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Abstract We show that the exact worst-case performance of fixed-step first-order
methods for unconstrained optimization of smooth (possibly strongly) convex func-
tions can be obtained by solving convex programs. Finding theworst-case performance
of a black-box first-order method is formulated as an optimization problem over a
set of smooth (strongly) convex functions and initial conditions. We develop closed-
form necessary and sufficient conditions for smooth (strongly) convex interpolation,
which provide a finite representation for those functions. This allows us to reformulate
the worst-case performance estimation problem as an equivalent finite dimension-
independent semidefinite optimization problem,whose exact solution can be recovered
up to numerical precision. Optimal solutions to this performance estimation problem
provide both worst-case performance bounds and explicit functions matching them,
as our smooth (strongly) convex interpolation procedure is constructive. Our works
build on those of Drori and Teboulle (Math Program 145(1–2):451–482, 2014) who
introduced and solved relaxations of the performance estimation problem for smooth
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convex functions. We apply our approach to different fixed-step first-order methods
with several performance criteria, including objective function accuracy and gradient
norm. We conjecture several numerically supported worst-case bounds on the perfor-
mance of the fixed-step gradient, fast gradient and optimized gradient methods, both in
the smooth convex and the smooth strongly convex cases, and deduce tight estimates
of the optimal step size for the gradient method.

Keywords Smooth convex minimization · Smooth convex interpolation · First-order
methods · Worst-case analysis · Rates of convergence · Semidefinite programming

Mathematics Subject Classification 90C25 · 90C30 · 90C60 · 68Q25 · 90C22

1 Introduction to performance estimation

Consider the standard unconstrained minimization problem

min
x∈Rd

f (x),

where f is a smooth convex function, possibly strongly convex. First-order black-box
methods, which only rely on the computation of f and its gradient at a sequence of
iterates, can be designed to solve this type of problem iteratively. A central question is
then to estimate the accuracy of solutions computed by such amethod.More precisely,
given a class of problems and a first-order method, one wishes to establish the worst-
case accuracy of solutions that can obtained after applying a given number of iterations,
i.e., the performance of the method on the given class of problems.

Many first-order algorithms have been proposed in the literature for smooth convex
or smooth strongly convex functions, for which one usually provides a theoretical
upper bound on theworst-case accuracy after a number of iterations (see e.g., [21] or [6,
Chap. 6] for recent overviews). However, many analyses focus on the asymptotic rate
of convergence of these bounds, rather than trying to compute exact numerical values.
Similarly, lower bounds on the performance of first-order black-box methods on given
classes of problems canbe found in the literature (see e.g., the seminal [19]), again often
with a focus on asymptotic rates of convergence. In many situations, the asymptotic
rate of convergence of the best available methods match those lower bounds.

Nevertheless, the exact numerical value of the worst-case performance of a given
method is usually unknown. This is because upper bounds are not assessed precisely,
i.e., are knownonly up to a (possibly unspecified) constant.Another reason is that lower
bounds for specific methods are not very frequently developed, and that general lower
bounds (valid for all methods) can be quite weak for specific methods, especially if
those methods do not feature the best possible asymptotic rate of convergence. Finally,
even if exact numerical values are known for both lower and upper bounds, and share
the same (optimal) asymptotic rate of convergence, a significant gap between the
numerical values of those lower and upper bounds can subsist. If one cares about the
worst-case efficiency of a first-order method in practice, this gap can translate into a
very large uncertainty on the concrete behavior of a method.
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Smooth convex interpolation and performance of first-order methods 309

This work is not concerned with asymptotic rates of convergence. It will focus on
the computation of the exact worst-case performance of a given first-order black-box
method, on a given class of functions, after a given number of iterations.We prove that
this question can be formulated and solved exactly as a (finite-dimensional) convex
optimization problem, with the following attractive features:

– Our formulation is a semidefinite optimization problem whose dimension is pro-
portional to the square of the number of iterations of the method to be analyzed.

– Any dual feasible solution of our formulation provides an upper bound on the
worst-case performance. This solution can be easily converted into a standard
proof establishing a bound on the performance (i.e., a series of valid inequalities).

– Any primal feasible solution of our formulation provides a lower bound on the
worst case performance. This solution can be easily converted into a concrete
function on which the method exhibits the corresponding performance.

– Hence our formulation is exact, i.e., its optimal value provides the exact worst-case
performance.

Our formulation covers both smooth convex functions and smooth strongly convex
functions in a unified fashion. It covers a very large class of first-order methods which
includes the majority of standard methods for smooth unconstrained convex optimiza-
tion. It can be applied to a variety of performance measures, such as objective function
accuracy, gradient norm, or distance to an optimal solution.

1.1 Formal definition

Our goal is to express the worst-case performance of an optimization algorithm as
the solution of an optimization problem. This approach was pioneered by Drori and
Teboulle [10], who called it a performance estimation problem (PEP).We now provide
a formal definition for this problem.

We consider unconstrainedminimization problems involving a given class of objec-
tive functions, andonly treat first-order black-boxmethods. Thismeans that themethod
can only gather information about the objective function using an oracle O f , which
returns first-order information about specific points, i.e., O f (x) = { f (x),∇ f (x)}.
Formally, the first N iterates generated by a first-order black-box method M (which
correspond to N calls of the oracle), starting from an initial point x0, can be described
with

x1 = M1
(
x0,O f (x0)

)
,

x2 = M2
(
x0,O f (x0),O f (x1)

)
,

...

xN = MN
(
x0,O f (x0), . . . ,O f (xN−1)

)
.

(1)

In order to measure the performance of a given methodM on a specific function f
with a specific starting point, we introduce a performance criterionP to be minimized,
thatwill only dependon the function f and the sequenceof the iterates {x0, x1, . . . , xN }
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generated by the method. Since we are in a black-box setting, we require that the
criterion can be computed from the output of the oracle O f , which has only access
to the iterates as well as to an additional point x∗, defined to be any minimizer of
function f (the latter being necessary if the criterion has to compare iterates to an
optimal solution).

Examples of this performance criterionP(O f , x0, · · ·, xN , x∗) include theobjective
function accuracy f (xN )− f (x∗), the norm of the gradient ‖∇ f (xN )‖, or the distance
to an optimal solution ‖xN − x∗‖ (see also Sect. 4.3 for an example of criterion that
does not only depend on the last iterate).

Finally, we consider a given class F of smooth convex or smooth strongly convex
functions, over which we wish to estimate the worst-case performance of a method
after N iterations. Note that the dimension of functions belonging to class F is left
unspecified; in particular we will allow class F to contain functions with varying
dimensions, in order to obtain dimension-free results.

Asmethods try tominimize the performance criterion, theirworst-case performance
is obtained by maximizing P over functions in F , which can be written as

w(F , R,M, N ,P) = sup
f,x0,...,xN ,x∗

P(O f , x0, . . . , xN , x∗) (PEP)

such that f ∈ F
x∗ is optimal for f,

x1, . . ., xN is generated from x0 by method M with O f ,

‖x0 − x∗‖2 ≤ R.

Parameter R was introduced to bound the distance between the initial point x0 and
the optimal solution x∗. Indeed, it is well-known that in most situations, performance
of a first-order method cannot be sensibly assessed without such a constraint (see also
the discussion of Sect. 3.5).

1.2 Finite-dimensional reformulation using interpolation

Because it involves an unknown function f as a variable, problem (PEP) is infinite-
dimensional. Nevertheless, using the black-box property of the method (and of the
performance criterion), we will show that a completely equivalent finite-dimensional
problem can readily be formulated by restricting the variable f to the knowledge of
the output of its oracle O f on the iterates {x0, x1, . . . , xN } and x∗. Indeed, denoting
the output of the oracle at each iterate xi byO f (xi ) = { fi , gi }, methodM defined by
(1) can be equivalently rewritten as

x1 = M1 (x0, f0, g0) ,

x2 = M2 (x0, f0, g0, f1, g1) ,

...

xN = MN (x0, f0, g0, . . . , fN−1, gN−1) .

(2)
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Smooth convex interpolation and performance of first-order methods 311

Now, defining a set I = {0, 1, 2, . . . , N , ∗} for the indices of the iterates, we can
reformulate (PEP) into a problem involving only the iterates {xi }i∈I , their function
values { fi }i∈I and their gradients {gi }i∈I as (using equivalence between optimality of
x∗ and constraint g∗ = 0, as our problem is unconstrained)

w f (F , R,M, N ,P) = sup
{xi ,gi , fi }i∈I

P ({xi , gi , fi }i∈I
)
, (f-PEP)

such that there exists f ∈ F such that O f (xi ) = { fi , gi } ∀i ∈ I,

g∗ = 0,

x1, . . ., xN is generated from x0 by method M
with { fi , gi }i∈{0,...,N−1} ,

‖x0 − x∗‖2 ≤ R.

The crucial part of this reformulation is the first constraint, which can be understood
as requiring that the set of variables {xi , gi , fi }i∈I can be interpolated by a function
belonging to the class F . This optimization problem is strictly equivalent to the origi-
nal (PEP) in terms of optimal value, since every solution to (f-PEP) can be interpolated
by a solution of (PEP) and, reciprocally, every solution of (PEP) can be discretized
to provide a solution to (f-PEP). From that it is clear that w(F , R,M, N ,P) =
w f (F , R,M, N ,P).

1.3 Paper organization and main contributions

We focus on the class of smooth (strongly) convex functions. Therefore an exact
formulation of problem (PEP) as (f-PEP) will require a set of necessary and sufficient
conditions for the existence of a smooth strongly convex interpolating function, which
is the main result obtained in Sect. 2. This set of conditions, which is of independent
interest, was previously only known for general nonsmooth convex functions. Our
approach is fully constructive, as we also exhibit a procedure to interpolate a smooth
(strongly) convex function from a set of points with their associated gradients and
function values, when such an interpolating function exists.

In Sect. 3, we show how the resulting finite-dimensional (f-PEP) problem can be
reformulated exactly into a (convex) semidefinite optimization problem, which pro-
vides the first tractable and provably exact formulation of the performance estimation
problem. We allow consideration of both smooth convex and smooth strongly convex
functions, as well as a large class of performance criteria.

Section 4 then tests our approach numerically on several standard first-order meth-
ods, including the constant-step gradient method, the fast gradient method and the
optimized gradient method from [14]. We are able to confirm several bounds appear-
ing previously in [10], and to conjecture several new worst-case performance bounds,
including bounds for strongly convex functions, and bounds on the gradient norm
(either for the final iterate, or the smallest norm among all iterates). Another byprod-
uct of our results is a tight estimate of the optimal step size for the gradient method
on smooth convex and smooth strongly convex functions.

123



312 A. B. Taylor et al.

1.4 Prior work

Drori and Teboulle [10] were first to consider the notion of a performance estimation
problem. They focus exclusively on the case of smooth convex functions equippedwith
the performance criterion f (xN ) − f∗, and introduce the idea of reducing (PEP) to a
finite-dimensional problem involving only the iterates xi , their gradients gi and func-
tion values fi , along with an optimal point x∗ and optimal value f∗. They treat several
standard first-order algorithms, namely, the standard fixed-step gradient algorithm, the
heavy-ball method and the accelerated gradient method [20]. In their approach, (PEP)
is expressed as a non-convex quadratic matrix program [2], which is then relaxed and
dualized. The resulting convex problem is then used to provide bounds on the worst-
case performance (and, in some cases, is solved analytically). As will be shown later
in this paper (see Sect. 4), because of the use of a relaxation and the dualization of a
non-convex problem, these bounds are in general not tight, although they are in many
special cases.

