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Abstract This paper focuses on solving two-stage stochastic mixed integer programs
(SMIPs) with general mixed integer decision variables in both stages. We develop a
decomposition algorithm in which the first-stage approximation is solved by a branch-
and-bound algorithm with its nodes inheriting Benders’ cuts that are valid for their
ancestor nodes. In addition, we develop two closely related convexification schemes
which use multi-term disjunctive cuts to obtain approximations of the second-stage
mixed-integer programs. We prove that the proposed methods are finitely conver-
gent. One of the main advantages of our decomposition scheme is that we use a
Benders-based branch-and-cut approach in which linear programming approxima-
tions are strengthened sequentially. Moreover as in many decomposition schemes,
these subproblems can be solved in parallel. We also illustrate these algorithms using
several variants of an SMIP example from the literature, as well as a new set of test
problems, which we refer to as Stochastic Server Location and Sizing. Finally, we
present our computational experience with previously known examples as well as the
new collection of SMIP instances. Our experiments reveal that our algorithm is able
to produce provably optimal solutions (within an hour of CPU time) even in instances
for which a highly reliable commercial MIP solver is unable to provide an optimal
solution within an hour of CPU time.
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1 Introduction

Stochastic mixed-integer programs (SMIPs) have long been recognized as an important
class of models for many practical operational problems (see e.g. [26]). However, algo-
rithmic advances to solve SMIP models have lagged behind other forms of stochastic
programs. In addition to the standard difficulties associated with stochastic linear pro-
gramming (e.g. designing scalable ways to approximate the expected recourse/value
function), SMIP formulations with mixed-integer recourse decisions in the second
stage encounter value functions that are possibly non-convex and discontinuous. Early
work by Carge and Tind [4] presented a decomposition algorithm based on mixed inte-
ger programming (MIP) duality, and while it is conceptually applicable to SMIPs with
general mixed-integer recourse decisions, the algorithm is not easily realizable because
it requires calculations involving exact MIP value functions. Such value functions are
not only difficult to construct for the second stage, but also lead to discontinuous and
non-convex first-stage approximations in general. Other decomposition algorithms,
based on scenario decomposition, were proposed in [5, 14]. These algorithms essen-
tially view the SMIP problem as a very large scale MIP using a deterministic equivalent
formulation. The decomposition principles used by the above methods are dual to each
other (price and resource directive decomposition respectively) and may be recom-
mended for instances in which special structures associated with scenario subproblems
can be exploited (as in unit-commitment models, lot-sizing models etc.). However,
when the number of scenarios is very large, and special structures are either absent or
difficult to exploit, such scenario decomposition methods are not particularly effective.

Subsequent to the work of Carge and Tind [4], most authors addressed some
sub-class of the two-stage SMIP problems. For instance, the global optimization
algorithm of Ahmed et al. [1] assumed fixed tenders in the two-stage model. Others
have addressed alternative sub-classes which either focus on mixed-binary recourse
decisions, or pure integer recourse decisions. Decomposition-based cutting plane algo-
rithms using disjunctive cuts (e.g. [15,21,24]), using Gomory cuts (e.g. [10,28]), novel
branch-and-bound methods [9], decomposition based branch-and-cut [23], as well as
primal approaches using certain IP value function characterizations [12,25] now offer
a range of algorithms for alternative model characteristics. As a consequence of the
sharper focus, there has been significant progress with SMIP algorithms for special-
ized cases of SMIP. In contrast to some of the earlier multi-stage SMIP algorithms,
these methods are based on time-staged decomposition, very much in the spirit of
Benders’ decomposition. We refer to surveys by Louveaux and Schultz [13] and Sen
[20] for discussions related to these and other advances.

In this paper, we are interested in designing time-staged decomposition algorithms
for solving two-stage SMIPs in which mixed-integer decisions appear in both stages.
In other words, we return to the class of models addressed in [4]. Fortunately, due
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to significant algorithmic advances in the interim, we are able to draw upon new
approximations which not only ensure finite convergence, but also avoid intractable
operations in each iteration. The first thought which comes to mind for addressing
problems with general integer variables is to replace the general integers by their
binary expansion, thus, converting the general SMIP problem to one with mixed-binary
variables. However, such transformations have already been discredited in the deter-
ministic MIP literature where Owen and Mehrotra [18] have shown, mathematically
and computationally, that branch-and-bound methods examine many more nodes for
the transformed problem, than for the original instance with general integer variables.
Consequently, the issue of devising decomposition algorithms using branch and cut
methods for SMIP remains an open question which we address in this paper. Perhaps,
the most critical result that helps us resolve this open question is the recent constructive
characterization due to Chen et al. [7] that the feasible set of a mixed-integer linear
program can be convexified using a hierarchy of multi-term disjunctions. This result
helps us design the Ancestral Benders’” Cutting Plane (ABC) algorithm presented in
this paper.

In order to state the problem, let A € R™'*™ b € R™ and X; = {x € R" :
Ax < b}. Then consider the SMIP as stated below.

. T ~
E , 1
L clx [f(x. @] ey
where
X ={x € Xp | x;isinteger, Vie b, C I, ={1,...,n}} CR",

and Q1 ={x |} <x <u1}.

Also @ denotes a discrete random variable, and for each scenario (realization) w of @,
we define the recourse function by

f(x,@) =min g()"y
st. W)y >r(w) —T(w)x
yeYnQ,, 2)

where,

Y ={ylyjisinteger, Vj e JoCJy={l,...,n}} CR"™,
and Q> ={y |l =y < uz}.

For subproblem (2), we let the decision variable y € R"2, objective coefficient g(w) €
R"2, constraint matrix W(w) € R™*"2 r(w) € R™ and T (w) € R™2*"1, In our
notation, when />(J2) is a strict subset of 11(J;), then stage 1 (stage 2) has both
continuous as well as integer variables. We assume the random variable @ is discrete
with each scenario w having a non-zero probability p(w), for all w € €.

The algorithms that we propose in this paper impose the following assumptions on
the model.
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196 Y. Qi, S. Sen

Al Both X and Y are assumed to be non-empty mixed-integer sets, and the integer
variables in both stages are bounded.

A2 Therandom variable & in the problem is discrete, with a finite number of scenarios,
w € €2, each with an associated non-zero probability of occurrence p(w), Vo €
Q.

A3 Foranyx € X;NQ1,thesetdefinedby {y | W(w)y > r(w)—T(w)x,y € YNQ2}
is feasible for all w € 2.

Due to assumption A2, (1) can be rewritten as:

. T
xg{l})an c x+ %p(a))f(x, w). 3)

For the rest of the paper, we begin by first introducing the overall architecture in
which a branch-and-bound (B&B) algorithm in the first-stage controls how approxi-
mations are created and passed from one generation of nodes to another. Subsequently,
we present two closely related convexification schemes for the second stage, one based
on the cutting plane tree method [7], and the other referred to as a B&B-based convex-
ification method. Both of these methods can be used to approximate the second-stage
recourse function f (x, w). Finally, we illustrate our approach by using several variants
of an SMIP example from the literature. In addition we present preliminary evidence
that the decomposition framework promises to be more scalable than solving a deter-
ministic equivalent problem (3) using a standard commercial MIP solver. We also
present a new class of test instances which we refer to as Stochastic Server Loca-
tion and Sizing. Computational experience with these instances demonstrates that
under some restrictions on the growth of first-stage decisions, the algorithm provides
arealistic approach to solving SMIP models with many scenarios. Overall, our frame-
work provides the most comprehensive time-staged decomposition approach to date,
allowing randomness in all data elements, while also allowing general mixed-integer
variables as decision variables in both stages.

2 The Ancestral Benders’ cutting plane algorithm

If we denote decision variables y under scenario w as y (w), the deterministic equivalent
formulation (DEF) for (3) is

min - clx 4 > p@)g(@)y@) (4a)
Yy weR

st. T(wx+ Wy >r(w), Yoe (4b)

xeXNQOi,yw eYNQr, VYoel. (4¢)

Figure 1 shows the basic building blocks of the ABC algorithm.

It uses a branch-and-bound process to search for first-stage decisions while carrying
out a convexification process in the second stage (see the box on the bottom right hand
side), followed by a successive approximation scheme to update approximations of
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Benders’
Decomposition
to create piecewise
linear approximation

Piecewise linear approximation Convexification

First Stage Second Stage

For each omega,
Branch and Bound convexification
using [Chen et al]

Fig. 1 Building blocks for the ABC algorithm

the expected recourse function E[ f (x, ®)] in the top box of Fig. 1. These ingredients
provide a fully integrated algorithm which ties together all the pieces in a manner
that is not only computationally realistic, but is also provably convergent. A brief
description of the elements in Fig. 1 follows.

(a) The B&B search in the first stage divides the range of first-stage integer variables
into a partition consisting of disjoint subsets { Q' } covering the entire set Q. The
partition is refined using a breadth-first search strategy.

(b) For any subset Q of the first-stage decisions (x), we create polyhedral approxi-
mations of

Z(t, ) = {(x, y(@)) | T (w)x
+Ww)y(w) >r(w),x € XN Q’l, y(w)eYn Q2}. )

The existence and construction of the polyhedral set follows the work of Chen et
al. [6] on using multi-term disjunctions.

(c) Using Benders’ decomposition for each box Q, we then create lower bound-
ing approximations. Using these bounds, one can proceed to partition the most
promising node, and continue with the branch-and-bound search.

