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Abstract In a Hilbert space setting H, we study the fast convergence properties as
t → +∞ of the trajectories of the second-order differential equation

ẍ(t) + α

t
ẋ(t) + ∇�(x(t)) = g(t),

where ∇� is the gradient of a convex continuously differentiable function � : H →
R, α is a positive parameter, and g : [t0,+∞[→ H is a small perturbation term. In
this inertial system, the viscous damping coefficient α

t vanishes asymptotically, but not

too rapidly. For α ≥ 3, and
∫ +∞
t0

t‖g(t)‖dt < +∞, just assuming that argmin� �=
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∅, we show that any trajectory of the above system satisfies the fast convergence
property

�(x(t)) − min
H

� ≤ C

t2
.

Moreover, for α > 3, any trajectory converges weakly to a minimizer of�. The strong
convergence is established in various practical situations. These results complement
theO(t−2) rate of convergence for the values obtained by Su, Boyd and Candès in the
unperturbed case g = 0. Time discretization of this system, and some of its variants,
provides new fast converging algorithms, expanding the field of rapid methods for
structured convex minimization introduced by Nesterov, and further developed by
Beck and Teboulle with FISTA. This study also complements recent advances due to
Chambolle and Dossal.

Keywords Convex optimization · Fast convergent methods · Dynamical systems ·
Gradient flows · Inertial dynamics · Vanishing viscosity · Nesterov method

Mathematics Subject Classification 34D05 · 49M25 · 65K05 · 65K10 · 90C25 ·
90C30

1 Introduction

Let H be a real Hilbert space endowed with the scalar product 〈·, ·〉 and norm ‖ · ‖,
and let � : H → R be a convex differentiable function. In this paper, we first study
the solution trajectories of the second-order differential equation

ẍ(t) + α

t
ẋ(t) + ∇�(x(t)) = 0, (1)

with α > 0, in terms of their asymptotic behavior as t → +∞. This will serve us as
guideline to the study of corresponding algorithms.

We take for granted the existence and uniqueness of a global solution to the Cauchy
problem associated with (1). Although this is not our main concern, we point out that,
given t0 > 0, for any x0 ∈ H, v0 ∈ H, the existence of a unique global solution on
[t0,+∞[ for the Cauchy problem with initial condition x(t0) = x0 and ẋ(t0) = v0
can be guaranteed, for instance, if ∇� is Lipschitz-continuous on bounded sets, and
� is minorized.
Throughout the paper, unless otherwise indicated, we simply assume that

� : H → Ris a continuously differentiable convex function.

As we shall see, most of the convergence properties of the trajectories are valid
under this general assumption. This approach paves the way for the extension of
our results to non-smooth convex potential functions (replacing the gradient by the
subdifferential).
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Fast convergence of inertial dynamics and algorithms with… 125

In preparation for a stability study of this system and the associated algorithms, we
will also consider the following perturbed version of (1):

ẍ(t) + α

t
ẋ(t) + ∇�(x(t)) = g(t), (2)

where the right-hand side g : [t0,+∞[→ H is an integrable source term, such that
g(t) is small for large t .

The importance of the evolution system (1) is threefold:
1. Mechanical interpretation: It describes the motion of a particle, with mass equal

to one, subject to a potential energy function �, and an isotropic linear damping with
a viscosity parameter that vanishes asymptotically. This provides a simple model for
a progressive reduction of the friction, possibly due to material fatigue.

2. Fast minimization of function �: Equation (1) is a particular case of the inertial
gradient-like system

ẍ(t) + a(t)ẋ(t) + ∇�(x(t)) = 0, (3)

with asymptotic vanishing damping, studied by Cabot et al. [17,18]. As shown in [17,
Corollary 3.1] (under some additional conditions on �), every solution x(·) of (3)
satisfies limt→+∞ �(x(t)) = min�, provided

∫∞
0 a(t)dt = +∞. The specific case

(1)was studiedbySu,BoydandCandès in [35] in termsof the rate of convergenceof the
values.More precisely, [35, Theorem4.1] establishes that�(x(t))−min� = O(t−2),
whenever α ≥ 3. Unfortunately, their analysis does not entail the convergence of the
trajectory itself.

3. Relationship with fast numerical optimization methods: As pointed out in [35,
Section 2], for α = 3, (1) can be seen as a continuous version of the fast convergent
method of Nesterov (see [26–29]), and its widely used successors, such as the Fast
Iterative Shrinkage-Thresholding Algorithm (FISTA), studied in [14]. These methods
have a convergence rate of �(xk)−min� = O(k−2), where k is the number of itera-
tions. As for the continuous-time system (1), convergence of the sequences generated
by FISTA and related methods, has not been established so far. This is a central and
long-standing question in the study of numerical optimization methods.

The purpose of this research is to establish the convergence of the trajectories
satisfying (1), as well as the sequences generated by the corresponding numerical
methods with Nesterov-type acceleration. We also complete the study with several
stability properties concerning both the continuous-time system and the algorithms.

The main contributions of this work are the following:
In Sect. 2, we first establish the minimizing property in the general case where

α > 0, and inf � is not necessarily attained. As a consequence, every weak limit
point of the trajectory must be a minimizer of �, and so, the existence of a bounded
trajectory characterizes the existence of minimizers. Assuming argmin� �= ∅ and
α ≥ 3, we recover the O(t−2) convergence rates, and give several examples and
counterexamples concerning the optimality of these results. Next, we show that every
solution of (1) converges weakly to a minimizer of� provided α > 3 and argmin� �=
∅. For the limiting case α = 3, which corresponds exactly to Nesterov’s method, the
convergence of the trajectories is still a puzzling open question. We finish this section
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by providing an ergodic convergence result for the acceleration of the system in case
∇� is Lipschitz-continuous on sublevel sets of �.

In Sect. 3, strong convergence is established in various practical situations enjoying
further geometric features, such as strong convexity, symmetry, or nonemptyness of
the interior of the solution set. In the strongly convex case, we obtained a surprising

result: convergence of the values occurs at a O(t− 2α
3 ) rate.

In Sect. 4, we analyze the asymptotic behavior, as t → +∞, of the solutions of
the perturbed differential system (2), and obtain similar convergence results under
integrability assumptions on the perturbation term g.

Section 5 contains the analogous results for the associatedNesterov-type algorithms
(also for α > 3). To avoid repeating similar arguments, we state the results and
develop the proofs directly for the perturbed version. As a guideline, we follow the
proof of the convergence of the continuous dynamic. We provide discrete versions of
the differential inequalities that we used in the Lyapunov convergence analysis. The
convergence results are parallel to those for the continuous case, under summability
conditions on the errors.

Aswewere preparing thefinal version of thismanuscript,we discovered the preprint
[19] by Chambolle and Dossal, where the weak convergence result of the algorithm
in the unperturbed case is obtained by a similar, but different argument (see [19,
Theorem 3]). This approach has been further developed by Aujol–Dossal [10] in the
perturbed case.

