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Abstract We study the Lovász–Schrijver lift-and-project operator (LS+) based on
the cone of symmetric, positive semidefinite matrices, applied to the fractional stable
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1 Introduction

The notion of a perfect graphwas introduced byBerge in the early 1960s [5]. A graph is
called perfect if each of its induced subgraphs has chromatic number equal to the size of
amaximumcardinality clique in the subgraph. Perfect graphs have caught the attention
of many researchers in the area and inspired numerous very interesting contributions
to the literature for the past fifty years. One of the main results in the seminal paper of
Grötschel et al. [20] is that perfect graphs constitute a graph class where theMaximum
Weight Stable Set Problem (MWSSP) can be solved in polynomial-time. Some years
later, the same authors proved a very beautiful, related result which connects a purely
graph theoretic notion to polyhedrality of a typically nonlinear convex relaxation and
to the integrality and equality of two fundamental polytopes:

Theorem 1 (Grötschel et al. [20,21])For every graphG, the following are equivalent:

(1) G is perfect;
(2) STAB(G) = CLIQUE(G);
(3) TH(G) = STAB(G);
(4) TH(G) = CLIQUE(G);
(5) TH(G) is polyhedral.

In the above theorem, STAB(G) is the stable set polytope of G, CLIQUE(G) is its
clique relaxation and TH(G) is the theta body of G defined by Lovász [27].

In the early 1990s, Lovász and Schrijver [28] introduced the semidefinite relaxation
LS+(G) (LS+ operator was originally denoted by N+ in [28]) of STAB(G) which is
stronger than TH(G). Following the same line of reasoning used for perfect graphs,
they proved that MWSSP can be solved in polynomial-time for the class of graphs for
which LS+(G) = STAB(G). We call these graphs LS+-perfect graphs (originally, the
authors called these graphs N+-perfect [7]). The set of LS+-perfect graphs is known
to contain many rich and interesting classes of graphs (e.g., perfect graphs, t-perfect
graphs, wheels, anti-holes, near-bipartite graphs) and their clique sums. However, no
combinatorial characterization of LS+-perfect graphs have been obtained so far.

There are many studies of various variants of lift-and-project operators applied
to the relaxations of the stable set problem (see for instance, [9,15,16,18,19,22–24,
26,31,34]). Why study LS+-perfect graphs? For example, if we want to characterize
the largest family of graphs for which MWSSP can be solved in polynomial-time,
then perhaps, we should pick a tractable relaxation of STAB(G) which is as strong
as possible. This reasoning would suggest that, we should focus on the strongest,
tractable lift-and-project operator and reiterate it asmuch as possiblewhilemaintaining
tractability of the underlying relaxation. Even though the (lower bound) analysis for the
strongest lift-and-project operators is typically very challenging, some considerable
amount of work on the behaviour of the strongest lift-and-project operators applied
to the stable set problem already exists (see [1] and the references therein). In the
spectrum of strong lift-and-project operators which utilize positive semidefiniteness
constraints, given the above results of Grötschel et al. [20,21], it seems clear to us that
we should pick an operator which is at least as strong as TH(G). Among many of the
convex relaxations that are closely related to TH(G) but stronger, TH(G) continues
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to emerge as the central object with quite special mathematical properties (see [10]
and the references therein). Given that the operator LS+(G) can be defined as the
intersection of the matrix-space liftings of the odd-cycle polytope of G and the theta
body of G, by definition, LS+(G) encodes and retains very interesting combinatorial
information about the graph G. Then, the next question is why not focus on iterated
(hence stronger) operator LSk+ for k ≥ 2 but k small enough to maintain tractability?
The answer to this is related to the above; but, it is a bitmore subtle: in the lifted,matrix-
space representation of LS+, if we remove the positive semidefiniteness constraint,
we end up with the lifting of the operator LS (defined later). In this lifted matrix
space, if we remove the restriction that the matrix be symmetric, we end up with
the lifting of a weaker relaxation LS0. LSk0 retains many interesting combinatorial
properties of G, see [24,25]. Moreover, Lovász and Schrijver proved that for every
graph G, LS0(G) = LS(G). However, this property does not generalize to the iterated
operators LSk0, LS

k , even for k = 2, even if we require that the underlying graph G be
perfect (see [2,3]). Therefore, LS+ has many of the desired attributes for this purpose.

One of our main goals in this line of research is to obtain a characterization of LS+-
perfect graphs similar to the one given in Theorem1 for perfect graphs.More precisely,
we would like to find an appropriate polyhedral relaxation of STAB(G) playing the
role of CLIQUE(G) in Theorem 1, when we replace TH(G) by LS+(G). In [7] we
introduced the polyhedral relaxation NB(G) of STAB(G), which is, to the best of our
knowledge, the tightest polyhedral relaxation of LS+(G). Roughly speaking, NB(G)

is defined by the family of facets of stable set polytopes of a family of graphs that
are built from near-bipartite graphs by using simple operations so that the stable set
polytope of the resulting graph does not have any facets outside the class of facets
which define the stable set polytope of near-bipartite graphs (for a precise definition of
NB(G), see Sect. 2). In our quest to obtain the desired characterization of LS+-perfect
graphs, NB(G) is our current best guess for replacing CLIQUE(G) in Theorem 1.
More specifically, we conjecture that the next four statements are equivalent.

Conjecture 2 For every graph G, the following four statements are equivalent:

(1) STAB(G) = NB(G);
(2) LS+(G) = STAB(G);
(3) LS+(G) = NB(G);
(4) LS+(G) is polyhedral.

Verifying the validity of Conjecture 2 is equivalent to determining the validity of
the following two statements:

Conjecture 3 For every graph G, if LS+(G) is polyhedral then STAB(G) = NB(G).

Conjecture 4 For every graph G, if LS+(G) = STAB(G) then STAB(G) = NB(G).

In [6], we made some progress towards proving Conjecture 3, by presenting an
infinite family of graphs for which it holds. Recently, Conjecture 4 was verified for
web graphs [17]. In this contribution, we prove that Conjecture 4 holds for a class
of graphs called fs-perfect graphs that stand for full-support-perfect graphs. This
graph family was originally defined in [29] and includes the set of near-perfect graphs
previously defined by Shepherd in [32].
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One of the main difficulties in obtaining a good combinatorial characterization for
LS+-perfect graphs is that the lift-and-project operator LS+ (and many related oper-
ators) can behave sporadically under many well-studied graph-minor operations (see
[16,26]). Therefore, in the study of LS+-perfect graphs we are faced with the problem
of constructing suitable graph operations and then deriving certain monotonicity or
loose invariance properties under such graph operations. In this context, we present
two operations which preserve LS+-imperfection in graphs.