Clearly, the above ideas are fairly straightforward. As with most stochastic program-
ming algorithms however, the effectiveness of any scheme depends on the ease with
which approximations are updated and optimized, sequentially. In addition, imple-
menting these processes requires us to assemble a variety of concepts, including
disjunctive programming, L-shaped decomposition, and appropriate data structures.
In this section, we provide a summary of these aspects of the ABC algorithm. In the
following section, we discuss multi-term disjunctions based on either the cutting plane
tree (CPT) algorithm [6] or a branch-and-bound algorithm.
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198 Y. Qi, S. Sen

We use index k to denote an iteration. As in other Benders’ type algorithms, we let
xK denote the first stage decisions in iteration k. Let 7 (k) denote a node of the first-stage
B&B tree such that x* € Q’l(k). A B&B tree for the first stage provides a partition
{Q’l} of the box constraints Q. In addition to node 7’s bounds Q’l, Z(t, w) covers all
constraints for variables x and y(w). Next, we introduce a polyhedral approximation
Z (t, ) such that

Z1(t, w) D conv{Z(t, w)}. (6)

This approximation Zy (¢, w), will be generated using a convexification procedure due
to Chen et al. [6]. Since the approximations are in the space of variables (x, y(w)),
the polyhedron Z7 (¢, ) includes valid inequalities appended to the linear inequalities
already in (5). That is,

ZL(t, 0) = {(x, y(@) |T(@)x + W()y() = r(),x € XN O, y(w) € 02,
(1, w)x + Ma (1, @)y = Mo(7, w) }, )

where the additional constraints in (7) represent the valid inequalities. Note that
because of assumption A3, the projection of this set for any x € Q1 is non-empty. Itis
important to point out that the coefficients I (¢, ®), and the first stage decision x* will
be used to create right-hand side parameters of second stage subproblems. As a result,
such inequalities are referred to as parametric cuts, and are useful for “warm-starting”
approximations as Q1 is successively refined in the B&B process.

Since the inequalities in (7) are valid for the entire set Q*, they can be re-used for
any of its subsets. At iteration k, we can define a lower bounding approximation of
the second-stage objective by an approximation f f’l(x, w) as follows

S5, 0) 1= min {3@) T y(@) : (@) € 2@ 0)]. ®)

where Z]If (t, w) includes only a subset of the inequalities of (7) revealed in the first k
iterations.

Z,'f(t, w) ={(x, y(@) | T(w)x + W(@)yw) = r(w),x € X, N O, ©)]
4 (1, 0)x 4+ T4 (1, w) y (w) = T (2, w), (10)
I < y(w) <uy}. (11)

The constraints in ZE (t, ) are best treated as constraints that evolve through the

W( .. T
H,é(:z))], and similarly, Tk(t, w) = |:n’f((zwl))}’

iterations, that is, let W¥* (t,w) = |:
r(w)
g (. w)
can be obtained as in Benders’ decomposition by using the dual multipliers of the
above cut-enhanced LP relaxation, for any choice of x € Q’l.
Unlike standard Benders’ decomposition (which is normally applied to the case

where the second stage is a linear program), the subproblem (8) is a relaxation of

rk(t, w) = |: . Then a relaxation of the integer recourse (or value) function
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the MIP subproblem. Let yk (w) denote the optimal solution for (8) given x = xk.

Let % (7, w) denote the optimal dual multipliers associated with (9) and (10) and
le (t, w), 95 (t, w) denote the multipliers associated with constraints (11). Then the
Benders’ approximation from (8) is given as

n(t, w) = O, @) rk(t, 0) + 6f (1, ) Tl
—05(t, ) Tuy — O (1, ) T TH (1, w)x, for x € Q) (12)

where n (¢, w) is the variable representing the recourse function for the pair (¢, w).
Finally, the above cuts are aggregated using all w € €2 as in a Benders’ cut for node ¢.
In other words, let

£ =3 p(@) (04 o) T w) +6f () Th = 0k, ) Tuz)

we

.
ekt = (Z p(0)O (1, w) T T*(1, a))) ) (13)

WweR

We define n, as the value function cut variable for node ¢. Then the Benders’ cut at
iteration k for node ¢ is as follows,

m > &R — (5T, forx e Q. (14)

Recall that Benders’ cuts generated for Q’1 can be used for all subsets Q’l - Q’l.
Similar inheritance also holds for the second-stage cuts in (10). In order to help record
this inheritance we use index set G, () to record Benders’ cuts for node ¢ and G, (¢, w)
as the index set for the second-stage cuts. Both G, (¢) and G, (¢, w) start as empty sets,
and when a new valid cut is derived for node ¢, either G, (¢) or G, (¢, ®) are enlarged
depending on whether it is a Benders’ cut or a second stage (parametric) cut.

We now proceed to discuss the B&B method for the first stage. Suppose the set of
active (unfathomed) nodes for the first stage is denoted as le and let Q’l denote the
bounding constraints for ¢ € 7;. Then the lower bounding master problem for node ¢
at iteration k is as follows,

min ¢'x + 7 (15a)
st =& —¢)x, forVs e G (r) (15b)
n=—-M, (15¢)
xeX,NQl, (15d)

where —M is a valid lower bound on second-stage expected recourse function. In
problem (15), Q} will include ranges [/{;, u};] which denote the ranges for variable
x; at node 1.

The entire algorithm starts from iteration k = 1 with le = {o} where the root node
o0 has bounding constraints Q¢ = Q1 and we initialize G (¢) as an empty set. Let the
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200 Y. Qi, S. Sen

optimal objective value for (15) be v’ and let x! denote an optimal first-stage solution.
Thus, the global lower bound is v = min, Ele{v’ }. Also denote the upper bound of
optimal objective value for (1) by V. At iteration k, problem (15) is solved for node
t(k — 1) with updated (15b) from iteration k — 1 and for our breadth-first approach,
we choose the node with the least lower bound as the node to branch on. Suppose
this node is 7 and its optimal first-stage solution is x. Having selected the node, one
chooses the variable to be used for branching. We follow a common rule which uses
the least relative fractional variable as follows. Let

6 = min {x — i, uf, = xf}, (16)

i
p € Agmax, ;. i i s [’_—l’_] . (17)
Uy — 4

Then we select variable x, and split its bounding constraint [/, u1,] as shown in

(18)
[llpv prJ]and[fxpl ulp]~ (18)

The two newly created nodes are denoted as 7 1, 2. Both Gy (t) and G, (t, w), Yo € Q
are copied to initialize Gy ('), G, (?) and G. (i', w), G.(i*, w)VYw € Q. Then the tree
is updated as follows,

7t < T dfu e} (19)

We then solve the LP relaxation associated with the two new nodes, update the upper
bound (if possible), and choose the node with the least lower bound to explore further.
This process continues until a mixed-integer optimum is found.

The B&B process for the first stage is flexible, allowing us to either do a few
iterations, or solving the first stage approximation to optimality. When a solution
(denoted as x¥) to the master problem is found, we identify the first-stage node to
which it belongs, and refer to it as # (k) and its bounding constraints as Qll(k). Given x*
and Qtl(k), we approximate the second-stage recourse function for all w as described in
(14). With Benders’ cut indexed in G, (t) updated, the master problem continues to find
new integer solutions and updating nodal value functions until the node is fathomed,
or the algorithm stops. A summary of the prescribed process is shown in Algorithm 1,
and we refer to it as the ABC algorithm.

The sufficient conditions for convergence of the ABC algorithm are provided in the
following proposition, which is consistent with sufficient conditions for finiteness of
B&B methods. The precise cutting planes to be used are postponed to the following
section where we will demonstrate how multi-term disjunctions ensure that these
conditions are satisfied.

Proposition 1 Let assumptions AI-A3 hold. In iteration k, let t (k) denote the index
identifying the subset er(k) for which a lower bound v'® is evaluated in iteration k.
Let VK denote an upper bound on the optimum at iteration k. Suppose that for any
subset Q’l created during the B&B process, there exists a finite iteration K (t) such
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Algorithm 1 Ancestral Benders’ Cutting Plane Algorithm

Initialize: Iteration k < 1, objective value upper bound V' <« oo, first-stage active nodes 'T]k <~ {o}
with 0 = {x | I} < x < u}. Initialize Gx (1) < ¥ and G; (7, w) < @ for w € Q. Let € denote the
stopping tolerance and (x*, y*(w)) for w €  denote the incumbent solutions. Solve problem (15) at
node o and get its objective value v°.
while true do
while true do
Update the global lower bound:
v < min {v'}.
teTl"

Denote the node that has global lower bound as 7
if x! is integer for Vi € I, then 1 (k) < 7, break.
end if
Choose variables to split and add two new child nodes 7 172 of node 7 as in (18) and (19).
Gr () < G(D), Gu () < Gx (D).
G. (", w) < G, (T, w), gz(FZ, ) < G (1, w).
Solve problem (15) for both new nodes and obtain v’ ! and v’d2 . If a new node is infeasible,
it is removed from ’le.
end while
forall v € Q2 do
Use xk, t (k) to construct Zf (t(k), w) and update G (1 (k), w).
Solve (8), get yk (w) and derive (12).
end for
Derive (14) and update Gy () to include the new cut.
if V — v < € then return .
end if
Update V and incumbent (x*, y*(w)) if yk (w) satisfies mixed-integer restrictions for all w € Q.
Fathom nodes for which v’ > V + ¢; that is, update lez le < T \{r|te le, vl >V 4e).
Update Q) by re-solving problem (15) for node # (k) with updated Gy ().
k< k+1
end while

that for k > K (t) with t (k) = t, we either have v' > V¥ or fllf’t(xk, w) = f(xF, w)
for all w € Q. Then, the B& B procedure produces an optimal solution x*, as well as
its optimal value V* in finitely many iterations.