2 Minimizing property, convergence rates and weak convergence of the
trajectories

Webegin this section by providing somepreliminary estimations concerning the global
energy of the system (1) and the distance to the minimizers of �. These allow us to
show the minimizing property of the trajectories under minimal assumptions. Next,
we recover the convergence rates for the values originally given in [35], and obtain
further decay estimates that ultimately imply the convergence of the solutions of (1).
We finish the study by proving an ergodic convergence result for the acceleration.
Several examples and counterexamples are given throughout the section.

2.1 Preliminary remarks and estimations

The existence of global solutions to (1) has been examined, for instance, in [17,
Proposition 2.2] in the case of a general asymptotic vanishing damping coefficient. In
our setting, for any t0 > 0, α > 0, and (x0, v0) ∈ H×H, there exists a unique global
solution x : [t0,+∞[→ H of (1), satisfying the initial condition x(t0) = x0, ẋ(t0) =
v0, under the sole assumption that ∇� is Lipschitz-continuous on bounded sets, and
inf � > −∞. Taking t0 > 0 comes from the singularity of the damping coefficient
a(t) = α

t at zero. Indeed, since we are only concerned about the asymptotic behavior
of the trajectories, we do not really care about the origin of time. If one insists in
starting from t0 = 0, then all the results remain valid with a(t) = α

t+1 .
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Fast convergence of inertial dynamics and algorithms with… 127

At different points, we shall use the global energy of the system, given by W :
[t0,+∞[→ R

W (t) = 1

2
‖ẋ(t)‖2 + �(x(t)). (4)

Using (1), we immediately obtain

Lemma 2.1 Let W be defined by (4). For each t > t0, we have

Ẇ (t) = −α

t
‖ẋ(t)‖2.

Hence, W is nonincreasing,1 and W∞ = limt→+∞ W (t) exists in R ∪ {−∞}. If � is
bounded from below, W∞ is finite.

Now, given z ∈ H, we define hz : [t0,+∞[→ R by

hz(t) = 1

2
‖x(t) − z‖2. (5)

By the Chain Rule, we have

ḣz(t) = 〈x(t) − z, ẋ(t)〉 and ḧz(t) = 〈x(t) − z, ẍ(t)〉 + ‖ẋ(t)‖2.
Using (1), we obtain

ḧz(t) + α

t
ḣz(t) = ‖ẋ(t)‖2 + 〈x(t) − z, ẍ(t) + α

t
ẋ(t)〉

= ‖ẋ(t)‖2 + 〈x(t) − z,−∇�(x(t))〉. (6)

The convexity of � implies

〈x(t) − z,∇�(x(t))〉 ≥ �(x(t)) − �(z),

and we deduce that

ḧz(t) + α

t
ḣz(t) + �(x(t)) − �(z) ≤ ‖ẋ(t)‖2. (7)

We have the following relationship between hz and W :

Lemma 2.2 Take z ∈ H, and let W and hz be defined by (4) and (5), respectively.
There is a constant C such that

∫ t

t0

1

s
(W (s) − �(z)) ds ≤ C − 1

t
ḣz(t) − 3

2α
W (t).

Proof Divide (7) by t , and use the definition of W given in (4), to obtain

1 In fact, W decreases strictly, as long as the trajectory is not stationary.
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1

t
ḧz(t) + α

t2
ḣz(t) + 1

t
(W (t) − �(z)) ≤ 3

2t
‖ẋ(t)‖2.

Integrate this expression from t0 to t > t0 (use integration by parts for the first term),
to obtain

∫ t

t0

1

s
(W (s) − �(z)) ds ≤ 1

t0
ḣz(t0) − 1

t
ḣz(t)

−(α + 1)
∫ t

t0

1

s2
ḣz(s)ds +

∫ t

t0

3

2s
‖ẋ(s)‖2ds. (8)

On the one hand, Lemma 2.1 gives

∫ t

t0

3

2s
‖ẋ(s)‖2ds = 3

2α
(W (t0) − W (t)).

On the other hand, another integration by parts yields

∫ t

t0

1

s2
ḣz(s)ds = 1

t2
hz(t) − 1

t20
hz(t0) +

∫ t

t0

2

s3
hz(s)ds ≥ − 1

t20
hz(t0).

Combining these inequalities with (8), we get

∫ t

t0

1

s
(W (s) − �(z)) ds ≤ 1

t0
ḣz(t0) − 1

t
ḣz(t) + (α + 1)

1

t20
hz(t0)

+ 3

2α
(W (t0) − W (t)) = C − 1

t
ḣz(t) − 3

2α
W (t),

where C collects the constant terms. ��

2.2 Minimizing property

It turns out that the trajectories of (1) minimize � in the completely general setting,
where α > 0, argmin� is possibly empty, and � is not necessarily bounded from
below (recall that we assume the existence and uniqueness of a global solution to
the Cauchy problem associated with (1), which is not guaranteed by these general
assumptions). This property was obtained by Alvarez in [2, Theorem 2.1] for the
heavy ball with friction (where the damping is constant). Similar results can be found
in [17].

We have the following:

Theorem 2.3 Let α > 0, and suppose x : [t0,+∞[→ H is a solution of (1). Then

(i) W∞ = limt→+∞ W (t) = limt→+∞ �(x(t)) = inf � ∈ R ∪ {−∞}.
(ii) As t → +∞, every weak limit point of x(t) lies in argmin�.
(iii) If argmin� = ∅, then limt→+∞ ‖x(t)‖ = +∞.
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(iv) If x is bounded, then argmin� �= ∅.
(v) If � is bounded from below, then limt→+∞ ‖ẋ(t)‖ = 0.
(vi) If � is bounded from below and x is bounded, then limt→+∞ ḣz(t) = 0 for each

z ∈ H. Moreover,

∫ ∞

t0

1

t
(�(x(t)) − min�)dt < +∞.

Proof To prove (i), first set z ∈ H and τ ≥ t > t0. By Lemma 2.1,W is nonincreasing.
Hence, Lemma 2.2 gives

(W (τ ) − �(z))
∫ t

t0

ds

s
+ 3

2α
W (τ ) ≤ C − 1

t
ḣz(t),

which we rewrite as

(W (τ ) − �(z))

(∫ t

t0

ds

s
+ 3

2α

)

≤ C − 3

2α
�(z) − 1

t
ḣz(t),

and then

(W (τ ) − �(z))

(

ln(t) + 3

2α
− ln(t0)

)

≤ C − 3

2α
�(z) − 1

t
ḣz(t).

Integrate from t = t0 to t = τ to obtain

(W (τ ) − �(z))

(

τ ln(τ ) − t0 ln(t0) + t0 − τ +
(

2

3α
− ln(t0)

)

(τ − t0)

)

≤
(

C − 3

2α
�(z)

)

(τ − t0) −
∫ τ

t0

1

t
ḣz(t)dt.

But

∫ τ

t0

ḣz(t)

t
dt = hz(τ )

τ
− hz(t0)

t0
+
∫ τ

t0

hz(t)

t2
dt ≥ −hz(t0)

t0
.