In the next section, we begin with notation and preliminary results that will be
used throughout the paper. We also state our main characterization conjecture on
LS+-perfect graphs. In Sect. 3, we characterize fs-perfection in the family of graphs
built from a minimally imperfect graph and one additional node. In Sect. 4 we prove
the validity of the conjecture on fs-perfect graphs. In order to ease the reading of this
contribution, the proofs of results on the LS+ operator are presented in Sect. 5. Section
6 is devoted to the conclusions and some further results.

2 Further definitions and preliminary results

2.1 Graphs and the stable set polytope

Throughout this work, G stands for a simple graph with node set V (G) and edge set
E(G). The complementary graph of G, denoted by G, is such that V (G) := V (G)

and, E(G) := {uv : u �= v, u, v ∈ V (G), uv /∈ E(G)}. For any positive integer n,
Kn , Cn and Pn denote the graphs with n nodes corresponding to a complete graph, a
cycle and a path, respectively. We assume that in the cycle Cn node i is adjacent to
node i + 1 for i ∈ {1, . . . , n − 1} and n is adjacent to node 1.

Given V ′ ⊆ V (G), we say that G ′ is a subgraph of G induced by the nodes in V ′ if
V (G ′) = V ′ and E(G ′) = {uv : uv ∈ E(G), {u, v} ⊆ V (G ′)}. When V (G ′) is clear
from the context, we say that G ′ is a node induced subgraph of G and write G ′ ⊆ G.
Given U ⊆ V (G), we denote by G − U the subgraph of G induced by the nodes in
V (G)\U . For simplicity, we write G − u instead of G − {u}. We say that GE is an
edge subgraph of G if V (GE ) = V (G) and E(GE ) ⊆ E(G).

Given the graph G, the set �G(v) is the neighbourhood of node v ∈ V (G) and
δG(v) = |�G(v)|. The set �G[v] = �G(v) ∪ {v} is the closed neighbourhood of node
v. When the graph is clear from the context, we simply write �(v) or �[v]. If G ′ ⊆ G
and v ∈ V (G), G ′ � v is the subgraph of G induced by the nodes in V (G ′)\�[v]. We
say that G ′ � v is obtained from G ′ by destruction of v ∈ V (G).

A stable set in G is a subset of mutually nonadjacent nodes in G and a clique is a
subset of pairwise adjacent nodes in G. The cardinality of a stable set of maximum
cardinality in G is denoted by α(G). The stable set polytope in G, STAB(G), is the
convex hull of the characteristic vectors of stable sets in G. The support of a valid
inequality of the stable set polytope of a graph G is the subgraph induced by the
nodes with nonzero coefficient in the inequality. A full-support inequality has G as
its support.

If G ′ ⊆ G, we may consider every point in STAB(G ′) as a point in STAB(G),
although they do not belong to the same space (for the missing nodes, we take
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direct sums with the interval [0, 1], since originally STAB(G) ⊆ STAB(G ′) ⊕
[0, 1]V (G)\V (G ′)). Then, given any family of graphs F and a graph G, we denote
by F(G) the relaxation of STAB(G) defined by

F(G) :=
⋂

G ′⊆G;G ′∈F
STAB(G ′). (1)

If FRAC denotes the family of complete graphs of size two, following the definition
(1), the polyhedron FRAC(G) is called the edge relaxation. It is known that G is
bipartite if and only if STAB(G) = FRAC(G). Similarly, if CLIQUE denotes the
family of complete graphs, CLIQUE(G) is the clique relaxation already mentioned
and a graph is perfect if and only if STAB(G) = CLIQUE(G) [14]. Moreover, if
OC denotes the family of odd cycles, as a consequence of results in [28] we have the
following

Remark 5 If G − v is bipartite for some v ∈ V (G) then STAB(G) = FRAC(G) ∩
OC(G).

In [33] Shepherd defined a graph G to be near-bipartite if G � v is bipartite for
every v ∈ V (G). We denote by NB the family of near-bipartite graphs. Since complete
graphs and odd cycles are near-bipartite graphs, it is clear that

NB(G) ⊆ CLIQUE(G) ∩ OC(G).

2.2 Minimally imperfect, near-perfect and fs-perfect graphs

Minimally imperfect graphs are those graphs that are not perfect, but after deleting any
node they become perfect. The Strong Perfect Graph Theorem [13] (also see [11]; and
see [12] for the related recognition problem) states that the only minimally imperfect
graphs are the odd cycles and their complements.

Given a graph G it is known that the full-rank constraint

∑

u∈V
xu ≤ α(G)

is always valid for STAB(G). A graph is near-perfect if its stable set polytope is defined
only by non-negativity constraints, clique constraints and the full-rank constraint [32].
Due to the results of Chvátal [14], near-perfect graphs define a superclass of perfect
graphs and due to the results in [30], minimally imperfect graphs are also near-perfect.
Moreover, every node induced subgraph of a near-perfect graph is near-perfect [32].
In addition, Shepherd [32] conjectured that near-perfect graphs could be characterized
in terms of certain combinatorial parameters and established that the validity of his
conjecture follows from the Strong Perfect Graph (then Conjecture, now) Theorem.
Therefore,

Theorem 6 ([13,32]) A graph G is near-perfect if and only if, for every G ′ ⊆ G
minimally imperfect, the following two properties hold:
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(1) α(G ′) = α(G);
(2) for all v ∈ V (G), α(G ′ � v) = α(G) − 1.

As a generalization of near-perfect graphs, we consider the family of fs-perfect
(full-support perfect) graphs. A graph is fs-perfect if its stable set polytope is defined
only by non-negativity constraints, clique constraints and at most one full-support
inequality. Then, every node induced subgraph of an fs-perfect graph is fs-perfect. We
say that a graph is properly fs-perfect if it is an imperfect fs-perfect graph. Clearly,
near-perfect graphs are fs-perfect, but we will see that fs-perfect graphs define a strict
superclass of near-perfect graphs.