Proof Let K = K(t) be an iteration such that #(K) = ¢ and either the lower
bound for node ¢ matches or exceeds the global upper bound (i.e. v/ := ¢ xX +
E[fLK’t(xK, w)] > VK > V*), or the lower bound for node ¢ matches the true

second-stage cost at node ¢ (i.e. fLK’t(xK, w) = f(xX, w)) for all outcomes w € Q.
In case the former holds true, node ¢ is deleted from further consideration, while if
the latter holds true, there are two possibilities: either xK gsatisfies the mixed-integer
requirements or not. In case of the former, the B&B process deletes the node QF,
and possibly updates the upper bound using the value VX. On the other hand (i.e.
xK does not satisfy the MIP requirements) the node Q) is replaced by two other
descendant nodes in the first stage. Thus the only case for which the number of B&B
nodes increases in the first stage is when the node Q} is replaced by two descendant
nodes. Due to the finiteness of bounds defining Q1, this subdivision can happen only
finitely many times. Therefore, after finitely many iterations, the nodal solution xX
cannot violate the mixed-integer restrictions. Hence one of the nodes of the B&B tree
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must reveal a mixed-integer solution x X which becomes the incumbent and its optimal
value VX provides the value V* in finitely many steps.

3 Approximations using multi-term disjunctions

This section presents two approaches for approximating the second-stage recourse
function. Both methods convexify the set of feasible solutions of the second stage.
However, one of these is based on a pure cutting plane approach, while the other
performs a convexification prompted by a B&B tree.

3.1 Convexification using pure cutting planes

Until recently, the question of computing the convex hull of mixed-integer points
which satisfy a system of rational linear inequalities was open. For example, Owen
and Mehrotra [17] and Balas [2] have shown that for general MIP, traditional two-term
disjunctive cuts [3] are inadequate to the task of satisfying the conditions of Proposi-
tion 1. The above question was resolved by Del Pia and Weismantel [8], although their
characterization is not based on an algorithmic construction. For the case of bounded
mixed-integer sets, Chen et al. [6] present two algorithms for constructing polyhedral
approximations which provide the same solution as the original MIP in finitely many
iterations. One of the algorithms, the convex hull tree algorithm, essentially provides a
proof technique, and is not recommended as a solution methodology. The other algo-
rithm, the cutting plane tree (CPT) algorithm, is a sequential cutting plane scheme
which generates a finite sequence of cuts which, in the worst case, verifies that the
polyhedral approximation provides an optimal solution which is the same as the MIP
solution. This method may be summarized as one that generates cutting planes from
a hierarchy of multi-term disjunctions which are recorded in the form of nodes of a
search tree. So long as each visit to a node (i.e. a multi-term disjunction) generates one
facet of the disjunction, and nodes can only be visited finitely many times, finiteness
of the number of multi-term disjunctions implies that the CPT algorithm converges in
finitely many iterations. We refer the reader to Chen et al. [6] for the details, and Chen
et al. [7] for computational results for deterministic MIP problems. Another similar
result has been proposed by Jorg [11], although its computability is not clear as of
this writing. In any event, the method of Chen et al. [6] is able to deliver the property
required by Proposition 1. Because these multi-term disjunctions are intimately tied
to the CPT algorithm, we refer to the resulting cuts as “CPT cuts”.

Suppose that at the k-th iteration of ABC algorithm, we have a fixed x* € X; N

1(k) . . L k.t (k) . . .
0, and are given an initial approximation f;" " (x, w) from previous iterations.
We seek to approximate f (x, @) further using x* and f f ’t(k)(x, w) by executing the
CPT algorithm for a few iterations. Note that this approximation is only valid for
xeXn Q’l(k) . To initialize a sequence of subproblem approximations of the CPT
algorithm, we start by solving (8). Let d denote the iteration counter of the CPT
algorithm (for the second stage), and let yd (w) denote a solution with some fractional
variable(s) at iteration d. Let Tzd (w) denote an index set of the sets that constitute a
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partition { Q] (w), T € Tzd (w)} of Q>.Foreacht € Tzd(w), let Q3 (w) denote bounding
constraints for the vectors y as shown in (20),

Y (w)={y |5 <y=<us}, VreT ). (20)

Given Y only imposes integer restrictions, the set ’Tzd(w) can be used to index a
disjunctive relaxation of Y N Q5 because

U @@2vno,. @n

€7 (w)

Since y?(w) is presumed to have some fractional values for integer variables, we
separate the fractional point (x*, y¥(w)) from the convex hull of those points (x, y(w))
which require y(w) to be integral. Thus, we construct a disjunctive set which satisfies
the following,

oyl g U {ereixexino® @ e i@} @

d
ey

We use the same rules as in the CPT algorithm [7] to construct the disjunctive set.
Moreover, the hierarchy of disjunctions represented in ’2'2d (w) is generated in the form
of a tree structure (called cutting plane tree) and ’2'2d (w) contains all nodes that do not
have children nodes. The tree itself is initialized with one global node defining the
constraints for Q. If the solution yd (w) does not satisfy the mixed-integer restrictions,
then the algorithm walks through the cutting plane tree to locate the deepest node (from
the root node) that contains yd(a)). Let us refer to this node as t¢. If 77 € ’]'2d (w)
(implying it does not have any children node), two nodes are created as its children
nodes and ¢ is removed from TZd (w). On the other hand, if t¢ ¢ 7'2’1 (w), no new
node is created. In this way, ’]'2d (w) is updated such that conditions (21) and (22) are
satisfied.

By intersecting every subset of the partition (20) with Z’Ii (t, w), a cut generation
linear program (CGLP) can then be formulated to derive multi-term disjunctive cuts
as follows.

max  7o(w) — 71 (@) 2 = m(w) Ty (w) (23a)
st (@) = T*(t, @) Aoy — ATAL 41 — vy VT e T (w) (23b)
T
M (@) = WA, 0) Aar + par —var VT € T (0) (23¢)
P, @) e —bT A+ (15) o + ) iy — @) Tvae — @) Ty
> () T €T () (23d)
“1<m <1, -1<m) <1, (23e)
-1 <m(w) <1 (23f)
A, A2 > 0,1, 020 > 0, 1, war >0, for ¥t e T (w). (23g)
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There is significant latitude in formulating the CGLP (23) when it comes to the
treatment of the first stage variables x, because the search for the optimal value of these
variables is carried out via a B&B process in stage 1. As with the use of disjunctive
programming to explain intersection cuts, one may ignore one or more first stage
constraints by using elements of A to be 0. In formulating (23), we have opted to
use Ay = Ay, 1y = U1, and vy, = vy for all . This reduces the size of the CGLP,
while recognizing that the first stage variables x must satisfy x € X, N Qf. Note
that such a restriction does not ensure access to facets of the convex hull of X N Q’l.
However, such facets are not necessary for convergence because the B&B process
of the first stage is used to ensure convergence. Note also that in generating the cut
coefficients of the second stage, we do index the multipliers Ayr, (2 ¢, V2, by the
subsets in the disjunction. The critical aspect of these cuts is that they provide the
correct second stage value function as required by Proposition 1. This result will be
shown in Proposition 3. In any event, the solution to the above CGLP provides the
following valid inequality.

(@) " x + m(w) T y(w) > mo(w). (24)

Note that (24) is associated with scenario w, and we derive separate cuts for each
€ Q. Since (22) includes inequalities that are valid for X N Q" , this CGLP combines
the convexification in the space (x, y(w)) where x € Q’l. As a result, the CGLP
suggested in this paper is larger than that used for the original D? algorithm [21].
However, the ABC algorithm does not require the convexification using the epi-reverse
polar used in [21]. In this sense, the cuts used in the ABC algorithm are different from
those in the D? algorithm.

Proposition 2 Cutting plane (24) is valid for feasible set {(x, y(w)) | T*(t, w)x +
WE(t, w)y(w) > rh(t, w), x € X N O}, y(w) € Y N Q2}.

Proof For any (x, y(w)) satisfying {(x, y(w)) | T5(t, w)x + Wk(t,w)y(a)) >
rk(t, w), x € XN Q’l, y(w) € Y N O3}, (23b, ¢, d, g) imply that
(@) 'x + m() y() (25a)
= ()JT T*(t, w)x — )JAx + ,u;rx — virx)

+ (AW 0@ + 13, y(@) 1]y (@) (25b)
> rf (6, 0) Thae = b + 1 e + 1 g — b vae —ul Ty (250)
> mo(w), (25d)

as required.

