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Abstract We investigate the augmented Lagrangian dual (ALD) for mixed integer
linear programming (MIP) problems. ALD modifies the classical Lagrangian dual by
appending a nonlinear penalty function on the violation of the dualized constraints in
order to reduce the duality gap. We first provide a primal characterization for ALD
for MIPs and prove that ALD is able to asymptotically achieve zero duality gap
when the weight on the penalty function is allowed to go to infinity. This provides
an alternative characterization and proof of a recent result in Boland and Eberhard
(Math Program 150(2):491–509, 2015, Proposition 3). We further show that, under
some mild conditions, ALD using any norm as the augmenting function is able to
close the duality gap of an MIP with a finite penalty coefficient. This generalizes the
result in Boland and Eberhard (2015, Corollary 1) from pure integer programming
problems with bounded feasible region to general MIPs. We also present an example
where ALD with a quadratic augmenting function is not able to close the duality gap
for any finite penalty coefficient.
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1 Introduction

We consider the general mixed integer (linear) programming (MIP) problem

zIP := inf{c�x | Ax = b, x ∈ X}, (1)

and its augmented Lagrangian dual (ALD)

zLD+ρ := sup
λ∈Rn

inf
x∈X{c�x + λ�(b − Ax) + ρψ(b − Ax)},

where X is a mixed integer linear set, ρ is a given positive scalar, and ψ(·) is an
augmenting function with ψ(0) = 0 and ψ(u) > 0 for all u �= 0. Here, Ax = b are
the complicating constraints, and relaxing these makes the remaining problem easier.

In contrast to the convex setting, for nonconvex optimization problems, a non-
zero duality gap may exist when certain constraints are relaxed by using classical
Lagrangian dual (LD). ALD modifies classical LD by appending a nonlinear penalty
on the violation of the dualized constraints. The resulting ALD problem then involves
dual functions which are not necessarily affine as in LD, and may be capable of
penetrating possible ‘dents’ in the value function (or perturbation function) thereby
reducing the duality gap [26]. Depending on the properties of the value function of the
underlying optimization problem, various different forms of ALD approaches have
been introduced (cf. [1,9–12,18,19,22,23,25–30,32,34]). Under certain conditions,
a zero duality gap can be reached asymptotically by increasing the coefficient on
penalty function to infinity [32]. In some cases, the duality gap can be closed with a
large enough finite value of the penalty coefficient. In this case, we say that the corre-
sponding ALD involves exact penalization or is exact. Rockafellar [25] and Bertsekas
[2] used convex quadratic augmenting functions. Burke [13,14] used norms as convex
augmenting functions. For these cases, necessary and sufficient conditions for exact
penalization are provided in [13,14,26] which we will review in Sect. 2. For some
classes of non-convex optimization problems, the duality gap cannot be closed by
using convex augmenting functions. For these problems, more general forms of ALD
are needed. For example, level-bounded augmenting functionswere used in [18] rather
than convex ones. The works in [29] and [30] used a family of augmenting functions
with the almost peak at zero property, which includes the augmenting functions in [18]
as special cases. Note that the class of augmenting functions in [29] and [30] are gener-
alizations of convex augmenting functions in [26]. Aweaker peak at zero property was
considered in [22]. A more general form of peak at zero property was investigated in
[32] to provide a unified nonlinear ALD. Using abstract convexity, ALD was studied
in [12] and [9] in Banach and Hausdorff topological spaces, respectively.

In this paper,we consider non-negative level bounded augmenting functions inALD
for solving MIPs. Because of the non-convexity in MIP (1), a non-zero duality gap
may exist [33], that is zIP − zLD+ρ > 0. Recently, Boland and Eberhard [7] showed that
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in ALD for MIPs, with a specific class of nonnegative convex augmenting functions,
limρ→∞ zLD+ρ = zIP. They also proved that if X is a finite set (e.g. a bounded pure
IP), then there exists a finite penalty coefficient which closes the duality gap. We
significantly generalize the results of [7] . In particular, our contributions are as follows:

1. We first provide a primal characterization for the ALD of an MIP. This is an
alternative characterization to the one provided in [7, Theorem 1]. Using this
characterization, the ALD of an MIP can be viewed as a traditional LD in a lifted
space.

2. We give an alternative proof for the asymptotic zero duality gap property of ALD
for MIPs when the penalty coefficient is allowed to go to infinity. This was first
proved in [7, Proposition 3].

3. We prove that ALD using any norm as the augmenting function with a sufficiently
large but finite penalty coefficient closes the duality gap for general MIPs. This
generalizes the result in [7, Corollary 1] from the case of pure integer programming
with a bounded feasible region to general MIPs with unbounded feasible regions.

4. Using our primal characterization, we also present an example where ALD with
a quadratic augmenting function is not able to close the duality gap for any finite
penalty coefficient.

The paper is organized as follows. Section 2 provides definitions and surveys exist-
ing results on Lagrangian relaxation and augmented Lagrangian relaxation of general
nonlinear optimization problems and specifically of MIPs. Section 3 presents a pri-
mal characterization of the ALD of a general MIP and the zero duality gap property
when the penalty coefficient is allowed to go to infinity. Section 4 proves that under
mild conditions the ALD achieves zero duality gap using any norm as the augmenting
function with a finite penalty coefficient.

2 Preliminaries

Let R, Q, and Z denote the sets of real, rational, and integer numbers, respectively.
For any vector a and matrix A with finite dimensions, denote their transpose by a�
and A�, respectively. For any set S ⊆ R

n , let conv(S), ri(S) and cl(S) denote the
convex hull, relative interior, and closure of the set S, respectively. Moreover, let
diam(S) := sup{‖u−v‖∞ : u ∈ S, v ∈ S} denote the diameter of set S, where ‖ ·‖∞
is the l∞ norm.

Let x ∈ Z
n1 ×R

n2 be the vector of decision variables, where n1 and n2 are numbers
of integer and continuous variables, respectively, and n := n1 +n2. For given c ∈ Q

n ,
b ∈ Q

m , and A ∈ Q
m×n , consider the general MIP problem (1),

zIP := inf{c�x|Ax = b, x ∈ X},

where m is the number of complicating or coupling constraints, Ax = b. The case
with n2 = 0 is called a pure IP, while for a MIP we have n2 ≥ 1 and n1 ≥ 1. Denote
the LP relaxation of zIP in problem (1) by zLP. We consider MIP problems that satisfy
the following assumption.

123



368 M. J. Feizollahi et al.

Assumption 1 For the MIP (1) we have the following:

(a) X is a mixed integer linear set given by X = {x ∈ Z
n1 ×R

n2 : Ex ≤ f } for some
E ∈ Q

m̄×n and f ∈ Q
m̄ , where m̄ is the number of the inequality constraints in

the definition of X . The problem data A, b, c, E, and f all have rational entries,
and without loss of generality, we can assume that they are integral.