2.3 The LS+ operator

In this section, we present a definition of the LS+-operator [28] and some of its well-
known properties when it is applied to relaxations of the stable set polytope of a graph.
In order to do so, we need some more notation and definitions.

We denote by e0, e1, . . . , en the vectors of the canonical basis of Rn+1 where the
first coordinate is indexed zero. Given a convex set K in [0, 1]n ,

cone(K ) :=
{(

x0
x

)
∈ R

n+1 : x = x0y; y ∈ K ; x0 ≥ 0

}
.

Let Sn be the space of n × n symmetric matrices with real entries. If Y ∈ S
n , diag(Y )

denotes the vector whose i th entry is Yii , for every i ∈ {1, . . . , n}. Let

M(K ) :=
{
Y ∈ S

n+1 : Y e0 = diag(Y ),

Y ei ∈ cone(K ),

Y (e0 − ei ) ∈ cone(K ),∀i ∈ {1, . . . , n}
}

.

Projecting this polyhedral lifting back to the space Rn results in

LS(K ) :=
{
x ∈ [0, 1]n :

(
1
x

)
= Y e0, for some Y ∈ M(K )

}
.

Clearly, LS(K ) is a relaxation of the convex hull of integer solutions in K , i.e.,
conv(K ∩ {0, 1}n).

Let Sn+ be the space of n × n symmetric positive semidefinite (PSD) matrices with
real entries. Then

M+(K ) := M(K ) ∩ S
n+1+

yields the tighter relaxation

LS+(K ) :=
{
x ∈ [0, 1]n :

(
1
x

)
= Y e0, for some Y ∈ M+(K )

}
.
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If we let LS0(K ) := K , then the successive applications of the LS operator yield
LSk(K ) = LS(LSk−1(K )) for every k ≥ 1. Similarly for the LS+ operator. Lovász
and Schrijver proved that LSn(K ) = LSn+(K ) = conv(K ∩ {0, 1}n).

In this paper, we focus on the behaviour of the LS+ operator on the edge relaxation
of the stable set polytope. In order to simplify the notation we write LS+(G) instead
of LS+(FRAC(G)) and similarly for the successive iterations of it. It is known [28]
that, for every graph G,

STAB(G) ⊆ LS+(G) ⊆ TH(G) ⊆ CLIQUE(G)

and

STAB(G) ⊆ LS+(G) ⊆ NB(G).

2.4 LS+-perfect graphs

Recall that a graph G is LS+-perfect if LS+(G) = STAB(G). A graph that is not
LS+-perfect is called LS+-imperfect.

Using the results in [16] and [26] we know that all imperfect graphs with at most
6 nodes are LS+-perfect, except for the two properly near-perfect graphs depicted in
Fig. 1, denoted by GLT and GEMN , respectively. These graphs prominently figure
into our current work as the building blocks of an interesting family of graphs.

From the results in [28], it can be proved that every subgraph of an LS+-perfect
graph is also LS+-perfect. Moreover, every graph for which STAB(G) = NB(G) is
LS+-perfect. In particular, perfect and near-bipartite graphs are LS+-perfect. Recall
that in Conjecture 3 we wonder whether the only LS+-perfect graphs are those graphs
G for which STAB(G) = NB(G). Obviously, G is LS+-perfect if and only if every
facet defining inequality of STAB(G) is valid for LS+(G). In this context, we have
Lemma 1.5 in [28] that can be rewritten in the following way:

Theorem 7 Let ax ≤ β be a full-support valid inequality for STAB(G). If, for every
v ∈ V (G),

∑
w∈V (G−v) ax ≤ β − av is valid for FRAC(G � v) then ax ≤ β is valid

for LS+(G).

In [6] we proved that the converse of the previous result is not true. However, it
is plausible that the converse holds when the full-support valid inequality is a facet
defining inequality of STAB(G). Actually, the latter assertion would be a consequence

Fig. 1 The graphs GLT and
GEMN
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of the validity of Conjecture 3. Thus, we present an equivalent formulation of it in the
following.

Conjecture 8 If a graph is LS+-perfect and its stable set polytope has a full-support
facet defining inequality, then the graph is near-bipartite.

2.5 Graph operations

In this section, we present some properties of four graph operations that will be used
throughout this paper. Firstly, let us recall the complete joinof graphs.Given twographs
G1 and G2 such that V (G1)∩V (G2) = ∅, we say that a graph G is obtained after the
complete join of G1 and G2, denoted G = G1 ∨G2, if V (G) = V (G1) ∪ V (G2) and
E(G) = E(G1) ∪ E(G2) ∪ {vw : v ∈ V (G1) and w ∈ V (G2)}. A simple example
of a join is the n-wheel Wn , for n ≥ 2 which is the complete join of the trivial graph
with one node and the n-cycle.

It is known that every facet defining inequality of STAB(G1 ∨G2) can be obtained
by the cartesian product of facets of STAB(G1) and STAB(G2). Hence, odd wheels
are fs-perfect but not near-perfect graphs. Moreover, it is easy to see

Remark 9 The complete join of two graphs is properly fs-perfect if and only if one of
them is a complete graph and the other one is a properly fs-perfect graph.

Also, it is known that

Remark 10 The complete join of two graphs is LS+-perfect if and only if both of them
are LS+-perfect graphs.

Now, let us recall the graph operation, odd-subdivision of an edge [35]. Given a
graph G = (V, E) and e ∈ E , we say that the graph G ′ is obtained from G after an
odd-subdivision of the edge e if it is replaced in G by a path of odd length. Next, we
consider the k-stretching of a node which is a generalization of the type (i) stretching
operation defined in [26]. Let v be a node of G with neighborhood �(v) and let A1
and A2 be nonempty subsets of �(v) such that A1 ∪ A2 = �(v), and A1 ∩ A2 is a
clique of size k. A k-stretching of a node v is obtained as follows: remove v, introduce
three nodes instead, called v1, v2 and u, and add an edge between vi and every node
in {u} ∪ Ai for i ∈ {1, 2}. Figure 2 illustrates the case k = 1.