A section in [10] is also devoted to the optimization of the coefficients of a fixed-step
first-order black-box method. More precisely, a numerical optimization solver is used
to identify a method performing best according to their relaxation of the performance
estimationproblem.This approach is taken further in [14],whichprovides an analytical
description of this optimized method. Again we stress that, due to the non-tightness
of the relaxation in general, these optimized methods are not guaranteed to have the
best possible performances.

Another computational approach for the analysis and design of first-order algo-
rithms is proposed in [16], inwhich optimization procedures are regarded as dynamical
systems. Integral quadratic constraints (IQC),which are usually used to obtain stability
guarantees on complicated dynamical systems, are adapted in order to obtain sufficient
conditions for the convergence of optimization algorithms. This methodology is able
to establish iteration-independent linear rates of convergence by solving a single small
semidefinite program. However those bounds, valid for any number of iterations, are in
general not tight, i.e., more conservative than ours and those of [10] when used to esti-
mate worst-case performance after a given finite number of iterations (see Sect. 4.1.2
for an example). In addition, while this methodology is well-suited for studying the
linear convergence rates of algorithms for smooth strongly convex optimization, it
fails to recover the exact sublinear rates in the non-strongly convex case.

2 Smooth strongly convex interpolation

This section develops a necessary and sufficient condition for the existence of a smooth
strongly convex function interpolating through a given set of data triples {xi , gi , fi }i∈I ,
i.e., deciding whether there exists a smooth strongly convex function f such that
f (xi ) = fi and gi ∈ ∂ f (xi ) for all i ∈ I .
This result generalizes the well-known set of conditions guaranteeing the existence

of a convex, possibly nonsmooth interpolating function (see Theorem 1 in Sect. 2.3).
It is the main technical ingredient of our exact convex reformulation of performance
estimation problems.
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Smooth convex interpolation and performance of first-order methods 313

2.1 Definitions and problem statement

We start by defining the functional class of interest, using the standard point of view
from convex analysis—we refer to classic books [1,12,23,24] for details. Given two
parameters μ and L satisfying 0 ≤ μ < L ≤ +∞, we consider proper closed convex
functions (i.e., whose epigraphs are non-empty closed convex sets) satisfying both a
smoothness condition (depending on the parameter L , which is the Lispchitz constant
of the gradient) and a strong convexity condition (depending on the parameter μ).
We explicitly allow the case L = +∞ to include nonsmooth functions, while μ on
the other hand is always assumed to be finite. In the rest of this paper, we use the
conventions 1/+∞ = 0 and +∞ − μ = +∞ to deal with the case L = +∞.

Definition 1 (L-smooth μ-strongly convex functions) Consider a proper and closed
convex function f : Rd → R∪ {+∞}, and constants μ ∈ R

+, L ∈ R
+ ∪ {+∞} with

μ < L . We say that function f is L-smooth μ-strongly convex (which we denote by
f ∈ Fμ,L(Rd)) if and only if the following two conditions are satisfied:

(a) inequality 1
L ‖g1 − g2‖2 ≤ ‖x1 − x2‖2 holds for all pairs x1, x2 ∈ R

d and corre-
sponding subgradients g1, g2 ∈ R

d (i.e., such that g1 ∈ ∂ f (x1) and g2 ∈ ∂ f (x2));
(b) function f (x) − μ

2 ‖x‖22 is convex.
This definition is not entirely standard, as it involves subgradients and allows the

constant L to be equal to +∞. In the case of a finite L , condition (a) immediately
implies uniqueness of the subgradient at each point, hence differentiability of the
function, and we recover the well-known Lipschitz condition on the gradient of a
smooth function. On the other hand, when L = ∞, condition (a) becomes vacuous,
and the function can be non-differentiable. Condition (b) can easily be seen to be
algebraically equivalent to the standard definition of strong convexity (and the case
μ = 0 corresponds to a convex but not strongly convex function). The class of proper
closed convex functions simply corresponds to F0,∞. The case L = μ can be safely
discarded, as it only involves simple quadratic functions whoseminimization is trivial.
The reason for this slightly non-standard definition of Fμ,L and the possibility of
choosing L = +∞ will become clear later, when dealing with Legendre–Fenchel
conjugation.

As explained above and in the introduction, our approach to express the original
infinite-dimensional (PEP) in a finite-dimensional fashion relies on an interpolating
condition for smooth strongly convex functions. This directly motivates the following
definition.

Definition 2 (Fμ,L -interpolation) Let I be an index set, and consider the set of triples
S = {(xi , gi , fi )}i∈I where xi , gi ∈ R

d and fi ∈ R for all i ∈ I . Set S is Fμ,L -
interpolable if and only if there exists a function f ∈ Fμ,L(Rd) such that we have
both gi ∈ ∂ f (xi ) and f (xi ) = fi for all i ∈ I .

2.2 Necessity and sufficiency of conditions for smooth convex interpolation

Our goal is to identify a set of necessary of sufficient conditions involving the set of data
triples and characterizing the existence of an interpolating function. Finding necessary
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Fig. 1 Example (x1, g1, f1) = (−1, −2, 1) and (x2, g2, f2) = (0, −1, 0) for I = {1, 2} and d = 1.
This set satifies conditions (C1f) but cannot be interpolated by a smooth convex function: the convexity
requirement forces the interpolating convex function to lie entirely above its linear under-approximations,
which lead to an unavoidable non-differentiability at x1

conditions is relatively easy: starting from any set of necessary conditions that holds
on the whole domain of a smooth strongly convex function, one can simply restrict
this set to those conditions involving only points xi with i ∈ I (i.e., to discretize it).
For example, it is well-known that the class of L-smooth convex functions F0,L(Rd)

is characterized by the pair of inequalities

f (y) ≥ f (z) + ∇ f (z)�(y − z), ∀ y, z ∈ R
d , (C1)

||∇ f (y) − ∇ f (z)||2 ≤ L||y − z||2, ∀ y, z ∈ R
d .

Therefore, specializing those conditions for y = xi and z = x j with i, j ∈ I leads to
the following set of inequalities,which isnecessary for the existence of an interpolating
function in F0,L :

fi ≥ f j + g�
j (xi − x j ), ∀i, j ∈ I, (C1f)

||gi − g j ||2 ≤ L||xi − x j ||2, ∀i, j ∈ I.

Now, perhaps surprisingly, it turns out that this latter set of conditions is not sufficient to
guarantee F0,L -interpolability, despite the fact that the originating conditions (C1) are
sufficient to guarantee that f ∈ F0,L(Rd). In order to see that, consider the following
example with I = {1, 2} and d = 1:

(x1, g1, f1) = (−1,−2, 1) and (x2, g2, f2) = (0,−1, 0).

This pair can clearly not be interpolated by a function inF0,L(R1) for any L , as there is
an unavoidable non-differentiability at x1 as illustrated on Fig. 1. However, it satisfies
Conditions (C1f) with L = 1, which is therefore not sufficient to guarantee smooth
convex interpolation.

Similarly, we can carry out the same exercise for the following conditions, also
well-known to be equivalent to inclusion on F0,L(Rd) when imposed on the whole
space:

fi ≥ f j + g�
j (xi − x j ), ∀ i, j ∈ I, (C2f)

fi ≤ f j + g�
j (xi − x j ) + L

2
||xi − x j ||22, ∀ i, j ∈ I.
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With an appropriate use of an additional dimension (d = 2), one can readily observe
that some informationmay be hidden to this pair of inequalities. Consider the example

(x1, g1, f1) =
((

0
0

)
,

(
1
0

)
, 0

)
and (x2, g2, f2) =

((
1
0

)
,

(
1
1

)
, 1

)
,

from which no smooth convex interpolation can be made (again, unavoidable non-
differentiability at both x1 and x2). However, both Conditions (C1f) and (C2f) are
satisfied with L = 1.

Those examples illustrate theweakness of a naive approach that consists in discretiz-
ing standard necessary and sufficient conditions defined on the whole space. If those
discretized conditions were used in a performance estimation problem over a given
class of functionsFμ,L , they would implicitly allow the performance of functions that
do not belong to the class Fμ,L to be taken into account. This would correspond to
a relaxation of the original performance estimation problem, and would only lead to
upper bounds on the worst-case performance. To conclude this section, note that any
set of necessary and sufficient conditions for smooth convex interpolability must be
the discretization of some necessary and sufficient conditions on the whole domain,
whereas the previous examples precisely show that the converse is not true.

In the next subsections, we follow a more principled approach in order to tackle
the Fμ,L -interpolation problem. We start with a special case of convex interpolation,
that of proper convex functions without smoothness or strong convexity requirement
(i.e., the class F0,∞), for which a solution is well-known.

2.3 Convex interpolation

In order to build interpolation conditions for the class of smooth strongly convex
functions, we begin by constructing interpolation conditions for the simpler class of
convex functionsF0,∞(Rd). As this result will be one of building blocks of the smooth
strongly convex interpolation procedure, a simple constructive proof of this theorem
is provided.

Theorem 1 (Convex interpolation) The set {(xi , gi , fi )}i∈I is F0,∞-interpolable if
and only if

fi ≥ f j + g�j (xi − x j ) ∀i, j ∈ I. (3)

Proof (Necessity.) Assume there exists a convex function f : R
d → R such that

fi = f (xi ) and gi ∈ ∂ f (xi ) ∀i ∈ I . The definition of a subgradient then immediately
implies that

fi ≥ f j + g�j (xi − x j ) ∀i, j ∈ I.

(Sufficiency). Define the following piecewise-linear convex function

f (x) = max
j∈I

{
f j + g�j (x − x j )

}
.
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Since f is the pointwise maximum of a finite number of affine functions, its epigraph
is a non-empty polyhedron, and hence f is convex, closed and proper. In addition,
f (xi ) = fi holds by construction. Indeed, we first see that

fi = fi + g�i (xi − xi ),

≤ max
j∈I

{
f j + g�j (xi − x j )

}
= f (xi ).

Therefore, we have fi ≤ f (xi ). In addition to this, we have

f (xi ) = max
j∈I

{
f j + g�j (xi − x j )

}
,

≤ fi using Condition (3) for each j,

which allows to conclude that f (xi ) = fi . The construction also implies that gi ∈
∂ f (xi ), i.e.,

f (x) = max
j∈I

{
f j + g�j (x − x j )

}
∀x ∈ R

d ,

≥ fi + g�i (x − xi ) ∀i ∈ I, x ∈ R
d ,

≥ f (xi ) + g�i (x − xi ) ∀i ∈ I, x ∈ R
d .

�
One should note that the effective domain of f is dom f = R

d—that is, the function
takes finite values for all x ∈ R

d . This is of course not the only way of reconstructing
a valid f . For example, we could choose

f (x) =
{
max j

{
f j + g�j (x − x j )

}
if x ∈ conv

({xi }i∈I
)
,

+∞ otherwise.

Remark 1 Our interpolation problem is an extension of the classical finite convex
integration problem, which is concerned with the recovery of a convex function from a
set of points xi associated with a subgradient gi (i.e., function values are not specified).
Finite convex integration is treated in details in [15] (only in the convex case μ = 0
and L = +∞). It is the finite version of the continuous convex integrability problem,
which is treated in [23].