Hence,

(W (τ ) − �(z))(τ ln(τ ) + Aτ + B) ≤ C̃τ + D,

for suitable constants A, B, C̃ and D. This immediately yieldsW∞ ≤ �(z), and hence
W∞ ≤ inf �. It suffices to observe that

inf � ≤ lim inf
t→+∞ �(x(t)) ≤ lim sup

t→+∞
�(x(t)) ≤ lim

t→+∞ W (t) = W∞

to obtain (i).
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Next, (ii) follows from (i) by the lower-semicontinuity of � for the weak topology.
Clearly, (iii) and (iv) are immediate consequences of (ii). We obtain (v) by using (i)
and the definition of W given in (4). For (vi), since ḣz(t) = 〈x(t) − z, ẋ(t)〉 and x is
bounded, (v) implies limt→+∞ ḣz(t) = 0. Finally, using the definition of W together
with Lemma 2.2 with z ∈ argmin�, we get

∫ ∞

t0

1

t
(�(x(t)) − min�)dt ≤ C − 3

2α
min� < +∞,

which completes the proof. ��
Remark 2.4 We shall see in Theorem 2.14 that, for α ≥ 3, the existence of minimizers
implies that every solution of (1) is bounded. This gives a converse to part iv) of
Theorem 2.3.

If � is not bounded from below, it may be the case that ‖ẋ(t)‖ does not tend to
zero, as shown in the following example:

Example 2.5 LetH = R and α > 0. The function x(t) = t2 satisfies (1) with�(x) =
−2(α + 1)x . Then limt→+∞ �(x(t)) = −∞ = inf �, and limt→+∞ ‖ẋ(t)‖ = +∞.

2.3 Two “anchored” energy functions

We begin by introducing two important auxiliary functions, and showing their basic
properties. From now on, we assume argmin� �= ∅. Fix λ ≥ 0, ξ ≥ 0, p ≥ 0 and
x∗ ∈ argmin�. Let x : [t0,+∞[→ H be a solution of (1). For t ≥ t0 define

Eλ,ξ (t) = t2(�(x(t)) − min�) + 1

2
‖λ(x(t) − x∗) + t ẋ(t)‖2 + ξ

2
‖x(t) − x∗‖2,

E p
λ (t) = t pEλ,0(t) = t p

(

t2(�(x(t)) − min�) + 1

2
‖λ(x(t) − x∗) + t ẋ(t)‖2

)

,

and notice that Eλ,ξ and E p
λ are sums of nonnegative terms. These generalize the energy

functions E and Ẽ introduced in [35]. More precisely, E = Eα−1,0 and Ẽ = E1
(2α−3)/3.

We need some preparatory calculations prior to differentiating Eλ,ξ and E p
λ . For

simplicity of notation, we do not make the dependence of x or ẋ on t explicit. Notice
that we use (1) in the second line to dispose of ẍ .

d

dt
t2(�(x) − min�) = 2t (�(x) − min φ) + t2〈ẋ,∇�(x)〉

d

dt

1

2
‖λ(x − x∗) + t ẋ‖2 = −λt〈x − x∗,∇�(x)〉 − λ(α − λ − 1)〈x − x∗, ẋ〉

− (α − λ − 1)t‖ẋ‖2 − t2〈ẋ,∇�(x)〉
d

dt

1

2
‖x − x∗‖2 = 〈x − x∗, ẋ〉.
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Fast convergence of inertial dynamics and algorithms with… 131

Whence, we deduce

d

dt
Eλ,ξ (t) = 2t (�(x) − min�) − λt〈x − x∗,∇�(x)〉

+ (ξ − λ(α − λ − 1))〈x − x∗, ẋ〉 − (α − λ − 1)t‖ẋ‖2 (9)
d

dt
E p

λ (t) = (p + 2)t p+1(�(x) − min�) − λt p+1〈x − x∗,∇�(x)〉
− λ(α − λ − 1 − p)t p〈x − x∗, ẋ〉
+ λ2 p

2
t p−1‖x − x∗‖2 −

(
α − λ − 1 − p

2

)
t p+1‖ẋ‖2. (10)

Remark 2.6 If y ∈ H and x∗ ∈ argmin�, the convexity of� givesmin� = �(x∗) ≥
�(y) + 〈∇�(y), x∗ − y〉. Using this in (9) with y = x(t), we obtain

d

dt
Eλ,ξ (t) ≤ (2 − λ) t (�(x) − min�) + (ξ − λ(α − λ − 1))〈x − x∗, ẋ〉

−(α − λ − 1) t ‖ẋ‖2.

If α ≥ 3 and 2 ≤ λ ≤ α − 1 and if one chooses ξ∗ = λ(α − λ − 1) (which is
nonnegative), then

d

dt
Eλ,ξ∗(t) ≤ (2 − λ) t (�(x) − min�) − (α − λ − 1) t ‖ẋ‖2.

Hence Eλ,ξ∗ is nonincreasing. The extreme cases λ = 2 and λ = α − 1 are of special
importance, as we shall see shortly.

2.4 Rate of convergence for the values

We now recover convergence rate results for the value of � along a trajectory, already
established in [35, Theorem 4.1]:

Theorem 2.7 Let x : [t0,+∞[→ H be a solution of (1), and assume argmin� �= ∅.
If α ≥ 3, then

�(x(t)) − min� ≤ Eα−1,0(t0)

t2
.

If α > 3, then
∫ +∞

t0
t
(
�(x(t)) − min�

)
dt ≤ Eα−1,0(t0)

α − 3
< +∞.

Proof Suppose α ≥ 3. Choose λ = α − 1 and ξ = 0, so that ξ − λ(α − λ − 1) =
α − λ − 1 = 0 and λ − 2 = α − 3. Remark 2.6 gives

d

dt
Eα−1,0(t) ≤ −(α − 3) t (�(x) − min�), (11)
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andEα−1,0 is nonincreasing. Since t2(�(x)−min�) ≤ Eα−1,0(t) (recall the definition
of Eλ,ξ ), we obtain

�(x(t)) − min� ≤ Eα−1,0(t0)

t2
.

If α > 3, integrating (11) from t0 to t we obtain

∫ t

t0
s(�(x(s)) − min�)ds ≤ 1

α − 3
(Eα−1,0(t0) − Eα−1,0(t)) ≤ 1

α − 3
Eα−1,0(t0),

which allows us to conclude. ��
Remark 2.8 It would be interesting to know whether α = 3 is critical for the conver-
gence rate given above.

Remark 2.9 For the (first-order) steepest descent dynamical system, the typical rate of
convergence isO(1/t) (see, for instance, [33, Section 3.1]). For the second-order sys-
tem (1), we have obtained a rate of O(1/t2). It would be interesting to know whether
higher-order systems give the corresponding rates of convergence. Another challeng-
ing question is the convergence rate of the trajectories defined by differential equations
involving fractional time derivatives, as well as integro-differential equations.