(b) Problem (1) is feasible and its optimal value is bounded.

Usually problem (1) is taken to be structured so that X includes integrality con-
straints, simple bounds on variables, and other simple constraints.

Remark 1 Note that under Assumption 1-a, conv(X) and conv({x : Ax = b, x ∈ X})
are rational polyhedra byMeyer’s theorem [20]. By Assumption 1 (rationality of input
data and boundedness of zIP), the value of the LP relaxation of MIP (1) is bounded
[5], i.e. −∞ < zLP ≤ zIP < ∞. Let λ̄LP be a rational optimal vector of dual variables
for Ax = b in the LP relaxation of (1). Moreover, zIP is attainable and the inf in
the objective function of (1) can be replaced by min. That is, there exists an optimal
solution x∗ of problem (1) such that x∗ ∈ X , Ax∗ = b and zIP = c�x∗.

It is worth mentioning that the equality relation in Ax = b does not impose any
restriction on the type of these constraints. Because any inequality can be replaced by
an equality constraint with a new non-negative slack variable. The non-negativity of
the introduced variable can be absorbed in X . Moreover, in the case of a pure IP, this
slack variable will automatically be an integer variable following Assumption 1-a.

Definition 1 (Value function) The value function for problem (1) is defined as

p(u) := inf{c�x|Ax = b + u, x ∈ X}. (2)

Note that p(0) = zIP. The value function is a very important tool for the theoretical
examination of constrained optimization problems [29]. The properties of the value
functions for IPs and MIPs were studied in [4–6,21,24]. For an MIP problem with
rational data, the value function is lower semicontinuous [21] and piecewise polyhedral
with finitely many pieces in any bounded set [4].

Definition 2 (Lagrangian relaxation and dual) For a givenLagrangemultiplier vector
λ ∈ R

m , the corresponding Lagrangian relaxation (LR) of (1) is given as

zLR(λ) := inf
x∈X

{
c�x + λ�(b − Ax)

}
, (3)

and the associated Lagrangian dual (LD) is

zLD := sup
λ∈Rm

zLR(λ). (4)

A well known primal characterization of LD is given by [17] as

zLD = inf
x

{
c�x | Ax = b, x ∈ conv(X)

}
. (5)
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Remark 2 Note that by rationality of the input data in Assumption 1, zLD is attainable
and inf in the objective function of (5) can be replaced by min.

Definition 3 (Augmented Lagrangian relaxation and dual) The augmented
Lagrangian relaxation (ALR) of (1) has the following form [26]:

zLR+ρ (λ) := inf
x∈X {c�x + λ�(b − Ax) + ρψ(b − Ax)}. (6)

Here, ρ > 0 is a fixed given parameter called penalty coefficient andψ is an augment-
ing function. In this paper, unless explicitly mentioned, we assume that ψ satisfies the
following assumption.

Assumption 2 ψ : Rm → R+ is a proper, nonnegative, lower semicontinuous, and
level-bounded augmenting function, that is ψ(0) = 0, ψ(u) > 0 for all u �= 0,
diam{u | ψ(u) ≤ δ} < +∞ for all δ > 0. Moreover limδ↓0 diam{u | ψ(u) ≤ δ} =
0.

Note that non-negative convex augmenting functions satisfy Assumption 2. The
augmented Lagrangian dual (ALD) is as follows.

zLD+ρ := sup
λ∈Rm

zLR+ρ (λ). (7)

For all ρ > 0, it is well known that

− ∞ < zLP ≤ zLD ≤ zLD+ρ ≤ zIP < +∞, (8)

where the strict inequalities in the upper and lower bounds hold from Assumption 1.

2.1 Exact penalty representation

Definition 4 (Exact penalty representation [26, Definition 11.60]) For a given aug-
menting functionψ(·), a dual vector λ̄ is said to support an exact penalty representation
for problem (1) if, for all ρ sufficiently large, zIP = zLR+ρ (λ̄) and

argmin
x∈X :Ax=b

c�x = argmin
x∈X

{c�x + λ̄
�
(b − Ax) + ρψ(b − Ax)}.

A criterion for the exact penalty representation presented in [26].
If zLD+ρ = zIP for some ρ > 0, then ALR (6) can recover a primal solution for the

MIP problem (1).

Proposition 1 Suppose Assumption 1 holds and zIP = zLD+
ρ̂

= zLR+
ρ̂

(λ̄) for some

finite ρ̂ > 0 and λ̄ ∈ R
m. Then, any optimal solution of ALR (6) with λ = λ̄ and

ρ = ρ∗ > ρ̂ is an optimal solution of the MIP problem (1), and vice versa. That is, λ̄
supports an exact penalty representation for the MIP problem (1).
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Proof Let ρ∗ be any scalar such that ρ∗ > ρ̂. Let x̄ be an optimal solution of MIP
problem (1) (the existence of an optimal solution for problem (1) is guaranteed under
Assumption 1). Then, it holds that x̄ ∈ X , Ax̄ = b, and c� x̄ = zIP. Thus,

c� x̄ + λ̄
�
(b − Ax̄) + ρ∗ψ(b − Ax̄) = c� x̄ = zIP = zLR+ρ∗ (λ̄),

where the last equality follows from the facts that zLR+
ρ̂

(λ̄) ≤ zLR+ρ∗ (λ̄) ≤ zIP and

zIP = zLR+
ρ̂

(λ̄). Therefore, x̄ solves ALR (6) with ρ∗ and λ̄. Moreover, it shows that
the optimality is achieved for this case of ALR (6).

To prove the other side, let x∗ ∈ X be any optimal solution of ALR (6) with ρ∗ and
λ̄, i.e. zLR+ρ∗ (λ̄) = c�x∗ + λ̄

�
(b − Ax∗) + ρ∗ψ(b − Ax∗). We claim that x∗ solves

problem (1), i.e. x∗ ∈ X , Ax∗ = b and c�x∗ = zIP. Note that as a feasible solution of
ALR (6), x∗ belongs to X . Assume by contradiction Ax∗ �= b. Then,ψ(b−Ax∗) > 0
and therefore

ρ̂ψ(b − Ax∗) < ρ∗ψ(b − Ax∗). (9)

Moreover,

zIP = zLD+
ρ̂

= zLR+
ρ̂

(λ̄) ≤ c�x∗ + λ̄
�
(b − Ax∗) + ρ̂ψ(b − Ax∗)

< c�x∗ + λ̄
�
(b − Ax∗) + ρ∗ψ(b − Ax∗)

= zLR+ρ∗ (λ̄),

(10)

which contradicts zLR+ρ∗ (λ̄) being a lower bound for zIP. Therefore, Ax∗ = b. Note
that in (10) the equality relations hold by assumption, the first inequality holds by
definition of zLR+

ρ̂
(λ̄), and the strict inequality follows from (9). Furthermore,

zIP = zLR+
ρ̂

(λ̄)

≤ zLR+ρ∗ (λ̄) = c�x∗ + λ̄
�
(b − Ax∗) + ρ∗ψ(b − Ax∗) = c�x∗

≤ zIP,

(11)

where the first two equalities hold by assumption and the third equality follows from
Ax∗ = b. Therefore, c�x∗ = zIP which completes the proof. �

Two important cases of ALR are the proximal and sharp Lagrangian. Next, we
present their definitions, and necessary and sufficient conditions for supporting an
exact penalty representation in these cases.