A direct necessary and sufficient condition for deciding whether a set is con-
vex integrable is to require the existence of function values fi for which the set
{(xi , gi , fi )}i∈I is convex interpolable. It is however also possible to derive a set
of inequalities that does not involve unknown function values fi , using the so-
called cyclic monotonicity conditions. More precisely, consider for every sequence
{i1, i2, . . . , iN } of distinct indices in I , and the corresponding cyclic sequence of suc-
cessive pairs {(i1, i2), (i2, i3), . . . , (iN−1, iN ), (iN , i1)}. Summing inequality (3) over
each pair of indices in this cyclic sequence produces a necessary inequality that does
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Smooth convex interpolation and performance of first-order methods 317

not involve function values fi . Moreover, the set of all such inequalities, obtained
from all possible sequences of distinct indices, is necessary and sufficient for convex
integration, see e.g. [15,23]. Note that this condition features a much larger number
of inequalities.

2.4 Conjugation and minimal curvature subtraction

In this section, we review some concepts and results needed for our generalization
of convex interpolation to smooth convex interpolation. We begin with the concept
of conjugation operation. This operation is a key element in our approach, since it
provides a way to reduce the general smooth strongly convex interpolation problem
to a simpler convex interpolation problem.

Definition 3 Given a proper function f : Rd → R∪ {+∞}, the (Legendre–Fenchel)
conjugate f ∗ : Rd → R ∪ {+∞} of f is defined as:

f ∗(y) = sup
x∈Rd

y�x − f (x).

Conjugate functions enjoy numerous useful properties. Among other, they are always
closed and convex. In fact, conjugation realizes a one-to-one correspondence in the
set of proper closed convex functions (i.e., an involution), see for example Theorem
12.2 of [23]. That is, for any f ∈ F0,∞(Rd) we have f ∗ ∈ F0,∞(Rd) and f ∗∗ = f .

Among the useful properties of conjugate functions, we note that for any function
f ∈ F0,∞(Rd), conjugation can be seen as an operation reversing the roles of the
coordinates and the subgradients: any subgradient (resp. coordinate) in one space
becomes a coordinate (resp. subgradient) in the second space. In other words, for any
function f ∈ F0,∞(Rd) and its conjugate f ∗, it is equivalent to require that x and
g satisfy condition g ∈ ∂ f (x), condition x ∈ ∂ f ∗(g) or condition f (x) + f ∗(g) =
g�x . This can be obtained using first-order optimality conditions on the definition of
conjugate function; we refer to Theorem 23.5 from [23] for more details. The next
theorem emphasizes the effect of this link for the class of smooth convex functions.

Theorem 2 Consider a function f ∈ F0,∞(Rd). We have f ∈ F0,L(Rd) if and only
if f ∗ ∈ F1/L ,∞(Rd).

Theorem 2 is basically Proposition 12.60 of [24] in the case L < +∞ and reduces
to Theorem 12.2 of [23] in the case L = +∞. This also explains why we need to
include the case L = +∞ in our interpolation problem: this is so that we can include
the conjugates of smooth but non-strongly convex functions in F0,L(Rd).

The next lemma gives a simpleway of expressing smooth strongly convex functions
in terms of smooth functions.

Theorem 3 Consider a function f ∈ F0,∞(Rd). We have f ∈ Fμ,L(Rd) if and only
if f (x) − μ

2 ‖x‖22 ∈ F0,L−μ(Rd).

This theorem holds true by Definition 1 when L = +∞. The case L < +∞ can be
found in the proof of Theorem 2.1.11 in [21].
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2.5 Necessary and sufficient conditions for smooth strongly convex interpolation

We now focus on transforming the smooth strongly convex interpolation problem into
a convex interpolation problem. In order to do so, we mainly use the two previously
defined operations: conjugation (using Theorem 2) and minimal curvature subtraction
(using Theorem 3). The reasoning is the following:

(i) Reformulate theFμ,L interpolation problem into aF0,L−μ interpolation problem
using minimal curvature subtraction.

(ii) Write theF0,L−μ interpolation problem into aF1/(L−μ),∞ interpolation problem
using Legendre–Fenchel conjugation.

(iii) Transform theF1/(L−μ),∞ interpolation problem into aF0,∞ interpolation prob-
lem using again minimal curvature subtraction.

The effect of minimal curvature subtraction on our interpolation problem, used in
steps (i) and (iii), is described by the following Lemma.

Lemma 1 Consider a finite set {(xi , gi , fi )}i∈I with xi , gi ∈ R
d and fi ∈ R. The

following propositions are equivalent for any constants 0 ≤ μ < L ≤ +∞:

(a) {(xi , gi , fi )}i∈I is Fμ,L-interpolable,
(b)

{(
xi , gi − μxi , fi − μ

2 ‖xi‖22
)}

i∈I is F0,L−μ-interpolable.

Proof [(a) ⇒ (b)] It follows from Theorem 3 that if there exists f ∈ Fμ,L(Rd)

interpolating the set, then h(x) = f (x)− μ
2 ‖x‖22 exists and satisfies h ∈ F0,L−μ(Rd)

and ∀i ∈ I :

h(xi ) = fi − μ

2
‖xi‖22, gi − μxi ∈ ∂h(xi ).

Hence, the function h ∈ F0,L−μ(Rd) interpolates the set {(xi , gi − μxi , fi
−μ

2 ‖xi‖22
)}

i∈I .
[(a) ⇐ (b)] If such a h ∈ F0,L−μ(Rd) exists and satisfies the interpolation condi-

tions (b), then one can reconstruct a function f (x) = h(x) + μ
2 ‖x‖22, f ∈ Fμ,L(Rd)

which interpolates the set {(xi , gi , fi )}i∈I . �
The effect of conjugation in step (ii) of the reduction procedure is precisely described
in the following lemma.

Lemma 2 Consider a finite set {(xi , gi , fi )}i∈I with xi , gi ∈ R
d and fi ∈ R. The

following propositions are equivalent for any constant 0 < L ≤ +∞:

(a) {(xi , gi , fi )}i∈I is F0,L-interpolable,
(b)

{(
gi , xi , x�i gi − fi

)}
i∈I is F1/L ,∞-interpolable.

Proof [(a) ⇒ (b)] It follows from Theorem 2 that if there exists f ∈ F0,L(Rd) then
f ∗ exists and satisfies f ∗ ∈ F1/L ,∞(Rd). In addition to that, if both f ∈ F0,L(Rd)

and f ∗ exists, then they satisfy ∀i ∈ I the three conditions (e.g., Theorem 23.5 of
[23]):

f (xi ) + f ∗(gi ) = g�i xi , gi ∈ ∂ f (xi ), xi ∈ ∂ f ∗(gi ).
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[(b) ⇒ (a)] If a function f ∗ ∈ F1/L ,∞(Rd) exists and satisfies the interpola-
tion conditions (b), then the conjugate f ∗∗ (which is convex, proper and closed by
construction) satisfies f ∗∗ ∈ F0,L(Rd) by Theorem 2, as well as the interpolation
conditions (e.g., Theorem 23.5 of [23]) ∀i ∈ I :

f ∗∗(xi ) + f ∗(gi ) = g�i xi , gi ∈ ∂ f ∗∗(xi ), xi ∈ ∂ f ∗(gi ).

We obtain the desired result by choosing f = f ∗∗. �
We are now properly armed in order to define all interpolation equivalences. Let us
now use steps (i), (ii) and (iii) to prove the main theorem of this section.

Theorem 4 (Fμ,L-interpolability) Set {(xi , gi , fi )}i∈I is Fμ,L-interpolable if and
only if the following set of conditions holds for every pair of indices i ∈ I and j ∈ I

fi − f j − g�j (xi − x j )

≥ 1

2(1 − μ/L)

(
1

L

∥
∥gi − g j

∥
∥2
2 + μ

∥
∥xi − x j

∥
∥2
2 − 2

μ

L
(g j − gi )

�(x j − xi )

)
.

(4)

Proof We begin by showing the equivalence between the following propositions:

(a) {(xi , gi , fi )}i∈I is Fμ,L -interpolable,
(b)
{(
xi , gi − μxi , fi − μ

2 ‖xi‖22
)}

i∈I is F0,L−μ-interpolable,

(c)
{(
gi − μxi , xi , x�i gi − fi − μ

2 ‖xi‖22
)}

i∈I is F1/(L−μ),∞-interpolable,

(d)

{(
gi − μxi ,

Lxi
L−μ

− gi
L−μ

,
Lx�i gi
L−μ

− fi − Lμ‖xi‖22
2(L−μ)

− ‖gi‖22
2(L−μ)

)}

i∈I
is F0,∞-interpolable,

(e)

{(
Lxi
L−μ

− gi
L−μ

, gi − μxi ,
μx�i gi
L−μ

+ fi − Lμ‖xi‖22
2(L−μ)

− ‖gi‖22
2(L−μ)

)}

i∈I
is F0,∞-interpolable.

Both (a) ⇔ (b) and (c) ⇔ (d) are direct applications of Lemma 1, whereas both
(b) ⇔ (c) and (d) ⇔ (e) are direct applications of Lemma 2. Theorem 4 follows from
equivalence between propositions (a) and (e) applied to the necessary and sufficient
conditions for convex interpolation of Theorem1. Finally, it is straightforward to check
that condition (e) reduces to the statement of the theorem. �
Remark 2 Note that one can also easily construct an interpolating function f (x) for
the original set of points from Theorem 4(a). It follows from Theorem 1 that a possible

interpolating function for the set
{(

x̃i , g̃i , f̃i
)}

i∈I of Theorem 4(c) is given by

h(x̃) = max
i

{
f̃i + g̃�

i (x̃ − x̃i ) + 1

2(L − μ)
‖x̃ − x̃i‖22

}
= max

i
hi (x̃).

This can be conjugated into an interpolating function h∗(x) of the set given by The-
orem 4(b). Using Theorem 16.5 from [23], this can equivalently be written in the
form
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Fig. 2 Example of an interpolating function; the data triples to be interpolated by a 1-smooth convex
function are (x1, g1, f1) = (2, 2, 3) and (x2, g2, f2) = (−3,−1, 1). Figure shows the upper-bounding
quadratic functions h∗

i (x) (red, left), the interpolating function f (x) = conv
(
h∗
i (x)

)
(dashed blue) and the

gradients (black tangents) (color figure online)

h∗(x) = conv
(
h∗
i (x)

)
,

where the conv operation takes the convex hull of the epigraphs of the h∗
i ’s. Hence an

interpolating function for the original set {(xi , gi , fi )}i∈I is given by

f (x) = conv
(
h∗
i (x)

)+ μ

2
‖x‖22.

We provide an example of such an interpolating function on Fig. 2.
It is straightforward to establish the equivalent interpolation conditions for both the

smooth but non-strongly convex case (μ = 0) and the nonsmooth strongly convex
case (L = +∞). In the first case—given by Corollary 1—we find the discrete version
of the well-known inequality characterizing L-smooth convex functions, which turns
out to be necessary and sufficient:

f (x) ≥ f (y) + ∇ f �(y)(x − y) + 1

2L
‖∇ f (x) − ∇ f (y)‖22.

Corollary 1 The finite set {(xi , gi , fi )}i∈I is F0,L-interpolable if and only if

fi ≥ f j + g�j (xi − x j ) + 1

2L

∥∥gi − g j
∥∥2
2, ∀i, j ∈ I.

Nonsmooth strongly convex interpolation conditions are given inCorollary 2,which
corresponds to the well-known inequality characterizing the subgradients of strongly
convex functions.