Remark 2.10 The constant in the order of convergence given by Theorem 2.7 is

K (x0, v0) = Eα−1,0(t0) = t20 (�(x0) − min�) + 1

2
‖(α − 1)(x0 − x∗) + t0v0‖2,

where x0 = x(t0) and v0 = ẋ(t0). This quantity is minimized when x∗
0 ∈ argmin�

and v∗
0 = (α−1)

t0
(x∗ − x∗

0 ), with min K = 0. If x∗
0 �= x∗, the trajectory will not

be stationary, but the value �(x(t)) will be constantly equal to min�. Of course,
selecting x∗

0 ∈ argmin� is not realistic, and the point x∗ is unknown. Keeping x̂0
fixed, the function v0 �→ K (x̂0, v0) is minimized at v̂0 = (α−1)

t0
(x∗ − x̂0). This

suggests taking the initial velocity as a multiple of an approximation of x∗ − x̂0, such
as the gradient direction v̂0 = ∇�(x̂0), Newton or Levenberg-Marquardt direction
v̂0 = [ε I + ∇2�(x̂0)−1]∇�(x̂0) (ε ≥ 0), or the proximal point direction v̂0 =[
(I + γ∇�)−1(x̂0) − x̂0

]
(γ >> 0).

2.5 Some examples and counterexamples

A convergence rate of O(1/t2) may be attained, even if argmin� = ∅ and α < 3.
This is illustrated in the following example:

Example 2.11 Let H = R and take �(x) = α−1
2 e−2x with α ≥ 1. Let us verify that

x(t) = ln t is a solution of (1). On the one hand,

ẍ(t) + α

t
ẋ(t) = α − 1

t2
.
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Fast convergence of inertial dynamics and algorithms with… 133

On the other hand, ∇�(x) = −(α − 1)e−2x which gives

∇�(x(t)) = −(α − 1)e−2 ln t = −α − 1

t2
.

Thus, x(t) = ln t is a solution of (1). Let us examine the minimizing property. We
have inf � = 0, and

�(x(t)) = α − 1

2
e−2 ln t = α − 1

2t2
.

Therefore, one may wonder whether the rapid convergence of the values is true in
general. The following example shows that this is not the case:

Example 2.12 Let H = R and take �(x) = c
xθ , with θ > 0, α ≥ θ

(2+θ)
and c =

2(2α+θ(α−1))
θ(2+θ)2

. Let us verify that x(t) = t
2

2+θ is a solution of (1). On the one hand,

ẍ(t) + α

t
ẋ(t) = 2

(2 + θ)2
(2α + θ(α − 1))t−

2(1+θ)
2+θ .

On the other hand, ∇�(x) = −cθx−θ−1 which gives

∇�(x(t)) = −cθ t−
2(1+θ)
2+θ = − 2

(2 + θ)2
(2α + θ(α − 1))t−

2(1+θ)
2+θ .

Thus, x(t) = t
2

2+θ is solution of (1). Let us examine the minimizing property. We
have inf � = 0, and

�(x(t)) = c
1

t
2θ
2+θ

with
2θ

2 + θ
< 2.

We conclude that the order of convergence may be strictly slower than O(1/t2)
when argmin� = ∅. In the Example 2.12, this occurs no matter how large α is.
The speed of convergence of �(x(t)) to inf � depends on the behavior of �(x) as
‖x‖ → +∞. The above examples suggest that, when �(x) decreases rapidly and
attains its infimal value as ‖x‖ → ∞, we can expect fast convergence of �(x(t)).

Even when argmin� �= ∅,O(1/t2) is the worst possible case for the rate of con-
vergence, attained as a limit in the following example:

Example 2.13 TakeH = R and�(x) = c|x |γ , where c and γ are positive parameters.
Let us look for nonnegative solutions of (1) of the form x(t) = 1

tθ
, with θ > 0. This

means that the trajectory is not oscillating, it is a completely damped trajectory. We
begin by determining the values of c, γ and θ that provide such solutions. On the one
hand,

ẍ(t) + α

t
ẋ(t) = θ(θ + 1 − α)

1

tθ+2 .
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On the other hand, ∇�(x) = cγ |x |γ−2x , which gives

∇�(x(t)) = cγ
1

tθ(γ−1)
.

Thus, x(t) = 1
tθ

is solution of (1) if, and only if,

(i) θ + 2 = θ(γ − 1), which is equivalent to γ > 2 and θ = 2
γ−2 ; and

(ii) cγ = θ(α − θ − 1), which is equivalent to α >
γ

γ−2 and c = 2
γ (γ−2) (α − γ

γ−2 ).

We have min� = 0 and

�(x(t)) = 2

γ (γ − 2)
(α − γ

γ − 2
)

1

t
2γ

γ−2

.

The speed of convergence of �(x(t)) to 0 depends on the parameter γ . As γ tends
to infinity, the exponent 2γ

γ−2 tends to 2. This limiting situation is obtained by taking a
function � that becomes very flat around the set of its minimizers. Therefore, without
other geometric assumptions on �, we cannot expect a convergence rate better than
O(1/t2). By contrast, in Sect. 3, we will show better rates of convergence under some
geometrical assumptions, like strong convexity of �.

2.6 Weak convergence of the trajectories

In this subsection, we show the convergence of the solutions of (1), provided α > 3.
We begin by establishing some preliminary estimations that cannot be derived from
the analysis carried out in [35]. The first statement improves part (v) of Theorem 2.3,
while the second one is the key to proving the convergence of the trajectories of (1):

Theorem 2.14 Let x : [t0,+∞[→ H be a solution of (1) with argmin� �= ∅.
(i) If α ≥ 3 and x is bounded, then ‖ẋ(t)‖ = O(1/t). More precisely,

‖ẋ(t)‖ ≤ 1

t

(√
2Eα−1,0(t0) + (α − 1) sup

t≥t0
‖x(t) − x∗‖

)

. (12)

(ii) If α > 3, then x is bounded and

∫ +∞

t0
t‖ẋ(t)‖2 dt ≤ E2,2(α−3)(t0)

α − 3
< +∞. (13)

Proof To prove (i), assume α ≥ 3 and x is bounded. From the definition of Eλ,ξ , we
have 1

2‖λ(x − x∗) + t ẋ‖2 ≤ Eλ,ξ (t), and so ‖t ẋ‖ ≤ √
2Eλ,ξ (t) + λ‖x − x∗‖. By

Remark 2.6, Eα−1,0 is nonincreasing, and we immediately obtain (12).
In order to show (ii), suppose now that α > 3. Choose λ = 2 and ξ∗ = 2(α − 3).

By Remark 2.6, we have

d

dt
Eλ,ξ∗(t) ≤ −(α − 3) t ‖ẋ‖2, (14)
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and Eλ,ξ∗ is nonincreasing. From the definition of Eλ,ξ , we deduce that ‖x(t)−x∗‖2 ≤
2
ξ
Eλ,ξ (t), which gives

‖x(t) − x∗‖2 ≤ E2,2(α−3)(t)

α − 3
≤ E2,2(α−3)(t0)

α − 3
, (15)

and establishes the boundedness of x . Integrating (14) from t0 to t , and recalling that
Eλ,ξ∗ is nonnegative, we obtain

∫ t

t0
s‖ẋ(s)‖2ds ≤ E2,2(α−3)(t0)

α − 3
,

as required. ��
Remark 2.15 In view of (12) and (15), when α > 3, we obtain the following explicit
bound for ‖ẋ‖, namely

‖ẋ(t)‖ ≤ 1

t

(
√
2Eα−1,0(t0) + (α − 1)

√E2,2(α−3)(t0)

α − 3

)

.

