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Abstract We study an extension of the classical graph cut problem, wherein we
replace the modular (sum of edge weights) cost function by a submodular set function
defined over graph edges. Special cases of this problem have appeared in different
applications in signal processing,machine learning, and computer vision. In this paper,
we connect these applications via the generic formulation of “cooperative graph cuts”,
for which we study complexity, algorithms, and connections to polymatroidal network
flows. Finally, we compare the proposed algorithms empirically.

Mathematics Subject Classification 68R10 · 68T45 · 68Q25

1 Introduction

Graphs have been a ubiquitousmodeling tool in areas as diverse as operations research,
signal processing and machine learning. Graphical representations reveal structure in
the problem that is often the key to obtaining efficient algorithms for real-world data
analysis problems. As a prominent example, theMinimum (s, t)-Cut problem under-
lies important problems in low-level computer vision [10] (e.g., image segmentation
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and regularization), probabilistic inference in graphical models [27,60], and for rep-
resenting pseudo-Boolean functions in computer vision and constraint satisfaction
problems [48,61,77]. The reduction to cuts has had a tremendous practical impact.

The algorithmic efficiency of cuts comes at the price of reduced modeling power:
graph cuts model problems that correspond to a special class of functions (a sub-
class of submodular functions defined on the nodes of the graph [77]). Section 2 lists
applications that do not fall into this category. Motivated by these limitations, this
paper studies a non-additive generalization of Minimum (s, t)-Cut, where the cut
cost function is a submodular set function over graph edges.

A set function f : 2E → R defined on subsets of a ground set E is submodular if
it satisfies diminishing marginal costs: for all sets A ⊂ B ⊆ E and e ∈ E\B, it holds
that

f (A ∪ {e}) − f (A) ≥ f (B ∪ {e}) − f (B). (1)

This generalization—we refer to it as Cooperative Cut—introduces dependencies
between edges, and expresses a wider set of functions than graph cuts.

1.1 Minimum cut and minimum cooperative cut

The Minimum (s, t)-Cut problem is defined as follows.

Problem 1 (Minimum (s, t)-Cut) Given a weighted graph G = (V, E, w) with ter-
minal nodes s, t ∈ V , find a cut C ⊆ E of minimum cost w(C) = ∑

e∈C w(e). A cut
is a set of edges whose removal disconnects all paths between s and t.

We assume throughout thatw ≥ 0. Many very efficient algorithms are known to solve
Minimum (s, t)-Cut; the reader is referred to Ahuja et al. [1], Schrijver [63] for an
overview.

In graph cuts, the cost of any given cut C ⊆ E is a sum w(C) = ∑
e∈C w(e) of

edge weights. This function is said to be modular or, equivalently, additive on the
edge set E . It implies two important modeling characteristics for graph cuts: First, the
nonnegativity of the weights can only penalize two nodes for being separated—this
introduces a form of positive correlation between nodes, also hence this is sometimes
referred to as attractive potentials in the computer vision community. Second, modular
edge weights express interactions of only two nodes at a time. That is, the additive
contribution w(e) to the cost

∑
e∈C w(e) of a cut C by a given edge e ∈ C is the same

regardless of the cut in which the edge e is considered.
Several applications, however, are more accurately modeled when allowing

non-additive interactions between edge weights. We survey some examples and appli-
cations in Sect. 2. These examples are captured when replacing the modular cost
function w by a nonnegative and nondecreasing submodular set function over graph
edges. The definition (1) implies that with submodular edge weights, the cost of an
additional edge depends on which other edges are contained in the cut. This non-
additivity allows specific long-range dependencies between multiple (pairs of) nodes
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simultaneously that cannot be expressed by graph cuts. These observations motivate
the definition of cooperative graph cuts.

Problem 2 (Minimumcooperative cut (MinCoopCut)) Given a graphG = (V, E, f )
with terminal nodes s, t ∈ V and a nonnegative, monotone nondecreasing submodular
function f : 2E → R+ defined on subsets of edges, find an (s, t)-cut C ⊆ E of
minimum cost f (C).

A set function f is nondecreasing if A ⊆ B ⊆ E implies that f (A) ≤ f (B).
MinCoopCut is a constrained submodular minimization problem:

minimize f (C) subject to C ⊆ E is an (s, t)-cut in G. (2)

As cooperative cuts employ the same graph structures as standard graph cuts, they
easily integrate into and extend many of the applications of graph cuts. We note,
however, that the graph G need not have any relationship to the submodular function
f other than the fact that the edges of the graph G constitute the ground set of f .

1.2 Relation to the literature

Cooperative graph cuts relate to the recent literature in two aspects. First, a number
of models in signal processing, computer vision, security, and machine learning are
special cases of cooperative cuts, as is discussed in Sect. 2.

Second, recent interest has emerged in the literature regarding the implications
of extending classical combinatorial problems (such as Shortest Path, Minimum
Spanning Tree, orSet Cover) from a sum-of-weights to submodular cost functions
[5,22,23,29,31,36,37,50,70,76]. None of this work, however, has addressed cuts.
In this work, we provide lower and upper bounds on the approximation factor of
MinCoopCut.

One approach to solvingMinCoopCut is via relaxations. ForMinimum (s, t)-Cut,
a celebrated result of Ford and Fleischer [20], Dantzig and Fulkerson [17] states that
the dual of the linear programming relaxation is a Maximum Flow problem, and
that their optimal values coincide. We refer to the ratio between the maximum flow
value (i.e., the optimal value of the relaxation), and the optimal value of the discrete
cut, as the flow-cut gap. For Minimum (s, t)-Cut, this ratio is one. In Sect. 4, we
formulate a convex relaxation of MinCoopCut whose dual problem is a generalized
flowproblem,where submodular capacity constraints are placed not only on individual
edges but on arbitrary sets of edges simultaneously. The flow-cut gap for this problem
can be on the order of n, the number of nodes. In contrast, the related polymatroidal
maximum flow problem [28,52] (defined in Sect. 5.1.3) still has a flow-cut gap of one.
Polymatroidal flows are equivalent to submodular flows, and have recently gained
attention for modeling information flow in wireless networks [13,41,42]. Their dual
problem is aminimumcut problemwhere the edgeweights are definedbya convolution
of local submodular functions [54]. Such convolutions are generally not submodular
(see Eq. (28)).
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1.3 Summary of main contributions

In this paper, we survey diverse examples of cooperative cuts in different applications,
and provide a detailed theoretical analysis:

– We show a lower bound of Ω(
√
n) on the approximation factor for the general

MinCoopCut problem.
– We analyze two families of approximation algorithms. The first relies on substitut-
ing the submodular cost function by a tractable approximation. The second family
consists of rounding algorithms that build on the relaxation of the problem. Both
families contain algorithms that use a partitioning of edges into node incidence
sets, but in different ways.

– We provide a lower bound of n − 1 on the flow-cut gap, and relate it to different
families of submodular functions.

In Sect. 5.1.3 we draw connections to polymatroidal flows [28,52]. The non-additive
cut cost function used in the resulting approximation is solvable exactly and may itself
be interesting to consider as an exactly solvable class of e.g. higher-order potentials
in computer vision. The paper concludes with a discussion of open problems. In
particular, the results of this paper motivate a wider and more refined study of the
complexity and expressive power of non-additive graph cut problems.

The paper is structured as follows. In Sect. 2 we discuss various instances of coop-
erative cuts and their properties. The complexity of MinCoopCut is addressed in
Sect. 3, convex relaxations in Sect. 4, and algorithmic approaches in Sect. 5.

1.4 Notation and technical preliminaries

Throughout this paper, we are given a directed graph1 G = (V, E) with n nodes and
m edges, and terminal nodes s, t ∈ V . The function f : 2E → R+ is submodular
and monotone nondecreasing, where by 2E we denote the power set of E . We assume
f to be normalized, i.e., f (∅) = 0. Equivalently to Definition (1), the function f is
submodular if for all A, B ⊆ E , it holds that

f (A) + f (B) ≥ f (A ∪ B) + f (A ∩ B). (3)

The function f generalizes commonly used modular edge weight functions w : E →
R+ that satisfy Eq. 3 with equality. We denote the marginal cost of an element e ∈ E
with respect to a set A ⊆ E by f (e | A) � f (A ∪ {e}) − f (A). A function f (A) =
g(w(A)) for a nonnegative modular function w and a concave scalar function g is
always submodular.

For any node v ∈ V , let δ+(v) = {(v, u) ∈ E} be the set of edges directed out of v,
and δ−(v) = {(u, v) ∈ E} be the set of edges into v. Together, these two directed sets
form the (undirected) incidence set δ(v) = δ+(v) ∪ δ−(v). These definitions directly
extend to sets of nodes: for a set S ⊆ V of nodes, δ+(S) = {(v, u) ∈ E : v ∈ S, u /∈ S}

1 Undirected graphs can be reduced to bidirected graphs.
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is the set of edges leaving S. Without loss of generality, we assume all graphs are
simple.

The Lovász extension f̃ : [0, 1]m → R of the submodular function f is its lower
convex envelope and is defined as follows [54]. Given a vector x ∈ [0, 1]m , we can
uniquely decompose x into its level sets {Bj } j as x = ∑

j λ jχBj where B1 ⊂ B2 ⊂
. . . are distinct subsets. Here and in the following, χB ∈ [0, 1]m is the characteristic
vector of the set B, with χB(e) = 1 if e ∈ B, and χB(e) = 0 otherwise. Then
f̃ (x) = ∑

j λ j f (Bj ). This construction illustrates that f̃ (χB) = f (B) for any set
B. The Lovász extension can be computed by sorting the entries of the argument x in
O(m logm) time and calling f m times.

A separator of a submodular function f is a set S ⊆ E with the property that
f (S) + f (E\S) = f (E), implying that for any B ⊆ E , f (B) = f (B ∩ S) + f (B ∩
(E\S)). If S is a minimal separator, then we say that f couples all edges in S. For the
edges within a minimal separator, f is strictly subadditive:

∑
e∈S f (e) > f (S) for

|S| > 1. That means, the joint cost of this set of edges is smaller than the sum of their
individual costs.

1.5 Node functions induced by submodular edge weights

Every cost function f on graph edges defines a cut function h : 2V → R+ on sets
X ⊆ V of nodes:

h(X) � f (δ+(X)). (4)

It is well known that if f is a (modular) sum of nonnegative edge weights, then h is
submodular [63]. In fact, the following is true:

Proposition 1 The function f is a non-negative modular function on the edge set if
and only if h(X) = f (δ+(X)) is a submodular function on the nodes for all edge-
induced sub-graphs of G = (V,V × V).

If, however, f is an arbitrary nondecreasing submodular function, then this is not
always the case, as Fig. 1 illustrates. Proposition 2, proven inAppendix 10, summarizes
some key properties of h.

Proposition 2 Let h : 2V → R, h(X) � f (δ+(X)) be the node function induced by
a cooperative cut with nonnegative nondecreasing submodular cost function f . Then:

1. h is not always submodular, and
2. h is subadditive, i.e., h(A) + h(B) ≥ h(A ∪ B) for any A, B ⊆ V .
The non-submodularity of h shows that cooperative cuts are strictly more general
than (modular-weight) graph cuts. In some cases, the function h is submodular. One
obvious sufficient condition is that f is nonnegative and modular, but this condition
is not necessary as shown in the following.

Proposition 3 Let f be monotone submodular and permutation symmetric in the
sense that f (A) = f (σ (A)) for any permutation σ of the set E . If G is a complete
graph, then h is submodular.
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Let f(A) =

√∑
e∈A w(e), so

h(X) =
√∑

e∈δ+(X) w(e).