2.2 Proximal Lagrangian

Definition 5 (Proximal Lagrangian)AnALRgeneratedwith the augmenting function
ψ(u) = 1

2‖u‖22 is called a proximal Lagrangian.
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Definition 6 (Proximal subgradient [26, Definition 8.45]) A vector λ ∈ R
m is called

a proximal subgradient of a function f : Rm → R at ū, a point where f (ū) is finite,
if there exist ρ > 0 and δ > 0 such that

f (u) ≥ f (ū) − λ�(u − ū) − 1

2
ρ‖u − ū‖22, ∀u s.t. ‖u − ū‖2 ≤ δ.

The existence of a proximal subgradient at ū corresponds to the existence of a ‘local
quadratic support’ to f at ū.

In a proximal Lagrangian, suppose that there exists (λ, ρ) ∈ R
n × (0,∞) such that

zLR+ρ (λ) > −∞ . Then, a necessary and sufficient condition for a vector λ̄ to support
an exact penalty representation is that λ̄ is a proximal subgradient of the value function
p(u) at u = 0 [26].

2.3 Sharp Lagrangian

Definition 7 (Sharp Lagrangian) An ALRwhich uses a norm as an augmenting func-
tion, i.e. ψ(u) = ‖u‖, is called a sharp Lagrangian.

Definition 8 (Calmness [26, Ch. 8.F]) A function f : Rm → R is calm at u from
below with modulus κ ∈ R+ if f (u) is finite and on some open neighborhood V of
u, one has

f (u) ≥ f (u) − κ‖u − u‖, ∀u ∈ V .

Consider a function f which is not calm at u from below. Then, a small shift in u
can produce a proportionally unbounded downward shift in f . Calmness is a basic
regularity condition under which we can study the sensitivity properties of certain
variational systems [15].

In the sharp Lagrangian, suppose that zLR+ρ (0) > −∞ for some ρ ∈ (0,∞). Then,
a necessary and sufficient condition for the vector λ̄ = 0 to support an exact penalty
representation is that the value function p(u) is calm from below at u = 0 [13,14,26].

2.4 ALD for MIPs

For theMIP problem (1), under some technical assumptions, Boland and Eberhard [7]
showed that the duality gap for ALD, zLD+ρ −zIP, goes to zero as the penalty coefficient
ρ goes to infinity.

Proposition 2 [7, Proposition 3] Suppose ψ is of the form ψ(u) = φ(‖u‖) for some
norm ‖ · ‖ in Rm where φ : R+ → R+ is a convex, monotonically increasing function
for which φ(0) = 0 and there exists δ > 0 for which

lim inf
a→+∞

φ(a)

a
≥ δ > 0

with diam{a|φ(a) ≤ δ} ↓ 0 as δ ↓ 0. Moreover, at least one of the following
conditions holds: (1) the solution set of the LP relaxation of problem (1) does not
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contain a lineality space. (2) The matrices A and D have rational entries and the
norm ‖.‖ used in the definition of ψ is the l∞ norm. (3) conv(X) is bounded. Then

zLD* := sup
ρ>0

zLD+ρ = lim
ρ→∞ zLD+ρ = zIP.

Boland and Eberhard [7] also showed that if X is a finite set of discrete elements
then ρ does not need to go to infinity to close duality gap.

Corollary 1 [7, Corollary 1] Suppose X is a finite set and assumptions in Proposition
2 hold. Then, there exists a ρ∗ with 0 < ρ∗ < ∞ such that zLD+ρ∗ = zIP.

3 Zero duality gap with ALD

In this section,wefirst present a primal characterization of theALD forMIPs. Then,we
prove that strong duality holds for ALD of general MIPs when the penalty coefficient
is allowed to go to infinity. Our primal characterization and the strong duality result
hold for a general, not necessarily convex augmenting function, satisfyingAssumption
2. We also discuss the relation of our results to the recent results in [7].

3.1 A primal characterization of ALD

Similar to the equivalence of (4) and (5) for the LD, we can give a primal character-
ization for the ALD problem (7). The key observation is that (7) can be viewed as
an LD of a problem in a lifted space. Then, the primal characterization follows from
strong duality in convex optimization with usual regularity conditions.

Let us first find the primal problem for the ALD problem (7).

zLD+ρ = sup
λ∈Rm

inf
x∈X {c�x + λ�(b − Ax) + ρψ(b − Ax)}

= sup
λ∈Rm

inf
x∈X,ψ(b−Ax)≤ω

{c�x + ρω + λ�(b − Ax)} (12)

= sup
λ∈Rm

inf
x,ω

{c�x + ρω + λ�(b − Ax) : (x, ω) ∈ conv(Sψ)}, (13)

where Sψ denotes the feasible region of the inf problem in (12), i.e.

Sψ :=
{
(x, ω) ∈ R

n+1 : ψ(b − Ax) ≤ ω, x ∈ X
}

, (14)

and (13) holds because the objective function in (12) is linear. Now switching the sup
and inf in (13), we have the dual problem of (13) given as

ẑLD+ρ := inf
(x,ω)∈conv(Sψ)

sup
λ∈Rm

{c�x + ρω + λ�(b − Ax)}

= inf
x,ω

{c�x + ρω : Ax = b, (x, ω) ∈ conv(Sψ)}. (15)
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Theorem 1 below shows that, under amild regularity condition, strong duality holds
between (13) and (15), i.e. zLD+ρ = ẑLD+ρ . Note that (15) only involves primal variables
x, ω. Therefore, this gives a primal characterization of theALDproblem (13). To prove
this result, we need a few simple propositions and a nonlinear Farkas lemma.

Proposition 3 Projx (conv(Sψ)) = conv(X).

Proof For any (x, ω) ∈ conv(Sψ), there exist xi ∈ X and ψ(b − Axi ) ≤ ωi for
i = 1, . . . , n + 2 so that x = ∑n+2

i=1 λi xi , ω = ∑n+2
i=1 λiω

i , and
∑n+2

i=1 λi = 1 with
λi ≥ 0 for all i = 1, . . . , n + 2 (by Caratheodory’s Theorem). Clearly, x ∈ conv(X),
which shows Projx (conv(Sψ)) ⊆ conv(X).

For the other direction, take any x ∈ conv(X). Then x can be written as x =∑n+1
i=1 λi xi for each xi ∈ X andλi ’s formaconvex combination.Letωi := ψ(b−Axi )

and ω := ∑
i λiωi . Then, for each i , (xi , ωi ) ∈ Sψ , and (x, ω) = ∑

i λi (x
i , ωi ).