Since limt→+∞ ‖ẋ(t)‖ = 0 by Theorem 2.3, we also have limt→+∞ t ‖ẋ(t)‖2 = 0.

We are now in a position to prove the weak convergence of the trajectories of (1),
which is themain result of this section. The proof relies on a Lyapunov analysis, which
was first used by Alvarez [2] in the context of the heavy ball with friction.

Theorem 2.16 Let� : H → R be a continuously differentiable convex function such
that argmin� �= ∅, and let x : [t0,+∞[→ H be a solution of (1) with α > 3. Then
x(t) converges weakly, as t → +∞, to a point in argmin�.

Proof We shall use Opial’s Lemma 5.7. To this end, let x∗ ∈ argmin� and recall
from (7) that

ḧx∗(t) + α

t
ḣx∗(t) + �(x(t)) − min� ≤ ‖ẋ(t)‖2,

where hz is given by (5). This yields

t ḧx∗(t) + αḣx∗(t) ≤ t‖ẋ(t)‖2.

In view of Theorem 2.14, part (ii), the right-hand side is integrable on [t0,+∞[.
Lemma 5.9 then implies limt→+∞ hx∗(t) exists. This gives the first hypothesis in
Opial’s Lemma. The second one was established in part (ii) of Theorem 2.3. ��
Remark 2.17 A puzzling question concerns the convergence of the trajectories for
α = 3, a question which is directly related to the convergence of the sequences
generated by Nesterov’s method [26] (see [35, Section 3]).
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2.7 Further stabilization results

Let us complement the study of Eq. (1) by examining the asymptotic behavior of the
acceleration ẍ . To this end, we shall use an additional regularity assumption on the
gradient of �.

Proposition 2.18 Let α > 3 and let x : [t0,+∞[→ H be a solution of (1) with
argmin� �= ∅. Assume∇� Lipschitz-continuous on bounded sets. Then ẍ is bounded,
globally Lipschitz continuous on [t0,+∞[, and satisfies

lim
t→+∞

1

tα

∫ t

t0
sα‖ẍ(s)‖2ds = 0.

Proof First recall that x and ẋ are bounded, by virtue of Theorems 2.14 and 2.3,
respectively. By (1), we have

ẍ(t) = −α

t
ẋ(t) − ∇�(x(t)). (16)

Since ∇� is Lipschitz-continuous on bounded sets, it follows from (16), and the
boundedness of x and ẋ , that ẍ is bounded on [t0,+∞[. As a consequence, ẋ is
Lipschitz-continuous on [t0,+∞[. Returning to (16), we deduce that ẍ is Lipschitz-
continuous on [t0,+∞[.

Pick x∗ ∈ argmin�, set h = hx∗ (to simplify the notation) and use (6) to obtain

ḧ(t) + α

t
ḣ(t) + 〈x(t) − x∗,∇�(x(t))〉 = ‖ẋ(t)‖2. (17)

Let L be a Lipschitz constant for ∇� on some ball containing the minimizer x∗ and
the trajectory x . By virtue of the Baillon–Haddad Theorem (see, for instance, [12],
[32, Theorem 3.13] or [27, Theorem 2.1.5]), ∇� is 1

L -cocoercive on that ball, which
means that

〈x(t) − x∗,∇�(x(t)) − ∇�(x∗)〉 ≥ 1

L
‖∇�(x(t)) − ∇�(x∗)‖2.

Substituting this inequality in (17), and using the fact that ∇�(x∗) = 0, we obtain

ḧ(t) + α

t
ḣ(t) + 1

L
‖∇�(x(t))‖2 ≤ ‖ẋ(t)‖2.

In view of (16), this gives

ḧ(t) + α

t
ḣ(t) + 1

L

∥
∥
∥ẍ(t) + α

t
ẋ(t)

∥
∥
∥
2 ≤ ‖ẋ(t)‖2.

Developing the square on the left-hand side, and neglecting the nonnegative term
(α‖ẋ(t)‖/t)2/L , we obtain
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ḧ(t) + α

t
ḣ(t) + 1

L
‖ẍ(t)‖2 + α

Lt

d

dt
‖ẋ(t)‖2 ≤ ‖ẋ(t)‖2.

We multiply this inequality by tα to obtain

d

dt

(
tα ḣ(t)

)+ 1

L
tα‖ẍ(t)‖2 + α

L
tα−1 d

dt
‖ẋ(t)‖2 ≤ tα‖ẋ(t)‖2.

Integration from t0 to t yields

tα ḣ(t) − tα0 ḣ(t0) + 1

L

∫ t

t0
sα‖ẍ(s)‖2ds

+α

L

(
tα−1‖ẋ(t)‖2 − t0

α−1‖ẋ(t0)‖2 − (α − 1)
∫ t

t0
‖ẋ(s)‖2sα−2ds

)
≤
∫ t

t0
sα‖ẋ(s)‖2ds.

Neglecting the nonnegative term αtα−1‖ẋ(t)‖2/L , we obtain

tα ḣ(t) + 1

L

∫ t

t0
sα‖ẍ(s)‖2ds ≤ C + (α − 1)

∫ t

t0
‖ẋ(s)‖2sα−2ds

+
∫ t

t0
sα‖ẋ(s)‖2ds, (18)

where C = tα0 ḣ(t0) + αtα−1
0 ‖ẋ(t0)‖2/L .

If t0 < 1, we have

1

tα

∫ t

t0
sα‖ẍ(s)‖2ds = 1

tα

∫ 1

t0
sα‖ẍ(s)‖2ds + 1

tα

∫ t

1
sα‖ẍ(s)‖2ds

for all t ≥ 1. Since the first term on the right-hand side tends to 0 as t → +∞, we
may assume, without loss of generality, that t0 ≥ 1.

Observe now that sα−2 ≤ sα , whenever s ≥ 1. Whence, inequality (18) simplifies
to

tα ḣ(t) + 1

L

∫ t

t0
sα‖ẍ(s)‖2ds ≤ C + α

∫ t

t0
sα‖ẋ(s)‖2ds.

Dividing by tα and integrating again, we obtain

h(t) − h(t0) + 1

L

∫ t

t0
τ−α

(∫ τ

t0
sα‖ẍ(s)‖2ds

)

dτ ≤ C

α − 1

(
t−α+1
0 − t−α+1

)

+α

∫ t

t0
τ−α

(∫ τ

t0
sα‖ẋ(s)‖2ds

)

dτ.
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Setting C ′ = h(t0) + Ct−α+1
0 /(α − 1), and neglecting the nonnegative term h(t) of

the left-hand side and the nonpositive term −Ct−α+1/(α − 1) of the right-hand side,
we get

1

L

∫ t

t0
τ−α

(∫ τ

t0
sα‖ẍ(s)‖2ds

)

dτ ≤ C ′ + α

∫ t

t0
τ−α

(∫ τ

t0
sα‖ẋ(s)‖2ds

)

dτ.