Then h is not submodular:

h({s, x1}) + h({s, x2}) =
√
19.9 +

√
0.2 < 2

√
10 = h({s}) + h({s, x1, x2})

Fig. 1 The node function induced by a cooperative cut is in general not submodular. The above h violates
inequality (3) for A = {s, x1}, B = {s, x2} but satisfies it (strictly) for A = {t, x1}, B = {t, x2}

Proof Symmetry implies that f is of the form f (A) = g(|A|) for a scalar function g.
Submodularity of f implies that there is always a function g′ that interpolates g on
R\{0, 1, . . . ,m}, i.e., f (A) = g′(|A|) = g(|A|), and g′ is a piecewise linear concave
function. Let EXY be the edges between sets X and Y . The submodularity of h is
identical to the condition that for all X ⊆ V , x, y /∈ X , it holds that

h(X ∪ x) + h(X ∪ y) ≥ h(X) + h(X ∪ x ∪ y). (5)

Let R = V\(X ∪ x ∪ y). By the concavity and monotonicity of g′ we have

h(X) + h(X ∪ x ∪ y)

= g′(|EXR | + |EXx | + |EXy |) + g′(|EXR | + |ERx | + |ERy |)
= g′(|X ||R| + 2|X |) + g′(|X ||R| + 2|R|)
≤ 2g′(|X ||R| + |X | + |R|)
≤ g′(|EXR | + |EXy | + |ERx | + |Exy |) + g′(|EXR | + |EXx | + |ERy | + |Exy |)
= h(X ∪ x) + h(X ∪ y),

and hence submodularity of h follows. �
Note that if G is not complete, then h might no longer be submodular. An exact
(possibly algebraic or graph-theoretic) characterization of the conditions on G and f
that imply submodularity of h is currently an open problem.

2 Motivation and special cases

We begin by surveying special cases of cooperative cuts from applications in sig-
nal processing, machine learning, and computer vision. Notably, some of these
applications lead to submodular node functions h as defined in (4) and are hence
polynomial-time solvable, while for others h is not submodular. We first discuss the
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latter case which motivated this paper, and then special submodular cases. Additional
special cases are discussed in Sect. 6.

2.1 General, non-submodular examples

Image segmentation. The classical task of segmenting an image into a foreground
object and its background is commonly formulated as amaximum a posteriori (MAP)
inference problem in a Markov Random Field (MRF) or Conditional Random Field
(CRF). If the potential functions of the random field are submodular functions (of the
node variables), then the MAP solution can be computed efficiently via the minimum
cut in an auxiliary graph [8,27,49].

While these graph cut models have been very successful in computer vision, they
suffer from known shortcomings. For example, the cut model implicitly penalizes the
length of the object boundary, or equivalently the length of a corresponding graph cut
around the object. As a result, MAP solutions (minimum cuts) tend to truncate fine
parts of an object (such as branches of trees, or animal hair), and to neglect carving
out holes (such as the mesh grid of a fan, or written letters on paper). This tendency
is aggravated if the image has regions of low contrast, where local information is
insufficient to determine correct object boundaries.

A solution to both of these problems is proposed in Jegelka and Bilmes [36]. It
relies on the continuation of “obvious” object boundaries: one aims to reduce the cut
cost if the cut consists of edges (pairs of pixels) with similar appearance. This aim
is impossible to model with a modular-cost graph cut where edges are independent.
Hence, Jegelka and Bilmes [36] replace the graph cut by a cooperative cut that lowers
the cost for sets of similar edges. Specifically, the edges in the image graph are par-
titioned into groups Si of similar edges, where similarity is defined via the adjacent
pixels (nodes), and the cut cost is

f (C) =
k∑

i=1

gi (w(C ∩ Si )), (6)

where the gi are increasing, strictly concave functions, and w(C) = ∑
e∈C w(e) is a

sum of nonnegative weights.
From the viewpoint of graphical models, the function h induced by (6) is a higher-

order potential, i.e., a polynomial of degree much larger than 2. The model (6) also
applies to multi-label (scene labeling) problems and other computer vision tasks [46,
65,71].

An alternative cooperative cut function has been studied to improve image segmen-
tation results:

f (C) = max
e∈C w(e). (7)

Contrary to the cost function (6), the function (7) couples all edges in the grid graph
uniformly, without any similarity constraints or grouping. As a result, the cost of any
long cut is discounted. Sinop and Grady [66] and Allène et al. [2] derive this function
as the �∞ norm of the (gradient) vector of pixel differences; this vector is the edge
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indicator vector y in the relaxation we define in Sect. 4. Conversely, the relaxation of
the cooperative cut problem leads to new, possibly non-uniform and group-structured
regularization terms [35].

Label Cuts. In computer security, attack graphs are state graphs modeling the steps
of an intrusion. Each transition edge is labeled by an atomic action a, and blocking an
action a blocks the set of all associated edges Sa ⊆ E that carry label a. To prevent
an intrusion, one must separate the initial state s from the goal state t by blocking
(cutting) appropriate edges. The cost of cutting a set of edges is the cost of blocking
the associated actions (labels), and paying for one action a accounts for all edges in Sa .
If each action has a cost c(a), then aminimum label cut that minimizes the submodular
cost function

f (C) =
∑

a
c(a)min{1, |C ∩ Sa |} (8)

indicates the lowest-cost prevention of an intrusion [40].

Sparse separators of Dynamic Bayesian Networks. A graphical model G = (V,E)

defines a family of probability distributions. It has a node vi for each random variable
xi , and any represented distribution p(x) must factor with respect to the edges of
the graph as p(x) ∝ ∏

(vi ,v j )∈E ψi j (xi , x j ). A dynamic graphical model (DGM) [6]
consists of three template parts: a prologue Gp = (Vp,Ep), a chunk Gc = (Vc,Ec)

and an epilogue Ge = (Ve,Ee). Given a length τ , an unrolling of the template is a
model that begins with Gp on the left, followed by τ + 1 repetitions of the “chunk”
part Gc and ending in the epilogue Ge.

To perform inference efficiently, a periodic section of the partially unrolled model
is identified on which an effective inference strategy (e.g., a graph triangulation, an
elimination order, or an approximate inference method) is developed and then repeat-
edly used for the complete duration of the model unrolled to any length. This periodic
section has boundaries corresponding to separators in the original model [6] which are
called the interface separators. Importantly, the efficiency of any inference algorithm
derived within the periodic section depends critically on properties of the interface,
since the variables within must become a clique.

In general, the computational cost of inference is lower bounded, and the memory
cost of inference is exactly given, by the size of the joint state space of the interface
variables. A “small” separator corresponds to a minimum vertex cut in the graphical
model, where the cost function measures the size of the joint state space. Vertex cuts
can be rephrased as standard edge cuts. Often, amodular cost function suffices for good
results. Sometimes, however, a more general cost function is needed. In Bilmes and
Bartels [7], for example (which is our original motivation for studyingMinCoopCut),
a state space function that considers deterministic relationships between variables is
found to significantly decrease inference costs.

An example of a function that respects determinism is the following. In a Bayesian
network possessing determinism, let D be the subset of fully deterministic nodes. That
means any xi ∈ D is a deterministic function of the variables corresponding to its
parent nodes par(i)meaning p(xi |xpar(i)) = 1[xi = g(xpar(i))] for some deterministic
function g. Let Di be the state space of variable xi . Furthermore, given a set A of
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variables, let AD = {xi ∈ A ∩ D | par(i) ⊆ A} be its subset of fully determined
variables. If the state space of a deterministic variable is not restricted by fixing a
subset of its parents, then the function measuring the state space of a set of variables
A is f (A) = ∏

xi∈A\AD
|Di |. The logarithm of this function is a submodular function,

and therefore the problem of finding a good separator is a cooperative (vertex) cut
problem. In fact, this function is a lower bound on the computational complexity of
inference, and corresponds exactly to the memory complexity since memory need be
retained only at the boundaries between repeated sections in a DGM.

More generally, a similar slicing mechanism applies for partitioning a graph for
use on a parallel computer—we may seek separators that require little information
to be transferred from one processor to another. A reasonable proxy for such “com-
pressibility” is the entropy of a set of random variables, a well-known submodular
function. The resulting optimization problem of finding a minimum-entropy separator
is a cooperative cut that is different from any known special cases.

Robust optimization. Assume we are given a graph where the weight of each edge
e ∈ E is noisy and distributed asN (μ(e), σ 2(e)) for nonnegative mean weights μ(e).
The noise on different edges is independent, and the cost of a cut is the sum of edge
weights of an unknown draw from that distribution. In such a case, we might want
to not only minimize the expected cost, but also take the variance into consideration.
This is the aim in mean-risk minimization (which is equivalent to a probability tail
model or value-at-risk model), where we aim to minimize

f (C) =
∑

e∈C
μ(e) + λ

√∑

e∈C
σ 2(e). (9)

This is a cooperative cut, and this special case admits an FPTAS [58].

2.2 Special cases that lead to submodular functions h

Curiously, some instances of cooperative cuts provably yield submodular node func-
tions h and are hence easier. In the first two examples below, f is defined over edges in
a complete graph and is symmetric. Here, symmetry is meant in the sense of Vondrák
[75] and Proposition 3, the function is indifferent to permutations of the arguments.

Higher-order potentials in computer vision. A number of higher-order potentials
(pseudo-Boolean functions) from computer vision, i.e., potential functions that intro-
duce dependencies between more than two variables at a time, can be reformulated as
cooperative cuts. As an example, Pn Potts functions [44] and robust Pn potentials [45]
bias image labelings to assign the same label to larger patches of pixels (of uniform
appearance). The potential is low if all nodes in a given patch take the same label,
and high if a large fraction deviates from the majority label. These potential functions
correspond to a complete graph with a cooperative cut cost function

f (C) = g(|C |), (10)
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for a concave function g. The larger the fraction of deviating nodes, the more edges
are cut between labels, leading to a higher penalty. The function g makes this robust
by capping the maximum penalty.

Regularization and Total Variation. A popular regularization term in signal process-
ing, and in particular for image denoising, has been the Total Variation (TV) and its
discretization [62]. The setup commonly includes a pixel variable (say x j or xi j ) cor-
responding to each pixel or node in the image graph G, and an objective that consists
of a loss term and the regularization. The discrete TV for variables xi j corresponding
to pixels vi j in an M × M grid with coordinates i, j is given as

TV1(x) =
M∑

i, j=1

√
(xi+1, j − xi j )2 + (xi, j+1 − xi j )2. (11)

If x is constrained to be a {0, 1}-valued vector, then this is an instance of cooperative
cut—the pixels valued at unity correspond to the selected elements X ⊆ V , and the
edge submodular function corresponds to f (C) = ∑

i j

√
C ∩ Si j for C ⊆ E where

Si j = {(vi+1, jvi j ), (vi, j+1, vi j )} ⊆ E ranges over all relevant neighborhood pairs of
edges. Discrete versions of other variants of total variation are also cooperative cuts.
Examples include the combinatorial total variation of Couprie et al. [15]:

TV2(x) =
∑

i

√ ∑

(vi ,v j )∈E
ν2i (xi − x j )2, (12)

and the submodular oscillations in Chambolle and Darbon [12], for instance,

TV3(x) =
∑

1≤i, j≤M

max{xi, j , xi+1, j , xi, j+1, xi+1, j+1}

−min{xi, j , xi+1, j , xi, j+1, xi+1, j+1} (13)

=
∑

1≤i, j≤M

max
�,r∈Ui j×Ui j

|x� − xk |, (14)

where for notational convenienceweusedUi j = {(i, j), (i+1, j), (i, j+1), (i+1, j+
1)}. The latter term (14), like Pn potentials, corresponds to a symmetric submodular
function on a complete graph, andboth (10) and (14) lead to submodular node functions
h(X).

Approximate submodular minimization. Graph cuts have been useful optimization
tools but cannot represent any arbitrary set function, not even all submodular func-
tions [77]. But, using a decomposition theorem by Cunningham [16], any submodular
function can be phrased as a cooperative graph cut. As a result, any fast algorithm that
computes an approximate minimum cooperative cut can be used for (faster) approxi-
mate minimization of certain submodular functions [38].
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2.3 General cooperative cut

The above examples indicate that certain special cases reduce MinCoopCut to a
submodular minimization problem, or result in a simpler optimization problem than
the general form of MinCoopCut with an arbitrary non-negative submodular cost
function f and an arbitrary graph G. We will discuss such examples in further detail
in Sect. 6.