Therefore, (x, ω) ∈ conv(Sψ), i.e. x ∈ Projx (conv(Sψ)). This completes the proof.
�

Proposition 4 Let S be a nonempty convex set in R
n+1. Then ri(Projx (S)) =

Projx (ri(S)).

This follows from the well-known fact ri(A(S)) = A(ri(S)), where A is a linear
transformation and S is a convex set. See e.g., [3].

Proposition 5 There exists x ∈ ri(conv(X)) and Ax = b if and only if Problem (15)
has a feasible point in ri(conv(Sψ)).

Proof If (15) has a feasible point (x̄, ω̄) in ri(conv(Sψ)), then Ax̄ = b and x̄ ∈
Projx (ri(conv(Sψ))). By Proposition 4, x̄ ∈ ri(Projx (conv(Sψ))). By Proposition 3,
we have x̄ ∈ ri(conv(X)).

For the other direction, take any x̄ ∈ ri(conv(X)) and Ax̄ = b. By Proposition
3, we have x̄ ∈ ri(Projx (conv(Sψ))). By Proposition 4, then we know that x̄ ∈
Projx (ri(conv(Sψ))), i.e. there exists (x̄, ω̄) ∈ ri(conv(Sψ)) and Ax̄ = b. �
Lemma 1 (Nonlinear Farkas’ Lemma (Prop. 3.5.4, [3])) Let C be a nonempty convex
subset of Rn, and let f : C → R and g j : C → R, for j = 1, . . . , r be convex
functions. Consider the set F given by F = {x ∈ C : g(x) ≤ 0}, where g(x) =
(g1(x), . . . , gr (x)), and assume that f (x) ≥ 0 for all x ∈ F. Consider the subset Q∗
of Rr given by

Q∗ =
{
λ ∈ R

r : λ ≥ 0, f (x) + λ�g(x) ≥ 0,∀x ∈ C
}

.

Then, Q∗ is nonempty if the functions g j for j = 1, . . . , r are affine, and F contains
a relative interior point of C.

Next, we present the primal characterization of the ALD problem (7) as following
theorem.

Theorem 1 If there exists x ∈ ri(conv(X)) such that Ax = b, and zLD+ρ > −∞,
then for all ρ > 0,
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zLD+ρ = inf
x,ω

c�x + ρω (16a)

s.t. Ax = b (16b)

(x, ω) ∈ conv(Sψ). (16c)

Proof Essentially, we want to show that strong duality holds between the primal and
dual pair of convex programs (13) and (15), i.e. ẑLD+

ρ = zLD+
ρ [recall that ẑLD+

ρ

is defined in (15)]. By Proposition 5, if there exists x ∈ ri(conv(X)) and Ax = b,
then (16) has a feasible point in ri(conv(Sψ)). To apply the nonlinear Farkas’ lemma,
we first rewrite the linear equality constraints in (16b) as linear inequalities Ãx ≤ b̃
with Ã = [A�,−A�]� and b̃ = [b�,−b�]�; we can also subtract ẑLD+

ρ from the
objective function of (16a) so the new optimal value is zero. Furthermore, denote the
feasible region of (16) as

F :=
{
(x, ω) ∈ conv(Sψ) : Ãx ≤ b̃

}
.

Since F contains a point in the relative interior of conv(Sψ), by Lemma 1, we know
that there exists a multiplier vector λ∗ ≤ 0 such that

c�x + ρω − ẑLD+ρ + (λ∗)�(b̃ − Ãx) ≥ 0, ∀(x, ω) ∈ conv(Sψ).

From this, we obtain

inf
(x,ω)∈conv(Sψ)

c�x + ρω + (λ∗)�(b̃ − Ãx) ≥ ẑLD+
ρ

⇒ zLD+
ρ = sup

λ≤0
inf

(x,ω)∈conv(Sψ)
c�x + ρω + λ�(b̃ − Ãx) ≥ ẑLD+

ρ .

By the weak duality between (13) and (15), we already have zLD+
ρ ≤ ẑLD+

ρ , therefore,
this shows that zLD+ρ = ẑLD+ρ for all ρ > 0. �
Remark 3 A similar primal characterization of (7) is given in [7, Theorem 1]. In
particular, the primal characterization in [7] has the following form

zLD+ρ = min
ω̂>0

{
ρω̂ + min

x

{
c�x : Ax = b, x ∈ Xψ(ω̂)

}}
, (17)

where Xψ(ω̂) := conv({x ∈ R
n : ψ(b − Ax) ≤ ω̂, x ∈ X}). Note that (17) first

minimizes over ω̂ then over x, whereas the primal characterization obtained in (16)
minimizes x, ω jointly. Of course, (16) can also be written in this order as

zLD+ρ = min
ω̂>0

{
ρω̂ + min

x

{
c�x : Ax = b, x ∈ X ′

ψ(ω̂)
}}

, (18)

where X ′
ψ(ω̂) := {x ∈ R

n : (x, ω̂) ∈ conv(Sψ)}. The difference between (17) and
(16) is more clear if we rewrite the sets Xψ(ω̂) and X ′

ψ(ω̂) as follows,
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Xψ(ω̂) = Projx

(
conv

(
Sψ ∩ {(x, ω) : ω = ω̂})

)

X ′
ψ(ω̂) = Projx

(
conv

(
Sψ

) ∩ {(x, ω) : ω = ω̂}
)

. (19)

From this, we can see Xψ(ω̂) ⊆ X ′
ψ(ω̂). In this sense, (17) provides a stronger charac-

terization than (18), when the joint minimization over (x, ω) is split out in the order of
ω and x. In fact, the proof in [7] that established (17) is quite involved. The difficulty
exactly lies in characterizing the properties of the optimal objective value of the inner
minimization in (17) as a single variable function in ω. In comparison, our primal
characterization (16) bypasses this difficulty by only looking at the joint minimization
problem. It seems that this insight to view the ALD as a traditional LD problem in
a lifted space is new, which makes the derivation of (16) quite simpler. Our primal
characterization also requires less assumptions than (17). In particular, (17) requires
that the augmenting function is convex in a particular form and at least one of the
three assumptions stated in Proposition 2 hold, whereas our primal characterization
works for both convex and non-convex augmenting functions, and the relative interior
condition in Theorem 1 is a rather mild regularity condition. In addition, as we will
show now, Assumptions 1 and 2 are enough to prove the zero duality gap result for
ALD of general MIPs. A similar result is also proved in [7, Proposition 3] through
their characterization (17), again under more restrictive conditions.

3.2 Zero duality gap for MIPs

From the primal characterization (16) we can see the zLD+ρ is a non-decreasing function
of ρ. Since zLD+ρ is upper bounded by zIP, therefore we have

−∞ < zLD* := sup
ρ>0

zLD+ρ = lim
ρ→+∞ zLD+ρ ≤ zIP.