Set g(τ ) = τ−α

(∫ τ

t0
sα‖ẍ(s)‖2ds

)

and use Fubini’s Theorem on the second integral

to get

1

L

∫ t

t0
g(τ )dτ ≤ C ′ + α

α − 1

∫ t

t0
sα‖ẋ(s)‖2

(
s−α+1 − t−α+1

)
ds

≤ C ′ + α

α − 1

∫ t

t0
s‖ẋ(s)‖2ds.

By part (ii) of Theorem 2.14, the integral on the right-hand side is finite. We have

∫ +∞

t0
g(τ )dτ < +∞. (19)

The derivative of g is

ġ(τ ) = −ατ−α−1
∫ τ

t0
sα‖ẍ(s)‖2ds + ‖ẍ(τ )‖2.

Let C ′′ be an upper bound for ‖ẍ‖2. We have

|ġ(τ )| ≤ C ′′
(

1 + ατ−α−1
∫ τ

t0
sαds

)

= C ′′
(

1 + α

α + 1
τ−α−1

(
τα+1 − tα+1

))

≤ C ′′
(

1 + α

α + 1

)

. (20)

From (19) and (20) we deduce that limτ→+∞ g(τ ) = 0 by virtue of Lemma 5.6. ��

Remark 2.19 Since
∫ t
t0
sαds = 1

α+1

(
tα+1 − tα+1

0

)
, Proposition 2.18 expresses a fast

ergodic convergence of ‖ẍ(s)‖2 to 0with respect to theweight sα as t → +∞, namely

∫ t
t0
sα‖ẍ(s)‖2ds
∫ t
t0
sαds

= o

(
1

t

)

.
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3 Strong convergence results

Acounterexample due toBaillon [11] shows that the trajectories of the steepest descent
dynamical system may converge weakly but not strongly. Nevertheless, under some
additional geometrical or topological assumptions on �, the steepest descent trajec-
tories do converge strongly. This has been proved in the case where the function � is
either even or strongly convex (see [16]), or when int(argmin�) �= ∅ (see [15, theo-
rem 3.13]). Some of these results have been extended to inertial dynamics, see [2] for
the heavy ball with friction, and [4] for an inertial version of Newton’s method. This
suggests that convexity alone may not be sufficient for the trajectories of (1) to con-
verge strongly, but one can reasonably expect it to be the case under some additional
conditions. The purpose of this section is to establish this fact. The different types of
hypotheses will be studied in independent subsections since different techniques are
required.

3.1 Set of minimizers with nonempty interior

Let us begin by studying the case where int(argmin�) �= ∅.

Theorem 3.1 Let � : H → R be a continuously differentiable convex function. Let
int(argmin�) �= ∅, and let x : [t0,+∞[→ H be a solution of (1) with α > 3. Then
x(t) converges strongly, as t → +∞, to a point in argmin�. Moreover,

∫ ∞

t0
t‖∇�(x(t))‖dt < +∞.

Proof Since int(argmin�) �= ∅, there exist x∗ ∈ argmin� and some ρ > 0 such that
∇�(z) = 0 for all z ∈ H such that ‖z − x∗‖ < ρ. By the monotonicity of ∇�, for all
y ∈ H, we have

〈∇�(y), y − z〉 ≥ 0.

Hence,

〈∇�(y), y − x∗〉 ≥ 〈∇�(y), z − x∗〉.

Taking the supremum with respect to z ∈ H such that ‖z − x∗‖ < ρ, we infer that

〈∇�(y), y − x∗〉 ≥ ρ‖∇�(y)‖

for all y ∈ H. In particular,

〈∇�(x(t)), x(t) − x∗〉 ≥ ρ‖∇�(x(t))‖.
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By using this inequality in (9) with λ = α − 1 and ξ = 0, we obtain

d

dt
Eα−1,0(t) + (α − 1)ρt‖∇�(x(t))‖ ≤ 2 t

(
�(x(t)) − min�

)
,

whence we derive, by integrating from t0 to t

Eα−1,0(t) − Eα−1,0(t0) + (α − 1)ρ
∫ t

t0
s‖∇�(x(s))‖ds

≤ 2
∫ t

t0
s
(
�(x(s)) − min�

)
ds.

Since Eα−1,0(t) is nonnegative, part (ii) of Theorem 2.7 gives

∫ ∞

t0
t‖∇�(x(t))‖dt < +∞. (21)

Finally, rewrite (1) as
t ẍ(t) + α ẋ(t) = −t∇�(x(t)).

Since the right-hand side is integrable, we conclude by applying Lemma 5.12 and
Theorem 2.16. ��

3.2 Even functions

Let us recall that � : H → R is even if �(−x) = �(x) for every x ∈ H. In this case
the set argmin� is nonempty, and contains the origin.

Theorem 3.2 Let � : H → R be a continuously differentiable convex even function,
and let x : [t0,+∞[→ H be a solution of (1) with α > 3. Then x(t) converges
strongly, as t → +∞, to a point in argmin�.

Proof For t0 ≤ τ ≤ s, set

q(τ ) = ‖x(τ )‖2 − ‖x(s)‖2 − 1

2
‖x(τ ) − x(s)‖2.

We have

q̇(τ ) = 〈ẋ(τ ), x(τ ) + x(s)〉 and q̈(τ ) = ‖ẋ(τ )‖2 + 〈ẍ(τ ), x(τ ) + x(s)〉.

Combining these two equalities and using (1), we obtain

q̈(τ ) + α

τ
q̇(τ ) = ‖ẋ(τ )‖2 + 〈ẍ(τ ) + α

τ
ẋ(τ ), x(τ ) + x(s)〉

= ‖ẋ(τ )‖2 − 〈∇�(x(τ )), x(τ ) + x(s)〉. (22)
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Recall that the energy W (τ ) = 1
2‖ẋ(τ )‖2 + �(x(τ )) is nonincreasing. Therefore,

1

2
‖ẋ(τ )‖2 + �(x(τ )) ≥ 1

2
‖ẋ(s)‖2 + �(x(s))

= 1

2
‖ẋ(s)‖2 + �(−x(s))

≥ 1

2
‖ẋ(s)‖2 + �(x(τ )) − 〈∇�(x(τ )), x(τ ) + x(s)〉,

by convexity. After simplification, we obtain

1

2
‖ẋ(τ )‖2 ≥ −〈∇�(x(τ )), x(τ ) + x(s)〉. (23)

Combining (22) and (23), we obtain

τ q̈(τ ) + αq̇(τ ) ≤ 3

2
τ‖ẋ(τ )‖2.