Yet, there are many reasons for studying the optimization landscape of general
MinCoopCut. First, not all of the examples in Sect. 2.1 fall into one of the “easier”
classes. Second, applications often benefit from learning the submodular function
rather than specifying it a priori. While learning a submodular function is hard in
general [4,24], learning can be practically viable for sub-classes of submodular func-
tions [19,53,69,73]. Applications such as those in computer vision [36] would likely
benefit from learning too, but the resulting cooperative cut problem would not neces-
sarily fall into an easy sub-class. Moreover, applications often benefit from combining
different objective terms. In computer vision, this may be a cooperative cut potential
for encouraging object boundaries of homogeneous appearance, combined with terms
that express the data likelihood for different object classes, terms that encourage the
coherence of uniform patches of pixels, e.g. the potentials in Kohli et al. [45], and pos-
sibly others. All of these terms are cooperative cuts, but together they quickly exceed
special sub-classes of the problem.

In fact, empirical results enabled by general algorithms may hint at the existence
of further, easier special cases that help map the complexity landscape. The empirical
results in Sect. 7, for example, are based on the results in this paper and open up
questions for further study. Hence, this paper deliberately takes a general viewpoint
to connect the many examples from a spectrum of areas to a common optimization
problem.

3 Complexity and lower bounds

In this section, we address the hardness of the generalMinCoopCut problem. Assum-
ing that the cost function is given as an oracle, we show a lower bound of Ω(

√
n) on

the approximation factor. In addition, we include a proof of NP-hardness. NP-hardness
holds even if the cost function is completely known and polynomially computable and
representable.

Our results complement known lower bounds for related combinatorial problems
having submodular cost functions. Table 1 provides an overview of known results from
the literature. In addition, Zhang et al. [76] show a lower bound for the special case of
Minimum Label Cut via a reduction from Minimum Label Cover. Their lower
bound is 2(log m̄)1−(log log m̄)−c

for c < 0.5, where m̄ is the input length of the instance.
Their proof is based on the PCP theorem. In contrast, the proof of the lower bound in
Theorem 1 is information-theoretic.

Theorem 1 No polynomial-time algorithm can solveMinCoopCut with an approx-
imation factor of o(

√|V|/ log |V|).
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Table 1 Hardness results for
combinatorial problems with
submodular costs, where n is the
number of nodes, and U the
universe to cover. These results
assume oracle access to the cost
function

Problem Lower bound References

Set cover Ω(ln |U |) [31]

Minimum spanning tree Ω(n) [22]

Shortest path Ω(n2/3) [22]

Perfect matching Ω(n) [22]

Minimum cut Ω(
√
n) Theorem 1

The proof relies on constructing two submodular cost functions f , h that are almost
indistinguishable, except that they have quite differently valued minima. In fact, with
high probability they cannot be distinguished with a polynomial number of function
queries. If the optima of h and f differ by a factor larger than α, then any solution for
f within a factor α of the optimumwould be enough evidence to discriminate between
f and h. As a result, a polynomial-time algorithm that guarantees an approximation
factor α would lead to a contradiction. The proof technique follows along the lines of
the proofs in Goemans et al. [24,25], Svitkina and Fleischer [70] (Fig. 2).

One of the functions, f , depends on a hidden random set R ⊆ E that will be its
optimal cut. We will use the following lemma that assumes f will depend on a random
set R.

Lemma 1 ([70], Lemma 2.1) If for any fixed set Q ⊆ E , chosen without knowledge
of R, the probability of f (Q) �= h(Q) over the random choice of R is m−ω(1), then
any algorithm that makes a polynomial number of oracle queries has probability at
most m−ω(1) of distinguishing between f and h.

Consequently, the two functions f and h in Lemma 1 cannot be distinguished with
high probability within a polynomial number of queries, i.e., within polynomial time.
Hence, it suffices to construct two functions for which Lemma 1 holds.

Proof (Theorem 1) We will prove the bound in terms of the number m = |E | of edges
in the graph. The graph we construct has n = m−�+2 nodes, and therefore the proof
also shows the lower bound in terms of nodes.

Construct a graph G = (V, E) with � parallel disjoint paths from s to t , where each
path has k edges. The random set R ⊂ E is always a cut consisting of |R| = � edges,
and contains one edge from each path uniformly at random. We define β = 8�/k < �

(for k > 8), and, for any Q ⊆ E ,

h(Q) = min{|Q|, �} (15)

f (Q) = min{|Q\R| + min{|Q ∩ R|, β}, �}. (16)

The functions differ only for the relatively few sets Q with |Q∩ R| > β and |Q\R| <

�−β, with minA∈C h(A) = h(C) = �, minA∈C f (A) = f (R) = β, where C is the set
of cuts, and C is any cut. We must have k� = m, so define ε such that ε2 = 8/7 logm,
and set k = 8

√
m/ε and � = ε

√
m/8.
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Fig. 2 Graph for the proof of
Theorem 1

S t...

k

We compute the probability that f and h differ for a given query set Q. Probabilities
are over the random unknown R. Since f ≤ h, the probability of a difference is
Pr( f (Q) < h(Q)). If |Q| ≤ �, then f (Q) < h(Q) only if β < |Q ∩ R|, and the
probability Pr( f (Q) < h(Q)) = Pr(|Q ∩ R| > β) increases as Q grows. If, on the
other hand, |Q| ≥ �, then since h(Q) = � the probability

Pr( f (Q) < h(Q)) = Pr(|Q\R| + min{|Q ∩ R|, β} < �) = Pr(|Q ∩ R| > β)

decreases as Q grows. Hence, the probability of a difference is largest when |Q| = �.
So let |Q| = �. If Q spreads over b ≤ k edges of a path P , then the probability

that Q includes the edge in P ∩ R is b/k. The expected overlap between Q and R
is the sum of hits on all paths: E[ |Q ∩ R| ] = |Q|/k = �/k. Since the edges in
R are independent across different paths, we may bound the probability of a large
intersection by a Chernoff bound (with δ = 7 in Mitzenmacher and Upfal [56]):

Pr
(
f (Q) �= h(Q)

) ≤ Pr
( |Q ∩ R| ≥ 8�/k

)
(17)

≤ 2−7�/k = 2−7ε2/8 = 2−ω(logm) = m−ω(1). (18)

With this result, Lemma 1 applies. No polynomial-time algorithm can guarantee to
be able to distinguish f and h with high probability. A polynomial algorithm with
approximation factor better than the ratio of optima h(R)/ f (R) would discriminate
the two functions and thus lead to a contradiction. As a result, the lower bound is
determined by the ratio of optima of h and f . The optimum of f is f (R) = β, and
h has uniform cost � for all minimal cuts. Hence, the ratio is h(R)/ f (R) = �/β =√
m/ε = o(

√
m/ logm). �

Building on the construction in the above proof with � = n1/3 and a different cut
cost function, [4] proved that if the data structure used by an algorithm (even with
an arbitrary number of queries) has polynomial size, then this data structure cannot
represent the minimizers of their cooperative cut problem to an approximation factor
of o(n1/3/ log n).

In addition, we mention that a reduction from Graph Bisection serves to prove that
MinCoopCut is NP-hard. We defer the proof to Appendix 11, but point out that in
the reduction, the cost function is fully accessible and given as a polynomial-time
computable formula.
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Theorem 2 Minimum Cooperative (s, t)-Cut is NP-hard.

4 Relaxation and the flow dual

As a first step towards approximation algorithms, we formulate a relaxation of Min-
CoopCut and analyze the flow-cut gap. The minimum cooperative cut problem can
be relaxed to a continuous convex optimization problem using the convex Lovász
extension f̃ of f :

min
y∈R|E|, x∈R|V|

f̃ (y)

s.t. − x(u) + x(v) + y(e) ≥ 0 for all e = (u, v) ∈ E
x(s) − x(t) ≥ 1

y ≥ 0 (19)

The dual of this problem can be derived by writing the Lovász extension as a max-
imum f̃ (y) = maxz∈P( f ) z�y of linear functions. The maximum is taken over the
submodular polyhedron

P( f ) =
{

y |
∑

e∈A

y(e) ≤ f (A) ∀A ⊆ E
}

. (20)

The resulting dual problem is a flow problem with non-local capacity constraints:

max
ν∈R,ϕ∈R|E|

ν (21)

s.t. ϕ(A) �
∑

e∈A

ϕ(e) ≤ f (A) for all A ⊆ E
∑

e∈δ+u
ϕ(e) −

∑

e′∈δ−u
ϕ(e′) = d(u)ν for all u ∈ V

ϕ ≥ 0, (22)

where d(u) = 1 if u = s, d(u) = −1 if u = t , and d(u) = 0 otherwise. Constraint (22)
demands that ϕ must, in addition to satisfying the common flow conservation, reside
within the submodular polyhedron P( f ). This more restrictive constraint replaces the
edge-wise capacity constraints that occur when f is a sum of weights.

As an alternative to (19), the constraints can be stated in terms of paths: a set of
edges is a cut if it intersects all (s, t)-paths in the graph.

min f̃ (y)

s.t.
∑

e∈P
y(e) ≥ 1 for all (s, t)-paths P ⊆ E

y ∈ [0, 1]E . (23)

We will use this form in Sect. 5.2.1, and the relaxation (19) in Sect. 5.2.2.

123



Graph cuts with interacting edge weights: examples. . . 255

4.1 Flow-cut gap

The relaxation (19) of the discrete problem (2) is not tight. This becomes evident when
analyzing the ratio f (C∗)/ f̃ (y∗) between the optimal value of the discrete problem
and the relaxation (19) (i.e., the integrality gap). This ratio is, by strong duality between
Problems (19) and (21), also the flow-cut gap f (C∗)/ν∗ of the optimal cut andmaximal
flow values.

Lemma 2 LetP be the set of all (s, t)-paths in the graph. The flow-cut gap f (C∗)/ν∗
can be upper and lower bounded as follows:

f (C∗)
∑

P∈P minP ′⊆P
f (P ′)
|P ′|

≤ f (C∗)
ν∗ ≤ f (C∗)

maxP∈P minP ′⊆P
f (P ′)
|P ′|

.

Proof The Lemma straightforwardly follows from bounding the optimal flow ν∗. The
flow through a single path P ∈ P , if all other edges e /∈ P are empty, is restricted by the
minimumaverage capacity for any subset of edgeswithin the path, i.e., minP ′⊆P

f (P ′)
|P ′| .

Moreover, we obtain a family of feasible solutions as those that send nonzero flow only
along one path and remain within that path’s capacity. Hence, the maximum flowmust
be at least as big as the flow for any of those single-path solutions. This observation
yields the upper bound on the ratio.

A similar argumentation shows the lower bound: the total joint capacity constraint is
upper bounded by f̂ (A) = ∑

P∈P f (A ∩ P) ≥ f (A). Hence,
∑

P∈P minP ′⊆P
f (P ′)
|P ′|

is the value of the maximum flow with capacity f̂ if each edge is only contained in
one path, and is an upper bound on the flow otherwise. �
Corollary 1 The flow-cut gap forMinCoopCut can be as large as n − 1.

Proof Corollary 1 can be shown via an example where the upper and lower bound
of Lemma 2 coincide. The worst-case example for the flow-cut gap is a simple graph
that consists of one single path from s to t with n − 1 edges. For this graph one of the
capacity constraints is that

ϕ(E) =
∑

e∈E
ϕ(e) ≤ f (E). (24)

Constraint (24) is the only relevant capacity constraint if the capacity (and cut cost)
function is f (A) = maxe∈A w(e) with weights w(e) = γ for all e ∈ E and some
constant γ > 0 and, consequently, f (E) = γ . By Constraint (24), the maximum flow
is ν∗ = γ

n−1 . The optimum cooperative cut C∗, by contrast, consists of any single
edge and has cost f (C∗) = γ . �
Single path graphs as used in the previous proof can provide worst-case examples for
rounding methods too: if f is such that f (e) ≥ f (E)/|E | for all edges e in the path,
then the solution to the relaxed cut problem is maximally uninformative: all entries of
the vector y are y(e) = f (E)

n−1 .
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Table 2 Overview of the algorithms and their approximation factors

Approximating f Relaxation

Generic (Sect. 5.1.1) O(
√
m logm) Randomized (Sect. 5.2.1) |Pmax|

Semigradient (Sect. 5.1.2) |C∗|
(|C∗|−1)(1−κ f )+1 Rounding I (Sect. 5.2.2) |Pmax|

Polymatroidal flow (Sect. 5.1.3) min{Δs , Δt } Rounding II (Sect. 5.2.2) |V| − 1

5 Approximation algorithms

We next address approximation algorithms whereby we consider two complemen-
tary approaches. The first approach is to substitute the submodular cost function
f by a simpler function f̂ . Appropriate candidate functions f̂ that admit an exact
cut optimization are the approximation by [24] (Sect. 5.1.1), semi-gradient based
approximations (Sect. 5.1.2), or approximations by making f separable across local
neighborhoods (Sect. 5.1.3).