The type (i) stretching operation presented in [26] corresponds to the case k = 0.
We also consider another graph operation defined in [4]. Given a graph G with

nodes {1, . . . , n} and a clique K = {v1, . . . , vs} in G (not necessarily maximal), the
clique subdivision of the edge v1v2 in K is defined as follows: delete the edge v1v2
from G, add the nodes vn+1 and vn+2 together with the edges v1vn+1, vn+1vn+2,
vn+2v2 and vn+iv j for i ∈ {1, 2} and j ∈ {3, . . . , s}. Figure 3 illustrates the clique
subdivision of the edge v1v2 in the clique K = {v1, v2, v6}.

Notice that if the clique is an edge this operation reduces to the odd-subdivision of
it.
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Fig. 2 A 1-stretching operation on node v

Fig. 3 The graph G′ is obtained from G after the clique subdivision of edge v1v2

3 fs-perfection on graphs in F k

In order to prove Conjecture 8 on fs-perfect graphs, we first consider a minimal struc-
ture that a graph must have in order to be properly fs-perfect and LS+-imperfect.
This leads us to define Fk for every k ≥ 2 as the family of graphs having node
set {0, 1, . . . , 2k + 1} and such that G − 0 is a minimally imperfect graph with
1 ≤ δG(0) ≤ 2k. Let us consider necessary conditions for a graph in Fk to be
fs-perfect.

Theorem 11 [29] Let G ∈ Fk be an fs-perfect graph. Then, the following conditions
hold:

(1) α(G) = α(G − 0);
(2) 1 ≤ α(G � 0) ≤ α(G) − 1;
(3) the full-support facet defining inequality of STAB(G) is the inequality

(α(G) − α(G � 0)) x0 +
2k+1∑

i=1

xi ≤ α(G).

Proof Let
2k+1∑

i=0

ai xi ≤ β (2)
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be the full-support facet defining inequality of STAB(G). We may assume that all
coefficients ai , i ∈ {0, . . . , 2k + 1} are positive integers. Clearly,

STAB(G − 0) =
{
x ∈ CLIQUE(G − 0) :

2k+1∑

i=1

ai xi ≤ β

}
.

Since G − 0 is a minimally imperfect graph, the inequality
∑2k+1

i=1 ai xi ≤ β is a
positive multiple of its rank constraint, i.e., there exists a positive integer p such that
ai = p for i ∈ {1, . . . , 2k + 1} and β = p α(G − 0). Therefore, (2) has the form

a0x0 + p
2k+1∑

i=1

xi ≤ p α(G − 0). (3)

Observe that there is at least one root x̃ of (3) such that x̃0 = 1. Clearly, x̃ is the
incidence vector of a stable set S of G such that S − {0} is a maximum cardinality
stable set of G � 0. Then,

a0 = p (α(G − 0) − α(G � 0)) .

Since a0 ≥ 1, we have α(G � 0) ≤ α(G − 0) − 1. Moreover, since δG(0) ≤ 2k,
we have α(G � 0) ≥ 1. Therefore, the inequality (3) becomes

(α(G − 0) − α(G � 0))x0 +
2k+1∑

i=1

xi ≤ α(G − 0). (4)

To complete the proof, we only need to show that α(G) = α(G − 0). Let x̄ be the
incidence vector of a maximum cardinality stable set in G, then

α(G) = x̄0 +
2k+1∑

i=1

x̄i . (5)

Moreover, since α(G − 0) − α(G � 0) ≥ 1 and x̄ satisfies (4) we have

α(G) = x̄0 +
2k+1∑

i=1

x̄i ≤ (α(G − 0) − α(G � 0))x̄0 +
2k+1∑

i=1

x̄i ≤ α(G − 0).

We have that α(G) ≤ α(G − 0), implying α(G) = α(G − 0). ��
As a first consequence of the previous theorem we have:

Corollary 12 Let G ∈ Fk be such that α(G) = 2. Then, G is fs-perfect if and only if
G − 0 = C2k+1 (the complementary graph of C2k+1) and G is near-perfect.
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Proof Assume that G is fs-perfect. By the previous theorem, α(G − 0) = α(G) = 2
and thenG−0 = C2k+1. Moreover, 1 ≤ α(G�0) ≤ α(G)−1 = 1 and a0 = 1. Thus,
G is near-perfect. The converse follows from the definition of fs-perfect graphs. ��

For k ≥ 2, let Hk denote the graph in Fk having α(Hk) = 2 and δHk (0) = 2k.
Using Theorem 6 it is easy to check that Hk is near-perfect. Using Corollary 12, we
have the following result:

Corollary 13 Let G ∈ Fk be such that α(G) = 2. Then, G is fs-perfect if and only if
G is a near-perfect edge subgraph of Hk.

Let us now study the structure of fs-perfect graphs G in Fk with stability number
at least 3. By Theorem 11, α(G − 0) = α(G) ≥ 3 and G − 0 = C2k+1 with k ≥ 3.
Recall that in the cycle C2k+1 node i is adjacent to node i + 1 for i ∈ {1, . . . , 2k}
and 2k + 1 is adjacent to node 1. Clearly, if δ(0) ≤ 2 and 0v ∈ E(G) then G − v is
bipartite and, by Remark 5, G is not fs-perfect.

From now on, 3 ≤ s = δ(0) ≤ 2k and �(0) = {v1, . . . , vs} such that 1 ≤
v1 < . . . < vs ≤ 2k + 1. Observe that for every i ∈ {1, . . . , s − 1}, the nodes in
{w ∈ V (G − 0) : vi ≤ w ≤ vi+1} together with node 0 form a chordless cycle Di

in G. Also, Ds in G is the chordless cycle induced by the nodes in {w ∈ V (G − 0) :
vs ≤ w ≤ 2k + 1 or 1 ≤ w ≤ v1} and node 0. We refer to these cycles as central
cycles of G. Sometimes, we refer to central cycles of length k as k-central cycles. It
is easy to see, using parity arguments, that every G ∈ Fk has an odd number of odd
central cycles. If G has only one odd central cycle, say D1, then G − v1 is bipartite
and, by Remark 5, G is not fs-perfect.

We summarize the previous ideas in the following result:

Lemma 14 Let G ∈ Fk be a fs-perfect graph with α(G) ≥ 3. Then, k ≥ 3, G − 0 =
C2k+1 and G has at least three odd central cycles.