As in the proof of Lemma 5.9, we have

q̇(τ ) ≤ k(τ ) := C

τα
+ 3

2τα

∫ τ

t0
uα‖ẋ(u)‖2du,

where C = 2‖ẋ(t0)‖ ‖x‖∞. The function k does not depend on s. Moreover, using
Fubini’s Theorem, we deduce that

∫ +∞

t0
k(τ ) dτ ≤ C

tα−1
0 (α − 1)

+ 3

2(α − 1)

∫ +∞

t0
u‖ẋ(u)‖2 du < +∞,

by part ii) of Theorem 2.14. Integrating q̇(τ ) ≤ k(τ ) from t to s, we obtain

1

2
‖x(t) − x(s)‖2 ≤ ‖x(t)‖2 − ‖x(s)‖2 +

∫ s

t
k(τ )dτ.

Since� is even, we have 0 ∈ argmin�. Hence limt→+∞ ‖x(t)‖2 exists (see the proof
of Theorem 2.16). As a consequence, x(t) has the Cauchy property as t → +∞, and
hence converges. ��

3.3 Uniformly convex functions

Following [13], a function � : H → R is uniformly convex on bounded sets if, for
each r > 0, there is an increasing function ωr : [0,+∞[→ [0,+∞[ vanishing only
at 0, and such that

�(y) ≥ �(x) + 〈∇�(x), y − x〉 + ωr (‖x − y‖) (24)
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for all x, y ∈ H such that ‖x‖ ≤ r and ‖y‖ ≤ r . Uniformly convex functions are
strictly convex, so the set of their minimum points is at most a singleton.

Theorem 3.3 Let � be uniformly convex on bounded sets with argmin� �= ∅, and
let x : [t0,+∞[→ H be a solution of (1) with α > 3. Then x(t) converges strongly,
as t → +∞, to the unique x∗ ∈ argmin�.

Proof Recall that the trajectory x(·) is bounded, by part (ii) in Theorem 2.14. Let
r > 0 be such that x is contained in the ball of radius r centered at the origin. This
ball also contains x∗, which is the weak limit of the trajectory in view of the weak
lower-semicontinuity of the norm and Theorem 2.16. Writing y = x(t) and x = x∗
in (24), we obtain

ωr (‖x(t) − x∗‖) ≤ �(x(t)) − min�.

The right-hand side tends to 0 as t → +∞ by virtue of Theorem 2.3. It follows that
x(t) converges strongly to x∗ as t → +∞. ��

Let us recall that a function � : H → R is strongly convex if there exists a positive
constant μ such that

�(y) ≥ �(x) + 〈∇�(x), y − x〉 + μ

2
‖x − y‖2

for all x, y ∈ H. Clearly, strongly convex functions are uniformly convex on bounded
sets. However, interestingly, convergence rates increase indefinitely with larger values
of α for these functions.

Theorem 3.4 Let � : H → R be strongly convex, and let x : [t0,+∞[→ H be a
solution of (1) with α > 3. Then x(t) converges strongly, as t → +∞, to the unique
element x∗ ∈ argmin�. Moreover

�(x(t)) − min� = O
(
t−

2
3α
)

, ‖x(t) − x∗‖2 = O
(
t−

2
3α
)

, and

‖ẋ(t)‖2 = O
(
t−

2
3α
)

. (25)

Proof Strong convergence follows from Theorem 3.3 because strongly convex func-
tions are uniformly convex on bounded sets. From (10) and the strong convexity of
�, we deduce that

d

dt
E p

λ (t) ≤ (p + 2 − λ)t p+1(�(x) − min�) − λ(α − λ − 1 − p)t p〈x − x∗, ẋ〉

− λ

2
(μt2 − pλ)t p−1‖x − x∗‖2 −

(
α − λ − 1 − p

2

)
t p+1‖ẋ‖2

for any λ ≥ 0 and any p ≥ 0. Now fix p = 2
3 (α −3) and λ = 2

3α, so that p+2−λ =
α − λ − 1 − p/2 = 0 and α − λ − 1 − p = −p/2. The above inequality becomes

d

dt
E p

λ (t) ≤ λp

2
t p〈x − x∗, ẋ〉 − λ

2
(μt2 − pλ)t p−1‖x − x∗‖2.
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Define t1 = max
{
t0,
√

pλ
μ

}
, so that

d

dt
E p

λ (t) ≤ λp

2
t p〈x − x∗, ẋ〉

for all t ≥ t1. Integrate this inequality from t1 to t (use integration by parts on the
right-hand side) to get

E p
λ (t) ≤ E p

λ (t1) + λp

4

(
t p‖x(t) − x∗‖2 − t p1 ‖x(t1) − x∗‖2

− p
∫ t

t1
s p−1‖x(s) − x∗‖2ds

)

.

Hence,

E p
λ (t) ≤ E p

λ (t1)+ λp

4
t p‖x(t) − x∗‖2 ≤ E p

λ (t1)+ λp

2μ
t p(�(x(t)) − min�), (26)

in view of the strong convexity of �. By the definition of E p
λ , we have

t p+2((�(x(t)) − min�) ≤ E p
λ (t) ≤ E p

λ (t1) + λp

2μ
t p(�(x(t)) − min�).

Dividing by t p+2 and using the definition of t1, along with the fact that t ≥ t1, we
obtain

�(x(t)) − min� ≤ E p
λ (t1)t

−p−2 + λp

2μ
t−2(�(x(t)) − min�)

≤ E p
λ (t1)t

−p−2 + λp

2μ
t−2
1 (�(x(t)) − min�)

≤ E p
λ (t1)t

−p−2 + 1

2
(�(x(t)) − min�).

Recalling that p = 2
3 (α − 3) and λ = 2

3α, we deduce that

�(x(t)) − min� ≤ 2E p
λ (t1)t

−p−2 =
[

2E
2
3 (α−3)
2
3α

(t1)

]

t−
2
3α. (27)

The strong convexity of � then gives

‖x(t) − x∗‖2 ≤ 2

μ
(�(x(t)) − min�) ≤

[
4

μ
E p

λ (t1)

]

t−p−2

=
[
4

μ
E

2
3 (α−3)
2
3α

(t1)

]

t−
2
3α. (28)

Inequalities (27) and (28) settle the first two points in (25).
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Now, using (26) and (27), we derive

E p
λ (t) ≤ E p

λ (t1) + λp

2μ
t p(�(x(t)) − min�) ≤ E p

λ (t1) + λp

μ
E p

λ (t1)t
−2

≤ E p
λ (t1) + λp

μ
E p

λ (t1)t
−2
1 ≤ 2E p

λ (t1).

The definition of E p
λ then gives

t p

2
‖λ (x(t) − x∗)+ t ẋ(t)‖2 ≤ E p

λ (t) ≤ 2E p
λ (t1).

Hence

‖λ (x(t) − x∗)+ t ẋ(t)‖2 ≤ 4t−pE p
λ (t1),

and

t‖ẋ(t)‖ ≤ 2t−p/2
√
E p

λ (t1) + λ‖x(t) − x∗‖.
But using (28), we deduce that

λ‖x(t) − x∗‖ ≤ 2λ√
μ
t−p/2−1

√
E p

λ (t1).