The second approach is to solve the relaxations from Sect. 4 and round the resulting
optimal fractional solution (Sect. 5.2.2). Conceptually very close to the relaxation
approach, we offer another algorithm that solves the mathematical program (23) via
a randomized greedy algorithm (Sect. 5.2.1).

The relaxations approaches are affected by the flow-cut gap, or, equivalently, the
length of the longest path in the graph. The approximations that use a surrogate cost
function are complementary and not affected by the “length”, but by a notion of the
“width” of the graph (Table 2).

5.1 Approximating the cost function

We begin with algorithms that use a suitable approximation f̂ to f , for which the
problem

minimize f̂ (C) s.t. C ⊆ E is a cut (25)

is solvable exactly in polynomial time. The following lemma will be the basis for the
approximation bounds.

Lemma 3 Let Ŝ = argminS∈S f̂ (S). If for all S ⊆ E , it holds that f (S) ≤ f̂ (S), and
if for the optimal solution S∗ to Problem (2), it holds that f̂ (S∗) ≤ α f (S∗), then Ŝ is
an α-approximate solution to Problem (2):

f (Ŝ) ≤ α f (S∗).

Proof Since f̂ (Ŝ) ≤ f̂ (S∗), it follows that f (Ŝ) ≤ f̂ (Ŝ) ≤ f̂ (S∗) ≤ α f (S∗). �
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5.1.1 A generic approximation

Goemans et al. [24] define a generic approximation of a monotone submodular func-
tion2 that has the functional form f̂ea(A) = √∑

e∈A w f (e). The weights w f (e)

depend on f . When using f̂ea , we compute a minimum cut for the cost f̂ 2ea , which is a
modular sum of weights and hence results in a standardMinimum (s, t)-Cut problem.
In practice, the bottleneck lies in computing the weightsw f . Goemans et al. [24] show
how to compute weights such that f (A) ≤ f̂ (A) ≤ α f (A) with α = O(

√
m) for a

matroid rank function, and α = O(
√
m logm) otherwise. We add that for an integer

polymatroid rank function bounded by M = maxe∈E f (e), the logarithmic factor can
be replaced by a constant to yield α = O(

√
mM) (if one approximates the matroid

expansion3 of the polymatroid instead of f directly). Together with Lemma 3, this
yields the following approximation bounds.

Lemma 4 Let Ĉ = argminC∈C f̂ea(C) be the minimum cut for cost f̂ea, and C∗ =
argminC∈C f (C). Then f (Ĉ) = O(

√
m logm) f (C∗). If f is integer-valued and we

approximate its matroid expansion, then f (Ĉ) = O(
√
mM) f (C∗), where M ≤

maxe f (e).

The lower bound in Theorem 1 suggests that for sparse graphs, the bound in Lemma 4
is tight up to logarithmic factors.

5.1.2 Approximations via semigradients

For any monotone submodular function f and any set A, there is a simple way to
compute a modular upper bound f̂s to f that agrees with f at A. In other words, f̂s
is a discrete supergradient of f at A. We define f̂s as [33,36]

f̂s(B; A) = f (A) +
∑

e∈B\A
f (e | A) −

∑

e∈A\B
f (e | E\e). (26)

Lemma 5 Let Ĉ ∈ argminC∈C f̂s(C; ∅). Then

f (Ĉ) ≤ |C∗|
(|C∗| − 1)(1 − κ f ) + 1

f (C∗),

where κ f = maxe
(
1 − f (e|E\e)

f (e)

)
is the curvature of f .

Lemma 5 was shown in Iyer et al. [33]. As m (and correspondingly |C∗|) gets large,
the bound eventually no longer depends on m and instead only on the curvature of f .

2 Wewill also call it the ellipsoidal approximation since it is based on approximating a symmetrized version
of the submodular polyhedron by an ellipsoid.
3 The expansion is described in Section 10.3 in Narayanan [57]. In short, we replace each element e by a
set ê of f (e) parallel elements. Thereby we extend f to a submodular function f̂ on subsets of

⋃
i êi . The

desired rank function is now the convolution r(·) = f̂ (·) ∗ | · | and it satisfies f (S) = r(
⋃

e∈S ê).
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S t

v1

v2 v5

v6

v4

v3

f̂pf (C) =f({(v1, v4), (v2, v4)})
+ f({(v3, v4), (v3, v5)})
+ f({(v3, v6)})

Fig. 3 Approximation of a cut cost. Red edges are in CΠ
v4

(head), blue dashed edges in CΠ
v3

(tail), and the

green dash-dotted edge in CΠ
v6

(head) (color figure online)

In practice, results are best when the supergradient is used in an iterative algorithm:
starting with C0 = ∅, one computes Ct ∈ argminC∈C f̂s(C;Ct−1) until the solution
no longer changes between iterations. Theminimum cut for the cost function f̂s(C; A)

can be computed as a minimum cut with edge weights

w(e) =
{
f (e | E\e) if e ∈ A

f (e | A) if e /∈ A.
(27)

Consequently, the semigradient approximation yields a very easy and practical algo-
rithm that iteratively uses standard minimum cut as a subroutine. This algorithm was
used e.g. in Jegelka and Bilmes [36], and the visual results in Kohli et al. [46] show
that it typically yields very good solutions in practice on certain problem instances
where the optimum solution can be computed exactly.

5.1.3 Approximations by introducing separation

The approximations in Sects. 5.1.1 and 5.1.2 are indifferent to the structure of the
graph, while following approximation is not. One may say that Problem (2) is hard
because f introduces non-local dependencies between edges that might be anywhere
in the graph. Indeed, the problem is easier if dependencies between edges are restricted
to local neighborhoods defined by the graph, for example, edges that might be incident
to the same vertex.

Hence, we define an approximation f̂ p f that is globally separable but locally exact.
To measure the cost of an edge set C ⊆ E , we partition C into groups Π(C) =
{CΠ

v }v∈V , where the edges in set CΠ
v must be incident to node v (CΠ

v may be empty).
That is, we assign each edge either to its head or to its tail node in any partition, as
illustrated in Fig. 3. Let PC be the family of all such partitions (which vary over the
head or tail assignment of each edge). We define an approximation

f̂ p f (C) = min
Π(C)∈PC

∑

v∈V f
(
CΠ

v

)
(28)

that (once the partition is fixed) decomposes across different node incidence edge
sets, but is accurate within a group CΠ

v . Thanks to the subadditivity of f , the function
f̂ p f is an upper bound on f . It is a convolution of submodular functions and always
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is the tightest approximation that is a direct sum over any partition in PC . Perhaps
surprisingly, even though the approximation (28) looks difficult to compute and is in
general not even a submodular function (an example is in Appendix 12), it is possible
to solve a minimum cut with cost f̂ p f exactly. To do so, we exploit its duality to a
generalized maximum flow problem, namely polymatroidal network flows.

Polymatroidal network flows. Polymatroidal network flows [28,52] generalize the
capacity constraint of traditional flow problems. They retain the constraint of flow
conservation ( a function ϕ : E → R+ is a flow if the inflow at each node v ∈ V\{s, t}
equals the outflow). The edge-wise capacity constraint ϕ(e) ≤ cap(e) for all e ∈ E ,
given a capacity function cap : E → R+ is replaced by local submodular capacities
over sets of edges incident at each node v: capinv for incoming edges, and capoutv for
outgoing edges. The capacity constraints at each v ∈ V are

ϕ(A) ≤ capinv (A) for all A ⊆ δ−(v) (incoming edges), and

ϕ(A) ≤ capoutv (A) for all A ⊆ δ+(v) (outgoing edges).

Each edge (u, v) belongs to two incidence sets, δ+u and δ−v. A maximum flow
with such constraints can be found in time O(m4τ) by the layered augmenting path
algorithm by Tardos et al. [72], where τ is the time to minimize a submodular function
on any set δ+v, δ−v for any v. Hence, the incidence sets are in general much smaller
than E .

A special polymatroidal maximum flow turns out to be dual to the cut problem we
are interested in. To see this, we will use the restriction f A of the function f to a
subset A. For ease of reading we drop the explicit restriction notation later. We assume
throughout that the desired cut is minimal,4 since additional edges can only increase
its cost.

Lemma 6 Minimum (s, t)-cut with cost function f̂ p f is dual to a polymatroidal net-
work flow with capacities capinv = f δ−v and capoutv = f δ+v at each node v ∈ V .
The proof is provided inAppendix 13. It uses, with some additional considerations, the
dual problem to a polymatroidal maxflow, which can be stated as follows. Let capin :
2E → R+ be the joint incoming capacity function, i.e., capin(C) = ∑

v∈V capinv (C ∩
δ−v), and let equivalently capout be the corresponding joint outgoing capacity. The
dual of the polymatroidal maximum flow is a minimum cut problem whose cost is a
convolution of edge capacities [54]:

cap(C) = (capin ∗ capout)(C) � min
A⊆C

[
capin(A) + capout(C\A)

]
. (29)

This convolution is in general not a submodular function. Lemma 6 implies that we
can solve the approximate MinCoopCut via its dual flow problem. The primal cut
solution will be given by a set of full edges, i.e., edges whose joint flow equals their
joint capacity.

4 A cut C ⊆ E is minimal if no proper subset B ⊂ C is a cut.
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We can now state the resulting approximation bound for MinCoopCut. Let C∗
be the optimal cut for cost f . We define Δs to be the tail nodes of the edges in C∗:
Δs = {v | ∃(v, u) ∈ C∗}, and similarly, Δt = {v | ∃(u, v) ∈ C∗}. The sets Δs,Δt

provide a measure of the “width” of the graph.

Theorem 3 Let Ĉ be the minimum cut for cost f̂ p f , and C∗ the optimal cut for cost
f . Then

f (Ĉ) ≤ min{|Δs |, |Δt |} f (C∗) ≤ |V|
2

f (C∗).

Proof To apply Lemma 3, we need to show that f (C) ≤ f̂ p f (C) for all C ⊆ E ,
and find an α such that f̂ p f (C∗) ≤ α f (C∗). The first condition follows from the
subadditivity of f .

To bound α, we use Lemma 6 and Eq. 29:

f̂ p f (C
∗) = (capin ∗ capout)(C∗) (30)

≤ min{capin(C∗), capout(C∗)} (31)

≤ min
{ ∑

v∈Δs
f (C∗ ∩ δ+v),

∑

v∈Δt
f (C∗ ∩ δ−v)

}
(32)

≤ min
{
|Δs |max

v∈Δs
f (C∗ ∩ δ+v), |Δt |max

v∈Δt
f (C∗ ∩ δ−v)

}
(33)

≤ min
{ |Δs |, |Δt |

}
f (C∗). (34)

Thus, Lemma 3 implies an approximation bound α ≤ min
{ |Δs |, |Δt |

} ≤ |V|/2. �

Iyer et al. [34] show that the bound in Theorem 3 can be tightened to |V |
2+(|V |−2)(1−κ f )

by taking into account the curvature κ f of f .