According to the lemma above, we may focus on the structural properties of graphs
in Fk with at least three odd central cycles. Firstly, we have:

Lemma 15 Let G ∈ Fk with k ≥ 3 be such that G − 0 = C2k+1 and G has at
least three odd central cycles. Then, G can be obtained after some odd subdivisions
of edges in a graph G ′ ∈ F p for some 2 ≤ p < k with δG ′(0) = δG(0). Moreover,

(1) if every central cycle of G is odd, G ′ has one central cycle of length 5 and 2(p−1)
central cycles of length 3;

(2) if G has an even central cycle, every central cycle of G ′ has length 3 or 4.

Proof Let δG(0) = s with s ≥ 3.

(1) If every central cycle of G is odd then s is odd and G has a central cycle with
length at least 5. Let p = s+1

2 andG ′ ∈ F p with δG ′(0) = s such that 0 is adjacent
to all nodes in C2p+1 except to two nodes, e.g., nodes s and s+1. Clearly, G ′ has
one central cycle of length five, and s − 1 = 2(p − 1) central cycles of length
three. Hence G is obtained after some odd subdivisions of edges of G ′.
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(2) If G has r ≥ 1 even central cycles then s + r is odd. Let Di with i ∈ {1, . . . , s}
be the central cycles of G. Let p = s+r−1

2 and G ′ ∈ F p such that δG ′(0) = s
and for i ∈ {1, . . . , s} the central cycle D′

i in G ′ is:
(a) a 3-cycle if Di is odd,
(b) a 4-cycle If Di is even.
It is straightforward to check that G is obtained from G ′ after some odd subdivi-
sions of edges. ��

In addition, we have

Lemma 16 Let G ∈ Fk with k ≥ 3 be such that G − 0 = C2k+1 and δG(0) ≥ 3. Let
t (G) be the number of 3-central cycles and r(G) the number of 4-central cycles in G.

(1) if G has three consecutive 3-central cycles then G can be obtained after the
clique subdivision of an edge in a graph G ′ ∈ Fk−1 with t (G ′) = t (G) − 2 and
δG ′(0) = δG(0) − 2;

(2) if r(G) ≥ 2 then G can be obtained after the 1-stretching operation on a node in
a graph G ′ ∈ Fk−1 with r(G ′) = r(G) − 1 and δG ′(0) = δG(0) − 1.

Proof (1) By the hypothesis, we may consider that {2k − 1, 2k, 2k + 1, 1} ⊆ �(0).
Let G ′ ∈ Fk−1 be a graph having �G ′(0) = �(0) \ {2k, 2k + 1}. Clearly, G ′ has
t (G) − 2 3-central cycles and δG ′(0) = δG(0) − 2. Moreover, it is easy to see that
G is the clique subdivision of the edge in G ′ having endpoints {1, 2k − 1}.

(2) Since there is a 4-central cycle, without loss of generality, we may assume that
the nodes in {0, 1, 2k, 2k+1} induce a 4-central cycle in G. Consider G ′ ∈ Fk−1

such that �G ′(0) = �G(0) \ {2k}, then G is a 1-stretching of G ′ performed at
node 1 and where the new nodes are 2k and 2k + 1. Clearly, r(G ′) = r(G) − 1
and δG ′(0) = δG(0) − 1. ��

Utilizing the previous lemmas we obtain the following result.

Theorem 17 Let G ∈ Fk with k ≥ 3 and suppose G has at least three odd central
cycles. Then, G can be obtained from GLT or GEMN after successively applying
odd-subdivision of an edge, 1-stretching of a node and clique-subdivision of an edge
operations.

Proof Using Lemma 15, by successively performing the odd subdivision of an edge
operation, we may restrict ourselves to consider the following cases:

(a) G has one 5-central cycle and 2(k − 1) 3-central cycles.
(b) G has at least one even central cycle and every central cycle has length 3 or 4.

Consider r(G), the number of 4-cycles in G. If r(G) = 0 then G is a graph described
in case (a). Since k ≥ 3, we have 2(k − 1) ≥ 4, and by Lemma 16 (1), we can
conclude that G is obtained from GLT after successive clique-subdivisions of edges.
For graphs in case (b), we have that r(G) ≥ 1 and then by Lemma 15 (2) we have that
2k = r(G) + δ(G) − 1. If r(G) = 1 and δ(G) is even, since k ≥ 3 it follows that G
has t (G) = δ(G) − 1 ≥ 5 number of 3-cycles. Using Lemma 16 (1) it is not hard to
see that G can be obtained from GEMN by successive clique subdivisions of edges. If
r(G) ≥ 2, Lemma 16 (2) implies that G can be obtained by successive 1-stretching of
nodes from a graph G ′ ∈ Fk′

with r(G ′) = 1 and 2k′ = δ(G ′). If 2k′ = 4, then G ′ =
GEMN ; otherwise, we can refer to the previous case and the proof is complete. ��
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4 The conjecture on fs-perfect graphs

In this section, we prove the validity of Conjecture 8 on the family of fs-perfect graphs.
We start by proving it on graphs in the familyFk with k ≥ 2. Recall that whenG ∈ Fk

is a fs-perfect graph with α(G) = 2, Corollary 13 states that G is a near-perfect edge
subgraph of Hk . Observe that H2 = GEMN and then, due to the results in [16], Hk

is LS+-imperfect when k = 2.
Next, we prove the imperfection property for the whole family of graphs Hk .

Theorem 18 For k ≥ 2, the graph Hk is LS+-imperfect.

In order to ease the reading of this paper we postpone the proof of Theorem 18 to
Sect. 5. Regarding the behaviour of the LS+ operator on edge subgraphs, we have the
following result:

Lemma 19 Let GE be an edge subgraph of G and ax ≤ β be a valid inequality for
STAB(GE ). Then, if ax ≤ β is not valid for LSr+(G), then STAB(GE ) �= LSr+(GE ).

Proof Clearly, by definition LSr+(G) ⊆ LSr+(GE ). Thus, if there exists x̂ ∈ LSr+(G)

such that ax̂ > β then ax ≤ β is not valid for LSr+(GE ). Moreover, by hypothesis,
ax ≤ β is valid for STAB(GE ) and the result follows. ��

As a consequence of the above, we have:

Theorem 20 Let G ∈ Fk be an fs-perfect graph with α(G) = 2. Then, G is LS+-
imperfect.

