implies that λ = 0, giving a contradiction. 
�
Using the characterization of 2-regularity provided above, one can apply Theorem 4

to the Lagrange optimality system, specifying appropriate cones K . Here, we shall
restrict ourselves to deciphering Theorem 4 in this context.

In [19, Proposition 4], the following projector onto an appropriate complementary
subspace to imΦ ′(ū) is constructed: for (χ, y) ∈ R

n × R
l

Π(χ, y) =
(
P⊥
Q χ + (Λ(x̄, λ̄))∗P⊥

imh′(x̄)y, P⊥
(imh′(x̄))⊥ y

)
.

With this choice of Π , the setW (K , Π) defined in (36) consists of (χ, y) ∈ R
n ×R

l

such that there exists (x, λ) ∈ K satisfying

∂2L

∂x2
(x̄, λ̄)x + (h′(x̄))Tλ + 1

2
P⊥
Q

(
∂3L

∂x3
(x̄, λ̄)[x, x] + 2(h′′(x̄)[x])Tλ

)

+ (Λ(x̄, λ̄))∗P⊥
imh′(x̄)h

′′(x̄)[x, x] = χ, (62)

h′(x̄)x + 1

2
P⊥

(imh′(x̄))⊥h
′′(x̄)[x, x] = y. (63)

Given the constructions above, Theorem 4 results in the following.

Proposition 3 Let f : Rn → R and h : Rn → R
l be three times differentiable near

x̄ ∈ R
n, and let their third derivatives be continuous at x̄ . Let x̄ be a stationary point

of problem (5), and let λ̄ ∈ M (x̄). Let K ⊂ R
n × R

l be a closed cone such that
for every (ξ, η) ∈ K\{(0, 0)} there exists no (x, λ) ∈ (Rn × R

l)\{(0, 0)} satisfying
(57)–(59).

Then there exist ε = ε(K ) > 0 and C = C(K ) > 0 such that for every
w = (χ, y) ∈ B(0, ε) satisfying (62)–(63) with some (x, λ) ∈ K, there exists
(x(w), λ(w)) ∈ R

n × R
l satisfying

123



504 A. F. Izmailov et al.

∂L

∂x
(x, λ) = χ, h(x) = y,

and

‖(x(w) − x̄, λ(w) − λ̄)‖ ≤ C

(∥∥∥(P⊥
Q⊥χ − (Λ(x̄, λ̄))∗P⊥

imh′(x̄)y, P⊥
imh′(x̄)y

)∥∥∥

+
√∥∥∥(P⊥

Q χ + (Λ(x̄, λ̄))∗P⊥
imh′(x̄)y, P⊥

(imh′(x̄))⊥ y
)∥∥∥
)

.

Proposition 3 establishes Hölder stability of primal–dual solutions of optimiza-
tion problem (5) subject to wide classes of canonical perturbations. For other results
on Hölder stability of solutions and solution sets, see, e.g., [1,13,30–32,34] and [7,
Chapter 4]. One feature distinguishing Proposition 3 from the cited works is that it
deals with stability of a specific dual solution. A result related to Proposition 3 was
established in [19], but for directional (one-dimensional) perturbations only.

We next study the cases whenΦ can (or cannot) be 2-regular at ū = (x̄, λ̄) in some
direction v = (ξ, η) ∈ kerΦ ′(ū). Note that if a direction v ∈ kerΦ ′(ū) for which
2-regularity holds exists, then Theorem 5 guarantees stability of the solution ū (with
this specific λ̄ ∈ M (x̄)!) with respect to a wide class of right-hand side perturbations
of the Lagrange optimality system.

According to Proposition 2, if λ̄ is a noncritical Lagrange multiplier, then ū =
(x̄, λ̄) is a noncritical solution of Eq. (1). Furthermore, as discussed above, if ū is
a noncritical solution and Φ ′(ū) is singular, then Φ cannot be 2-regular at ū in any
direction v ∈ kerΦ ′(ū). Therefore, according to (52), in the case of violation of
the constraints regularity condition (48) we can expect 2-regularity in the needed
directions only when λ̄ is a critical multiplier, i.e., when Q(x̄, λ̄) �= 0.

Recall also that according to (50) and (51), v belongs to kerΦ ′(ū) if and only if

ξ ∈ ker h′(x̄), ∂2L

∂x2
(x̄, λ̄)ξ + (h′(x̄))Tη = 0. (64)

We next consider some special cases, with conclusions summarized in Proposition 4
below. Observe first that, if ξ = 0, then relations (57)–(59) are satisfied by x = 0
and by every λ ∈ ker(h′(x̄))T, where the subspace ker(h′(x̄))T is nontrivial when the
constraints regularity condition (48) does not hold. Hence, 2-regularity is not possible
in such directions.

Furthermore, let ξ �= 0, and consider the case of dim Q(x̄, λ̄) = 1, i.e., Q(x̄, λ̄) is
spanned by some ξ̄ ∈ R

n\{0} (in this case, λ̄ is referred to as a multiplier critical of
order 1 [27]). Then (51) and (64) imply that ξ is a nonzero multiple of ξ̄ , and taking
x = 0 in (57)–(59) reduces these relations to

(h′(x̄))Tλ = 0, 〈h′′(x̄)[ξ̄ , ξ̄ ], λ〉 = 0.