Corollary 2 The finite set {(xi , gi , fi )}i∈I is Fμ,∞-interpolable if and only if

fi ≥ f j + g�j (xi − x j ) + μ

2

∥∥xi − x j
∥∥2
2, ∀i, j ∈ I.
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Remark 3 Following the spirit of Remark 1, we note that Theorem 4 can readily be
extended to handle the finite (and continuous) integration problems for L-smooth
μ-strongly convex functions (i.e., interpolation without function values). Indeed,
summing inequality (4) from Theorem 4 over each pair in the cyclic sequence
{(i1, i2), (i2, i3), . . . , (iN−1, iN ), (iN , i1)} produces a necessary inequality that does
not involve function values fi . Moreover one can show that the set of those inequalities
for all possible sequences is necessary and sufficient for finite convex integration of
L-smoothμ-strongly convex functions, generalizing the standard cyclic monotonicity
conditions. As an illustration, note that the following inequality

(gi − g j )
�(xi − x j ) ≥ 1

1 + μ/L

(
1

L

∥∥gi − g j
∥∥2
2 + μ

∥∥xi − x j
∥∥2
2

)
,

that is standard in the analysis of gradient methods on smooth strongly convex func-
tions (see e.g., Theorem 2.1.12 of [21]), corresponds to cycles of length 2 (i.e., cyclic
sequences {(i, j), ( j, i)}). The set of all such inequalities is necessary but not sufficient,
as it omits longer cycles.

3 A convex formulation for performance estimation

As explained in the introduction, our performance estimation problem can now be
expressed in terms of the iterates and optimal point {xi , gi , fi }i∈{0,...,N ,∗} only, using
the interpolation conditions given by Theorem 4.

As our class of functionsFμ,L(Rd) and the first-order methods we study are invari-
ant with respect to both an additive shift in the function values and a translation in their
domain, we can assume without loss of generality that x∗ = 0 and f∗ = 0, which will
simplify our derivations. We can also assume g∗ = 0, from the optimality conditions
of unconstrained optimization. The problem can now be stated in its finite-dimensional
formulation:

w
(d)
μ,L(R,M, N ,P) = sup

{xi ,gi , fi }i∈I∈
(
Rd×Rd×R

)N+2
P ({xi , gi , fi }i∈I

)
, (d-PEP)

such that {xi , gi , fi }i∈I is Fμ,L − interpolable,

x1, . . ., xN is generated from x0 by method M with (2),

{x∗, g∗, f∗} = {0d , 0d , 0} and ‖x0 − x∗‖2 ≤ R.

Problem (d-PEP) is an instance of (f-PEP) where the function class F is chosen
to be Fμ,L(Rd), the set of d-dimensional L-smooth μ-strongly convex functions,

hence we have w(Fμ,L(Rd), R,M, N ,P) = w
(d)
μ,L(R,M, N ,P). Interestingly, in

most situations of interest, quantity w
(d)
μ,L(R,M, N ,P) is monotonically increasing

with d, as a higher dimensional function can usually mimic a lower dimensional one
(see Theorem 5 and subsequent results for a discussion on finite convergence of this
sequence).

Finally, note that problem (d-PEP) is not convex, as it involves several non-convex
quadratic constraints (e.g., g�

j xi terms in the interpolation conditions). In the next
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section, we show how (d-PEP) can be cast as a convex semidefinite program [26]
when dealing with a certain class of first-order black-box methods, those based on
fixed steps.

3.1 Fixed-step first-order methods

We hereby restrict ourselves to the class of fixed-step first-order methods, where each
iterate is obtained by adding a series of gradients steps with fixed step sizes to the
starting point x0.

Definition 4 A method M is called a fixed-step method if its iterates are computed
according to

xi = x0 −
i−1∑

k=0

hi,kgk .

with fixed scalar coefficients hi,k .

A fixed-step method performing N steps is completely defined by the lower tri-
angular N × N matrix H = {

hi,k
}
1≤i≤N ,0≤k≤N−1 (where hi,k is defined to be zero

if k ≥ i). Note that many classical methods such as the gradient method with con-
stant step size (GM) and the fast gradient method (FGM) are included in this class of
algorithms (see the details in Sect. 4).

3.2 A convex reformulation using a Gram matrix

In order to obtain a convex formulation for (d-PEP), we introduce a Gram matrix to
describe the iterates and their gradients. Denoting

P = [g0 g1 · · · gN x0]

we define the symmetric (N + 2) × (N + 2) Gram matrix G = P�P ∈ S
N+2, which

is equivalent to

G = {Gi, j
}
0≤i, j≤N with

⎧
⎪⎪⎨

⎪⎪⎩

Gi, j = g�
i g j for any 0 ≤ i, j ≤ N ,

GN+1, j = x�
0 g j for any 0 ≤ j ≤ N ,

Gi,N+1 = g�
i x0 for any 0 ≤ i ≤ N ,

GN+1,N+1 = x�
0 x0

(note that the size of this matrix does not depend on the dimension of iterate x0 and
gradients gi ).

The constraints in problem (d-PEP) can now be entirely formulated in terms of the
entries of the Gram matrix G along with the function values fi . Indeed all iterates
apart from x0 can be substituted out of the formulation using Definition 4 of a fixed-
step method, and the resulting formulation only involves function values fi and inner
products between x0 and all gradients gi .
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Note that the initial iterate x0 and successive gradients gi of any solution to problem
(d-PEP) can be transformed into a symmetric and positive semidefinite Gram matrix
G. Moreover, since vectors x0 and gi belong to R

d , matrix G has rank at most d. In
the other direction, it is easy to see that any symmetric and positive semidefinite Gram
matrix G of rank at most d can be converted back (using Cholesky decomposition for
example) into N + 2 vectors x0 ∈ R

d and gi ∈ R
d which describe the initial iterate

and successive gradients of a d-dimensional function (this transformation is however
not unique). From those observations we can anticipate that an equivalent formulation
of (d-PEP) will rely on imposing thatG is symmetric and positive semidefinite, which
is a convex constraint and will naturally lead to a semidefinite program.

3.3 Exact worst-case performance of fixed-step first-order methods as a
semidefinite program

For notational convenience, we define vectors hi ∈ R
N+2 for any i between 0 and N

and h∗ ∈ R
N+2 as follows

h�
i = [−hi,0 −hi,1 · · · −hi,i−1 0 · · · 0 1], h�∗ = [0 · · · 0],

so that we have xi = Phi . In order to lighten the notations we also define ui = ei+1 ∈
R

N+2, the canonical basis vectors, and u∗ the vector of zeros. Using those notations,
we rewrite the interpolation constraints (4) coming from Theorem 4 in the following
form:

fi ≥ f j + L

L − μ
(u�

j Ghi − u�
j Gh j ) + 1

2(L − μ)
(ui − u j )

�G(ui − u j )

+ μ

L −μ
(u�

i Gh j −u�
i Ghi )+ Lμ

2(L−μ)
(hi −h j )

�G(hi −h j ), for all i, j∈I.

We can equivalently formulate all constraints using the trace operator, and add the
distance constraint ‖x0 − x∗‖2 ≤ R on the starting point as well as the positive
semidefiniteness constraint for G. Defining matrices Ai j and AR in the following way

2Ai j = L

L − μ

(
u j (hi − h j )

� + (hi − h j )u
�
j

)
+ 1

L − μ
(ui − u j )(ui − u j )

�

+ μ

L−μ

(
ui (h j − hi )

�+ (h j −hi )u
�
i

)
+ Lμ

L−μ
(hi −h j )(hi −h j )

�, for all i, j∈I,
AR = uN+1u

�
N+1.

we obtain the following compact formulation for the feasible region that is linear in
its variables f ∈ R

N+1 and G ∈ S
N+2

f j − fi + Tr
(
GAi j

) ≤ 0, for all i, j ∈ I,

Tr (GAR) − R2 ≤ 0,

G � 0 .
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From the discussion at the end of the previous section, it is easy to see that any
d-dimensional function f and starting point x0 ∈ R

d produce a feasible solution
( f,G) where matrix G has rank at most d. On the other hand, any feasible solution
( f,G) where G has rank at most d can be interpolated into a d-dimensional function
f ∈ Fμ,L(Rd) and a starting point x0 ∈ R

d . Indeed, matrix G = P�P provides
x0 ∈ R

d and N + 1 successive gradients gi ∈ R
d , while the other iterates xi derive

from the definition of the method. Our interpolating conditions ensure that a function
compatible with these data triples {xi , gi , fi }i∈I exists.

Considering finally the performance criterion P , we observe that any concave
semidefinite-representable function in G and f leads to a worst-case estimation prob-
lem that can be cast as a convex semidefinite optimization problem (see e.g., [5]), and
that such a criteria does not depend on the dimension d of the functions. In particular,
linear functions of the entries of f and G are suitable. Classical performance criteria
such as f (xN ) − f∗, ‖∇ f (xN )‖22 and ‖xN − x∗‖22 are indeed covered by this formu-
lation. We focus below on the case of a linear performance criterion, but note that
other criteria can be useful (see for example a concave piecewise linear criteria used
in Sect. 4.3).

We can now state the main result of this paper.

Theorem 5 Consider the class Fμ,L(Rd) of L-smooth μ-strongly convex functions
with 0 ≤ μ < L ≤ ∞, a fixed-step first-order method that computes N iterates
according to matrix H ∈ R

N×N , and a performance criterion Pb,C ( f,G) = b� f +
Tr (CG) that depends linearly on the function values at those iterates andquadratically
on the iterates and their gradients (b ∈ R

N+1 and C ∈ S
N+2).

If N ≤ d−2, the worst-case performance after N iterations of method H applied to
some function in Fμ,L(Rd) is equal to the optimal value of the following semidefinite
program

w
sdp
μ,L(R, H, N , b,C) = sup

G∈SN+2, f ∈RN+1
b� f + Tr (CG) (sdp-PEP)

such that f j − fi + Tr
(
GAi j

) ≤ 0, i, j ∈ I,

Tr (GAR) − R2 ≤ 0,

G � 0,

with matrices Ai j and AR as defined above. In others words,

w
sdp
μ,L(R, H, N , b,C) = w

(d)
μ,L(R,M, N ,Pb,C ) for any d ≥ N + 2.

Proof We have already shown the two-way correspondence between functions in
Fμ,L(Rd) and feasible solutions of this problem where matrix G has rank at most d.
Since matrix G has size N + 2, it has rank at most N + 2, which establishes that this
semidefinite program is a correct formulation of the performance estimation problem
when d ≥ N + 2. �

The optimal value w
sdp
μ,L(R, H, N , b,C) of (sdp-PEP) is not necessarily finite or

attained at some feasible point. However, when L is finite, any continuous performance
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criterionP will force the optimal value to be attained and finite, because the constraints
on variables f and G force the domain to be compact.

Proposition 1 Under the assumptions of Theorem 5, the optimum of (sdp-PEP) is
attained and finite when L < ∞.

Proof To show that the solution of (sdp-PEP) is attained and finite, it suffices to prove
that its feasible region is compact (since the objective is continuous). We first prove
that the iterates of method H applied to any function in Fμ,L(Rd) with L < ∞ are
bounded, as well as their gradients.

Note that the Lipschitz condition on the gradients (C1f) with j = ∗ shows that
if iterate xi is bounded, gradient gi is also bounded. We proceed by recurrence. We
start with the fact that x0 is bounded, using the assumption that x∗ = 0 and constraint
‖x0 − x∗‖2 ≤ R. This implies that g0 is bounded, hence that x1 is bounded using
Definition 4 of a fixed-step method. This implies in turn that g1 is bounded, then
that x2 is bounded, and so on until we have shown that all iterates and gradients are
bounded.