Proof ByCorollary 13weknow thatG is a near-perfect edge subgraphofHk . Theorem
18 states that Hk is LS+-imperfect; thus, the full rank constraint is not valid for
LS+(Hk). Since α(Hk) = α(G) = 2, the full rank constraint is not valid for LS+(G)

and G is LS+-imperfect. ��
Let us consider the fs-perfect graphs G in Fk with α(G) ≥ 3. Due to the structural

characterization in Theorem 17, we are interested in the behavior of the LS+-operator
under the odd subdivision of an edge, k-stretching of a node and clique subdivision of
an edge operations. In this context, a related earlier result is:

Theorem 21 ([26]) Let G be a graph and r ≥ 1 such that LSr+(G) �= STAB(G).
Further assume that G̃ is obtained from G by using the odd subdivision operation on
one of its edges. Then, LSr+(G̃) �= STAB(G̃).

Concerning the remaining operations,we present the following resultswhose proofs
are included in Sect. 5 for the sake of clarity.

Theorem 22 Let G be a graph and r ≥ 1 such that LSr+(G) �= STAB(G). Further
assume that G̃ is obtained from G by using the k-stretching operation on one of its
nodes. Then, LSr+(G̃) �= STAB(G̃).
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Theorem 23 Let G be a graph and r ≥ 1 such that LSr+(G) �= STAB(G). Further
assume that G̃ is obtained from G by using the clique subdivision operation on one of
its edges. Then, LSr+(G̃) �= STAB(G̃).

In summary, we can conclude that the odd-subdivision of an edge, the 1-stretching
of a node and the clique-subdivision of an edge are operations that preserve LS+-
imperfection. Then, the behavior of these operations under the LS+ operator together
with the fact that graphsGLT andGEMN are LS+-imperfect, Lemma 14 and Theorem
17 allow us to deduce:

Theorem 24 Let G ∈ Fk be an fs-perfect graph with α(G) ≥ 3. Then, G is LS+-
imperfect.

Finally, we are able to present the main result of this contribution.

Theorem 25 Let G be a properly fs-perfect graph which is also LS+-perfect. Then, G
is the complete join of a complete graph (possibly empty) and a minimally imperfect
graph.

Proof Since G is a properly fs-perfect graph, G has a (2k + 1)-minimally imperfect
node induced subgraph G ′. IfG ′ = G the theorem follows. Otherwise, let v ∈ V (G)\
V (G ′) and letGv be the subgraph ofG induced by {v}∪V (G ′). Clearly,Gv is properly
fs-perfect as well as LS+-perfect. Then, by Theorem 20 and Theorem 24, Gv /∈ Fk .
So, δGv (v) = 2k + 1 and Gv = {v} ∨ G ′. Therefore, if G ′′ is the subgraph of G
induced by V (G) − V (G ′), G = G ′ ∨G ′′. By Remark 9, G ′′ is a complete graph and
by Remark 10 the result follows. ��

Since complete joins of complete graphs and minimally imperfect graphs are near-
bipartite, they satisfy NB(G) = STAB(G). Therefore, based on the results obtained
so far, we can conclude that Conjecture 8 holds for fs-perfect graphs.

5 Results concerning the LS+-operator

In this section we include the proofs of some results on the LS+-operator that were
stated without proof in the previous sections.

5.1 The LS+-imperfection of the graph Hk

Recall that V (Hk) = {0, 1, . . . , 2k+1}, Hk−0 = C2k+1 and δ(0) = 2k.Without loss
of generality, we may assume that the node 2k+1 in Hk is the only one not connected
with node 0. Let us introduce the point x(k, γ ) := 1

2k+2+γ
(2, 2, . . . , 2, 4)� ∈ R

2k+2

where for i ∈ {1, . . . , 2k + 2}, the i th component of x(k, γ ) corresponds to the node
i −1 in Hk . In what follows, we show that x(k, γ ) ∈ LS+(Hk)\STAB(Hk) for some
γ ∈ (0, 1) thus proving Theorem 18. We first consider βk = 1

2k+2 , γ ∈ (0, 1) and the
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(2k + 3) × (2k + 3) matrix given by

Y (k, γ ) :=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(2k + 2 + γ ) 2 2 2 2 2 · · · 2 4

2 2 0 0 0 0 · · · 0 2

2 0 2 1 − βk 0 0 · · · 0 1 + βk

2 0 1 − βk 2 1 + βk 0 · · · 0 0

2 0 0 1 + βk 2 1 − βk · · · 0 0

2 0 0 0 1 − βk 2 · · · 0 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.

2 0 0 0 0 0 · · · 2 1 + βk

4 2 1 + βk 0 0 0 · · · 1 + βk 4

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Lemma 26 For k ≥ 3, there exists γ ∈ (0, 1) such that Y (k, γ ) is PSD.

Proof Let us denote by Ỹ (k) the (2k + 2) × (2k + 2) submatrix of Y (k, γ ) obtained
after deleting the first row and column. Also consider Ŷ (k), the Schur Complement
of the (1, 1) entry of Ỹ (k), then

Ŷ (k) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 1 − βk 0 0 · · · 0 1 + βk

1 − βk 2 1 + βk 0 · · · 0 0

0 1 + βk 2 1 − βk · · · 0 0

0 0 1 − βk 2 · · · 0 0

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.

0 0 0 0 · · · 2 1 + βk

1 + βk 0 0 0 · · · 1 + βk 2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Claim 27 For every k ≥ 2, Ỹ (k) is positive definite.

Proof Let us first show that Ŷ (k) is positive definite. For this purpose, we only need
to verify that every leading principal minor of Ŷ (k) is positive.

Let us define A0(k) := 1, B0(k) := 2 and for � ≥ 1,

A�(k) := det

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 1 − βk 0 0 · · · 0 0

1 − βk 2 1 + βk 0 · · · 0 0

0 1 + βk 2 1 − βk · · · 0 0

0 0 1 − βk 2 · · · 0 0

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.

0 0 0 0 · · · 2 1 − βk

0 0 0 0 · · · 1 − βk 2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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where the matrix in the definition is 2� × 2� and

B�(k) := det

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 1 − βk 0 0 · · · 0 0

1 − βk 2 1 + βk 0 · · · 0 0

0 1 + βk 2 1 − βk · · · 0 0

0 0 1 − βk 2 · · · 0 0

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.