The cut (24) is included in the second-stage formulation, leading to a stronger approx-
imation of the second-stage polyhedron, and consequently, a stronger approximation
of the recourse function, which is denoted as f f ”’d(x, w). In the following, a super-
script k— denotes the most recent update of any particular data element (e.g. W, T,

r). In general, after d iterations of the CPT algorithm for the subproblem, we have
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1y, w) =min  g(w)"y (26a)
s.t. W (r, )y = K (1, w) — TF (1, w)x (26b)

4 (w)y = M (o) — M (w)x (26¢)

y e QO (26d)

where constraint (26b) denotes the approximation of subproblem for x € Q/ before
starting iteration k. In addition, (26¢) includes all cuts generated during this round
of iterations for solving/approximating the subproblem. There is another algorithmic
point to be noted here; (26) is essentially the same as (8), but the left hand side of
(26a) includes three superscripts (k, ¢, d) while the function in (8) has two superscripts.
The reason for this distinction is to emphasize that there are “outer iterations” (first
stage) indexed by k, whereas, the “inner iterations” (second stage) are indexed by d.
Depending on the course of the CPT algorithm, (26¢) needs to be included in the CGLP
to ensure convergence of the algorithm [6]. After the approximation f’[’d(x, ) 18
obtained, the cut-enhanced LP is re-solved and new cuts are generated as long as the
inner iteration generates y? (w) that are fractional. At any outer iteration k, we allow at
most D cuts to be added for the second-stage CPT (approximation) algorithm. Once
the process of solving the subproblem stops, we form a Benders’ cut as in (14) and
return to the master problem. As a reminder, recall that the cuts for the first stage
are recorded via the index set G, (t), while cuts for the second stage are indexed by
elements of G, (¢, ). Since xkis integer feasible, then xkex LN Qt](k). An algorithm
to approximately solve subproblems for each w, with at most D cuts added, called
cutting plane tree disjunction (CPT-D), is shown as Algorithm 2.

Algorithm 2 CPT-D

Initialize d <« 1, assign CPT tree leaves set ’Tz‘l (w) < {o} where o is the root node with bounding
constraint Q‘z’ < (». Populate Wk_(t, w), rk_(t, w), Tk_(t, ) with valid cuts based on G (t, ®).
while d < D do
Evaluate ff’t’d(x, ) and get yd(w).
if yd (w) satisfies mixed-integer restrictions then, STOP and yk (w) <~ yd (w)
else
Find the deepest node o that contains yd(a)) in ’Tzd (w).
if o is a leaf node then,
Split node o and use the updated ’Tzd (w) and first-stage node bounds Qtl(k) to formulate and
solve (23) and obtain cut (24).
else
No splits are needed. Use o and leaf nodes that in the subtree of o and er(k) to formulate
and solve (23) and obtain cut (24).
end if
Update H‘ll(w), 1'1‘21((1)), Hg(w) with the new cut, enlarge G; (¢, @) with the index of the new cut.
end if
d<~d+1
end while

Proposition 3 Assume that the second-stage problems are all bounded, and moreover,
suppose that the cuts coefficients (24) correspond to extreme point solutions of the
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CGLP (23). Then for fixed t (k) there exists a finite integer D < oo, such that algorithm
CPT-D finds mixed integer optimal solutions for all subproblems (2) indexed by w;
that is, with x = x* we have ff’t’D(xk, W) = f(xk, w) forYo.

Proof When D is large enough, algorithm CPT-D is the same as the CPT algorithm
to solve each subproblem. Due to the finiteness of the CPT algorithm proved in [6], all
we need to prove is that for fixed Tzd (w) and Qtl(k), only finitely many constraints can
be generated from the CGLP (23) as (x*, y4(w)) changes. To see this, note that the
constraints in (23) depend on the disjunction that is violated, but not the specific vectors
(xk, yd (w)). With fixed Tzd(a)), there are only finitely many disjunctions that can be
violated. Thus, the number of extreme points of (23) is finite. Since with the generation
of each cut, there is one less extreme point of the CGLP that can be generated. So
in the worst case, all extreme points are generated which implies the finiteness of the
number of potential cuts. This completes the proof.

Chen et al. [7] shows that a formulation which minimizes the 1-norm provides better
numerical stability than the CGLP in (23). Therefore, our computational experiments
use the following as the CGLP to generate disjunctive cuts.

min Y [mii(@)| + Y Im; (@) (27a)
iel jeJ
_ 7k T, T _ d
st. (@) =Tt w) dar —A'A + 1 — v V1 e T (w) (27b)
T
m(w) = Wit ) Aar + por —v2e VT € T (o) (27¢)
T T T
PRt @) dar —bTA + (15)  par + (1) — D) Tvar — () vy
> (@) + @) Y @+ 1 e T (o (27d)
M har = 0,01, 020 2 0, 1, par 20, forV 1 € T (w). (27e)

If one wishes to implement (27) and still ensure finiteness of the algorithm, one has
to ensure that the cuts from (27) can be mapped to an extreme point of (23). This can be
accomplished in several algorithmic ways. One should observe that any cut obtained
by using (27) has an equivalent cut in (23). If this mapping reveals an extreme point of
(23), then, finiteness is ensured. However, if the solution from (27) is not equivalent to
an extreme point of (23), then, one should identify the lowest dimensional face of (23)
whose interior contains the equivalent cut coefficients. Then one could optimize (23)
by restricting the LP solution to belong to that face. Since this process would identify
an extreme point of (23), finiteness of the cut generation scheme would be ensured.

In our implementation, we gradually increase the number of cuts we generate during
any outer iteration k. To do so, we initialize an integer D < 2 and at each outer
iteration, we update D < D 4 2. This style of implementation is motivated by
our prior experience (e.g. [27]) that seeking very accurate objective function estimates
requires much more computational resources than what can be justified in early (outer)
iterations of the algorithm; in later iterations however, seeking greater accuracy tends
to pay off.
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3.2 Convexification implied by branch-and-bound

Most deterministic MIP algorithms combine valid inequalities in the context of branch-
and-bound methods, and as a result, branch-and-cut methods form the backbone for
most state-of-the-art commercial solvers. The CPT algorithm used in the previous
section is a pure cutting plane method. The fact that it also utilizes a tree structure
to manage the disjunctive sets inspires a way that transforms the B&B tree obtained
from an MILP solver to help create a polyhedral approximation which gives the same
MIP optimal value as that obtained from the B&B method. In the remainder of this
section, we describe such an algorithm and prove that this approximation can also be
obtained in finitely many steps. It turns out that this combination (of B&B with valid
inequalities) extends the branch-and-cut approaches of Sen and Sherali [23], and Yuan
and Sen [27].

Suppose that for a fixed x* € X; N Qtl(k), the subproblem (2) is either solved to
optimality by a B&B method, or an approximate solution is obtained via a truncated
B&B process. The latter is typically stopped when a node limit or a time limit is
reached. Let the optimal/incumbent solution be denoted y*(w). Due to the B&B (or
truncated B&B) process, it is reasonable to assume that we have a set of leaf nodes of
a B&B tree. Let Tzremain denote the remaining leaf nodes in the B&B tree and ’Tzfa‘hom
denote the leaf nodes that have been fathomed. Note that these nodes depend on w,
but we have dropped that dependence to ease the notational burden. However, we do
define 7 (w) = ’Tzremai“ U ’Tzfathom. Suppose the constraint set used in (7) is represented
in the form

2, 0) = [ (x, y(@) | TF (1, 0)x + WE (1, 0)y(0)

= (1 w),x € XN 0}, y() € 02} 8)

where similar to (26), a superscript k— denotes the most recent update of any data
element (e.g. W, r) before iteration k. We also define

zheo= J (B eo@y@) xR ye0l)). 29
€Ty (o)

Since QF, VY © € Tr(w) are disjoint from each other, 75(w) provides a disjunctive
relaxation in the space of (x, y(w)). Thus, the same form of CGLP as in (23) can be
used to derive multi-term disjunctive cuts using the partition 7(w). The rest of the
algorithm is similar to CPT-D. There are two phases: the first phase is to use a B&B
method to either solve the second-stage MIP, or obtain an approximate solution using
a truncated B&B process. In either case, we have 7>(w) which is used to obtain a
disjunctive approximation. The second phase starts by seeking the value f f ohd (x*, w)
with d = 1. At iteration d, if the optimal solution of (26) is fractional (denoted
yd (w)), we formulate (23) based on 7> (w) and Q’1 to cut off (x*, yd (w)). The index
of the new cut is added into G, (¢, ). Then, we re-solve (26), and this process contin-
ues until (x¥, y¥(w)) belongs to Zf) (t, w). The method is called Branch and Bound

@ Springer



208 Y. Qi, S. Sen

Algorithm 3 BB-D

Initialize iteration d < 1. Initialize G; (¢, w) < @ if it does not exist,
Phase 1:
Solve subproblem: Evaluate f Kt (x, w) by using a B&B method with x = x¥ for D iterations
and get leaf nodes set 73 (w) and solution y* (w).
Phase 2:
while true do
Evaluate fllf'[‘d(x, ) and get yd(a)).
if (<K, y4(@)) € 25 (1, @) then, y*(») < y¢() and return .
else
Use 75(w) and Q’l to formulate and solve (23) and obtain cut (24).
Update H’f(w), Hg(w), l'[g (w) with the new cut and enlarge G; (¢, w) with the index of the new cut.
end if
d<—d+1
end while

with Disjunction (BB-D) and is shown in Algorithm 3. While the form of the BB-D
process is similar to the CPT-D process presented in the previous section, the inclusion
of B&B, especially its truncated version, makes this decomposition approach much
more realistic for practical instances of MIP in the second stage. Nevertheless, the
proof of convergence derives from the same concept that one can obtain a polyhedral
approximation of a disjunctive set embodied by a B&B tree. This is summarized in
the following proposition.