Condition (C2f)with j = ∗ then implies that function values fi are bounded. There-
fore all entries in variables f and G are bounded which, combined with closedness of
the feasible region, establishes the claim. �
Remark 4 When L = +∞ (recall the conventions 1/+∞ = 0 and +∞ − μ = +∞
used in this paper), the feasible region may be unbounded and it is possible to design
feasible functions which drive standard performance criteria arbitrarily away from
0. Nevertheless, performance estimation on such nonsmooth functions could still be
tackled after introduction of another appropriate Lipschitz condition on the class of
functions, such as ||gi ||2 ≤ L . We leave this as a topic for further research and, in the
rest of this text, restrict ourselves to the smooth case L < +∞.

Our formulation (sdp-PEP) is dimension-independent, and computes the exact
worst-case performance of a first-order method with N steps as long as the class
of functions of interest contains functions of dimension at least N + 2. This corre-
sponds to the so-called large-scale optimization setting, which is usually assumed
when analyzing the worst-case of first-order methods. Function classes with smaller
dimensions can also be handled with the addition of a (non-convex) rank constraint
on G. We obtain the following result, whose proof is straightforward.

Proposition 2 Consider the setting of Theorem 5. If d < N + 2, the worst-case
performance after N iterations of method H applied to some function in Fμ,L(Rd) is
equal to the optimal value of the semidefinite program (sdp-PEP) under the additional
constraint rank G ≤ d.

Note that this also establishes that the sequence {w(d)
μ,L(R,M, N ,Pb,C )}d=1,2,··· is

monotonically increasing, and that it converges for a finite value of d.

Corollary 3 The worst-case performance after N steps of a fixed-step method on a
L-smooth (μ-strongly) convex function is achieved by an N +2-dimensional function.
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Finally, note that, when applied to the gradient method in the non-strongly convex
case (μ = 0), problem (sdp-PEP) is equivalent to one of the formulations proposed
in [10], more specifically to their problem (G). Theorem 5 establishes that this relax-
ation is in fact exact.

3.4 A dual semidefinite program to generate upper bounds

In general, it is not easy to find an analytical optimal solution to (sdp-PEP). Hence, we
are also interested in a generic and easier way of obtaining analytical upper bounds
on the performance of a given algorithm. A classical way of doing so is to work with
the Lagrangian dual of (sdp-PEP):

inf
λi j ,τ

τ R2 such that τ AR − C +
∑

i, j∈I
λi j Ai j � 0, (d-sdp-PEP)

b −
∑

i, j∈I
λi j (u j − ui ) = 0,

λi j ≥ 0, i, j ∈ I,

τ ≥ 0,

whose feasible solutions will provide theoretical upper bounds on the worst-case
behavior of every fixed-step first-order method (using weak duality). Note that the
final dual formulation used in [10], which deals with the case μ = 0, can be recov-
ered by taking λi j = 0 for i + 1 �= j or i �= ∗ in our dual, i.e., it is a restriction of
(d-sdp-PEP) with a potentially larger optimal value.

The next theorem guarantees that no duality gap occurs between (sdp-PEP) and
(d-sdp-PEP) under the technical assumption that hi,i−1 �= 0 (i ∈ {1, · · ·, N }). This
assumption is reasonable as it only implies that, at each iteration, the most recent gra-
dient obtained from the oracle has to be used in the computation of the next iterate. The
theorem will also guarantee the existence of a dual feasible point attaining the optimal
value of the primal-dual pair of estimation problems (sdp-PEP) and (d-sdp-PEP), i.e.,
a tight upper bound on the worst-case performance of the considered method.

Theorem 6 The optimal value of the dual problem (d-sdp-PEP)with 0 ≤ μ < L < ∞
is attained and equal to w

(sdp)
μ,L (R, H, N , b, c) under the assumptions that hi,i−1 �= 0

for all i ∈ {1, . . . , N }.

Proof We use the classical Slater condition [8] on the primal problem in order to
guarantee a zero duality gap—that is, we show that (sdp-PEP) has a feasible point with
G � 0. The reasoning is divided in two parts; we consider first the case μ = 0 and
L = 2+2 cos(π/(N+2)), andwe generalize it to generalμ < L afterwards. Consider
the quadratic function f (x) = 1

2 x
�Qx with the following tridiagonal positive definite

matrix Q
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Q =

⎛

⎜⎜
⎜⎜
⎝

2 1 0 0 · · · 0
1 2 1 0 · · · 0

0 1 2 1
. . .

...
...

. . .
. . .

. . .

⎞

⎟⎟
⎟⎟
⎠

� 0.

We show how to construct a full-rank G feasible for (sdp-PEP) using the values of the
quadratic function f . In order to do so, we exhibit a full-rank matrix

P = [x0 g0 g1 · · ·gN ]

corresponding to the application of a given method (with hi,i−1 �= 0) to the quadratic
function f . Indeed, choosing x0 = Re1, we can show that P is upper triangular with
non-zero diagonal entries. Then we have

g0 = Qx0 = 2e1 + e2,

x1 = x0 − h1,0g0,

g1 = Qx1 = g0 − h1,0Qg0 = 2e1 + e2 − h1,0(4e1 + 4e2 + e3).

Hence g1 has a non-zero element associated with e3 whereas the only non-zero ele-
ments of g0 are associated with e1 and e2. Now, we assume that gi−1 has a non-zero
element corresponding to ei+1 and zero elements corresponding to ek for all k > i+1,
while all previous gradients have zero components corresponding to ek for all k > i .
Then we have

g�
i ei+2 = x�

i Qei+2 = x�
i (ei+1 + 2ei+2 + ei+3),

with x�
i ei+2 = x�

i ei+3 = 0 and x�
i ei+1 �= 0 because of the recurrence assumption

and the iterative form of the algorithm:

x�
i ei+1 = x�

0 ei+1︸ ︷︷ ︸
=0

−
i−2∑

k=0

hi,k g
�
k ei+1︸ ︷︷ ︸
=0

−hi,i−1 g
�
i−1ei+1︸ ︷︷ ︸

�=0

,

x�
i ei+2 = x�

0 ei+2︸ ︷︷ ︸
=0

−
i−2∑

k=0

hi,k g
�
k ei+2︸ ︷︷ ︸
=0

−hi,i−1 g
�
i−1ei+2︸ ︷︷ ︸

=0

,

x�
i ei+3 = x�

0 ei+3︸ ︷︷ ︸
=0

−
i−2∑

k=0

hi,k g
�
k ei+3︸ ︷︷ ︸
=0

−hi,i−1 g
�
i−1ei+3︸ ︷︷ ︸

=0

.

Hence, gi has a non-zero element associated with ei+2. We deduce that the following
components are equal to zero by computing g�

i ei+2+k for k > 0:

g�
i ei+2+k = x�

i Qei+2+k = x�
i (ei+1+k + 2ei+2+k + ei+3+k),
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which is zero because of the algorithmic structure of xi , i.e.,

x�
i ei+1+k = x�

0 ei+1+k︸ ︷︷ ︸
=0

−
i−2∑

k=0

hi,k g
�
k ei+1+k︸ ︷︷ ︸

=0

−hi,i−1 g
�
i−1ei+1+k︸ ︷︷ ︸

=0

.

Hence, P is an upper triangular matrix with positive entries on the diagonal, and is
therefore full-rank. In order to make this statement hold for general μ < L , observe
that the structure of the matrix is preserved using the operation (IN+2 is the identity
matrix)

Q′ = (Q − λmin(Q)IN+2)
(L − μ)

λmax(Q) − λmin(Q)
+ μIN+2.

The corresponding quadratic function is easily seen to be L-smooth and μ-strongly
convex. Therefore, the interior of the domain of (sdp-PEP) is non-empty and Slater’s
condition applies for μ < L , ensuring that no duality gap occurs and that the dual
optimal value is attained. �

One can note that Theorem 6 guarantees the existence of a fully explicit proof (i.e.,
a combination of valid inequalities, or equivalently, a dual feasible solution) for any
worst-case function (see the example at the end of this section).

3.5 Homogeneity of the optimal values with respect to L and R

We observe that, for most performance criteria, one can predict how the worst-case
performance depends from parameters L and R, provided the fixed step sizes con-
tained in H are scaled appropriately (i.e., inversely proportional to L). In the rest of
this paper we will only consider such scaled (normalized) step sizes. Therefore, the
corresponding performance estimation problems have only to be solved numerically
in the case R = 1 and L = 1, from which a general bound valid for any L and R can
be deduced.

More specifically, a classical reasoning involving appropriate scaling operations
easily leads to the following homogeneity relations for the standard criteria f (xN )− f∗,
‖∇ f (xN )‖2 and ‖xN − x∗‖2:

w
sdp
μ,L(R, H/L, N , f (xN ) − f∗) = LR2 w

sdp
κ,1 (1, H, N , f (xN ) − f∗),

w
sdp
μ,L(R, H/L, N , ‖∇ f (xN )‖22) = LR w

sdp
κ,1 (1, H, N , ‖∇ f (xN )‖22),

w
sdp
μ,L(R, H/L, N , ‖xN − x∗‖22) = R w

sdp
κ,1 (1, H, N , ‖xN − x∗‖22),

where κ = μ/L is the inverse condition number and H/L describes the fixed-step
method obtained by dividing all step sizes hi, j by the Lipschitz constant L . Results in
the rest of this paper implicitly rely on these relations.
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3.6 A simple example

Consider the very simple case of a method performing a single gradient step using the
non-standard step-size 3

2L , i.e., x1 = x0 − 3
2L ∇ f (x0) (this is actually conjectured to

be the best possible step size for a single step, see Sect. 4.1.1). One wishes to esti-
mate the worst-case objective function accuracy after taking that step, i.e., maximize
f (x1) − f∗, over all L-smooth convex functions. Solving the corresponding semidef-
inite formulation (sdp-PEP) with μ = 0, N = 1, H = ( 3

2

)
and Pb,C ( f,G) = f1

provides the optimal value

w
sdp
0,L

(
R,
( 3
2

)
, 1,

(
0
1

)
, 03×3

)
= LR2

8
,

attained by the following optimal solution

f0 = LR2

2
, f1 = LR2

8
and G = LR2

⎛

⎝
L −L/2 1

−L/2 L/4 −1/2
1 −1/2 1/L

⎞

⎠ � 0.

Thismeans that f (x1)− f∗ ≤ LR2

8 holds for any f ∈ F0,L(Rd) for any d and provided
that ‖x0 − x∗‖ ≤ R. It is easy to check that function f (x) = L

2 x
2 ∈ F0,L(R) achieves

this worst-case when started from x0 = R. Indeed one can successively evaluate
f0 = f (x0) = LR2

2 , g0 = ∇ f (x0) = LR, x1 = R − 3
2 R = − R

2 , f1 = f (x1) = LR2

8
and g1 = − LR

2 . This function is one-dimensional since the optimal G has rank one
(note that Corollary 3 only guaranteed the existence of a three-dimensional worst-
case).

Solving the dual problem (d-sdp-PEP) leads to the same optimal value LR2

8 , attained
by optimal multipliers λ01 = λ∗0 = λ∗1 = 1

2 ≥ 0 and τ = L
8 . The corresponding

dual slack matrix is

S = 1

2

⎛

⎝
1/L 1/L −1/2
1/L 1/L −1/2
−1/2 −1/2 L/4

⎞

⎠ = L

2

⎛

⎝
−1/L
−1/L
1/2

⎞

⎠(−1/L −1/L 1/2
) � 0.