5.2 Relaxations

An alternative approach to approximating the edge weight function f is to relax the
cut constraints via the formulations (23) and (19).We analyze two algorithms: the first,
a randomized algorithm, maintains a discrete solution, while the second is a simple
rounding method. Both cases remove the constraint that the cut must be minimal:
any set B is feasible that has a subset C ⊆ B that is a cut. Relaxing the minimality
constraint makes the feasible set up-monotone (equivalently up-closed). This is not
major problem, however, since any superset of a cut can easily be pruned to a minimal
cut while only, if anything, improving the solution due to the monotonicity of f .

5.2.1 Randomized greedy covering

The constraints in the path-based relaxation (23) suggest that a minimum (s, t)-cut
problem is also a min-cost cover problem: a cut must intersect or “cover” each (s, t)-
path in the graph. The covering formulation of the constraints in (23) clearly show the
relaxation of the minimality constraint. Algorithm 1 solves a discrete variant of the
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Algorithm 1 Greedy randomized path cover

Input: graph G = (V, E), terminal nodes s, t ∈ V , cost function f : 2E → R+
C = ∅, y = 0
while

∑
e∈Pmin

y(e) < 1 for the current shortest path Pmin do
choose β within the interval β ∈ (0,mine∈Pmin f (e|C)]
for e in Pmin do
with probability β/ f (e|C), set C = C ∪ {e}, y(e) = 1.

end for
end while
prune C to C ′ and return C ′

formulation (23) and maintains a discrete y ∈ {0, 1}, i.e., y is eventually the indicator
vector of a cut.

Since a graph can have exponentially many (s, t)-paths, there can be exponentially
many constraints. But all that is needed in the algorithm is to find a violated constraint,
and this is possible by computing the shortest path Pmin, using y as the (additive) edge
lengths. If Pmin’s weight is at least one, then y is feasible. Otherwise, Pmin defines a
violated constraint in formulation (23).

Owing to the form of the constraints, we can adapt a randomized greedy cover
algorithm [50] to Problem (23) and obtain Algorithm 1. In each step, we compute
the shortest path with weights y to find a possibly uncovered path. Ties are resolved
arbitrarily. To cover the path, we randomly pick edges from Pmin. The probability of
picking edge e is inversely proportional to the marginal cost f (e|C) of adding e to the
current selection of edges.5 We must also specify an appropriate β. With the maximal
allowed β = mine∈Pmin f (e|C), the cheapest edges are selected deterministically, and
others randomly. In that case, C grows by at least one edge in each iteration, and the
algorithm terminates after at most m iterations.

If the algorithm returns a set C that is feasible but not a minimal cut, it is easy to
prune it to a minimal cut C ′ ⊆ C without any additional approximation error, since
monotonicity of f implies that f (C ′) ≤ f (C). Such pruning can for example be done
via breadth-first search. Let Vs be the set of nodes reachable from s after the edges in
C have been removed. Then we set C ′ = δ+(Vs). The set C ′ must be a subset of C ,
since if there was an edge (u, v) ∈ C ′\C , then v would also be in Vs , and then (u, v)

cannot be in C ′, a contradiction.
The approximation bound for Algorithm 1 is the length of the longest path, like that

of the roundingmethods in Sect. 5.2.2. This is not a coincidence, since both algorithms
essentially use the same relaxation.

Lemma 7 In expectation (over the probability of sampling edges), Algorithm1 returns
a solution Ĉ ′ with E[ f (Ĉ ′)] ≤ |Pmax| f (C∗), where Pmax is the longest simple (s, t)-
path in G.
Proof Let Ĉ be the cut before pruning. Since f is nondecreasing, it holds that
f (Ĉ ′) ≤ f (Ĉ). By Theorem 7 in Koufogiannakis and Young [50], a greedy ran-
domized procedure like Algorithm 1 yields in expectation an α-approximation for a

5 If mine∈Pmin f (e|C) = 0, then we greedily pick all such edges with zero marginal cost, because they do
not increase the cost. Otherwise we sample as indicated in the algorithm.
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cover, where α is the maximum number of variables in any constraint. Here, α is the
maximum number of edges in any simple path, i.e., the length of the longest path. This
implies that E[ f (Ĉ ′)] ≤ E[ f (Ĉ)] ≤ |Pmax| f (C∗). �

Indeed, randomization is important. Consider a deterministic algorithm that always
picks the edge with minimum marginal cost in the next path to cover. The solution
Ĉd returned by this algorithm can be much worse. As an example, consider a graph
consisting of a clique V of n nodes, with nodes s and t . Let S ⊆ V be a set of size
n/2. Node s is connected to all nodes in S, and node t is connected to the clique
only by a distinct node v′ ∈ V\S via edge (v′, t). Let the cost function be a sum
of edge weights, f (C) = ∑

e∈C w(e). Edge (v′, t) has weight γ > 0, all edges in
δ+(S) have weight γ (1 − ε) for a small ε > 0, and all remaining edges have weight
γ (1− ε/2). The deterministic algorithm will return Ĉd = δ+(S) as the solution, with

cost n2γ
4 (1 − ε), which is by a factor of |Ĉd |(1 − ε) = n2

4 (1 − ε) worse than the
optimal cut, f ({(v′, t)}) = γ . Hence, for the deterministic variant of Algorithm 1, we
can only show the following approximation bound:

Lemma 8 For the solution Ĉd returned by the greedy deterministic heuristic, it holds
that f (Ĉd) ≤ |Ĉd | f (C∗). This approximation factor cannot be improved in general.

Proof To each edge e ∈ Ĉd assign the path P(e) which it was chosen to cover. By the
nature of the algorithm, it must hold that f (e) ≤ f (C∗ ∩ P(e)), because otherwise
an edge in C∗ ∩ P(e) would have been chosen. Since C∗ is a cut, the set C∗ ∩ P(e)
must be non-empty. These observations imply that

f (Ĉd) ≤
∑

e∈Ĉ
f (e) ≤

∑

e∈Ĉd

f (C∗ ∩ P(e)) ≤ |Ĉd |max
e∈Ĉd

f (C∗ ∩ P(e)) ≤ |Ĉd | f (C∗).

Tightness follows from the worst-case example described above. �

5.2.2 Rounding

Our last approach is to solve the convex program (19) and round the continuous to a
discrete solution. We describe two types of rounding, each of which achieves a worst-
case approximation factor of n − 1. This factor equals the general flow-cut gap in
Lemma 1. Let x∗, y∗ be the optimal solution to the relaxation (19) (equivalently, to
(23)). We assume w.l.o.g. that x∗ ∈ [0, 1]n , y∗ ∈ [0, 1]m .

Rounding by thresholding edge lengths. The first technique uses the edge weights
y∗. We pick a threshold θ and include all edges e whose entry y∗(e) is larger than θ .
Algorithm 2 shows how to select θ , namely the largest edge length that when treated
as a threshold yields a cut.

Lemma 9 Let Ĉ be the rounded solution returned by Algorithm 2, θ the threshold at
the last iteration i , and C∗ the optimal cut. Then

f (Ĉ) ≤ 1

θ
f (C∗) ≤ |Pmax| f (C∗) ≤ (n − 1) f (C∗),

where Pmax is the longest simple path in the graph.
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Algorithm 2 Rounding procedure given y∗
order E such that y∗(e1) ≥ y∗(e2) ≥ . . . ≥ y∗(em )

for i = 1, . . . ,m do
let Ci = {e j | y∗(e j ) ≥ y∗(ei )}
if Ci is a cut then
prune Ci to Ĉ and return Ĉ

end if
end for

Proof The proof is analogous to that for covering problems [31]. In the worst case, y∗
is uniformly distributed along the longest path, i.e., y∗(e) = |Pmax|−1 for all e ∈ Pmax
as y∗ must sum to at least one along each path. Then θ must be at least |Pmax|−1 to
include at least one of the edges in Pmax. Since f̃ is nondecreasing like f and also
positively homogeneous, it holds that

f (Ĉ) ≤ f (Ci ) = f̃ (χCi ) ≤ f̃ (θ−1y∗) = θ−1 f̃ (y∗) ≤ θ−1 f̃ (χC∗) = θ−1 f (C∗).

Thefirst inequality follows frommonotonicity of f and the fact that Ĉ ⊆ Ci . Similarly,
the relation between f̃ (χCi ) and f̃ (θ−1y∗) holds because f̃ is nondecreasing: by
construction, y∗(e) ≥ θχCi (e) for all e ∈ E , and hence χCi (e) ≤ θ−1y∗(e). Finally,
we use the optimality of y∗ to relate the cost to f (C∗); the vector χC∗ is also feasible,
but y∗ optimal. The lemma follows since θ−1 ≤ |Pmax|. �

Rounding by node distances. Alternatively, we can use x∗ to obtain a discrete solution.
Wepick a threshold θ uniformly at random from [0, 1] (or find the best one), and choose
all nodes u with x∗(u) ≥ θ (call this Vθ ). This induces the cut Cθ = δ(Vθ ). Since the
node labels x∗ can also be considered as distances from s, we refer to this rounding
methods as distance rounding.

Lemma 10 The worst-case approximation factor for a solution Cθ obtained with
distance rounding is Eθ [ f (Cθ )] ≤ (n − 1) f̃ (y∗) ≤ (n − 1) f (C∗).

Proof Toupper bound the quantityEθ [ f (Cθ )], we partition the set of edges into (n−1)
sets δ+(v), that is, each set corresponds to the outgoing edges of a node v ∈ V . We
sort the edges in each δ+(v) in nondecreasing order by their values y∗(e). Consider
one specific incidence set δ+(u) with edges eu,1, . . . , eu,h and y∗(eu,1) ≤ y∗(eu,2) ≤
. . . ≤ y∗(eu,h). Edge eu,i is in the cut if θ ∈ [x∗(u), x∗(u) + y∗(eu,i )). Therefore, it
holds for each node u that

Eθ [ f (Cθ ∩ δ+(u))] =
∫ 1

0
f (Cθ ∩ δ+(u))dθ (35)

=
h∑

j=1

(y∗(eu, j ) − y∗(eu, j−1)) f ({eu, j , . . . eu,h}) (36)

= f̃ (y∗(δ+(u))), (37)
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where we define y∗(eu,0) = 0 for convenience, and assume that f (∅) = 0. This
implies that

Eθ [ f (Cθ )] ≤ Eθ

[
∑

v∈V
f (Cθ ∩ δ+(v))

]

(38)

=
∑

v∈V
f̃ (y∗(δ+(v))) ≤ (n − 1) f̃ (y∗) ≤ (n − 1) f (C∗). (39)

�
A more precise approximation factor is

∑
v f̃ (y∗(δ+(v)))

f (y∗) .

6 Special cases

The complexity of MinCoopCut is not always as bad as the worst-case bound in
Theorem 1. While it is useful to consider this most general case (see Sect. 2.3), we
next discuss properties of the submodular cost function and the graph structure that
lead to better approximation factors. Our discussion is not specific to cooperative
cuts; it is rather a survey of properties that make a number of submodular optimization
problems easier.

6.1 Separability and sums with bounded support

An important factor for tractability and approximations is the separability of the cost
function, that is, whether there are separators of f whose structure aligns with the
graph.

Definition 1 (Separator of f ) A set S ⊆ E is called a separator of f : 2E → R if for
all B ⊆ E , it holds that f (B) = f (B ∩ S) + f (B\S). The set of separators of f is
closed under union and intersection.

The structure of the separators strongly affects the complexity of MinCoopCut.
First and obviously, the extreme case that f is a modular function (and each e ∈ E
is a separator) can be solved exactly. Second, if the separators of f form a partition
E = ⋃

v E
+
v ∪ ⋃

v E
−
v that aligns with node neighborhoods such that E+

v ⊆ δ+(v),
and E−

v ⊆ δ−(v), then both f̂ p f and distance rounding solve the problem exactly. No
change in the algorithm is needed, i.e., the exact partition need not be known. In that
case, the flow-cut gap is zero, as becomes obvious from the proof of Lemma 10, since
(
∑

v f̃ (y∗
Ev

))/ f̃ (y∗) = 1. These separators respect the graph structure and rule out
any non-local edge interactions.