If h′′(x̄)[ξ̄ , ξ̄ ] ∈ imh′(x̄), then this system always has a nontrivial solution when
the constraints regularity condition (48) is violated. Otherwise, this system reduces
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to a system consisting of rankh′(x̄) + 1 linearly independent linear equations in l
variables. In particular, if rankh′(x̄) ≤ l−2, then 2-regularity in the needed directions
is not possible. This case is especially difficult, as it allows for nonisolated critical
multipliers.

Suppose now that l = 1. Then violation of constraints regularity condition (48)
means full degeneracy: h′(x̄) = 0. Then it holds that

Q(x̄, λ̄) = ker
∂2L

∂x2
(x̄, λ̄), Λ(x̄, λ̄) = 0.

Therefore, system (57)–(59) takes the form

∂2L

∂x2
(x̄, λ̄)x = 0,

∂3L

∂x3
(x̄, λ̄)[ξ, x] + η(h′′(x̄)[x])T

+ λ(h′′(x̄)[ξ ])T ∈
(
ker

∂2L

∂x2
(x̄, λ̄)

)⊥
,

h′′(x̄)[ξ, x] = 0.

If ξ �= 0 and dim Q(x̄, λ̄) = 1, then these relations reduce to the system

t
∂3L

∂x3
(x̄, λ̄)[ξ̄ , ξ̄ , ξ̄ ] + (tη + λ)h′′(x̄)[ξ̄ , ξ̄ ] = 0, th′′(x̄)[ξ̄ , ξ̄ ] = 0

with respect to (t, λ) ∈ R×R, where we set x = t ξ̄ . This system has only the trivial
solution if and only if

h′′(x̄)[ξ̄ , ξ̄ ] �= 0. (65)

Therefore, in the case of l = 1, and when constraints regularity condition (48) does
not hold and Q(x̄, λ̄) is spanned by ξ̄ , we conclude that Φ is 2-regular at ū in the
directions v = (ξ̄ , η) ∈ kerΦ ′(ū) for all η ∈ R if and only if (65) holds.

We summarize the above considerations in the following.

Proposition 4 Let f : R
n → R and h : R

n → R
l be three times differentiable

at a stationary point x̄ ∈ R
n of optimization problem (5), and let λ̄ be a Lagrange

multiplier associated to x̄ . Let Q(x̄, λ̄) be spanned by some ξ̄ ∈ R
n\{0}, i.e., λ̄ is a

critical multiplier of order 1.
If rankh′(x̄) = l − 1, then kerΦ ′(ū) contains elements of the form v = (ξ̄ , η)

with some η ∈ R
l , and Φ is 2-regular at ū in every such direction if and only if

h′′(x̄)[ξ̄ , ξ̄ ] /∈ imh′(x̄).
If rankh′(x̄) ≤ l−2, thenΦ cannot be 2-regular at ū in any direction v ∈ kerΦ ′(ū).
If h′(x̄) = 0, and l ≥ 2 or (65) does not hold, then Φ cannot be 2-regular at ū in

any direction v ∈ kerΦ ′(ū).

Example 12 (DEGEN 20101 [9]) Consider f : R → R, f (x) = x2, h : R2 → R,
h(x) = x2. Then x̄ = 0 is the unique solution of problem (5), h′(x̄) = 0, and
M (x̄) = R. Furthermore,
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∂2L

∂x2
(x, λ) = 2(1 + λ),

and hence, the only critical multiplier is λ̄ = −1.
For the mapping Φ defined in (46), equation (9) with right-hand side perturbation

w = (χ, y) ∈ R×R (corresponding to canonical perturbation of problem (5)) has the
solutions (x(w), λ(w)) = (±√

y, −1±χ/(2
√
y)) when y > 0, and no solutions for

other w �= 0. If χ = o(
√
y), both these solutions tend to ū = (x̄, λ̄) as w → 0. Other

points in {x̄} ×M (x̄) can be stable only subject to special perturbations w satisfying
y = O(χ2), thus with w/‖w‖ tending to d = (1, 0).

Observe that here dim Q(x̄, λ̄) = 1, l = 1, and (65) holds. Hence, according to
Proposition 4, Φ is 2-regular at ū in the directions v = (ξ̄ , η) ∈ kerΦ ′(ū) for every
η ∈ R. 
�

We conclude by mentioning that the case when dim Q(x̄, λ̄) ≥ 2 (i.e., when λ̄ is
critical of order higher than 1) opens wide possibilities for 2-regularity in the needed
directions, and hence, for stability subject to wide classes of perturbations.

Finally, it is worth making the following simple but useful observation: all the
results and discussions above readily extend to KKT systems involving inequality
constraints (arising from optimization or variational problems), to KKT-type systems
for equilibrium problems (including GNEPs), and to more general complementarity
systems, assuming that solution in question satisfies strict complementarity. Near such
solutions, complementarity systems naturally (without using any complementarity
functions) reduce to a smooth system of equations. Such cases have already been
illustrated by Examples 9 and 10. For instance, a critical solution ū = (x̄, 1) in
Example 9 can be treated the same way as the unique critical solution in Example 12,
with the same conclusions for the corresponding mapping Φ defined in (30).
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the original presentation.
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