Wewant to show that in fact zLD* = zIP. Recall that λ̄LP is defined as a rational optimal
vector of dual variables for Ax = b in the LP relaxation of problem (1).

Proposition 6 Suppose Assumptions 1 and 2 hold. For given ρ > 0 and ε > 0, define
ω∗

ρ,ε as

ω∗
ρ,ε := inf

x,ω
ω

s.t. x ∈ X,

ψ(b − Ax) ≤ ω,

c�x + λ̄
�
LP(b − Ax) + ρω − zLR+ρ (λ̄LP) ≤ ε. (20)

Then, the limit ω∗
ρ := limε↓0 ω∗

ρ,ε exists and limρ→+∞ ω∗
ρ = 0.
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Proof First, we show that problem (20) is feasible for all ρ > 0 and ε > 0. By
Assumption 1, zLR+ρ (λ̄LP) has a finite value in [zLP, zIP]. For any ρ > 0 and ε > 0, by
definition of zLR+ρ (λ̄LP), there exists a xρ,ε ∈ X such that

c�xρ,ε + λ̄
�
LP(b − Axρ,ε) + ρψ(b − Axρ,ε) − zLR+ρ (λ̄LP) ≤ ε.

Let ωρ,ε := ψ(b− Axρ,ε). Then, (xρ,ε, ωρ,ε) is a feasible solution of problem (20).
For all ρ > 0 and ε > 0, nonnegativity of ψ implies ω∗

ρ,ε ≥ 0. Moreover, the first and
third constraints in (20) imply

ω∗
ρ,ε ≤ 1

ρ
(zLR+ρ (λ̄LP) + ε − c�x − λ̄

�
LP(b − Ax)), for some x ∈ X

≤ 1

ρ
(zIP + ε − zLP),

(21)

where the second inequality follows from the facts that zLR+ρ (λ̄LP) ≤ zIP and zLP ≤
c�x + λ̄

�
LP(b − Ax), for all x ∈ X . By taking limits ε ↓ 0 on both sides of (21) we

have

0 ≤ ω∗
ρ = lim

ε↓0 ω∗
ρ,ε ≤ lim

ε↓0
1

ρ
(zIP + ε − zLP) = 1

ρ
(zIP − zLP) (22)

Note that ω∗
ρ,ε is non-decreasing as ε ↓ 0. Moreover, ω∗

ρ,ε is upper bounded. Then,
limε↓0 ω∗

ρ,ε exists. By taking limits ρ → +∞ on both sides of (22) we have
limρ→+∞ ω∗

ρ = 0. �

Lemma 2 Consider ω∗
ρ as described in Proposition 6. Let us define z̃LR+ρ (λ̄LP) as

follows:

z̃LR+ρ (λ̄LP) := inf
x,ω

{c�x + λ̄
�
LP(b − Ax) + ρω}

s.t. x ∈ X,

ψ(b − Ax) ≤ ω,

(1 − δ)ω∗
ρ ≤ ω ≤ (1 + δ)ω∗

ρ.

(23)

Then,
zLR+ρ (λ̄LP) =z̃LR+ρ (λ̄LP)

≥ inf
x

{c�x + λ̄
�
LP(b − Ax) + ρ(1 − δ)ω∗

ρ}
s.t. x ∈ X,

ψ(b − Ax) ≤ (1 + δ)ω∗
ρ,

≥ inf
x

{c�x + λ̄
�
LP(b − Ax)}

s.t. x ∈ X,

ψ(b − Ax) ≤ (1 + δ)ω∗
ρ,

(24)

for any 0 < δ < 1.
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Proof Clearly, zLR+ρ (λ̄LP) ≤ z̃LR+ρ (λ̄LP), due to the last constraint in (23). Let
αρ := z̃LR+ρ (λ̄LP) − zLR+ρ (λ̄LP). Assume by contradiction, zLR+ρ (λ̄LP) < z̃LR+ρ (λ̄LP)

or equivalently αρ > 0. Then, for all (x, ω) satisfying constraints of (23) it holds

c�x + λ̄
�
LP(b − Ax) + ρω ≥ z̃LR+ρ (λ̄LP) = zLR+ρ (λ̄LP) + αρ,

which implies (x, ω) is infeasible for problem (20) if 0 < ε < αρ . Therefore, ω∗
ρ,ε /∈

((1 − δ)ω∗
ρ, (1 + δ)ω∗

ρ) for 0 < ε < αρ , which contradicts with ω∗
ρ = lim

ε↓0 ω∗
ρ,ε .

Therefore, zLR+ρ (λ̄LP) = z̃LR+ρ (λ̄LP). Inequalities in (24) hold, because ρω ≥ ρ(1 −
δ)ω∗

ρ ≥ 0 and ψ(b− Ax) ≤ (1+ δ)ω∗
ρ , for all (x, ω) satisfying constraints of (23). �

Theorem 2 Suppose Assumptions 1 and 2 hold. Then, supρ>0 z
LD+
ρ = zIP.

Proof Following (8), it is enough to show that supρ>0 z
LD+
ρ ≥ zIP. Let δ be a given

positive scalar in (0, 1). By definition of ALD, we have

zLD+ρ = sup
λ∈Rm

inf
x,ω

{c�x + λ�(b − Ax) + ρω : x ∈ X, ψ(b − Ax) ≤ ω}

≥ inf
x,ω

{c�x + λ̄
�
LP(b − Ax) + ρω : x ∈ X, ψ(b − Ax) ≤ ω}

≥ inf
x

{c�x + λ̄
�
LP(b − Ax) : x ∈ X, ψ(b − Ax) ≤ (1 + δ)ω∗

ρ} (25a)

≥ inf
x

{c�x + λ̄
�
LP(b − Ax) : x ∈ X, ‖b − Ax‖∞ ≤ κρ} (25b)

= min
x

{c�x + λ̄
�
LP(b − Ax) : x ∈ X, ‖b − Ax‖∞ ≤ κρ} (25c)

where κρ := diam{u | ψ(u) ≤ (1 + δ)ω∗
ρ} = sup{‖u‖∞ | ψ(u) ≤ (1 + δ)ω∗

ρ}.
Inequality (25a) holds by Lemma 2, and (25b) follows from level boundedness of ψ .
Equality (25c) is valid by Assumption 1. By taking limits on both sides of (25b) we
have

lim
ρ→+∞ zLD+ρ ≥ lim

ρ→+∞min
x

{c�x + λ̄
�
LP(b − Ax) : x ∈ X, ‖b − Ax‖∞ ≤ κρ}

≥ min
x

{c�x + λ̄
�
LP(b − Ax) : x ∈ X, ‖b − Ax‖∞ ≤ lim

ρ→+∞ κρ} (26a)