Proposition 4 Under the same assumptions as in Proposition 3, Algorithm 3 termi-
nates in finitely many steps, provided D is sufficiently large so that the B&B process
provides an optimal second-stage solution for any node indexed by t.

Proof A B&B tree embodies a multi-term disjunction. Using such a disjunction to
formulate the CGLP in (23) results in a polyhedral approximation which creates the
convex hull of the partition provided by the B&B tree. Hence there exists a counter
K < oo such that for any subset Q*, we obtain the same solution as from B&B. Hence

for a B&B algorithm such that there is D < oo such that f(xX, w) = fLK”’D(xK, ),
for all w € . Since this satisfies the requirements of Proposition 1, the result follows.

Both Algorithms 2 and 3 use multi-term disjunctive cuts which are added to the
second stage MIP, and the resulting polyhedral approximation then allows us to update
a piecewise linear approximation of the expected recourse function as in (14—13). The
difference between the two algorithms is simply the manner in which the disjunctive
sets are constructed: Algorithm 3 uses the B&B nodes to construct one disjunctive set,
whereas, Algorithm 2 iteratively builds up a collection of cuts based on a sequence of
disjunctions, which may vary depending on the second stage fractional points encoun-
tered during the CPT process.

4 Iustrative examples

This section illustrates the workings of the algorithm using four examples, all of which
are variants of Example 1.0. This example, which originally appeared in [19], has been
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used to illustrate several algorithms whose structures are specialized to binary second
stage problems in [22], and to problems with fixed tenders [1]. In our presentation,
we will start with the binary instance, and then, make the example progressively
more difficult, allowing general integers in the second stage (Example 1.1), general
integers in both stages (Example 1.2), and finally allowing randomness in the 7 matrix
(Example 1.3). Figures illustrating the progress of the first-stage search are provided
in the “Appendix”.

Example 1.0
min —1.5x; — 4x, + Z p() f(x, ) (30a)
we
s.t. xp, x2 binary (30b)
where
f(x,w) =min —16y; — 19y, —23y3 —28y4 + 100R (31a)

6y1 +1y2 +3y3 +2y4 — R
yibinaryi =1,...,4, R >0, (3lc)

.. [2y1 +3y2+4y3+5y4_R] < r(w) — T(w)x 31b)

10 10 5
Q= (o1, 02}, @) = p@) =05, r@) = [ |. 7@ = [ § 7] r = [3 ],
T () = [(1) (1)] We first apply the ABC algorithm with CPT-D to solve this example.

At iteration k = 1, the algorithm starts by solving a relaxed LP master problem.
We put a very low bound on 7.

min  — 1.5x1 —4x; + 17 (32a)
st. 0<xp,x <1 (32b)
n>-M (32¢)

We get a solution (x1, x2, 7) = (1, 1, —M) with objective v = —M — 5.5. Here only
the root node is in the B& B tree. Withx = (1, Dand Q¢ = {0 < x; < 1,0 < xp < 1}
we solve the subproblems. We now invoke CPT-D (Algorithm 2) as explained next.
For scenario wg, (8) is solved and we get y(w;) = (0, 1,0,0.5,0). Note that y4
is fractional and partitions are formed for that integer variable: {ys < 0} N Q; or
{y4 = 1} N Q». The cut derived from CGLP (27) for x € Qf is

—2y2 —2y4+ 2R > —4 + 2x;. (33)

After including the cut, (8) is re-optimized and the solution is y(w1) = (0, 0, 0, 1, 0).
This satisfies the integer constraints. For scenario wj, (8) is solved and we get
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y(w2) = (0, 1,0, 0, 0). Again, this solution satisfies the integer constraints, and hence,
no additional cuts are needed. Since all scenarios have integer solution, we update V':
V = —29 and, the Benders’ cut for x € QF is

—16.5x3 4+ n > —40. (34)

At iteration k = 2, the master problem continues to be solved by a B&B method.
We get a solution (x1, x2, n) = (1, 0, —40) with objective v = —41.5. The first stage
B&B tree still contains only the root node. With x = (1, 0) and Q‘l’ ={0<x <
1,0 < xp < 1} we solve the subproblems. Again we invoke CPT-D. For scenario wy,
(8) is initialized as follows:

fro(x,w;) =min — 16y; — 19y, — 23y3 — 28y4 + 100R (35a)
st. 2y1+3y2+4y3+5y4— R <10 —x; (35b)

6y1 +1y2+3y3+2y4— R <3 —x3 (35¢)

—2y2 —2y4+2R > —4 4 2x> (354d)

O0<y <li=1,...,4,R>0 (35e)

where constraint (35d) is from cut (33) generated in iteration 1. (35) is solved and we
get y(w1) = (0, 1,0, 1, 0). The solution satisfies integer constraints. For scenario wy,
(8) is solved and we get y(wy) = (0.1154, 1, 0, 0.1538, 0). We now choose y; as the
variable to split. The partitions we form are: {y; < 0} N Q2 or {y; > 1} N Q». The cut
derived from CGLP (27) for x € Qf is

—4.875y, —6.5y4 + 1.625R > —6.5 + 1.625x]. (36)
After including the cut, (8) is re-optimized and the solution is
y(w2) = (0.056, 1, 0.222, 0, 0). 37

Following the CPT algorithm, we locate y(w>) on the root node of CPT tree. There are
no splits needed. We continue with the same partition: {y; < 0}N Qs or{y; > 1}NQ».
The cut derived from (27) for x € Qf is

— 225y, — 4.5y3 +2.25R > —2.25. (38)

After including the cut, (8) is re-optimized and the new solution is y(w2) =
(0.06, 0.68, 0.16, 0.24, 0). Again, y(w>) is located on the root node, and no more
splits are needed. The same partition: {y; < 0} N Q2 or {y; > 1} N Q> is used to
formulate (27). With only y(w>) changed, another cut derived from (27) for x € Qf
and that is

—2.5y3 —2.5y4 +2.5R > —2.5 + 2.5x,. (39)
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After including the cut, (8) is re-optimized and the solution is y(w;) = (0.1667, 1, 0,
0, 0). Since y(w») is located at the root node no more splits are necessary. We use the
same partition: {y; < 0} N Q7 or {y; > 1} N Q> to formulate (27). The cut derived
from (27) for x € QF is

—6y; + 1.5R > 0. (40)

After including the cut, (8) is re-optimized and the solution is y(w2) = (0, 1, 0, 0, 0).
This solution satisfies the integer constraints. Since all scenarios have integer solutions,
we update V: V = —34.5 and, Benders’ optimality cut for x € QF is

— 7.55x1 —3.8333x2 +n > —40.55. (41)

At iteration k = 3, the master problem continues to be solved by the B&B method.
We get (x1, x2,1n) = (0,0, —40) with objective v = —40. The solution is on node
1 with Q} ={0 <x;1 0,0 < x <1}. Hence, x = (0,0) and Q{ are treated as
input parameters for CPT-D for each w € 2. For scenario wy, no cuts are needed. The
solution is y(w1) = (0, 1,0, 1, 0). For scenario w;, one cut is needed and is shown
below.

—3.6923y, —2.4615y3 — 3.6923y4 + 1.2308R > —3.6923. (42)

The solution is y(wz) = (0,0, 0, 1, 0). We update V: V = —37.5 and, the Benders’
optimality cut for Q} is

—8.3333x, + 1 > —37.5. (43)

Atiteration k = 4, with updated Benders’ cut for node 1, the master problem continues
to be solved by a B&B method. We get solution (x1, x2,n) = (0,0, —37.5) with
objective v = —37.5. Since V — v < ¢, the algorithm stops. A short summary of
using ABC algorithm with CPT-D to solve this problem is shown in Table 1. Each row
shows the information for one iteration. Column “Num Nodes” denotes the number of
active nodes in the B&B tree. “Num Cuts” means the number of multi-term disjunctive
cuts generated for that scenario.