Sums of functions with bounded support. A generalization of the case of separators
are functions that are a sum f (A) = ∑

i fi (A∩ Bi ) of functions fi , each of which has
bounded support Bi . The Bi can be overlapping. In this case, the approximation bounds
improve for many of the algorithms in Sect. 5.1 that rely on a surrogate function, and
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Table 3 Improved approximation bounds for functions of the form f (A) = ∑k
i=1 fi (A ∩ Bi )

Generic (Sect. 5.1.1) O(maxi
√|Bi | log |Bi |)

Semigradient (Sect. 5.1.2) maxi
|C∗∩Bi |

(|C∗∩Bi |−1)(1−κ fi
)+1

Polymatroidal flow (Sect. 5.1.3) maxi min{Δs ∩ Bi , Δt ∩ Bi }
Deterministic greedy (Sect. 5.2.1) maxi |Ĉd ∩ Bi |
The bounds are now determined by the largest support maxi |Bi |, but not by k

for the greedy approximation in Lemma 8. Those bounds, summarized in Table 3, can
be shown by approximating each fi separately by f̂i with approximation factor αi that
now depends on |Bi |, and using f (A) ≤ max j α j

∑
i f̂i (A). This separate approxi-

mation is implicit in all those algorithms except the approximation from Sect. 5.1.1.
In those implicit cases, no changes need to be made in the implementation and the
partition need not be known. For the generic approximation in Sect. 5.1.1, one can
approximate each fi explicitly and separately, if the partition is known. Optimizing
the resulting sum

∑
i f̂i or its square is however no longer a minimum cut problem.

It admits an FPTAS [46,58].
For the relaxations, it is not immediately clear that the decomposition always leads

to improvements. Consider for example a function f (A) = f1(A∩ B1)+ f2(A∩ B2),
where f1(B1) = f2(B2), P � Pmax = B1 ∪ B2 and |B1| = |B2| = |Pmax/2|.
Then f̃ ( 1

|P|χP ) = f̃ ( 1
|B1|χB1). In that case, the proof of Lemma 9 may still require

θ−1 = |Pmax|.

6.2 Symmetry and “unstructured” functions

Going one step further, one may consider sums of that do not necessarily have
bounded support but are of a simpler form. An important such class are functions
fi (A) = g(

∑
e∈A wi (e)) = g(wi (A)) for nonnegative weights wi (e) and a non-

decreasing concave function g. We refer to the submodular functions g(w(A)) as
unstructured, because they only consider a sum of weights, but otherwise do not
make any distinction between edges (unlike, e.g., graphic matroid rank functions).
One may classify such functions into a hierarchy, where F(k) contains all functions
f (A) = ∑k

j=1 g j (w j (A)) with at most k such components. The functions F(k)
are special cases of low-rank quasi-concave functions, where k is the rank of the
function.

If k = 1, then it suffices to minimize w1(C) directly and the problem reduces to
Minimum (s, t)-Cut. For k > 1, several combinatorial problems admit an FPTAS
with running time exponential in k [26,55]. This holds for cooperative cuts too [46].
A special case for k = 2 is the mean-risk objective f (A) = w1(A) + √

w2(A) [58].
Goel et al. [23] show that these functions can yield better bounds in combinatorial
multi-agent problems than general polymatroid rank functions, if each agent has a
cost function in F(1).
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Even for general, unconstrained submodular minimization,6 the class F(k) admits
specialized improved optimization algorithms [39,44,47,68]. The complexity of those
faster specialized algorithms depends on the rank k as well. An interesting question
arising from the above observations iswhetherF(k) contains all submodular functions
if k is large enough? The answer is no: even if k is allowed to be exponentially large
in the ground set size, this class is a strict sub-class of all submodular functions. If
the addition of auxiliary variables is allowed, this class coincides with the class of
graph-representable functions in the sense of Z̆ivný et al. [77]: any graph cut function
h : 2V → R+ is inF(|E |), and any function inF(k) can be represented as a graph cut
function in an extended auxiliary graph [38]. However, not all submodular functions
can be represented in this way [77].

The parameter k is a measure of complexity. If k is not fixed, then MinCoopCut
is NP-hard; for example, the reduction in Sect. 11 uses such functions. Even more,
unrestricted k may induce large lower bounds, as has been proved for label cost
functions of the form f (A) = ∑k

j=1 w j min{1, |A ∩ Bj |} [76].
A subclass of unstructured submodular functions are the aforementioned permuta-

tion symmetric submodular functions7 that are indifferent to any permutation of the
ground set: f (A) = f (σ (A)) for all permutations σ (possibly within a group). This
symmetry makes submodular optimization problems easier, as shown in Proposition 3
and work on submodular maximization [75] and partitioning problems [18].

6.3 Symmetry and graph structure

Proposition 3 shows that symmetry and the graph structure can work together to make
the cut problem easier, in fact, a submodular minimization problem on graph nodes.
Section 2 outlines some examples that come from applications.

6.4 Curvature

The curvature κ f ∈ [0, 1] of a submodular function f is defined as

κ f = max
e∈E

1 − f (e | E\e)
f (e)

, (40)

and characterizes the deviation from being a modular function. Curvature is known
to affect the approximation bounds for submodular maximization [14,74], and also
for submodular minimization problems, approximating and learning submodular
functions [34]. The lower the curvature, the better the approximation factors. For
MinCoopCut and many other combinatorial minimization problems with submodu-
lar costs, the approximation factor is affected as follows. If αn is the worst-case factor

6 For unconstrained submodular function minimization we drop the constraint that the functions g j are
nondecreasing.
7 These are distinct from the other previously-used notion of symmetric submodular functions [59] where,
for all A ⊆ E , f (A) = f (E\A).
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(e.g., for the semigradient approximation), then the tightened factor is αn
(αn−1)(1−κ f )+1 .

The lower bounds can be tightened accordingly.

6.5 Flow-cut gaps revisited

The above properties that facilitate MinCoopCut reduce the flow-cut gaps in some
cases. The proof of Lemma 1 illustrates that the flow-cut gap is intricately linked
to the edge cooperation (non-separability) along paths in the graph. Therefore, the
separability described in Sect. 6.1 affects the flow-cut gap if it breaks up cooperation
along paths: the gap depends only on the longest cooperating path within any separator
of f , and this can be much smaller than n. If, however, an instance of MinCoopCut
is better solvable because the cost function is a member of F(�) for small constant �,
then the gap may still be as large as in Lemma 1. In fact, the example in Lemma 1
belongs to F(1): it is equivalent to the function f (A) = γ min{1, |A|}.

Two variants of a final example may serve to better understand the flow-cut (and
integrality) gap. The first has a large gap, but the roundingmethods still find an optimal
solution. The second has a gap of one, but the rounding methods may return solutions
with a large approximation factor. Consider a graph with m edges consisting of m/k
disjoint paths of length k each (as in Fig. 2), with a cost function f (C) = maxe∈C w(e).
The edges are partitioned into a cut B ⊂ E with |B| = m/k and the remaining edges
E\B. Let w(e) = γ for e /∈ B and w(e) = β for e ∈ B.

For the first variant, let β = γ ; so that for k = 1, we obtain the graph in Lemma 1.
With β = γ (for any k), any minimal cut is optimal, and all rounding methods find an
optimal solution. The maximum flow in Problem (21) is ν∗ = γ /k (γ /k flow on one
path or γ /m flow on each edge in m/k paths in parallel). Hence, the flow-cut gap is
γ /(γ /k) = k despite the optimality of the rounded (and pruned) solutions.

For the second variant, let β = γ /k. The maximum flow remains ν∗ = γ /k, and
the optimal cut is B with f (B) = γ /k, so f (C∗) = ν∗. An optimal solution y∗ to
Program (19) is the uniform vector y∗ = (γ /m)1m . Despite the zero gap, for such y∗
the rounding methods return an arbitrary cut, which can be by a factor k worse than
the optimal solution B. In contrast, the approximation algorithms in Sects. 5.1.2, 5.1.3
based on substitute cost functions do return an optimal solution.

7 Experiments

We provide a summary of benchmark experiments that compare the proposed algo-
rithms empirically. We use two types of data sets. The first is a collection of
average-case submodular cost functions on two types of graph structures, clustered
graphs and regular grids. The second consists of a few difficult examples that show
the limits of some of the proposed methods.

The task is to find aminimum cooperative cut in an undirected graph.8 This problem
can be solved directly or via n − 1 minimum (s, t)-cuts. Most of the algorithms solve

8 An undirected graph can easily be turned into a directed one by replacing each edge by two opposing
directed ones that have the same cost. A cut will always only include one of those edges.
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the (s, t) version. The above approximation bounds still apply, as the minimum cut
is the minimum (s, t)-cut for at least one pair of source and sink. We observe that,
in general, the algorithms perform well, typically much better than their theoretical
worst-case bounds. Which algorithm is best depends on the cost function and graph
at hand.

Algorithms and baselines. Apart from the algorithms discussed in this article, we test
some baseline heuristics. First, to test the benefit of the more sophisticated approxi-
mations f̂ea and f̂ p f we define the simple approximation

f̂add(C) =
∑

e∈C
f (e). (41)

The first baseline (MC) simply returns the minimum cut with respect to f̂add . The
second baseline (MB) computes the minimum cut basis C = {C1, . . . ,Cn−1} with
respect to f̂add and then selects Ĉ = argminC∈C f (C). The minimum cut basis can
be computed via a Gomory-Hu tree [11]. As a last baseline, we apply an algorithm
(QU) by Queyranne [59] to h(X) = f (δ(X)). This algorithm minimizes symmetric
submodular functions in O(n3) time. However, h not always submodular (e.g., see
Propositions. 1, 2, and 3), and therefore this algorithm cannot provide any approxima-
tion guarantees in general. In fact, wewill see in Sect. 7.2 that it can perform arbitrarily
poorly.

Of the algorithms described in this article, EA denotes the generic (ellipsoid-
based) approximation of Sect. 5.1.1. The iterative semigradient approximation from
Sect. 5.1.2 is initialized with a random cut basis (RI) or a minimum-weight cut basis
(MI). PF is the approximation via polymatroidal network flows (Sect. 5.1.3). These
three approaches approximate the cost functions. In addition, we use algorithms that
solve relaxations of Problems (23) and (19): CR solves the convex relaxation using
Matlab’s fmincon, and applies Algorithm 2 for rounding. DB implements the dis-
tance rounding by thresholding x∗. Finally, we test the randomized greedy algorithm
from Sect. 5.2.1 with the maximum possible β = βmax (GM) and an almost maximal
β = 0.9βmax (GA). GH denotes the deterministic greedy heuristic. All algorithms
were implemented in Matlab, with the help of a graph cut toolbox [3,9] and the SFM
toolbox [51].

7.1 Average-case

The average-case benchmark data has two components: graphs and cost functions. We
first describe the graphs, then the functions.

Grid graphs. The benchmark contains three variants of regular grid graphs of degree
four or six. Type I is a plane grid with horizontal and vertical edges displayed as
solid edges in Fig. 4a. Type II is similar, but has additional diagonal edges (dashed in
Fig. 4a). Type III is a cube with plane square grids on four faces (sparing the top and
bottom faces). Different from Type I, the nodes in the top row are connected to their
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Fig. 4 Examples of the test graph structures. The grid a was used with and without the dashed diagonal
edges, and also with a variation of the connections in the first and last row. The clustered graphs were
similar to the example shown in (b)

counterparts on the opposite side of the cube. The connections of the bottom nodes
are analogous.

Clustered graphs. The clustered graphs consist of a number of cliques that are con-
nected to each other by few edges, as depicted in Fig. 4b.

Cost functions. The benchmark includes four families of functions. The first group
(Matrix rank I,II, Labels I, II) consists of matroid rank functions or sums of three such
functions. The functions used here are either based on matrix rank or ranks of partition
matroids. We summarize those functions as rank-like costs.

The second group (Unstructured I, II) contains two variants of unstructured func-
tions g(w(C)), where g is either a logarithm or a square root. These functions are
designed to favor a certain random optimal cut. The construction ensures that the min-
imum cut will not be one that separates out a single node, but one that cuts several
edges.