= min
x

{c�x + λ̄
�
LP(b − Ax) : x ∈ X, ‖b − Ax‖∞ ≤ 0}

= min
x

{c�x + λ̄
�
LP(b − Ax) : x ∈ X, Ax = b}

= min
x

{c�x : x ∈ X, Ax = b}
= zIP. (26b)

where (26a) follows from lower semicontinuity of value functions for MIPs with
rational data [21]. Equality (26b) holds by Assumption 2, i.e. limρ→+∞ κρ = 0. This
completes the proof. �
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4 Exact penalty representation of ALD for MIPs

4.1 Pure IP case

A special case of problem (1) is the pure IP case, where all variables are integral, i.e.
n2 = 0. Zero duality gap and exact penalty representation using proximal Lagrangian
for pure IPs were established in [5, Theorem 1.5]. Boland and Eberhard [7, Corol-
lary 1] proved exact penalty representation for ALD of pure IPs with a bounded
feasible region, i.e. X is finite, and the augmenting functions satisfying assumptions
in Proposition 2. In this section, we extend this recent result to show exact penalty rep-
resentation for pure IPs under weaker assumptions on the augmenting functions (e.g.,
the augmenting function does not have to be convex) and X may not be necessarily
finite.

Theorem 3 Suppose problem (1) is a pure IP with potentially infinitely many feasible
solutions, and Assumption 1 holds. If

inf{ψ(b − Ax) : x ∈ X, Ax �= b} ≥ δ > 0 (27)

for some strictly positive value of δ, then there exists a finite ρ∗ ∈ (0,+∞) such that
zLD+ρ∗ = zIP.

Proof Following (8), it suffices to find a finite ρ∗ such that zLD+ρ∗ ≥ zIP. Let ρ̄ > 0 be
any positive penalty coefficient. By assumption, there exists a δ > 0 which satisfies
(27). Furthermore, let x0 be any arbitrary feasible solution of (1), i.e. x0 ∈ X and

Ax0 = b. Set ρ∗ = c�x0−zLP
δ

. Note that 0 < ρ∗ < +∞, because δ > 0 and
−∞ < zLP ≤ c�x0 < +∞. We claim that zLD+ρ∗ ≥ zIP. Observe that we have

zLD+ρ∗ = sup
λ

zLR+ρ∗ (λ) ≥ zLR+ρ∗ (λ̄LP) = inf
x∈X

{
c�x + λ̄

�
LP(b − Ax) + ρ∗ψ(b − Ax)

}
.

(28)

There are two cases.

1. For all x ∈ X with Ax = b,

c�x + λ̄
�
LP(b − Ax) + ρ∗ψ(b − Ax) = c�x ≥ zIP. (29)

2. For all x ∈ X with Ax �= b,

c�x+λ̄
�
LP(b − Ax) + ρ∗ψ(b − Ax)

= c�x + λ̄
�
LP(b − Ax) +

(
c�x0 − zLP

δ

)
ψ(b − Ax)

≥ c�x + λ̄
�
LP(b − Ax) +

(
c�x0 − zLP

)
(30a)

≥ zLP +
(
c�x0 − zLP

)
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= c�x0

≥ zIP, (30b)

where (30a) holds because −∞ < zLP ≤ zIP ≤ c�x0 and ψ(b − Ax) ≥ δ > 0
for all x ∈ X with Ax �= b by (27); (30b) follows by definition of λ̄LP.

Inequalities (29) and (30) imply

zLR+ρ∗ (λ̄LP) = inf
x∈X

{
c�x + λ̄

�
LP(b − Ax) + ρ∗ψ(b − Ax)

}
≥ zIP.

Together with (28), we have
zLD+ρ∗ ≥ zIP. (31)

This completes the proof. It is worth mentioning that the relations (8), (28) and (31)
imply

zLD+ρ∗ = zLR+ρ∗ (λ̄LP) = zIP,

which means the finite λ̄LP solves sup
λ

zLR+ρ∗ (λ). �

Note that for the pure IP case of problem (1) under Assumption 1, any augmenting
function defined in Proposition 2 satisfies (27). Even the index function I : Rm →
{0, 1} where

I(u) =
{
0 if u = 0,
1 otherwise

can be used as an augmenting function ψ(·) to satisfy (27). We can extend Theorem
3 to general MIPs, if Assumption 1 and inequality (27) hold.

4.2 MIP case

For a generalMIPwith both continuous and integer variables, we needmore conditions
on the augmenting function to have an exact penalty representation. For example, if
ψ(·) = ‖·‖22, i.e. the proximal Lagrangian case, this augmenting function satisfies the
assumptions in Proposition 2 as well as (27) when X is a pure integer set. However,
for a general MIP, there may not exist a finite 0 < ρ∗ < ∞ such that zLD+ρ∗ = zIP

under this augmenting function. In this section, we first give an example to show that
proximal Lagrangian fails to have an exact penalty representation for a simple MIP in
three variables. Then we prove that, when the augmenting function is any norm (but
not the squared norm) i.e., for the sharp Lagrangians, the ALD always has an exact
penalty representation for general MIPs. Finally, we extend this result to some classes
of augmenting functions that are not convex.
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4.2.1 Counterexample MIP for proximal Lagrangian

Proposition 7 There exists an MIP problem of the form (1) and an augmenting func-
tion satisfying assumptions in Proposition 2 such that zLD+ρ < zIP for all finite ρ > 0.

Next, we verify this proposition with a simple example.

Example 1 Consider the followingMIP problem, with one binary and two continuous
variables.

zIP = min
x1,x2,x3

− x1 − x2

s.t. − x1 + x2 = 0

0 ≤ x1 ≤ x3
0 ≤ x2 ≤ 1 − x3
x3 ∈ {0, 1}

(32)

The only feasible points for (32) are (x1, x2, x3) = (0, 0, 0) and (x1, x2, x3) =
(0, 0, 1) with objective value 0. Then, zIP = 0. Projection of the feasible region of
(32) without the constraint −x1 + x2 = 0 into the space of x1 and x2 contains the blue
lines in Fig. 1. The points satisfying −x1 + x2 = 0 are depicted by a red line in this
space.

We show that in Example 1, for ALD with ψ(·) = ‖ · ‖22, zLD+ρ < 0 for all ρ > 0.
From Theorem 1, ALD (15) with ψ(·) = ‖ · ‖22 becomes

x1

x2

−x1 + x2 = 0

0

1

1

r A

C

r

B

Fig. 1 Projection of the feasible region of Example 1 in the space of x1 and x2
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zLD+ρ = inf − x1 − x2 + ρω

s.t. (x1, x2, x3, ω) ∈ conv(S2)

− x1 + x2 = 0.

(33)

where,

S2 :=

⎧⎪⎪⎨
⎪⎪⎩

(x1, x2, x3, ω) ∈ R
4 :

ω ≥ (−x1 + x2)2

0 ≤ x1 ≤ x3
0 ≤ x2 ≤ 1 − x3
x3 ∈ {0, 1}

⎫⎪⎪⎬
⎪⎪⎭

.