From this dual solution, a fully explicit proof of the worst-case performance can
be derived, which can be checked independently without any knowledge about our
approach. Indeed, linear equalities in the dual imply that the objective accuracy f (x1)−
f∗ can be written exactly as follows

f (x1) − f (x∗)

= 1

2

(
f (x1) − f (x0) + ∇ f (x1)

�(x0 − x1) + 1

2L
‖∇ f (x0) − ∇ f (x1)‖22

)

+1

2

(
f (x0) − f (x∗) + ∇ f (x0)

�(x∗ − x0) + 1

2L
‖∇ f (x0) − ∇ f (x∗)‖22

)
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+1

2

(
f (x1) − f (x∗) + ∇ f (x1)

�(x∗ − x1) + 1

2L
‖∇ f (x1) − ∇ f (x∗)‖22

)

+ L

8
‖x0 − x∗‖2 − L

2

∥∥∥
∥
1

2
(x0 − x∗) − ∇ f (x0)

L
− ∇ f (x1)

L

∥∥∥
∥

2

(where for the last termwewrite the quadratic formTr (SG) as a square, since S is rank-
one). This equality, which is straightforward to check using x1 = x0 − 3

2L ∇ f (x0) and
∇ f (x∗) = 0, immediately implies inequality f (x1)− f∗ ≤ L

8 ‖x0−x∗‖2, since the first
three bracketed expressions are nonpositive because of inequalites from Corollary 1
valid for all functions in F0,L .

4 Numerical performance estimation of standard first-order algorithms

In this section we apply the convex PEP formulation to study convergence of the
fixed-step gradient method (GM), the standard fast gradient method (FGM) and the
optimized gradient method (OGM) proposed by [14]. We begin with the GM for
smooth convex optimization, whose worst-case is conjectured in [10] to be attained on
a simple one-dimensional function. Numerical experimentswith our exact formulation
confirm this conjecture. Further experiments on theworst-case complexity for different
methods, problem classes and performance criteria lead to a series of conjectures based
on worst-case functions possessing a similar shape. We conclude this section with the
study of a nonlinear performance criteria corresponding to the smallest gradient norm
among all iterates computed by the method.

All numerical results in this section were obtained on an Intel 3.5Ghz desktop com-
puter using a combination of the YALMIP modeling environment in MATLAB [17],
the MOSEK [18] and SeDuMi [25] semidefinite solvers and the VSDP (verified
semidefinite programming) toolbox [11].

4.1 Gradient method

4.1.1 A conjecture on smooth convex functions by Drori and Teboulle [10]

Consider the classical fixed-stepgradientmethod (GM)with constant step sizes applied
to a smooth convex function in F0,L(Rd). Following the discussion in Sect. 3.5 we
use normalized step sizes h

L , inversely proportional to L .

Gradient Method (GM)

Input: f ∈ F0,L(Rd), x0 ∈ R
d , y0 = x0.

For i = 0 : N − 1

xi+1 = xi − h

L
∇ f (xi )
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The following conjecture on the convergence of the worst-case objective function
values was made in [10].

Conjecture 1 ([10], Conjecture 3.1.) Any sequence of iterates {xi } generated by the
gradient method GM with constant normalized step size 0 ≤ h ≤ 2 on a smooth
convex function f ∈ F0,L(Rd) satisfies

f (xN ) − f∗ ≤ LR2

2
max

(
1

2Nh + 1
, (1 − h)2N

)
.

A proof of the conjecture is provided in [10] for step sizes 0 ≤ h ≤ 1, leaving the
case 1 < h < 2 open. We also recall that the upper bound in this conjecture cannot be
improved, as it matches the performance of the GM on two specific one-dimensional
functions. Indeed, define

f1(x) =
{

LR
2Nh+1 |x | − LR2

2(2Nh+1)2
if |x | ≥ R

2Nh+1 ,
L
2 x

2 else,

f2(x) = L

2
x2.

It is straightforward to check that the final objective value accuracy of GM on f1
is equal to LR2

2
1

2Nh+1 , and that it is equal to LR2

2 (1 − h)2N on f2. This means that
the conjecture can be reformulated as saying that the worst-case behavior of the GM
according to objective function accuracy is achieved by function f1 or f2, depending
on which of the two is worst (which will depend only on the normalized step size h
and number of iterations N ).

Intuitively, the behavior of GM on piecewise affine-quadratic f1 corresponds to
a situation in which iterates slowly approach the optimal value without oscillating
around it (i.e., no overshooting), whereas GMapplied on purely quadratic f2 generates
a sequence oscillating around the optimal point. Those behaviors are illustrated on
Fig. 3. We also note that iterates for f1 stay on the affine piece of the function, and
even never come close to the quadratic piece. Interestingly, the existence of a one-
dimensional worst-case function with a simple affine-quadratic shape will also be
observed for the other algorithms studied in this section, both in the smooth convex
and in the smooth strongly convex cases.

Empirical results from the numerical resolution of (sdp-PEP) strongly support
Conjecture 1. Indeed, when comparing its predictions with numerically computed
worst-case bounds, we obtained a maximal relative error of magnitude 10−7 (all pairs
of values N ∈ {1, 2, . . ., 30} and h ∈ {0.05, 0.10, . . ., 1.95} were tested). It is also
worth pointing out that the Gram matrices computed numerically correspond to the
one-dimensional worst-case functions f1 and f2 introduced above.

Before going into the details of other methods, we underline another observation
coming from [10]: Conjecture 1 also suggests the existence of an optimal step size
hopt(N ) for the GM—optimal in the sense of achieving the lowest worst-case. That is,
if you know in advance how many iterations of the GM you will perform, it suggests
using a step size hopt(N ) that is the unique minimizer of the right-hand side of the
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Fig. 3 Behavior of the gradient method on f1 (left) and f2 (right), for L = R = 1. We observe that GM
does not overshoot the optimal solution on f1, while it does so at each iteration on f2

Conjecture 1 for a fixed value of N . It is obtained by solving1 the following non-linear
equation in hopt (for which no closed-form solution seems to be available):

1

2Nhopt + 1
= (1 − hopt)

2N .

This optimal step size can be interpreted in terms of the trade-off between what we
obtain on functions f1 and f2. On the one hand, we ensure that we are not going too
slowly to the optimal point on f1, and on the other hand we do not want to overshoot
too much on f2.

Assuming Conjecture 1 holds true, one can show that the optimal step size is an
increasing function of N with 3/2 ≤ hopt(N ) < 2 and hopt(N ) → 2 as N → ∞.
More precisely, working out the expression defining hopt gives the following tight
lower and upper estimates:

2 − log 4N

2N
∼ 1 + (1 + 4N )−1/(2N ) ≤ hopt(N )

≤ 1 + (1 + 2N )−1/(2N ) ∼ 2 − log 2N

2N
.

(5)

It is interesting to compare the results from the relaxation (G’) proposed for GM
in [10] with ours, for values of the normalized step size h that are close to hopt. Indeed,
while the results of the two formulations are quite similar for most values of h, it turns
out that those from [10] are significantly more conservative in the zone around hopt,
as presented in Table 1 for different values of N . This also formally establishes the
fact that the formulation from [10] is a strict relaxation of the performance estimation
problem.

These numerical results have been obtained with MOSEK, a standard semidefinite
optimization solver. Despite convexity of the formulation, it might happen that the
solution returned by such as solver is inaccurate, and in particular (slightly) infeasible.

1 This equation possesses several solutions, but the optimum is the unique point where the two terms feature
derivatives of opposite signs (a necessary and sufficient condition for the maximum of two convex functions
of one variable). This point can easily be computed numerically with an appropriate bisection method.
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Table 1 Gradient Method with μ = 0, worst-case computed with relaxation from [10] and worst-case
obtained by exact formulation (sdp-PEP) for the criterion f (xN ) − f ∗. Error is measured relatively to the
conjectured result. Results obtained with MOSEK [18]

N hopt Conjecture 1 Value computed in [10] Rel. error Value from (sdp-PEP) Rel. error

1 1.5000 LR2/8.00 LR2/8.00 0.00 LR2/8.00 7e–09

2 1.6058 LR2/14.85 LR2/14.54 2e–02 LR2/14.85 5e–09

5 1.7471 LR2/36.94 LR2/32.57 1e–01 LR2/36.94 1e–08

10 1.8341 LR2/75.36 LR2/59.80 3e–01 LR2/75.36 3e–08

20 1.8971 LR2/153.77 LR2/109.58 4e–01 LR2/153.77 6e–08

30 1.9238 LR2/232.85 LR2/156.23 5e–01 LR2/232.85 7e–08

40 1.9388 LR2/312.21 LR2/201.10 6e–01 LR2/312.21 3e–08

50 1.9486 LR2/391.72 LR2/244.70 6e–01 LR2/391.72 1e–07

100 1.9705 LR2/790.22 LR2/451.72 7e–01 LR2/790.22 1e–07

Table 2 Gradient method with relative step size h = 1.5: numerical values from Conjecture 1 and relative
error for the upper and lower limits of the guaranteed interval obtained numerically with VSDP [11] and
SeDuMi [25]

N 1 2 5 10 15 20 30

Relative error (upper limit) 2e–09 7e–10 2e–09 1e–09 9e–10 1e–09 9e–10

Conjecture 1.2e–01 7.1e–02 3.1e–02 1.6e–02 1.1e–02 8.2e–03 5.5e–03

Relative error (lower limit) 2e–09 3e–09 9e–09 9e–08 2e–07 3e–07 9e–07

In that case, the objective value of the approximate primal (resp. dual) solution is no
longer guaranteed to be a lower (resp. upper) bound on the exact optimal value, hence
potentially negating the advantage of an exact convex formulation. For this reason, all
numerical results reported in this section have been double checked with an interval
arithmetic-based semidefinite optimization solver [11] that returns an interval that is
guaranteed to contain the optimal value. These guaranteed bounds are reported in
Table 2 for the case h = 1.5, which compares them with Conjecture 1.

We can observe that the use of a verified solver does not impact our conclusions
about the validity of the conjecture.Moreover, this table is typical of what we observed
for all conjectures in this section: all numerical results reported were validated2, and
in what follows we will no longer mention this verification explicitly.

Finally, we compare results obtained with Conjecture 1 with classical analytical
bounds from the literature for the GM with unit normalized step size h = 1 (which is
usually recommended, and sometimes called optimal). The best analytical bound we
could find, e.g. in [7], states that

2 Except for tests where validation encountered numerical difficulties, i.e for whichVSDP returned no valid
interval, which occurred more and more frequently as the value of the worst-case bound became closer to
zero.
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f (xN ) − f∗ ≤ LR2

2

1

N + 1
. (6)

This analytical bound is asymptotically worse by a factor of 2 than the bound predicted
by Conjecture 1 with h = 1. Similarly, one can investigate the effect of choosing the
optimal normalized step size hopt(N ) instead of h = 1: Conjecture 1 then predicts
another improvement by a factor of 2. These observations follow from the asymptotic
(large N ) behaviors of the different worst-case bounds on f (xN ) − f∗, which can
easily be computed:

Conjecture 1 with h = 1−→ LR2

2

1

2N + 1
,

Conjecture 1 with h = hopt(N ) −→
N→∞

LR2

2

1

4N + 1
.