The third family (Bestcut I, II) is constructed to make a cut optimal that has many
edges and that is therefore different from the cut that uses fewest edges. For such a
cut, we expect f̂add to yield relatively poor solutions.

The fourth set of functions (Truncated rank) is inspired by the difficult truncated
functions that can be used to establish lower bounds on approximation factors. These
functions “hide” an optimal set, and interactions are only visible when guessing a
large enough part of this hidden set. The following is a detailed description of all cost
functions:

Matrix rank I. Each element e ∈ E indexes a column in matrixX ∈ R
d×m . The cost

of A ⊆ E is the rank of the sub-matrix XA of the columns indexed
by the e ∈ A: fmrI(A) = rank(XA). The matrix X is of the form
[ I′ R ], where R ∈ {0, 1}d×(m−d) is a random binary matrix with
d = 0.9

√
m, and I′ is a column-wise permutation of the identity

matrix.
Matrix rank II. The function fmrII(A) = 0.33

∑3
i=1 f (i)

mrI(A) sums up three functions

f (i)
mrI of type matrix rank I with different random matrices X.
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Labels I. This class consists of functions of the form f�I(A) = | ⋃e∈A �(e)|.
Each element e is assigned a random label �(e) from a set of 0.8

√
m

possible labels. The cost counts the number of labels in A.
Labels II. These functions f�II(A) = 0.33

∑3
i=1 f (i)

�I (A) are the sum of three
functions of type labels I with different random labels.

Unstructured I. These are functions fdpI(A) = log
∑

e∈A w(e), where weights w(e)
are chosen randomly as follows. Sample a set X ⊂ V with |X | =
0.4n, and set w(e) = 1.001 for all e ∈ δX . Then randomly assign
some “heavy”weights in [n/2, n2/4] to some edges not in δX , so that
each node is incident to one or two heavy edges. The remaining edges
get random (mostly integer) weights between 1.001 and n2/4−n+1.

Unstructured II. These are functions fdpII(A) = √∑
e∈A w(e)with weights assigned

as for unstructured function II.
Bestcut I. We randomly pick a connected subset X∗ ⊆ V of size 0.4n and

define the cost fbcI(A) = 1[|A ∩ δX∗| ≥ 1] + ∑
e∈A\δX∗ w(e). The

edges in E\δX∗ are assigned random weights w(e) ∈ [1.5, 2]. If
there is still a cut C �= δX∗ with cost one or lower, we correct w by
increasing the weight of one e ∈ C to w(e) = 2. The optimal cut is
then δX∗, but it is usually not the one with fewest edges.

Bestcut II. Similar to bestcut I (δX∗ is again optimal), but with submodularity
on all edges: E is partitioned into three sets, E = (δX∗) ∪ B ∪ C .
Then fbcII(A) = 1[|A ∩ δX∗| ≥ 1] + ∑

e∈A∩(B∪C) w(e) +
maxe∈A∩B w(e) + maxe∈A∩C w(e). The weights of two edges in B
and two edges in C are set to w(e) ∈ (2.1, 2.2).

Truncated rank. This function is similar to the truncated rank in the proof of the lower
bound (Theorem 1). Sample a connected X ⊆ V with |X | = 0.3|V|
and set R = δX . The cost is ftr(A) = min{|A ∩ R| + min{|A ∩
R|, λ1}, λ2} for λ1 = √|R| and λ2 = 2|R|. Here, R is not neces-
sarily the optimal cut.

To estimate the approximation factor on one problem instance (one graph and one
cost function), we divide by the cost of the best solution found by any of the algorithms,
unless the optimal solution is known (this is the case for Bestcut I and II).

7.1.1 Results

Figure 5 shows average empirical approximation factors and also the worst observed
factors. The first observation is that all algorithms remain well below their theoreti-
cal approximation bounds.9 That means the theoretical bounds are really worst-case
results. For several instances we obtain optimal solutions.

The general performance depends much on the actual problem instance; the trun-
cated rank functions with hidden structure are, as may be expected, the most difficult.

9 Most of the bounds proved above are absolute, and not asymptotic. The only exception is f̂ea . For
simplicity, it is here treated as an absolute bound.
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unstructured functions (average over 30 (left), 40 (right) instances)
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bestcut functions (average over 15 (left), 20 (right) instances)
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Fig. 5 Results for average-case experiments. The bars show the mean empirical approximation factors,
and red crosses mark the maximum observed empirical approximation factor. The left column refers
to grid graphs, the right column to clustered graphs. The first three algorithms (bars) are baselines,
the next four approximate f , the next four solve a relaxation, and the last is the deterministic greedy
heuristic (color figure online)
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Fig. 6 Difficult instance and empirical approximation factors with n = 10 nodes. White bars illustrate
theoretical approximation bounds where applicable. In b, the second-best cut δv1 has cost fb(δv1) =
b + 1 = 101 � max{|C∗|, n,

√
m logm}

The simple benchmarks relying on f̂add perform worse than the more sophisticated
algorithms. Queyranne’s algorithm performs surprisingly well here.

7.2 Difficult instances

Lastly, we show two difficult instances. More examples may be found in Jegelka [35,
Ch. 4]. The example demonstrates the drawbacks of using approximations like f̂add
and Queyranne’s algorithm.

Our instance is a graph with n = 10 modes, shown in Fig. 6. The graph edges are
partitioned into n/2 sets, indicated by colors. The black set Ek makes up the cut with
the maximum number of edges. The remaining edge sets are constructed as

Ei = {
(vi , v j ) ∈ E | i < j ≤ n/2

} ∪ {
(vn/2+i , v j ) ∈ E | n/2 + i < j ≤ n

}
(42)

for each 1 ≤ i < n/2. In Fig. 6, set E1 is red, set E2 is blue, and so on. The cost
function is

fa(A) = 1
[|A ∩ Ek | ≥ 1

] +
n/2−1∑

i=1

b · 1[|A ∩ Ei | ≥ 1
] + ε|A ∩ Ek |, (43)

with b = n/2. The function 1[·] denotes the indicator function. The cost of the optimal
solution is f (C∗) = f (Ek) = 1 + n2

4 ε ≈ 1. The second-best solution is the cut δ(v1)

with cost f (δv1) = 1 + n2
4 ε + b ≈ 1 + n

2 = 6, i.e., it is by a factor of almost
b = n/2 worse than the optimal solution. Finally, MC finds the solution δ(vn) with
f (δvn) = 1 + n2

4 ε + b( n2 − 1) ≈ n2
4 = 21.

Variant (b) uses the cost function
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fb(A) = 1[|A ∩ Ek | ≥ 1] +
n/2−1∑

i=1

b · 1[|A ∩ Ei | ≥ 1] (44)

with a large constant b = n2 = 100. For any b > n/2, any solution other than C∗
is more than n2/4 = |C∗| > n times worse than the optimal solution. Hence, thanks
to the upper bounds on their approximation factors, all algorithms except for QU find
the optimal solution. The result of the latter depends on how it selects a minimizer
of f (B ∪ e) − f (e) in the search for a pendent pair; this quantity often has several
minimizers here. Variant (b) uses a specific adversarial permutation of node labels, for
which QU always returns the same solution δv1 with cost b + 1, no matter how large
b is: its solution can become arbitrarily poor.

8 Discussion

In this work, we have defined and analyzed the MinCoopCut problem, that is, a
minimum (s, t)-cut problem with a submodular cost function on graph edges. This
problem unifies a number of non-additive graph cut problems in the literature that
have arisen in different application areas.

We showed an information-theoretic lower bound of Ω(
√
n) for the generalMin-

CoopCut problem if the function is given as an oracle, and NP-hardness even if the
cost function is fully known and polynomially representable. We propose and com-
pare complementary approximation algorithms that either rely on representing the
cost function by a simpler function, or on solving a relaxation of the mathematical
program. The latter are closely tied to the longest path of cooperating edges in the
graph, as is the flow-cut gap. We also show that the flow-cut gap may be as large as
n − 1, and therefore larger than the best approximation factor possible.

The lower bound and analysis of the integrality gap use a particular graph structure,
a graph with parallel disjoint paths of equal length. Taken all proposed algorithms
together, all instances of MinCoopCut on graphs with parallel paths of the same
length can be solved within an approximation bound at most

√
n. This leaves the

question whether there is an instance that makes all approximations worse than
√
n.

Section 6 outlined properties of submodular functions that facilitate submodular
minimization under combinatorial constraints, and also submodular minimization in
general. Apart from separability, we defined the hierarchy of function classes F(k).
The F(k) are related to graph-representability and might therefore build a bridge
between recent results about limitations of representing submodular functions as graph
cuts [77] (and, even stricter, the limitations of polynomial representability) and the
results discussed in Sect. 6.2 that provide improved algorithms whose complexity
depends on k.

8.1 Open problems

This paper is part of a growing collection of work that studies submodular cost func-
tions in combinatorial optimization problems over cuts, trees, matchings, and so on.
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Such problems are not only of theoretical interest: they occur in a spectrumof problems
in computer vision [30,36,64,71] and machine learning [32,33,43]. In several cases,
the functions used do not directly fall into any of the “easier” sub-classes (e.g., the
entropy cuts outlined in Sect. 2, and also see the discussion in Sect. 2.3). At the same
time, the empirical results in this paper and others [33] suggest that in many cases, the
results of approximate algorithms can still be good, even though in the worst case they
are not. Section 6 outlines beneficial properties. Is there a more precise quantification
of the complexity of these problems? Do there exist other properties that lead to better
algorithms? One direction that is less explored is the interaction of the graph structure
with the cost function.

Specific to this work, cut functions induce a function on nodes. Propositions 2 and
3 imply that the node function can be submodular, but in very many cases it is not.
Yet, the results for Queyranne’s algorithm in Sect. 7 suggest that often the function
h may remain close to submodular. This could be the case, for example, if the graph
is almost complete and f symmetric, or if the symmetry of f is more restricted.
A deeper study of the functions h induced by cooperative cuts could reveal insights
about a refined complexity of the problem, and explain the good empirical results. One
particular interesting example was the polymatroidal flow case where the function f
defined in Eqn. (28) was not necessarily submodular (see Proposition 5), but where the
resulting h (also not necessarily submodular) could be optimized exactly in polynomial
time. This suggests an interesting future direction, namely to fully characterize a class
of functions f for which polytime algorithms can be obtained to solve minimum
“interacting cut” problems (i.e., cut problems where the edges may interact but not
necessarily in a purely submodular or supermodular fashion). The dual polymatroidal
flow case shows one instance of interacting cut that can be solved exactly.

Finally, finding optimal bounds and algorithms for related cut problems with sub-
modular edge weights is an open problem. Appendix 9 outlines some initial results
for cooperative multi-way and sparsest cut.
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9 Appendix: Cooperative multi-cut and sparsest cut

An extension ofMinCoopCut is the problem of cooperative multi-way cut and spars-
est cut. Using the approximation f̂ea from Sect. 5.1.3, we can transform anymulti-way
or sparsest cut problem with a submodular cost function on edges (instead of a sum of
edge weights) into a cut problem whose cut cost is a convolution of local submodular
functions. The relaxation of this cut problem is dual to the polymatroidal flow prob-
lems considered by Chekuri et al. [13]. Combining their results with ours, we get the
following Lemma.
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Lemma 11 Let α be the approximation factor for solving a sparsest cut / multi-way
cut in a polymatroidal network. If we solve a cooperative sparsest cut / multi-way cut
by first approximating the cut cost f by a function f̂ea and, on this instance, using the
method with factor α, we get an O(αn)-approximation for cooperative sparsest cut /
multi-way cut.

Using Theorems 6 and 8 in Chekuri et al. [13], we obtain the following bounds:

Corollary 2 There is an O(n log k) approximation for cooperative sparsest cut in
undirected graphs that is dual to a maximum multicommodity flow problem with k
pairs, and an O(n log k) approximation for cooperative multi-way cut.

We leave it as an open problem whether these bounds are optimal.