0 0 0 0 · · · 2 1 + βk

0 0 0 0 · · · 1 + βk 2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where the matrix in the definition is (2� + 1) × (2� + 1). Using the determinant
expansion on A�(k) and B�(k) we have that for every � ≥ 1,

A�(k) = 2B�−1(k) − (1 − βk)
2A�−1(k),

B�(k) = 2A�(k) − (1 + βk)
2B�−1(k),

and

det
(
Ŷ (k)

)
= 2

[
Ak(k) − (1 + βk)

2Bk−1(k) + (1 − βk)
k(1 + βk)

k+1
]

= 2
[
Bk(k) − Ak(k) + (1 − βk)

k(1 + βk)
k+1
]
. (6)

Using these recursive formulas, we find that for every � ≥ 1,

A�(k) = (2� + 1 − βk) (1 − βk)
�−1(1 + βk)

�, (7)

B�(k) = (2� + 2) (1 − βk)
�(1 + βk)

�. (8)

Note that A�(k) and B�(k) are positive for every � and every k.Moreover, every leading
principal minor of Ŷ (k), except itself, is either A�(k) or B�(k) for some �. Using (6),
(7) and (8) we compute

det
(
Ŷ (k)

)
= 2

[
2 − (2k + 1)βk − β2

k

]
(1 − βk)

k−1(1 + βk)
k (9)

which is indeed positive. Since we verified that every principle minor of Ŷ (k) is
positive, we deduce that Ŷ (k) is positive definite. Finally, after applying the Schur
Complement Lemma we have that Ỹ (k) is positive definite. ��

Using this claim we have:

Claim 28 Let u be the (unique) vector such that

Ỹ (k)u = 2(1 + e2k+2). (10)

Then Y (k, γ ) is PSD if and only if γ ≥ 1 − βku2k+2.
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Proof Using the Schur Complement Lemma for Ỹ (k) we have that Y (k, γ ) is PSD if
and only if

Ỹ (k) − 4

2k + 2 + γ
(1 + e2k+2)(1 + e2k+2)

� is PSD.

Using the automorphism
[
Ỹ (k)

]−1/2 ·
[
Ỹ (k)

]−1/2
of the PSD cone, the latter is true

if and only if the following matrix

I − 4

2k + 2 + γ

[
Ỹ (k)

]−1/2
(1 + e2k+2)(1 + e2k+2)

� [Ỹ (k)
]−1/2

(11)

is PSD. Since

4

2k + 2 + γ

[
Ỹ (k)

]−1/2
(1 + e2k+2)(1 + e2k+2)

� [Ỹ (k)
]−1/2

is a rank one matrix, using (10) we have that the matrix in (11) is PSD if and only if

1 ≥ 4

2k + 2 + γ
(1 + e2k+2)

�[Ỹ (k)]−1(1 + e2k+2) = 2(1 + e2k+2)
�u

2k + 2 + γ
. (12)

To conclude the above, we used the observation that for every h ∈ R
n \ {0},

I − hh� is PSD iff
h�

‖h‖2
(
I − hh�) h

‖h‖2 ≥ 0.

To see the latter, one can apply a spectral decomposition to the matrix
(
I − hh�),

where one of the eigenvectors is h
‖h‖2 .

Now, using the definition of Ỹ (k) we have that

Ỹ (k)1 = 4(1) + (4 + 2βk)e2k+2 = 2Ỹ (k)u + 2βke2k+2,

and then

u = 1

2
1 − βk[Ỹ (k)]−1e2k+2. (13)

Therefore,

2(1 + e2k+2)
�u = 2(1 + e2k+2)

�
(
1

2
1 − βk[Ỹ (k)]−1e2k+2

)

= (2k + 3) − 2βk(1 + e2k+2)
�[Ỹ (k)]−1e2k+2

and again using (10), we obtain

2(1 + e2k+2)
�u = (2k + 3) − βku2k+2. (14)
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Hence, using (12) and (14) we can conclude that the matrix in (11) is PSD if and only
if

1 ≥ (2k + 3) − βku2k+2

2k + 2 + γ

or equivalently, if and only if

γ ≥ 1 − βku2k+2. ��

By the previous claims, to prove that Y (k, γ ) is PSD for some γ ∈ (0, 1), it suffices
to prove that there exists γ ∈ (0, 1) such that

γ ≥ 1 − βku2k+2,

where u is the unique solution of (10).
Thus, as long as u2k+2 > 0, we may have γ < 1 as desired. Using (13), we have

that

u2k+2 = e�
2k+2u = 1

2
− βke�

2k+2Ỹ (k)−1e2k+2.

Based on the above expression, we may interpret e�
2k+2Ỹ (k)−1e2k+2 as the (2k+2)nd

entry of the unique solution h of the linear system Ỹ (k)h = e2k+2. NowusingCramer’s
rule to express this entry as a ratio of two determinants and the definitions of Ỹ , Ŷ ,
and Ak , we conclude

u2k+2 = 1

2
− βk

Ak(k)

det
(
Ŷ (k)

) .

Then, using the identities (7) and (9), we obtain

u2k+2 = 1

2

[
1 − βk

2k + 1 − βk

2 − (2k + 1)βk − β2
k

]
.

The numerator of the last ratio above is strictly less than (2k+1) and the denominator
is strictly larger than one. Whence, u2k+2 > 1

4(k+1) > 0. This completes the proof. ��
Utilizing the previous lemma we are able to prove Theorem 18.

Proof of Theorem 18 Recall, we may assume that in Hk the node 2k + 1 is not
connected to node 0. Let γ ∈ (0, 1) and x(k, γ ) = 1

2k+2+γ
(2, 2, . . . , 2, 4)� ∈

R
2k+2 where the i th component of x(k, γ ) corresponds to node i − 1 in Hk for

i ∈ {1, . . . , 2k + 2}. Let Y ∗(k, γ ) := 1
2k+2+γ

Y (k, γ ). Then, Y ∗(k, γ ) is a symmetric
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matrix that clearly satisfies that Y ∗(k, γ )e0 = diag(Y ∗(k, γ )) ∈ FRAC(Hk). More-
over, it is not hard to check that, for i ∈ {1, . . . , 2k + 2},

Y ∗(k, γ )ei ∈ cone(FRAC(Hk)) and Y ∗(k, γ )(e0 − ei ) ∈ cone(FRAC(Hk)).