We also apply the same ABC algorithm but with BB-D to solve this example. The
algorithm starts by solving a relaxed LP master problem. We put a very low bound
on 7. At iteration k = 1, we get a solution (x1, x2, 7) = (1, 1, —M) with objective
v =—M — 5.5 from the B&B method. With x = (1, 1) and Q‘f ={0<x=<1,0<
x3 < 1}, we invoke BB-D to solve the subproblems for each w € 2. For scenario w1,
(8) is solved by the B&B method and we get 2 nodes in 7; with bounds {ys < 0}N Q>
and {ys > 1} N Q. With one cut derived from (27) for x € Qf, we get a new
constraint
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—2y2 —2y4+ 2R > —4 + 2x,, (44)

and upon solving the updated formulation, we get y(w;) = (0, 0, 0, 1, 0), and no more
cuts are necessary. For scenario w», (8) is solved by a B&B method and we get only
one node in 7; with Q5 untouched. No cuts are needed, and y(w;) = (0, 1, 0, 0, 0).
Since all scenarios have integer solutions, we update V: V = —29 and, the Benders’
cut for x € Qf is

— 16.5x2 + n > —40. (45)

At iteration k = 2, the master problem continues to be solved by a B&B method. We
get a solution (x1, x2, n) = (1, 0, —40) with objective v = —41.5. Using x = (1, 0)
with Q9 = {0 < x; < 1,0 < xp < 1} we now derive the subproblems. The BB-D is
called for each w € 2. For scenario wy, (8) is initialized as follows:

f(x,w;) =min — 16y; — 19y, — 23y3 — 28y4 + 100R (46a)
st. 2y1+3y2+4y3+5y4 — R <10 —x (46b)
6y1+1y2+3y3+2y4—R<3—x (46¢)

—2y2 —2y4+2R > —4+2x, (46d)

yibinaryi =1,...,4,R>0 (46e)

where constraint (46d) is inherited from iteration 1 [see (44)]. We solve (46) by a B&B
method and we get 75 with one node. Its bound is Q. We have y(w;) = (0, 1,0, 1, 0).
For scenario wy, (8) is solved by a B&B method and we get 7, with 4 nodes. Their

boundsare {y1 = 11N Qs {yi =1, y3=1}N 02, {y1 =0,y3 =0,y4 =0} N Q>
and {y; =0, y3 =0, y4 = 1} N Q7. Here 4 cuts are derived from (27) for x € Qf:

— 8.6667y; + 2.1667R > 0

—4y3 +4R >0
—3.75y2 — 5y4 +1.25R > =5
—X1—y+R>-1L (47

With these 4 cuts added, the solution y(w2) = (0, 1, 0, 1, 0). Since all scenarios have
integer solutions, we update V: V = —34.5 and, the Benders’ cut for x € Q‘]’ is

— 4.5x) — 3.8333x2 + 1 > —37.5. (48)

At iteration k = 3, the master problem continues to be solved by the B&B method.
We get a solution (x1, x2, ) = (0, 0, —37.5) with objective v = —37.5. The solution
belongs to node 2 with Q% = {0 < x1 < 1,0 < xp <0}. Here the first stage solution
x = (0, 0) and the box Q% are treated as input parameters for BB-D for each scenario
w € 2. For scenario w1, the solution is y(w;) = (0, 1, 0, 1, 0). For scenario w;, the
solution is y(wy) = (0,0, 0, 1,0). V = —37.5 and, the Benders’ cut for Q% is

—2.8333x1 — 5.1667x2 +1n > —=37.5. (49)
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Atiteration k = 4, with updated Benders’ cut for node 2, the master problem continues
to be solved by a B&B method. We obtain (x1, x3, ) = (0, 0, —37.5) with objective
v = —375.V —v < € and, the algorithm stops. A short summary of the ABC
algorithm with BB-D is shown in Table 2. As one might notice, there is only a small
difference between BB-D and CPT-D for Example 1.0. At iteration 2, because BB-D
uses partitions with 4 terms to generate cuts, the quality of the Benders’ cut is better
than CPT-D.

Example 1.1 is an extension of Example 1.0, and is intended to illustrate the workings
of the algorithm when we include general integer variables in the second stage.

min  —1.5x; — 4x; + Z p(w) f(x, ) (50a)
we
s.t. x1, x2 binary (50b)
where
f(x, ) = min — 16y; — 19y, — 23y3 — 28y4 + 100R (51a)

6y1+ 1y2+3y3 +2ys — R
yie{0,1...5,i=1,....,4R >0, (51c)

Sit. [2y1+3y2+4y3+5y4_R] < 1) — T(o)x (51b)

Q = {w1, w2}, p(w1) = p(w) = 0.5, r(wy) = [130}, T(w) = [(1) ﬂ r(w) =

5 10
HESS

The summaries of applying ABC algorithm with CPT-D and BB-D on Example 1.1
are shown in Table 3 and Table 4.

In Tables 3 and 4, the rows show the information generated in each successive
iteration of the algorithm. The column header “Num Nodes” indicates the number of
active nodes in the B&B tree and “Num Cuts” indicates the number of multi-term
disjunctive cuts generated for that scenario. In the first iteration, v = —M — 5.5
where —M denotes the lower bound for 7; [see (15)] and in our experiment we set
M = 1000000. From the Table 4, we can observe that both algorithms require one
more iteration and generate more cuts in the subproblem than in Example 1.0 (Tables 1,
2), but the differences between the execution of BB-D and CPT-D for this example
are minimal.

To better illustrate the algorithm, we also include two sets of figures (Figs. 2, 3
in “Appendix 2”) which show the master problem B&B tree at each iteration of the
algorithm. The node with bold circle contains the solution x* and gets the objective
function approximation updated in the iteration. Similar to the results shown in the
Tables 1 and 2, there are only minor differences for the master problem B&B tree
between the two algorithms.

In connection with this illustration, we also present two figures (Figs. 4, 5 in “Appen-
dix 2”’) which show how one tracks the index sets of cuts associated with various nodes
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of the B&B trees. With all generated Benders’ cuts as one pool and all generated sub-
problem’ cuts as another pool, the sequence encodes the validity of the cuts from each
pool for any given node of the master problem B&B tree. Again, there are only minor
differences in the execution of the two algorithms for this example.

Example 1.2 This example extends Example 1.1 by requiring general integer variables
in the first-stage as well. So instead of having x1, x to be binary, they are now allowed
to be integers and bounded by 0 < xj,x < 5. The summaries of applying two
algorithms are shown in Tables 5 and 6. Compared to the previous example, Tables 5
and 6 demonstrate that due to a larger number of choices resulting from general integer
variables in the first stage, the algorithms require more iterations to solve the problem.
Note also that using BB-D requires more iterations than CPT-D for this instance,
although the average number of cuts for BB-D is fewer than that used by CPT-D.

Example 1.3 As with Example 1.2, we maintain the same range of integers in the
range [0, 5], although we allow randomness in the 7" matrix, stated as follows.

ren=" gs] rea=['" 3]

The summary of applying the algorithms are shown in Tables 7 and 8. From Tables 7
and 8 we can conclude that BB-D requires fewer disjunctive cuts on average for solving
subproblems than CPT-D. In addition, the total number of iterations and Benders’ cuts
in the first stage are also fewer. Comparing Example 1.3 with Example 1.2, we also
observe it takes more iterations to solve Example 1.3 (with random 7') than to solve
Example 1.2 (with fixed T'). This is due the fact that 7 in Example 1.3 has higher
density than in Example 1.2.

5 Computational experiments

This section presents three computational experiments. In Sect. 5.1, we present com-
putations using larger versions of the examples of Sect. 4. These examples are solved
using a combination of MATLAB and CPLEX 12.3. The MATLAB code implements
the first-stage B&B, whereas, the rest of the algorithm was coded in C++. The pur-
pose of this combination was to study whether a deterministic equivalent formulation
(DEF), solved using a commercial state-of-the-art solver provides any advantage over
our decomposition methodology. One would expect that the DEF approach would win
this race because of the advances in commercial solvers for deterministic MIPs. The
results of Sect. 5.1 reveal that despite the strides made by commercial MIP solvers for
DEEF, they are not competitive with the decomposition approach for SMIP models.

There are two further sub-sections of computations in this section. In Sect. 5.2
we upgrade the first-stage branch-and-bound implementation from MATLAB to C++,
and report whether the algorithm scales well with first-stage decisions. And finally
in Sect. 5.3, we present computations with a new class of test instances which are
generalizations of the SSLP instances [16]. The new test instances, which we refer to
as Stochastic Server Location and Sizing (SSLS), allow general integer variables in
both stages.
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5.1 Comparisons between ABC and DEF

In this subsection we compare the decomposition approach of ABC with solving a
deterministic equivalent formulation (DEF) using state-of-the-art CPLEX MIP solvers
with default setting through CPLEX 12.3 MATLAB API. We designed a MATLAB
implementation of the ABC algorithm which calls the CPLEX LP solver whenever
an LP solution is required. For all other purposes (e.g. managing the B&B tree) the
MATLAB script operates in the MATLAB environment.

Three sets of instances are generated based on Examples 1.1-ex1.3. For each exam-
ple, we create 4, 9, 36, 121, 441, 1681, 10201 scenarios by generating the right hand
sides r(w) from equidistant lattice points in [5, 15] x [5, 15] with equal probability
assigned to each point. This methodology was borrowed from Schultz et al. [19] (see
also [1]). For the seven instances based on Example 1.3, we use the same random right
hand side r(w) = [2223} as in Example 1.2, but in addition T (w) is also random.
The entries for these matrices were 0 or 1 with equal probability.

Table 9 compares the performance of three algorithms: two based on using the ABC
algorithm with CPT-D and BB-D whereas, the third algorithm used CPLEX 12.3 (with
default setting) for the MILP formulation of the deterministic equivalent formulation
(DEF). All approaches were run on a Windows 7 PC operating with Intel i7-3770K
3.5GHz processors and 8 GB memory. Instances 1-3 in the table correspond to the
variations based on Examples 1.1—ex1.3. The column heading Obj denotes the optimal
objective value of the SMIP, Var and Constr denote the number of variables and
constraints in the DEF. The entries in column ABC (CPT — D) and ABC (BB — D)
denote Iterations (Master Nodes, Second-stage Leaf Nodes, Running Time) which
correspond to the total number of iterations, the total number of nodes in the B&B
tree in the master problem, the maximum leaf nodes encountered during solving the
subproblem and the total running time. The DEF column shows the CPU time (in
s) required to solve DEF using the default version CPLEX 12.3 MIP solver. The
maximum CPU time allowed was 60 min.