4.1.2 A generalized conjecture for strongly convex functions

In view of the encouraging results obtained for the GM in the smooth case, we now
study the behavior of theGMon the class of strongly convex functionsFμ,L (Rd) using
our formulation (sdp-PEP) with the same performance criterion, objective function
accuracy. It turns out that the solution for every problem consisted again in a one-
dimensional worst-case function (rank G = 1) of the same piecewise quadratic type.
We therefore introduce the following general definitions for functions f1,τ and f2:

f1,τ (x) =
{

μ
2 x

2 + aτ |x | + bτ if |x | ≥ τ

L
2 x

2 else,

f2(x) = L

2
x2,

where scalars aτ = (L − μ)τ and bτ = −( L−μ
2

)
τ 2 are chosen to ensure continuity

of f1,τ and its first derivative, and τ is a parameter that controls the radius of the
central quadratic piece (with the largest curvature). Although the value of parameter τ

could in principle be estimated from the numerical solutions of our problems, it turns
out it can be computed analytically by maximizing the final objective value f1,τ (xN )

(assuming that all iterates stay in the affine zone |x | ≥ τ ), which then leads to

τ = Rκ

(κ − 1) + (1 − κh)−2N (7)

where κ = μ
L is the inverse condition number of the problem class f ∈ Fμ,L(Rd). We

are now able to extend Conjecture 1 to the GM applied to strongly convex functions.
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Table 3 Maximum relative estimated differences between Conjecture 2 and corresponding numeri-
cal results obtained with SeDuMi [25]. The maximum is taken over all N ∈ {1, . . . , 30} and h ∈
{0.05, . . . , 1.95} for which the conjecture predicts a worst-case larger than 10−6

κ = 0 .001 .005 .010 .015 0.1 0.2 0.5

Rel. error 6e–10 7e–10 4e–10 6e–10 8e–10 2e–07 9e–08 1e–06

Conjecture 2 Any sequence of iterates {xi } generated by the gradient method GM
with constant normalized step sizes 0 ≤ h ≤ 2 on a smooth strongly convex function
f ∈ Fμ,L(Rd) satisfies

f (xN ) − f∗ ≤ LR2

2
max

(
κ

(κ − 1) + (1 − κh)−2N , (1 − h)2N
)

.

As in the previous section, this conjecture states that the worst-case behavior of the
GM according to objective function accuracy is achieved by function f1,τ or f2,
depending on which of the two is worse. Proceeding now to its numerical validation,
we first point out that our results are intrinsically limited to the accuracy that can
be reached by numerical SDP solvers. For this reason, we only report on situations
for which Conjecture 2 predicts a final accuracy larger than 10−6, ensuring a few
significant digits for the numerical results. The resulting estimated relative differences
between Conjecture 2 and the numerical results obtained with (sdp-PEP) are given
in Table 3, for different values of κ . We observe that the conjecture is very well
supported by our numerical results, with a largest relative error around 10−6, reached
for the largest value of κ considered here. This is expected as GM tends to perform
better as κ increases (i.e., final accuracy f (xN ) − f∗ approaches zero), which renders
a precise comparison between numerical results and the conjecture more and more
difficult.

We now investigate some consequences of our conjecture. First, we note that Con-
jecture 2 tends to Conjecture 1 as μ tends to zero. This is a consequence of the fact
that τ tends to R

2Nh+1 as κ tends to zero (one can also check that function f1,τ tends to
function f1 introduced earlier). Hence our formulation (sdp-PEP) closes an apparent
gap between worst-case analyses of the smooth convex and the smooth strongly con-
vex cases. Indeed, to the best of our knowledge, existing worst-case bounds for the
smooth strongly convex case do not converge to the smooth case as μ → 0.

It is also interesting to compare our results to those obtainedwith the IQCmethodol-
ogy of [16]. If we only care about asymptotic linear rates of convergence, Conjecture 2
predicts

f (xN ) − f∗ ≤ LR2

2
max

{
κ ρ2N

1 , ρ2N
2

}
with ρ1 = |1 − κh| and ρ2 = |1 − h|

(the first term in the max was obtained by neglecting (κ − 1) in the denominator).
On the other hand [16, Section 4.4] proves that the distance to the solution converges
linearly according to

‖xN − x∗‖ ≤ ρN‖x0 − x∗‖ with a factor ρ = max{ρ1, ρ2}
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with the same values for ρ1 and ρ2. This matches our asymptotic rate up to a multi-
plicative constant.

As for Conjecture 1, our new Conjecture 2 suggests optimal step sizes hopt(N , κ),
which can be obtained by solving the equation (for 0 < κ < 1)

κ

(κ − 1) + (1 − κhopt)−2N = (1 − hopt)
2N (8)

(note that one recovers the previous equation for hopt when μ tends to zero). For a
given N , as κ increases from 0 to 1, those optimal step sizes decrease from hopt(N , 0)
(optimal step size in the smooth case) to hopt(N , 1) = 1 (the latter being expected
since it can only correspond to the case of function f2 in the original (PEP), for which
the GM with h = 1 converges in one iteration). For a given κ , we find that hopt(N , κ)

increases as N increases, as in the smooth convex case, according to the following
lower and upper estimates

1 +
(

κ − 1

κ
+ 1

κ

(1 + κ

1 − κ

)2N)− 1
2N ≤ hopt(N , κ)

≤ min

{

1 +
(

(κ − 1)

κ
+ 1

κ
(1 − κ)−2N

)− 1
2N

,
2

1 + κ

} (9)

which both tend to 2
1+κ

as N increases (the first term appearing in the min of the upper

bound tends to 2 − κ , which is always greater than 2
1+κ

). This limiting normalized

step size 2
1+κ

corresponds to step size 2
L+μ

that is often recommended for the GM,
and sometimes called optimal.

We now illustrate the improvements provided by Conjecture 2 with respect to the
classical analytical worst-case bound found in the literature. When using normalized
step size h = 2

1+κ
, iterates from GM applied to functions in Fμ,L(Rd) are known to

satisfy (see [21] for example)

f (xN ) − f∗ ≤ LR2

2

(
1 − κ

1 + κ

)2N
. (10)

On the other hand, as the number of steps N tends to infinity, the true worst-case
predicted by Conjecture 2 for the same step size asymptotically tends to LR2

2

( 1−κ
1+κ

)2N ,
which is exactly the same as (10). Indeed, one can check that this rate is equal to
the second term appearing in the max of Conjecture 2, while the first term tends to
LR2

2 κ
( 1−κ
1+κ

)2N which is always smaller.
One can however do better using the optimal step size hopt. Since it is not closed-

form, we use the following approximate expression obtained after solving a suitable
approximation of Eq. (8)

h̃opt(N ) = 1 + κ
1
2N

1 + κ1+ 1
2N

(note that h̃opt(N ) tends to 2
1+κ

as N grows), and find that Conjecture 2 predicts a
worst-case bound tending to
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LR2

2
κ

1
1+κ

(
1 − κ

1 + κ

)2N

which improves the asymptotic rate by a factor
( 1

κ

) 1
1+κ (which can be shown to lie

between 3
4
1
κ
and 1

κ
).

4.1.3 A conjecture on the gradient norm

We now consider a different performance criterion, given by the norm of the gradient
computed at the last iterate. Numerical experiments with our formulation suggest that
results similar to those presented in the previous sections can be obtained both in the
smooth convex and smooth strongly convex cases, based again on one-dimensional
piecewise quadratic worst-case functions. Using the same definition for functions f1,τ
and f2, and choosing now the parameter τ according to

τ = Rκ

(κ − 1) + (1 − κh)−N
, (11)

we propose the following conjecture.

Conjecture 3 Any sequence of iterates {xi } generated by the gradient method GM
with constant normalized step sizes 0 ≤ h ≤ 2 on a smooth strongly convex function
f ∈ Fμ,L(Rd) satisfies

‖∇ f (xN )‖2 ≤ LRmax

(
κ

(κ − 1) + (1 − κh)−N
, |1 − h|N

)
.

As for Conjecture 2, we limit our numerical validation to the cases where the worst-
case values predicted by the Conjecture are larger than 10−6; the largest relative error
is about 10−7.

We note that, as κ tends to zero (i.e., the smooth case), Conjecture 3 tends to

‖∇ f (xN )‖2 ≤ LRmax

(
1

Nh + 1
, |1 − h|N

)
.

From that, we see that the optimal step size h∇
opt(N , 0) for the GM is again an increas-

ing function of N with
√
2 ≤ h∇

opt(N , 0) < 2 and h∇
opt(N , 0) → 2 as N → ∞. In the

strongly convex case κ > 0, the optimal step size is a decreasing function of κ and sat-
isfies h∇

opt(N , κ) → 1 as κ → 1. As in the previous case, h∇
opt(N , κ) is bounded above

by 2
1+κ

, which we can confirm with the following lower and upper bounds on h∇
opt:

1 +
(

κ − 1

κ
+
(1 + κ

1 − κ

)N)−1/N

≤ h∇
opt(N , κ)

≤ min

{

1 +
(

κ − 1

κ
+ 1

κ
(1 − κ)−N

)−1/N

,
2

1 + κ

}

.
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In the smooth case, those bounds reduce to the simpler expression

2 − log 2N

N
∼ 1 + (1 + 2N )−1/N ≤ h∇

opt ≤ 1 + (1 + N )−1/N ∼ 2 − log N

N
.

We now compare with a standard analytical worst-case bound. The iterates of the GM
method with normalized step size 2

1+κ
are known to satisfy

‖xN − x∗‖2 ≤ R

(
1 − κ

1 + κ

)N

and ‖∇ f (xN )‖2 ≤ L‖xN − x∗‖2 ≤ LR

(
1 − κ

1 + κ

)N

(12)
(see for example [21] for the left inequality, and use the L-Lipschitz property of the
gradient along with ∇ f (x∗) = 0 to derive the right inequality). The latter estimate is
tight according to Conjecture 3. Using the following approximate optimal step size

h̃∇
opt(N ) = 1 + κ

1
N

1 + κ1+ 1
N

(which tends to 2
1+κ

as N grows) can be shown to improve the conjectured asymptotic

rate by the same factor κ− 1
1+κ as in the previous section.

4.2 Fast gradient method and optimized gradient method

In this section we assess the performance in the smooth convex case (μ = 0) of
two accelerated first-order methods: the so-called fast gradient method (FGM) due to
Nesterov [20], and an optimized gradient method (OGM) recently proposed by Kim
and Fessler [14].

Fast Gradient Method (FGM)

Input: f ∈ F0,L(Rd), x0 ∈ R
d , y0 = x0, θ0 = 1.

For i = 0 : N − 1

yi+1 = xi − 1

L
∇ f (xi )

θi+1 =
1 +

√
4θ2i + 1

2

xi+1 = yi+1 + θi − 1

θi+1
(yi+1 − yi )
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Optimized Gradient Method (OGM)

Input: f ∈ F0,L(Rd), x0∈Rd , y0 = x0, θ0 = 1.
For i = 0 : N − 1

yi+1 = xi − 1

L
∇ f (xi )

θi+1 =

⎧
⎪⎨

⎪⎩

1+
√
4θ2i +1

2 , i ≤ N − 2
1+
√
8θ2i +1

2 , i = N − 1

xi+1 = yi+1 + θi − 1

θi+1
(yi+1 − yi ) + θi

θi+1
(yi+1 − xi )

Both of these algorithms are defined in terms of two sequences: {yi }i is a primary
sequence, and {xi }i is a secondary sequence, where the gradient is evaluated. We first
show that both of these algorithms can be expressed as fixed-step first-order methods,
which we defined as

xi = x0 −
i−1∑

k=0

hi,k∇ f (xk) (for L = 1).