10 Proof of proposition 2

The first part of Proposition 2 is proven by Fig. 1. Here, we show the second part that
the function h(X) = f (δ+(X)) is subadditive if f is nondecreasing and submodular.
Let X,Y ⊆ V . Then it holds that

h(X) + h(Y ) = f (δ+(X)) + f (δ+(Y )) (45)

≥ f (δ+(X) ∪ δ+(Y )) + f (δ+(X) ∩ δ+(Y )) (46)

≥ f (δ+(X) ∪ δ+(Y )) (47)

≥ f (δ+(X ∪ Y )) (48)

= h(X ∪ Y ). (49)

In Inequality (46), we used that f is submodular, and in Inequality (47), we used that
f is nonnegative.

11 Reduction from GRAPH BISECTION to MINCOOPCUT

In this section, we prove Theorem 2 via a reduction from Graph Bisection, which
is known to be NP-hard [21].

Definition 2 (Graph Bisection) Given a graph GB = (VB, EB) with edge weights
wB : EB → R+, find a partition V1∪̇V2 = VB with |V1| = |V2| = |VB |/2 with
minimum cut weight w(δ(V1)).

Proof To reduceGraph Bisection toMinCoopCut, we construct an auxiliary graph
G = (VB∪{s, t}, EB∪Es∪Et ) that contains anunchanged copyofGB and twoadditional
terminal nodes s, t . The submodular weights on the edges adjacent to the terminal
nodes will express the balance constraint |V1| = |V2| = |VB |/2. In G, we retain the
modular costs w on EB and connect s, t to every vertex in GB with corresponding new
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Fig. 7 Graph for the reduction and examples for the definition of fbal via ranks hσ , with nB = 6. In (c),
Cs = {(s, v1), (s, v2)} and Ct = {(v3, t), (v4, t), (v5, t), (v6, t)}; in (d), Cs = {(s, v1), (s, v4), (s, v5)}
and Ct = {(v2, t), (v3, t), (v6, t)}. Connected components are indicated by dashed lines. a graph G with
Es (blue), Et (red) and GB (black). b graph Hσ . c hσ (φ(C)) = 5 connected components. d Balanced cut
C : hσ (φ(C)) = 3 connected components (color figure online)

edge sets Es and Et , as illustrated in Fig. 7a. The cost of a cut in G is measured by the
submodular function

f (C) =
∑

e∈C∩EB

w(e) + β fbal(C ∩ (Es ∪ Et )), (50)

where β is an appropriately large constant, and fbal will be defined later. Obviously,
any minimal (s, t)-cut C must include nB = |VB | edges from Es ∪ Et , and partitions
VB . Moreover, the cardinality of Cs = C ∩ Es is the number of nodes in VB assigned
to t . Hence, in an equipartition, |Cs | = |Ct | = nB/2, where Ct = C ∩ Et .

It remains to define fbal as a nondecreasing submodular function that implements
the equipartition constraint. The function will be an expectation over matroid rank
functions hσ . Let Hσ = (Es, Et ,Fσ ) be a bipartite graph with nodes Es ∪ Et whose
edges Fσ form a derangement between Es and Et , as illustrated in Fig. 7b.

Let φ(Cs ∪ Ct ) be the image of Cs ∪ Ct in the set of nodes of Hσ . The function
hσ : 2φ(Es∪Et ) → N0 counts the number of connected components in the subgraph
induced by the nodes φ(Cs ∪Ct ), and is the rank of a partition matroid. Figure 7 shows
some examples.

Let S be the set of all derangements σ of nB elements, i.e., all possible edge
configurations in Hσ . We define fbal to be the expectation (under uniform draws of
σ )

fbal(C) = Eσ [hσ (φ(C))] = |S|−1
∑

σ∈Shσ (φ(C)). (51)

For a fixed derangement σ ′ and a fixed size |Cs ∪ Ct | = nB , the value hσ ′(Cs ∪ Ct )

is minimal if σ ′(Cs) = Ct and |Cs | = |Ct |. For a fixed σ , the rank hσ (C) is |φ(Cs ∪
Ct )| = |Cs |+ |Ct |minus the matching nodes. Denoting (s, vi ) inHσ by xi and (vi , t)
by yi , the rank is

123



Graph cuts with interacting edge weights: examples. . . 277

hσ (φ(Cs) ∪ φ(Ct )) = |Cs | + |Ct | −
∣
∣
∣
{
(xi , yσ(i))

}n
i=1 ∩ (φ(Cs) × φ(Ct ))

∣
∣
∣. (52)

Hence, the sum in (51) becomes

∑

σ∈S
hσ (C) = |S|(|Cs | + |Ct |

) −
∑

σ∈S

∣
∣
{
(xi , yσ(i))

}n
i=1 ∩ (φ(Cs) × φ(Ct ))

∣
∣ (53)

= |S|(|Cs | + |Ct |
) −

∑

xi∈φ(Cs )

∑

σ∈S

∣
∣(xi , yσ(i)) ∩ ({xi } × φ(Ct ))

∣
∣ (54)

To compute the sumover σ in the second term, letCs∩t � {(s, v) | {(s, v), (v, t)} ⊆ C}
be the set of s-edges whose counterpart on the t side is also contained inC . Let further
D′(nB − 1) denote the number of permutations of nB − 1 elements (pair (xi , yk), i.e.,
σ(i) = k, is fixed), where one specific element xk can be mapped to any other of the
nB −1 elements, and the remaining elements must not be mapped to their counterparts
(σ( j) �= j). Then there are D′(nB − 1) derangements σ realizing a specific mapping
σ(i) = k. Denoting the number of derangements of n elements by D(n), the sum
above becomes

D(nB) fbal(C) = (|Cs | + |Ct |)D(nB)

−
∑

xi∈Cs\Cs∩t

∑

yk∈Ct

D′(nB − 1) −
∑

xi∈Cs∩t

∑

yk∈Ct ,k �=i

D′(nB − 1)

(55)

= (|Cs | + |Ct |)D(nB)

− (|Cs | − |Cs∩t |
)|Ct |D′(nB − 1) − |Cs∩t |(|Ct | − 1)D′(nB − 1)

(56)

= (|Cs | + |Ct |)D(nB) − (|Cs ||Ct | − |Cs∩t |)D′(nB − 1), (57)

with D(n) = |S| = n!∑n
k=0(−1)k/k! [67], and D′(n− 1) = ∑n−1

k=0(n− 2)!(n− 1−
k)!(−1)k by Proposition 4 below.

Given that |Cs | + |Ct | must cut at least nB edges and that fbal is increasing, fbal
is minimized if |Cs | = |Ct | = nB/2. As a result, if β is large enough such that fbal
dominates the cost, then a minimum cooperative cut in G bisects the GB subgraph of
G optimally. �
Proposition 4 Let D′(n) be the number of permutations of n elements where for one
fixed element i ′ we allow σ(i ′) ∈ {1, . . . , n}, but σ(i) �= i for all i �= i ′. Then
D′(n) = ∑n

k=0
(n−1)!

k! (n − k)!(−1)k .

Proof D′(n) can be derived by the method of the forbidden board [67, pp. 71-
73]. Let, without loss of generality, i ′ = n, so the forbidden board is B =
{(1, 1), (2, 2), . . . , (n−1, n−1)}. Let N j be the number of permutations σ for which∣
∣{(i, σ (i)}ni=1∩B

∣
∣ = j , and let rk be the number of k-subsets of B such that no two ele-

ments have a coordinate in common. Here, rk = (n−1
k

)
. Then D′(n) = N0 = Nn(0)

for
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Let f(A) = maxe∈A w(e) and
w(e1) = w(e2) = a,
w(e3) = b,
w(e4) = w(e5) = ε.

Fig. 8 Example showing that the convolution of submodular functions is not always submodular, e.g., for
a = 1.5, b = 2 and ε = 0.001

Nn(x) =
∑

j

N j x
j =

n∑

k=0

rk(n − k)!(x − 1)k =
n∑

k=0

(n − 1)!
k! (n − k)(x − 1)k,

(58)

and hence D′(n) = ∑n
k=0

(n−1)!
k! (n − k)!(−1)k (Fig. 8). �

12 Convolutions of submodular functions are not always submodular

The non-submodularity of convolutions was mentioned already in Lovász [54]. For
completeness, we show an explicit example that illustrates that non-submodularity
also holds for the special case of polymatroidal flows.

Proposition 5 The convolution of two submodular functions ( f ∗ g)(A) = minB⊆A

f (B)+ g(A\B) is not in general submodular. In particular, this also holds for the cut
cost functions occurring in the dual problems of polymatroidal maximum flows.

To show Proposition 5, consider the graph in Fig. 5 with a submodular edge cost
function f (A) = maxe∈A w(e). The two submodular functions that are convolved in
the corresponding polymatroidal flow are the decompositions

capout(A) =
∑

v∈V
f (A ∩ δ+(v)) (59)

capin(A) =
∑

v∈V
f (A ∩ δ−(v)). (60)

Both capout and capin are submodular functions from 2E to R+. Their convolution h
is

h(A) = (capout ∗ capin)(A) = min
B⊆A

capout(B) + capin(A\B) = f̂ p f (A). (61)

For h to be submodular, it must satisfy the condition of diminishing marginal costs,
i.e., for any e and A ⊆ B ⊆ E\e, it must hold that h(e | A) ≥ h(e | B). Now, let
A = {e2} and B = {e1, e2}. The convolution here means to pair e3 either with e1 or
e2. Then, if a < b,
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h(e3 | A) = min{a + b, b} − a = b − a (62)

h(e3 | B) = a + b − min{a + a, a} = b. (63)

Hence, h(e3 | A) < h(e3 | B), disproving submodularity of h.

13 Cooperative cuts and polymatroidal networks

We next prove Lemma 6 that relates the approximation f̂ p f to maxflow problems in
polymatroidal networks.

Proof (Lemma 6) The first step is the dual of the polymatroidal flow. Let capin : 2E →
R+ be the joint incoming capacity, capin(C) = ∑

v∈V capinv (C ∩ δ−v), and let equiv-
alently capout be the joint outgoing capacity. The dual of the polymatroidal maximum
flow is a minimum cut problem whose cost is a convolution of edge capacities [54]:

cap(C) = (capin ∗ capout)(C) � min
A⊆C

[
capin(A) + capout(C\A)

]
. (64)

We will relate this dual to the approximation f̂ p f . Given a minimal (s, t)-cut C , let
Π(C) be a partition of C , and C in

v = CΠ
v ∩ δ−

v and Cout
v = CΠ

v ∩ δ+
v . The cut C

partitions the nodes into two sets Vs containing s and Vt containing t . Since C is a
minimal directed cut, it contains only edges from the s side Vs to the t side Vt of
the graph. In consequence, C in

v = ∅ if v is on the s side, and Cout
v = ∅ otherwise.

Hence, C in
v ∪ Cout

v is equal to either C in
v or Cout

v , and since f (∅) = 0, it holds that
f (C in

v ∪ Cout
v ) = f (C in

v ) + f (Cout
v ). Then, starting with the definition of f̂ p f ,

f̂ p f (C) = min
Π(C)∈PC

∑

v∈V f (CΠ
v ) (65)

= min
Π(C)∈PC

∑

v∈V f (C in
v ∪ Cout

v ) (66)

= min
Π(C)∈PC

∑

v∈V
[
f (C in

v ) + f (Cout
v )

]
(67)

= min
Π(C)∈PC

∑

v∈V
[
capinv (C in

v ) + capoutv (Cout
v )

]
(68)

= min
C in,Cout

[
capin(C in) + capout(Cout)

]
(69)

= min
C in⊆C

[
capin(C in) + capout(C\C in)

]
(70)

= (capin ∗ capout)(C). (71)

The minimum in Eq. (67) is taken over all feasible partitions Π(C) and their resulting
intersections with the sets δ+v, δ−v. Then we use the notationC in = ⋃

v∈V C in
v for all

edges assigned to their head nodes, and Cout = ⋃
v∈V Cout

v . The minima in Eqs. (69)
and (70) are again taken over all partitions in PC . The final equality follows from the
above definition of a convolution of submodular functions. �
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