Consider (x̂1, x̂2, x̂3, ω̂) = (0, r, 0, r2) and (x̃1, x̃2, x̃3, ω̃) = (r, 0, 1, r2) where
r(ρ) = min{1, 1

2ρ }. Obviously, both (x̂1, x̂2, x̂3, ω̂) and (x̃1, x̃2, x̃3, ω̃) belong to S2.

Then, (x̄1, x̄2, x̄3, ω̄) := 1
2 (x̂1, x̂2, x̂3, ω̂) + 1

2 (x̃1, x̃2, x̃3, ω̃) = ( r2 ,
r
2 ,

1
2 , r

2) belongs
to Conv(S2). Projection of the points (x̂1, x̂2, x̂3, ω̂), (x̃1, x̃2, x̃3, ω̃) and (x̄1, x̄2, x̄3, ω̄)

in the space of x1 and x2 can be depicted as points A, B and C, respectively, in Fig. 1.
Because (x̄1, x̄2, x̄3, ω̄) ∈ conv(S2) and −x̄1 + x̄2 = 0, the point (x̄1, x̄2, x̄3, ω̄) is a
feasible solution of (33). Therefore,

zLD+ρ ≤ −x̄1− x̄2+ρω̄ = −r +ρr2 ≤ max

{
−1

2
,− 1

4ρ

}
< 0 = zIP, ∀ρ > 0 (34)

which shows zLD+ρ < zIP for all ρ > 0, i.e. there is no finite ρ∗ such that zLD+ρ∗ = zIP.
Note that the second inequality in (34) follows from the fact that

−r + ρr2 =
{−1 + ρ × 12 = −1 + ρ ≤ − 1

2 , if 0 < ρ < 1
2

− 1
2ρ + ρ ×

(
1
2ρ

)2 = − 1
4ρ , if 1

2 ≤ ρ.

Example 1 showed that, for ψ(·) = ‖ · ‖22, there may exist MIP problems such that
zLD+ρ < zIP, for any finite value of ρ.

4.2.2 Exact ALD with the sharp Lagrangian for MIPs

Next, we show that using any norm as an augmenting function with a sufficiently large
penalty coefficient closes the duality gap for general MIPs. One approach is to verify
the calmness condition in Sect. 2.3 for the value function of an MIP. In this section,
we provide a self contained proof for this result.

Theorem 4 Consider problem (1) with both integer and continuous variables. Sup-
pose Assumption 1 holds, and ψ(·) = ‖ · ‖, where ‖ · ‖ is any norm. Then there exists
a finite 0 < ρ∗ < +∞ such that zLD+ρ∗ = zIP.

Proof First, let us show the result for ψ(·) = ‖ · ‖∞. Then, we extend it to any norm
by the equivalence of norms in a Euclidean space. Let ψ(·) = ‖ · ‖∞ and 1m be the m
dimensional vector with all entries equal to 1. Then Sψ= S‖.‖∞ is a polyhedron,
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S‖.‖∞ =
{
(x, ω) ∈ R

n+1 : ‖b − Ax‖∞ ≤ ω, x ∈ X
}

=
{
(x, ω) ∈ Z

n1 × R
n2+1 : −1mω ≤ b − Ax ≤ 1mω, Ex ≤ f

}
.

(35)

Then, by Assumption 1 and due toMeyer’s theorem [20], there is a rational polyhedral
representation for the set conv(S‖.‖∞) ∩ {(x, ω) ∈ R

n+1 : Ax = b}. Denote this
representation by H

[x
ω

] ≥ h, where H ∈ Q
m̂×(n+1) and h ∈ Q

m̂ , for some finite
integer m̂. Then, by the primal characterization of ALD in Theorem 1, the ALD
problem (7) for a given ρ > 0 can be written as follows,

zLD+ρ = inf
x,ω

c�x + ρω

s.t. H
[
x
ω

]
≥ h.

(36)

Note that, for a given ρ > 0, problem (36) is an LP and its dual can be written as
follows.

zDLD+ρ := sup
y

h� y

s.t. H� y =
[
c
ρ

]

y ≥ 0.

(37)

Note that zLD+ρ = zDLD+ρ , since zLD+ρ > −∞ and by strong duality for LPs. We are
interested in a finite positiveρ∗ such that zLD+ρ∗ ≥ c�x∗, where x∗ is an optimal solution
of (1). The existence of such a ρ∗ is equivalent to the existence of ( y∗, ξ∗, ρ∗) with
ξ∗ = 0 for the following feasibility problem in ( y, ξ, ρ),

h� y + ξ ≥ c�x∗

H� y =
[
c
ρ

]

y ≥ 0

ρ ≥ 1

ξ ≥ 0.

(38)

Let Ξ be the projection of the feasible set of (38) into the ξ space. Note that by
Fourier-Motzkin Elimination, Ξ is itself a polyhedron. Then, Ξ is a closed set.

Consider a sequence ξk ↓ 0 as k → +∞. Since zDLD+ρ = zLD+ρ ≤ zIP for any
ρ ≥ 0, and ψ(·) = ‖ · ‖∞ satisfies Assumption 2, by Theorem 2, zLD+ρ ↑ zIP = c�x∗
as ρ → ∞. By closedness of , 0 ∈  because ξ∗ = 0 is a cluster point of .
That is, there exists some y∗ and ρ∗ such that ( y∗, 0, ρ∗) is a feasible solution of
(38). Therefore, zLD+ρ∗ ≥ zIP, which along with zLD+ρ∗ being a lower bound for zIP, we

conclude zLD+ρ∗ = zIP = c�x∗. Note that
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zIP = sup
λ∈Rm

inf
x∈X c�x + λ�(b − Ax) + ρ∗‖b − Ax‖∞

= sup
λ∈Rm

inf
(x,ω)∈S‖·‖∞

c�x + λ�(b − Ax) + ρ∗ω

= sup
λ∈Rm

inf
(x,ω)∈conv(S‖·‖∞ )

c�x + λ�(b − Ax) + ρ∗ω

= inf
(x,ω)∈conv(S‖·‖∞ )

c�x + λ̄
�
(b − Ax) + ρ∗ω

= inf
(x,ω)∈S‖·‖∞

c�x + λ̄
�
(b − Ax) + ρ∗ω

= inf
x∈X c�x + λ̄

�
(b − Ax) + ρ∗‖b − Ax‖∞

(39)

for some finite λ̄ ∈ R
m , where the second equality follows from definition of S‖·‖∞ in

(35). The third and fifth equations hold because minimizing a linear objective function
on a set is equivalent to minimizing it on the convex hull of that set. The fourth equality
is valid by strong duality for LPs, because under Assumption 1 and due to Meyer’s
theorem [20], conv(S‖·‖∞) is a rational polyhedron. Due to this fact, λ̄ is a finite vector.
The last equality follow from definition of S‖·‖∞ in (35). Then,

c�x + λ̄
�
(b − Ax) + ρ∗‖b − Ax‖∞ ≥ zIP, ∀x ∈ X

Recall that for any norm ‖ · ‖ in finite dimensions there exists 0 < γ < 1 such that
1
γ
‖u‖ ≥ ‖u‖∞ ≥ γ ‖u‖, by the equivalence of norms. Take ρ̂ = ρ∗