One way to proceed is to focus on the secondary sequence {xi }i and substitute the yi ’s
in the algorithm formulation. For FGM, we have

xi+1 = xi − gi
L

+ θi − 1

θi+1

(
xi − xi−1 − gi

L
+ gi−1

L

)
,

= xi + θi − 1

θi+1
(xi − xi−1) −

(
θi − 1

θi+1
+ 1

)
gi
L

+ θi − 1

θi+1

gi−1

L
,

which allows to obtain the step sizes relative to x0 by recurrence:

hi+1,k =

⎧
⎪⎪⎨

⎪⎪⎩

hi,k + θi−1
θi+1

(
hi,k − hi−1,k

)
if k ≤ i − 2,

hi,k + θi−1
θi+1

(hi,k − 1) if k = i − 1,

θi−1
θi+1

+ 1 if k = i,

with initial conditions h1,0 = 1, h1,k = 0 if k < 0 and h0,k = 0 for all k. Similarly,
we have for OGM

hi+1,k =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

hi,k + θi−1
θi+1

(
hi,k − hi−1,k

)
if k ≤ i − 2,

hi,k + θi−1
θi+1

(hi,k − 1) if k = i − 1,

2θi−1
θi+1

+ 1 if k = i,
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with the same initial conditions. This approach will provide estimates for the last
secondary iterate xN . If an estimate for last primary iterate yN is needed, one just has
to replace the expression of xN by yN , which is done by using the following alternative
coefficients for the last step:

hN ,k =
{
hN−1,k if k ≤ N − 2,
1 if k = N − 1,

for both FGM and OGM.
Again, our numerical experiments strongly suggest the same assumption about

the shape of the worst-case functions, i.e., one-dimensional and piecewise quadratic
(with iterates staying in the affine zone of f1,τ ). Using this property, we are able to
compute the following values of τ achieving the worst-case final objective accuracy,
which surprisingly hold for both the classical FGM and the more recent OGM (a
coincidence for which we can offer no explanation)

τ1 = R

2
∑N−2

k=0 hN−1,k + 3
for the primary sequence,

τ2 = R

2
∑N−1

k=0 hN ,k + 1
for the secondary sequence.

Our numerical results suggest the following two conjectures (validations for both
conjectures were performed for values of N ∈ {1, . . . , 100} and displayed a relative
error less than 10−4).

Conjecture 4 Any (primary) sequence of iterates {yi } generated by the fast gradient
method FGM (resp. optimized gradient method OGM) on a smooth convex function
f ∈ F0,L(Rd) satisfies

f (yN ) − f∗ ≤ f1,τ1(y1,N ) = LR2

2

1

2
∑N−2

k=0 hN−1,k + 3
,

where y1,N is the final (primary) iterate computed by FGM (resp. OGM) applied to
f1,τ1 starting from x0 = R, and quantities hN−1,k are the fixed coefficients of the last
step of FGM (resp. OGM).

Conjecture 5 Any (secondary) sequence of iterates {xi } generated by the fast gradient
method FGM (resp. optimized gradient method OGM) on a smooth convex function
f ∈ F0,L(Rd) satisfies

f (xN ) − f∗ ≤ f1,τ2(x1,N ) = LR2

2

1

2
∑N−1

k=0 hN ,k + 1
,

where x1,N is the final (secondary) iterate computed by FGM (resp. OGM) applied to
f1,τ2 starting from x0 = R, and quantities hN ,k are the fixed coefficients of the last
step of FGM (resp. OGM).
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The worst-case bounds in these two conjectures involve the normalized step sizes
of the FGM and OGMmethods. It turns out these can be computed in closed form for
OGM (see also [13]), and give (N ≥ 1)

f (yN ) − f∗ ≤ LR2

4θ2N−1 + 2
≤ LR2

2

2

(N + 1)2 + 2
and

f (xN ) − f∗ ≤ LR2

2θ2N
≤ LR2

2

2

(N + 1)(N + 1 + √
2)

(where the inequalities rely on the bounds θ2N−1 ≥ (N+1)2

4 and θ2N ≥ (N+1)(N+1+√
2)

2 ).
We were not able to obtain similar closed-form bounds for the FGM.

We now compare the numerical values obtained with Conjectures 4 and 5 with
analytical bounds known for the FGM. We use for the primary sequence

f (yN ) − f∗ ≤ 2LR2

(N + 1)2
, (13)

which can be found in [4], and for the secondary sequence

f (xN ) − f∗ ≤ 2LR2

(N + 2)2
(14)

which was very recently derived in [14]. The comparison is displayed on Fig. 4. The
asymptotic behaviors of both sequences arewell captured by the analytical bounds (13)
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Fig. 4 Comparison of the worst-case performance of the FGM: analytical bound (13) (dashed red) versus
Conjecture 4 (red) and analytical bound (14) (dashed blue) versus Conjecture 5 (blue) (color figure online)

123



342 A. B. Taylor et al.

and (14), but we observe that the estimation of the transient worst cases are improved
by our conjectures: a factor approximately equal to 1.15 is gained for both sequences
after 30 iterations.

Before going into the next section, we comment on the applicability of our results
to monotone variants of first-order methods, i.e. methods which guarantee f (yi+1) ≤
f (yi ). Consider for example FISTA [4], which is equivalent to FGM when applied
to smooth unconstrained minimization. MFISTA [3], a monotone variant of FISTA,
happens to generate a monotonically decreasing sequence { f (yi )}i when applied to
our worst-case function f1,τ1 from x0 = R. This means that the corresponding lower
bound from Conjecture 4 also applies to MFISTA.

4.3 Estimation of the smallest gradient norm among all iterates

First-order methods are often used in dual approaches where, in addition to objective
function accuracy, gradient normplays an important role. Indeed, this quantity controls
primal feasibility of the iterates (see e.g., [9]). Considering for example the accelerated
FGMin the smooth case,weknow from theprevious section that the classical analytical
bound on the worst-case accuracy for a function in F0,L(Rd) is given by 2LR2

(N+1)2
.

From that bound, it is easy to obtain a similar bound on the last gradient norm, using
Corollary 1:

‖∇ f (yN )‖2 ≤ √2L( f (yN ) − f∗) ≤ 2LR

N + 1
. (15)

Observe that this asymptotic rate is significantly worse than that of the objective
function accuracy, and not better than that of the gradient method GM (see Conjec-
ture 3).

However, it is well-known that the norm of the gradient is not decreasingmonotoni-
cally among iterates of the FGM.Hence, in this section,wewill estimate theworst-case
performance of FGM according to the smallest observed gradient norm among all iter-
ates:

min
i∈{0,...,N } ‖∇ f (yi )‖2.

In order to do so, only a slightly modified version of (sdp-PEP) is needed: this min-
type objective function is representable using a new variable t for the objective and
N + 1 additional linear inequalities t ≤ ‖∇ f (yi )‖22 ⇔ t ≤ Gi,i for all 0 ≤ i ≤ N .
Note that the maximum is still attained since this concave piecewise linear objective
function is continuous.

This criterion was suggested in [22], which proposes a variant of FGM that consists
in performing N/2 steps of the standard FGM followed by N/2 steps of the GM with
h = 1. It is then theoretically established that this variant of FGM, which we denote
by MFGM, satisfies

min
i∈{0,...,N } ‖∇ f (yi )‖2 ≤ 8LR

N 3/2 , (16)

an improvement compared to the rate of convergence of the gradient of the last iterate.
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Fig. 5 Comparison of gradient norm convergence rates for the FGM and theMFGM from [22]. Theoretical
guarantees are dashed. Analytical bound on FGM (15) in its last iterate (dashed blue); numerical worst-case
for FGM at its last iterate (blue); numerical worst-case for FGM at its best iterate (red); analytical bound on
MFGM (16) for the best iterate (dashed black); numerical worst-case for MFGM at its best iterate (black)
(color figure online)

Table 4 FGM and MFGM: comparison between theoretical bounds and numerical results for the criteria
‖∇ f (xN )‖2(last) and mini ‖∇ f (xi )‖2 (best) Results obtained with [18]

N FGM, analytic (15) FGM, last FGM, best MFGM, analytic (16) MFGM, best

2 LR/1.50 LR/3.00 LR/3.00 LR/0.35 LR/3.00

4 LR/2.50 LR/5.84 LR/5.84 LR/1.00 LR/5.00

10 LR/5.50 LR/15.14 LR/15.62 LR/3.95 LR/12.66

20 LR/10.50 LR/25.08 LR/34.49 LR/11.18 LR/30.77

30 LR/15.50 LR/35.13 LR/58.50 LR/20.54 LR/55.38

40 LR/20.50 LR/45.19 LR/86.17 LR/31.62 LR/86.41

50 LR/25.50 LR/55.25 LR/117.08 LR/44.19 LR/119.63

100 LR/50.50 LR/105.49 LR/311.34 LR/125.00 LR/296.58

200 LR/100.50 LR/205.77 LR/850.59 LR/353.55 LR/791.87

We now compare FGM with this modified variant MFGM using our performance
estimation formulation. Fig. 5 compares the behaviors of those methods in both their
last (for FGM) and best iterates, as well as the above analytic bounds (15) and
(16). This experiment confirms that the gradient norm of the last iterate of FGM
decreases according to the slower O(N−1) rate of (15). We also observe that both
the MFGM and the original FGM achieve the same O(N−3/2) convergence rate
for the smallest gradient norm, which was not known before for FGM. In addition,
numerical results reported in Table 4 suggest that FGM performs slightly better than
MFGM.
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A regularization technique is also described in [22], featuring a O(N−2) conver-
gence rate up to a logarithmic factor. A drawback of this approach is that it requires a
bound on the distance to the optimal solution, and that the coefficients of the method
explicitly depend on this bound. No fixed-step method achieving the same O(N−2)

seems to be known.

5 Conclusion

The contribution of this paper is threefold: first, we present necessary and sufficient
conditions for smooth strongly convex interpolation. Those conditions are derived
by showing an explicit way of constructing the interpolating functions. Second, we
show that the exact worst-case performance of any fixed-step first-order algorithm for
smooth strongly convex unconstrained optimization can be formulated as a convex
problem. In this context, our interpolation procedure also provides explicit functions
achieving the worst-case bounds computed by our approach. Third, we test of our
formulation numerically on a variety of functions classes, first-order methods and per-
formance criteria, establishing on the way a series of conjectures on the corresponding
worst-case behaviors. In particular, we suggest new tight estimates of the optimal step
size for the fixed-step gradient method with constant step size, which depend on the
number of iterations and the condition number.

Our performance estimation problem provide a generic tool to analyze fixed-step
first-order methods. It allows computing both exact worst-case guarantees and func-
tions reaching them, and provides a unified algorithmic analysis for smooth convex
functions and smooth strongly convex functions.

The exact worst-case values provided by our approach require solving a convex
semidefinite program whose size grows as the square of the number of iterations
considered, which may become prohibitive when this number of iterations is large.
This can be avoided using iteration-independent bounds, as proposed in [16], but at
the cost of obtaining poorer worst-case guarantees.

Further improvements to our approach include an extension of (PEP) to more
general methods, such as first-order methods equipped with line search, or first-order
methods designed to work on a restricted convex feasible region (projected gradient).
Another desirable feature would be the ability to optimize the step sizes of the method
considered in (sdp-PEP), as was proposed in [10,14] for the relaxed version of (PEP).

Software Our semidefinite programming approach to performance estimation has
been implemented with MATLAB code, which can be downloaded from http://
perso.uclouvain.be/adrien.taylor. This routine features an easy-to-use interface, which
allows the estimation of the worst-case performance of a given fixed-step first-order
algorithm (to be chosen among a pre-defined list or to be specified by its coefficients) on
a given class of functions, for a given performance criterion, after any number of steps.
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