This proves thatY ∗(k, γ ) ∈ M(Hk). By the previous lemma, there exists γ̄ ∈ (0, 1) for
which Y ∗(k, γ̄ ) ∈ M+(Hk). Hence, x(k, γ̄ ) ∈ LS+(Hk). It only remains to observe
that x(k, γ̄ ) violates the rank inequality of Hk . Thus, x(k, γ̄ ) /∈ STAB(Hk). ��

5.2 Operations that preserve LS+-imperfection

Firstly, we prove Theorem 22 on the k-stretching operation for k ≥ 1, already stated in
Sect. 4. Actually, we will see that the same proof given in [26] for the case k = 0 can
be used for the case k ≥ 1. Assume that G̃ is obtained from G after the k-stretching
operation on node v and let u, v1 and v2 be as in the definition of the operation in Sect.

2.5. For any x ∈ R
V (G), we write x =

(
x̄
xv

)
where x̄ ∈ R

V (G−v).

For the case k = 0, the authors in [26] prove that if a point x =
(

x̄
xv

)
∈ LSr+(G)

then the point x̃ given by

xw =
{
x̃w if w ∈ {u, v1, v2},
x̄w otherwise,

satisfies x̃ ∈ LSr+(G̃). In order to do so they prove that if

Y =

⎡

⎢⎢⎢⎢⎣

1 x̄� xv

x̄ X̄ ȳ

xv ȳ� xv

⎤

⎥⎥⎥⎥⎦
∈ M+(LSr−1+ (G))

then

Ỹ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 x̄� xv xv (1 − xv)

x̄ X̄ ȳ ȳ x̄ − ȳ

xv ȳ� xv xv 0
xv ȳ� xv xv 0

(1 − xv) (x̄ − ȳ)� 0 0 (1 − xv)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ M+(LSr−1+ (G̃)).
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On the other hand, they show that if
∑

j∈V (G) a j x j ≤ β is a valid inequality for

STAB(G), defining β̃ = β + av and

ã j =
⎧
⎨

⎩

av if j ∈ {v1, v2, u},

a j otherwise,

the inequality
∑

j∈V (G̃)
ã j x j ≤ β̃ is valid for STAB(G̃). Moreover, if x∗ violates

∑
j∈V (G) a j x j ≤ β then x̃∗ violates

∑
j∈V (G̃)

ã j x j ≤ β̃.

Proof of Theorem 22 It is enough to observe that Ỹ ∈ M+
(
LSr−1(G̃)

)
and the

inequality
∑

j∈V (G̃)
ã j x j ≤ β̃ is valid for STAB(G̃) even for the case that G̃ is

obtained after the k-stretching on node v in G, for k ≥ 1. ��

Let us now consider the clique-subdivision operation defined in [4]. For x ∈ R
n , let

x̄ ∈ R
n+2 such that x̄i = xi for every i ∈ {1, . . . , n}, x̄n+1 = x2 and x̄n+2 = x1, and

write x̄ =
⎛

⎝
x
x2
x1

⎞

⎠. In [4] the authors prove that if G̃ is obtained from G by the clique

subdivision of the edge v1v2 in the clique K and x ∈ LSk+(G) then x̄ ∈ LSk(G̃). In

order to do so, they show that if Y e0 =
(
1
x

)
for

Y =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 x1 x2 x̄�
x1 x1 0 y�

1
x2 0 x2 y�

2

x̃ y1 y2 X̄

⎤

⎥⎥⎥⎥⎥⎥⎦
∈ M(LSr−1(G)) (15)

then

Ỹ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 x1 x2 x̃� x2 x1
x1 x1 0 y�

1 0 x1
x2 0 x2 y�

2 x2 0

x̃ y1 y2 X̄ y2 y1

x2 0 x2 y�
2 x2 0

x1 x1 0 y�
1 0 x1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ M(LSr−1(G̃)). (16)

Proof of Theorem 23 It is enough to observe that if the matrix Y is PSD then so is the
matrix in (16). ��

123



Lovász–Schrijver SDP-operator, near-perfect graphs and... 221

Fig. 4 A graph G satisfying
FS(G) = STAB(G) which is
not fs-perfect

6 Conclusions and further results

In this work, we face the problem of characterizing the stable set polytope of LS+-
perfect graphs, a graph class where the Maximum Weight Stable Set Problem is
polynomial-time solvable. This class strictly includes many well-known graph classes
such as perfect graphs, t-perfect graphs, wheels, anti-holes, near-bipartite graphs and
the graphs obtained from various suitable compositions of these. The stable set poly-
tope of either a perfect or a near-bipartite graph only needs the inequalities associated
with the stable set polytopes of its near-bipartite subgraphs. We have conjectured that
the same holds for all LS+-perfect graphs. In this paper, we prove the validity of
this conjecture for fs-perfect graphs, a superclass of near-perfect graphs. Moreover,
if FS denotes the class of fs-perfect graphs, using the definition in (1), we actually
prove that the conjecture holds for a superclass of fs-perfect graph defined as those
graphs for which FS(G) = STAB(G). Observe that the graph in Fig. 4 satisfies
FS(G) = STAB(G) and it is not fs-perfect.

Also, the results used in the proof of the Theorem 25 allow us to conclude the
following:

Corollary 29 Let G be a graph such that V (G) = {0, 1, . . . , 2k + 1} with k ≥ 2 and
G − 0 is minimally imperfect. Then:

• If G − 0 = C2k+1 then G is LS+-perfect if and only if either δG(0) ≥ 2 and G has
only one odd central cycle or δG(0) ∈ {0, 1, 2k + 1}.

• If G−0 = C2k+1 withα(G) = 2 then G is LS+-perfect if and only δG(0) = 2k+1.

From the above characterization, we identify some of the forbidden structures in
the family of LS+-perfect graphs:

Corollary 30 Let G be an LS+-perfect graph. Then, there is no subgraph G ′ of G
such that

• G ′ − v0 = C2k+1, 2 ≤ δG ′(v0) ≤ 2k and G ′ has at least two odd central cycles,
or

• G ′ − v0 = C2k+1 and k + 1 ≤ δ′
G(v0) ≤ 2k and α(G ′) = 2,

for some v0 ∈ V (G ′) and k ≥ 2.
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