The results reported in Table 9 clearly demonstrate that the approach of solving a
DEF with acommercial solver does not scale well, failing to solve 9 instances for which
the number of scenarios were somewhat large. In comparing the performance of ABC
(CPT — D) and ABC (BB — D), we observe that the former also runs into numerical
difficulties for 4 of the larger instances. In contrast, ABC (BB — D) produces optimal
solutions for all the instances within very reasonable computational times. From the
log-log plot in Fig. 6 (see “Appendix”), as number of scenarios increases, the running
time also increases polynomially for ABC (BB — D). The slopes of each of the three
graphs are slightly larger than one (with values 1.0048, 1.1245, 1.1677) which suggests
that as the number of scenarios increases, the running time increases at a rate that is
only slightly worse than “linear”’. To sum up, based on the instances tested, algorithm
ABC shows very stable results and scales quite well with the number of scenarios.
When CPLEX is able to solve an instance, it does so faster than our approach; however,
when the number of scenarios increases, it does not find an optimal solution within an
hour of CPU time, while the ABC approach does.
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Table 9 Comparison of ABC with DEF

Scenarios  Obj Var Constr ABC(CPT-D) ABC(BB-D) DEF
K(T1, T, 9) K(T, Ty, 5) s(Gap)
Instance 1
4 —63.50 26 17 7(4,5,0.234) 5(4,5,0.14) 0.23
9 —66.56 56 37 6(2,6,0.29) 18 (15, 10, 0.98) 0.02
36 —66.83 218 145 7(2,7,1.36) 6(2,7,1.01) 0.02
121 —67.17 728 485 7(1,8,4.43) 6(1,8,2.96) 0.16
441 —65.58 2648 1765 16 (3, 15, 46.63) 10 (2,7, 15.27) 1.582
1681 —64.72 10088 6725 16 (3,17,262.44) 12 (3, 23, 85.29) Timed out (0.2%)
10201 —64.19 61208 40805 Numerical issue 13 (3, 23, 583.08) Timed out (0.18%)
Instance 2
4 —63.50 26 17 12 (10, 10,0.37) 12 (14, 10, 0.3) 0.02
9 —66.56 56 37 20(15,10,1.92) 18 (15, 10, 0.94) 0.02
36 —69.86 218 145 19 (16, 12,7.64) 18 (16, 10, 4.54) 0.03
121 —71.12 728 485 18(16,11,25.18) 17 (16, 11, 13.51) 4.09
441 —609.64 2648 1765 20 (16,22, 168.43) 18 (15,21, 58.97) Timed out (0.53%)
1681 —68.85 10088 6725 Numerical issue 20 (16, 27, 312.36) Timed out (1.59%)
10201 —68.45 61208 40805 Numerical issue 21 (18, 31, 2333.307) Timed out (2.76%)
Instance 3
4 —63.50 26 17 10 (6,7, 0.55) 19 (18,8,0.41) 0.05
9 —64.22 56 37 19 (15,10,2.09) 19 (15, 10, 0.83) 0.06
36 —66.42 218 145 25(21,12,7.85) 25 (19, 13, 3.62) 1.25
121 —64.78 728 485  25(20, 12,26.94) 25 (19, 13, 12.04) 12.12
441 —63.33 2648 1765 28 (21,24,222.82) 27 (20, 24, 82.60) Timed out (1.94%)
1681 —62.19 10088 6725 31(22,28,1210.94) 28(23,33,419.42) Timed out (2.28%)
10201 —61.83 61208 40805 Numerical issue 31(24,34,3243.82)  Timed out (3.04%)

K is the total number of iterations; 77 is the total number of nodes in the B&B tree in the master problem;
75 is the maximum leaf nodes encountered during solving the subproblem; s is the total running time (s)

and time limit is 3600s; Gap is the MIP gap returned by CPLEX when it timed out

4 Obj = 65.576 and integer tolerance, optimal

5.2 Computations with larger first-stage instances

In this subsection we study how the ABC algorithm performs when the number of
first-stage (search) variables increase. The larger instances are generated by including
two more variables at a time to Examples 1.2 and 1.3. For the i-th time, the newly added
pair of variables have objective coefficients given by —1.5 % 2/ and —4 2. For the
larger instance of Example 1.2, matrix T (w) is fixed. The fixed matrix is extended by a
2 x 2 identity matrix with the newly pair of variables added. In the case of Example 1.3,
T (w)’s elements are uniformly generated from set {0.1, 0.2, 0.3, ..., 0.9}. The rest of
the parameters are generated the same way as in instance 2 and instance 3.
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We remind the reader that the objective function contours of this instance have
been depicted in the case of 2 variables by Schultz et al. [19] and Ahmed et al. [1].
These papers also captured the challenges posed by the two variable instance. In
comparison, the total number of first-stage feasible solutions in our extension increases
the number of feasible first-stage solutions exponentially according to the sequence
36°,i = 1,2, etc. The largest instances we attempt have a total number of feasible
first-stage solutions given by 36°, implying a total of more than 2.1 billion feasible
solutions. Of course, using MATLAB to search for optimal solutions of such instances
would be untenable. So, the entire ABC algorithm is implemented in C++ including
the first-stage B&B and second-stage decomposition. All linear programs were solved
using CPLEX 12.6. Finally, we also note that our experiments were conducted for
the most promising scheme among those compared in the previous section. Thus, the
following reports our results using the BB-D version of the ABC algorithm.

The computational results of extending Example 1.2 are shown in Table 10. The
column heading First-Stage Var Num denotes the number of first-stage variables, and
the remaining information follows the same style as reported in Table 9. Comparing
First-Stage Var Num = 2 with instance 2 from Table 9, we can see the speed up
of C++ implementation compared to using MATLAB. And as First-Stage Var Num
grows each time by two, Iterations and Master Nodes required to solve the problem
grow exponentially. We encounter some numerical difficulties for solving instances
of § variables with 121 and 441 scenarios and 10 variables with 441 scenarios. Never-
theless, the algorithm did solve instances of 12 variables in reasonable time. Thus, as
the number of first-stage variables grows, instances may not become harder, and such
anomalies are also known to exist for deterministic MIPs as well.

The computational result of extending Example 1.3 (random T') is shown in
Table 11. We can see the same speed up of C++ implementation compared to MAT-
LAB as well as the exponential growth of Iterations and Master Nodes as First-Stage
Var Num are added by two each time. There are numerical difficulties for solving
instances of 8 and 10 variables with 121 and 441 scenarios and 12 variables with 441
scenarios. Because T is random and relatively dense, these instances become harder
to solve.

5.3 Computational results with stochastic server location and sizing

One application of SMIP is in the network design and planning where servers need
to be located in a least cost manner before demand from customers is known. This
problem arises in a variety of domains such as telecommunication, electricity power,
water distribution, internet service and anti-terrorism. One of the instances available in
the literature, attributed to Ntaimo and Sen [16] is a stochastic server location problem
(SSLP) in which demand uncertainty is limited to whether or not demand will occur
at nodes of a graph. The goal of SSLP is to place servers at discrete locations in
such a way that the expected cost of serving demand is minimized. That collection
of instances have 0-1 variables in both stages. In order to test the ABC algorithm,
we extend the above instances to a class of problems where in addition to location,
we are interested in sizing the servers, where the size is measured in discrete units
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Table 10 Computational results with ABC/BB-D as first-stage variables increase for Example 1.2 (fixed
T)

First-Stage ~ Scenarios  Obj Var Constr  ABC(BB-D) DEF
Var Num
K(Ti, Tz, s) s(Gap)
2 4 —63.5 26 17 11 (11, 8,0.04) 0.05
9 —66.56 56 37 10 (7, 10, 0.07) 0.25
36 —69.86 218 145 12 (9, 10, 0.35) 0.09
121 —=71.12 728 485 12 (11, 10, 1.24) 0.76
441 —70.23 2648 1765 14 (17,21,9.97) Timed out (0.36%)
4 4 =74 28 17 21 (47,9, 0.09) 0.13
9 —81.89 58 37 26 (51, 10,0.17) 0.02
36 —87.08 220 145 21 (35, 10, 0.63) 0.05
121 —89.07 730 485 31 (61, 10,2.71) 0.09
441 —87.39 2650 1765 30 (69, 19, 20.90) 1.37
6 4 —125.75 30 17 181 (833, 8, 0.49) 0.02
9 —130.78 60 37 135 (635, 10, 0.76) 0.03
36 —134.17 222 145 145 (603, 10, 3.73) 0.34
121 —135.3 732 485 152 (591, 10, 17.99) 1.15
441 —134.07 2652 1765 177 (677, 17, 158.55) Timed out (0.09%)
8 4 —235.75 32 17 56 (185, 10, 0.18) 0.03
9 —240.78 62 37 1810 (6681, 9, 18.82) 0.03
36 —244.17 224 145 2255 (8031, 10, 193.42)  0.03
10 4 —455.95 34 17 24 (107, 8, 0.07) 0.02
9 —460.87 64 37 19 (63, 8,0.11) 0.02
36 —489.45 226 145 78 (229, 9, 1.70) 0.03
121 —500.53 736 485 442 (1325, 9, 73.96) 0.45
12 4 —965.25 36 17 14611 (41993, 9, 184.77)  0.02
9 —1045.33 66 37 217 (905, 9, 1.14) 0.01
36 —1089.56 228 145 52(231,8,0.92) 0.02
121 —1108.23 738 485 65 (245, 8,4.53) 0.05
441 —1115.72 2658 1765 58 (215, 11, 20.97) 0.95