γ
. Then,

c�x + λ̄
�
(b− Ax) + ρ̂‖b− Ax‖ ≥ c�x + λ̄

�
(b− Ax) + ρ∗‖b− Ax‖∞, ∀x ∈ X

which implies

zLD+
ρ̂

≥ zLR+
ρ̂

(λ̄) = inf
x∈X c�x + λ̄

�
(b − Ax) + ρ̂‖b − Ax‖ ≥ zIP (40)

On the other hand, zLD+
ρ̂

≤ zIP by (8). Therefore, zLD+
ρ̂

= zIP. �

Remark 4 Note that ρ̂ and λ̄ in the proof of Theorem 4 satisfy the assumptions in
Proposition 1. Therefore, any optimal solution of ALR (6) with λ = λ̄ and ρ > ρ̂

solves the MIP problem (1).

Next, we show that the value of λ̄ in the proof of Theorem 4 really does not matter.

Proposition 8 Consider problem (1) under Assumption 1. Supposeψ(·) = ‖·‖, where
‖ · ‖ is any norm. For any λ̃ ∈ R

m, there exists a finite ρ∗(λ̃) such that zLR+ρ∗ (λ̃) = zIP.

Proof Let ρ̂ and λ̄ be as considered in (40). By the equivalence of norms, there exists
0 < γ < 1 such that 1

γ
‖u‖ ≥ ‖u‖2 ≥ γ ‖u‖. From Cauchy–Schwarz inequality, for

all x ∈ X , it holds
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λ̃
�
(b − Ax) ≥ −‖λ̃‖2‖b − Ax‖2 ≥ − 1

γ
‖λ̃‖2‖b − Ax‖,

λ̄
�
(b − Ax) ≤ ‖λ̄‖2‖b − Ax‖2 ≤ γ ‖λ̄‖2‖b − Ax‖,

and consequently,

λ̃
�
(b − Ax) ≥ λ̄

�
(b − Ax) −

(
1

γ
‖λ̃‖2 + γ ‖λ̄‖2

)
‖b − Ax‖. (41)

Take ρ∗ = ρ̂ +
(
1
γ
‖λ̃‖2 + γ ‖λ̄‖2

)
. Then,

c�x + λ̃
�
(b − Ax) + ρ∗‖b − Ax‖ ≥ c�x + λ̄

�
(b − Ax) + ρ̂‖b − Ax‖. (42)

By taking inf
x∈X from both sides of (42) and considering (40) it is implied that zLR+ρ∗ (λ̃) ≥

zIP. This result along with zLR+ρ∗ (λ̃) being a lower bound for zIP, concludes zLR+ρ∗ (λ̃) =
zIP. �

Next, we extend Theorem 4 to a more general class of augmenting functions than
norms.

Theorem 5 Consider an MIP problem (1) satisfying Assumption 1. Then, there exists
a finite ρ̂ such that zLD+

ρ̂
= zLR+

ρ̂
(λ̄LP) = zIP if ψ is an augmenting function such that

– ψ(0) = 0,
– ψ(u) ≥ δ > 0, for all u /∈ V ,
– ψ(u) ≥ γ ‖u‖∞, for all u ∈ V ,

for some open neighborhood V of 0, and positive scalars δ, γ > 0.

Proof From Proposition 8, there exists a finite ρ∗ such that zLR+ρ∗ (λ̄LP) = zIP for
ψ(·) = ‖ · ‖∞. Now, consider the cases where ψ is not a norm but it satisfies the

conditions stated above. Take ρ̂ = max
{
zIP−zLP

δ
,

ρ∗
γ

}
. There are two cases.

1. For all x ∈ X such that (b − Ax) /∈ V , it holds

c�x + λ̄
�
LP(b − Ax) + ρ̂ψ(b − Ax) ≥ zLP + ρ̂ψ(b − Ax)

≥ zLP + zIP − zLP

δ
ψ(b − Ax)

≥ zLP + zIP − zLP

≥ zIP
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2. For all x ∈ X such that (b − Ax) ∈ V , it holds

c�x + λ̄
�
LP(b − Ax) + ρ̂ψ(b − Ax) ≥ c�x + λ̄

�
LP(b − Ax) + ρ∗

γ
ψ(b − Ax)

≥ c�x + λ̄
�
LP(b − Ax) + ρ∗‖b − Ax‖∞

≥ zIP.

Then,
c�x + λ̄

�
LP(b − Ax) + ρ̂ψ(b − Ax) ≥ zIP, ∀x ∈ X, (43)

which implies zLD+
ρ̂

≥ zLR+
ρ̂

(λ̄LP) ≥ zIP. This result along with zLR+
ρ̂

(λ̄LP) being a

lower bound for zIP, concludes zLR+
ρ̂

(λ̃) = zIP. �

Remark 5 It is easy to check that for any norm ‖ · ‖ and scalar r with 0 < r < 1, the
non-convex function ψ(·) = ‖ · ‖r satisfies the conditions stated in Theorem 5.

5 Conclusions and final remarks

In this paper we studied ALD for general linear MIP problems. We presented a primal
characterization ofALD forMIPs and showed the asymptotic zero duality gap property
with non-negative level bounded and not necessarily convex augmenting functions.
Moreover, we showed that under some mild assumptions, ALD achieves zero duality
gap for general MIPs with a finite penalty coefficient and a general class of augment-
ing functions. We also showed that some augmenting functions such as the squared
Euclidean norm are exact in the pure IP cases, but there exists MIP counterexamples
for which these augmenting functions may result in a non-zero duality gap for any
value of the penalty coefficient.

Solving IP and MIP problems by ALD may have computational advantages over
the classical Lagrangian relaxation approaches, since ALD may produce better dual
bounds and provide primal solutions. The main drawback of ALR and ALD methods
is that the resulting subproblems are not separable because of the nonlinear augment-
ing functions. To overcome this issue, the alternating direction method of multipliers
(ADMM) [8] and related schemes have been developed for convex optimization prob-
lems. However, it is not at all clear how to decompose ALD for MIP and more general
nonconvex problems and utilize parallel computation. Based on ADMM, a heuris-
tic decomposition method was developed in [16] to solve MIPs arising from electric
power network unit commitment problems. In a continuous and non-convex setting,
a decomposition approach using ADMM was developed for the AC optimal power
flow problem in electric power grid optimization [31]. Further developing theories and
algorithms to solveALD forMIPs and general non-convex optimization problemswith
decomposition schemes is an important future research direction. Another interesting
research topic would be to determine subclasses of MIPs where strong duality holds
with a provably “small” value of ρ.
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