K is the total number of iterations; 77 is the total number of nodes in the B&B tree in the master problem;
75 is the maximum number of leaf nodes encountered during solving the subproblem; s is the total running
time (s) and time limit is 3600s; Gap is the MIP gap returned by CPLEX when it timed out

[0,1,2,...,5]. We refer to these test instances as the Stochastic Server Location and
Sizing (SSLS) instances. The precise model formulation is given in “Appendix 1”.
The size of the model is captured by the name “SSLS-(m x u)-(n x v)-S”, where m is
the number of potential server locations, u is the maximum number of servers allowed
for each location, n is the number of potential client locations, v is the maximum
number of possible clients for each location and S is the number of scenarios. We report
results on problem instances with m € {2, 3,4}, n € {5, 10, 15}, S € {50, 100, 500},
u = 5 and v = 5. A summary of the notations is shown in Table 12. We should note
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Table 11 Computational results with ABC/BB-D as first-stage variables increase Example 1.3 (random

T)
First-Stage ~ Scenarios  Obj Var Constr  ABC(BB-D) DEF
Var Num
K(Ti. Tz, s) s(Gap)
2 4 —63.5 26 17 13 (31, 16, 0.10) 0.05
9 —64.22 56 37 24(63,23,044) 0.06
36 —66.46 218 145 22 (47,21, 1.40) 1.25
121 —64.78 728 485  27(55,32,7.07) 12.12
441 —63.33 2648 1765 27 (55, 28, 28.23) Timed out (0.36%)
4 4 —=79.7 28 17 13 (31, 16, 0.10) 0.14
9 —82.78 58 37 24(63,23,0.44) 0.09
36 —83.02 220 145 22 (47,21, 1.40) 1.86
121 —83.14 730 485 27 (55, 32,7.07) 26.5
441 —82.41 2650 1765 27 (55, 28, 28.23) Timed out (0.29%)
6 4 —127.75 30 17 135 (371, 20, 0.54) 0.03
9 —124.49 60 37 139 (407, 21, 1.49) 0.14
36 —126.56 222 145 163 (435,22, 7.28) 2.04
121 —128.61 732 485 183 (475, 24, 39.77) Timed out (1.19%)
441 —128.87 2652 1765 186 (463, 23, 246.74) Timed out (2.48%)
8 4 —232.5 32 17 1127 (4105, 20, 8.16) 0.17
9 —242.78 62 37 1657 (5627, 22,26.94) 0.05
36 —229.61 224 145 2324 (7243, 23, 293.37) 0.77
10 4 —444.75 34 17 27505 (87493, 20, 111.41) 0.17
9 —488.11 64 37 144 (325, 15, 1.03) 0.19
36 —517.42 226 145 2098 (6297, 21, 205.03) 0.14
12 4 —886.4 36 17 5(1,17,0.02) 0.16
9 —1016.78 66 37  8(3,17,0.04) 0.03
36 —1070.31 228 145 158 (367, 17, 3.27) 0.08
121 —1094.80 738 485 146 (355, 16, 13.23) 0.17

K is the total number of iterations; 77 is the total number of nodes in the B&B tree in the master problem;
75 is the maximum number of leaf nodes encountered during solving the subproblem; s is the total running
time (s) and time limit is 3600s; Gap is the MIP gap returned by CPLEX when it timed out

Table 12 SSLS-(m x u)-(n x v)-S

Notation Interpretation Value

m Number of potential server locations 2,3,4

u Maximum number of servers allowed for each location 5

n Number of potential client locations 5,10, 15

v Maximum number of clients for each location 5

S Number of scenarios 50, 100, 500
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that while the number of potential server locations appear to be small, the fact that
there are alternative sizes possible makes the combinatorial content significant, and
more-or-less on par with the SSLP instances.

The computational environment is the same as in Section 5.2 and we used the C++
implementation for this experiment. Table 13 shows the results which are reported in a
manner similar to Table 9, 10 etc. Again the number of variables (Var) and constraints
(Constr) refer to numbers in the DEF formulation. The metrics reported in the column
labeled ABC(BB-D) refer to the number of iterations and in parentheses, the numerical
quantities refer to the number of master nodes, the number of second-stage leaf nodes,
and the running time. The algorithm can handle most of the instances except the last
two where the task of generating cuts for all outcomes slowed down the process. One
should expect that problems with fixed recourse would be easier to handle. Among
the runs completed, we can see that as m gets larger, Iterations and Master Nodes
required to solve the problem grow dramatically as expected. On the other hand, as
n gets larger while m,u,v and S stay the same, we find the Iterations and Master
Nodes do not change in general, while the Second-stage Leaf Nodes and Running
Time grow exponentially. We conclude this section by evaluating the potential of
the ABC algorithm by comparing the run time and number of successfully solved
problems. As for total run time in Table 13, the ABC algorithm requires about 3.18 h
and successfully solved 25 instances. In comparison, CPLEX 12.6 requires 12.81h
and solved 15 instances successfully. Based on these comparisons, the ABC approach
shows far greater potential for SMIP models.

6 Conclusion

As stated at the outset, our paper returns to the general class of two stage SMIP prob-
lems that was the focus of the paper by Carge and Tind [4]. This class of problems
involves mixed-integer variables in both stages, and randomness is also allowed in
all data elements of the second-stage MIP. Despite the elegance of the work of Carge
and Tind [4], the chasm between first and second stage strategies has persisted over
the ensuing decades. Using several building blocks that have been effective in the
interim, we have developed a time-staged decomposition algorithm for very general
SMIP models. Other effective ideas, such as allowing the second-stage problem to be
solved inexactly are also permitted within the overall strategy. The key feature of this
algorithm is a first-stage B&B process (i.e. the ABC algorithm) which simultaneously
guides both the construction of approximations as well as the search for optimal first-
stage decisions. Furthermore, the recourse function approximations remain piecewise
linear and convex for each first-stage B&B node, and similarly, the second-stage relax-
ations (built using multi-term disjunctions) are also polyhedral. While these elements
maintain convex building blocks, the overall search is facilitated by a B&B scheme
which selectively chooses valid approximations of functions and sets in a manner that
allows the algorithm to discover an optimal solution to the overall problem.

We have also presented the most comprehensive computational experiment to date
for problems in which mixed-integer variables appear in both stages. Our computations
reveal that as the number of scenarios grow, our MATLAB-guided implementation was
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faster and more stable than the commercial solver for an extensive form SMIP. We also
reported computational results for larger instances which required a more sophisticated
implementation than the MATLAB prototype. Both of those experiments (one with
an extended test instance, and another with a new test problem) reveal that the ABC
framework, especially in the BB-D setting, leads to a viable approach for realistic
instances. We recommend at least two avenues in which the ABC/BB-D approach may
be promising: (a) implementing these ideas on parallel machines should be fruitful,
and (b) these concepts should be extended to multi-stage models. Our computational
experiment shows that when the SMIP models have large number of first stage variables
and large number of scenarios, our decomposition approach is preferable to using a
state-of-the-art commercial solver for the DEF.

Acknowledgements The authors are grateful to the referees for their detailed reading of the paper. Their
suggestions improved the presentation, and made the paper more compelling.

7 Appendix 1: SSLS model formulation

To describe the model, let I be the index set for client locations and J be the index
sets for possible server locations. For i € I and j € J, we define the following.

Parameters

Cj Cost of locating a server at location j.

qij Revenue from a client at location i being served by servers at location j.
qjo Loss of revenue because of overflow at server j.

dij Resource requirement of client i for server at location j.

r Upper bound on the total number of servers that can be located.

u Upper bound of number of server located at one location.

w Server capacity.

v Upper bound of possible number of clients.

hi(w)  The number of clients at locati(_m i in scenario w
h(w) The vector made of elements 4’ (w).
p(w) Probability of occurrence for scenario w € €.

Decisions variables

Xj number of servers located at site j.
Yij number of clients at location i served by servers at location j.
Yjo overflow amount at server location j.

The SSLS can be formulated as follows.

min Y cjx; — E[f(x,®)] (52a)
jeJ

st. D xj<r (52b)
jeJ
xj€{0,1,...,u}, Vjel, (52¢)
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where

ELf(x,&)] =D plw)f(x,») (53)

we

For any x satisfying (52b, 52c) and w € €,

foow)y=min = > > qijyij + > _djoyjo (54a)
iel jelJ jeJ

D> dijyij — yjo <wxj, Vjel, (54b)
iel
> vij=hw). Yiel, (54c)
jeJ
vij €{0,1,2,...,0}, Viel,jel, (54d)
yjo=0, Vjel. (54e)

We generated a set of SSLS instances following the method in [16]. For problem
data, the server location costs ¢; were generated randomly from the uniform distribu-
tion in the interval [40, 80] and the client demands d;; were generated in the interval
[0, 25]. The client-server revenue were set at one unit per unit of client demand. The
overflow costs g o were fixed at 1000. For scenario data, the number of clients avail-
able in each scenario i’ (w) were generated from a binomial distribution with p = 0.5
and v trials.

8 Appendix 2: Figures for examples
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Fig. 2 Master problem B&B tree for ABC algorithm with CPT-D on Example 1.1
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Fig. 3 Master problem B&B tree for ABC algorithm with BB-D on Example 1.1
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