The last two inequalities together give

t‖ẋ(t)‖ ≤ 2t−p/2
√
E p

λ (t1)

(

1 + λt−1

√
μ

)

≤ 2t−p/2
√
E p

λ (t1)

(

1 +
√

λ

p

)

.

Taking squares, and rearranging the terms, we obtain

‖ẋ(t)‖2 ≤
[

4

(

1 +
√

α

α − 3

)2

E
2
3 (α−3)
2
3α

(t1)

]

t−
2
3α,

which shows the last point in (25) and completes the proof. ��
The preceding theorem extends [35, Theorem 4.2], which states that if α > 9/2,

then �(x(t)) − min� = O(1/t3).

4 Asymptotic behavior of the trajectory under perturbations

In this section, we analyze the asymptotic behavior, as t → +∞, of the solutions of
the differential equation

ẍ(t) + α

t
ẋ(t) + ∇�(x(t)) = g(t). (29)
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From the Cauchy–Lipschitz–Picard Theorem (see, for instance, [7, Theorem 17.1.
2b)]), for any initial condition x(t0) = x0 ∈ H, ẋ(t0) = v0 ∈ H, we deduce the exis-
tence and uniqueness of a maximal local solution x to (29), with ẋ locally absolutely
continuous, if∇� is Lipschitz-continuous on bounded sets and g is locally integrable.
If � is minorized, the global existence follows from the energy estimate proved in
Lemma 4.1, in the next subsection.

This being said, our main concern here is to obtain sufficient conditions on the
perturbation g in order to guarantee that the convergence properties established in
the preceding sections are preserved. The analysis follows very closely the arguments
given in Sects. 2 and 3. It is developed in the same general setting, just assuming that
� : H → R is a continuously differentiable convex function. Therefore, we shall
state the main results and sketch the proofs, underlining the parts where additional
techniques are required.

4.1 Energy estimates and minimization property

The following result is obtained by considering the global energy of the system, and
showing that it is a strict Lyapunov function:

Lemma 4.1 Let � be bounded from below, and let x : [t0,+∞[→ H be a solution
of (29) with α > 0 and

∫∞
t0

‖g(t)‖ dt < +∞. Then, supt>t0 ‖ẋ(t)‖ < +∞ and
∫∞
t0

1
τ
‖ẋ(τ )‖2dτ < +∞. Moreover, limt→+∞ �(x(t)) = infH �.

Proof Set T > t0. For t0 ≤ t ≤ T , define the energy function

WT (t) := 1

2
‖ẋ(t)‖2 +

(

�(x(t)) − inf
H

�

)

+
∫ T

t
〈ẋ(τ ), g(τ )〉dτ. (30)

Since ẋ is continuous and g is integrable, the function WT is well defined. Derivating
WT with respect to time, and using (29), we obtain

ẆT (t) = 〈ẋ(t), ẍ(t) + ∇�(x(t)) − g(t)〉 = 〈ẋ(t),−α

t
ẋ(t)〉 = −α

t
‖ẋ(t)‖2 ≤ 0.

Hence WT (·) is a decreasing function. In particular, WT (t) ≤ WT (t0), that is

1

2
‖ẋ(t)‖2 +

(

�(x(t)) − inf
H

�

)

+
∫ T

t
〈ẋ(τ ), g(τ )〉dτ

≤ 1

2
‖ẋ(t0)‖2 +

(

�(x0) − inf
H

�

)

+
∫ T

t0
〈ẋ(τ ), g(τ )〉dτ.

As a consequence,

1

2
‖ẋ(t)‖2 ≤ 1

2
‖ẋ(t0)‖2 +

(

�(x0) − inf
H

�

)

+
∫ t

t0
‖ẋ(τ )‖‖g(τ )‖dτ.
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Applying Lemma 5.13, we obtain

‖ẋ(t)‖ ≤
(

‖ẋ(t0)‖2 + 2

(

�(x0) − inf
H

�

)) 1
2 +

∫ t

t0
‖g(τ )‖dτ.

It follows that

sup
t>t0

‖ẋ(t)‖ ≤
(

‖ẋ(t0)‖2 + 2

(

�(x0) − inf
H

�

)) 1
2 +

∫ ∞

t0
‖g(τ )‖dτ < +∞.

(31)

As a consequence, we may define a function W : ]t0,+∞[→ R by

W (t) := 1

2
‖ẋ(t)‖2 +

(

�(x(t)) − inf
H

�

)

+
∫ ∞

t
〈ẋ(τ ), g(τ )〉dτ

≥ −
[

sup
t>t0

‖ẋ(t)‖
] ∫ ∞

t0
‖g(τ )‖dτ,

by (31). From the definition of WT and W , we have

Ẇ (t) = ẆT (t) = −α

t
‖ẋ(t)‖2. (32)

Integrating from t0 to t , and using (31), we obtain

∫ ∞

t0

α

τ
‖ẋ(τ )‖2dτ = W (t0) − W (t) ≤ 1

2
‖ẋ(t0)‖2 +

(

�(x(t0)) − inf
H

�

)

+
[

sup
t>t0

‖ẋ(t)‖
] ∫ ∞

t0
‖g(τ )‖dτ < +∞,

which gives a bound for the second improper integral.
For the minimization property, consider the function h : ]t0,+∞[→ R, defined by

h(t) = 1
2‖x(t) − z‖2, where z is an arbitrary element ofH. We can easily verify that

ḧ(t) + α

t
ḣ(t) = ‖ẋ(t)‖2 − 〈∇�(x(t)), x(t) − z〉

+ 〈g(t), x(t) − z〉.

By convexity of �, we obtain

ḧ(t) + α

t
ḣ(t) + �(x(t)) − �(z) ≤ ‖ẋ(t)‖2 + 〈g(t), x(t) − z〉. (33)

Recall that the function W defined above is nonincreasing and bounded from below.
Hence,W (t) converges, as t → +∞, to someW∞ ∈ R.Moreover, using the definition
of W in (33), we deduce that
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ḧ(t) + α

t
ḣ(t) + W (t) + inf � − �(z)

≤ 3

2
‖ẋ(t)‖2 + 〈g(t), x(t) − z〉 +

∫ ∞

t
〈ẋ(s), g(s)〉ds. (34)

Setting B∞ = W∞ + inf � − �(z), we may write

B∞ ≤ 3

2
‖ẋ(t)‖2 + ‖g(t)‖‖x(t) − z‖

+
(

sup
t≥t0

‖ẋ(t)‖
)∫ ∞

t
‖g(s)‖ds − 1

tα
d

dt
(tα ḣ(t)).

Multiplying this last equation by 1
t , and integrating between t0 and θ > t0, we get

B∞ ln

(
θ

t0

)

≤ 3

2

∫ θ

t0

1

t
‖ẋ(t)‖2dt +

∫ θ

t0

‖g(t)‖‖x(t) − z‖
t

dt

+
(

sup
t≥t0

‖ẋ(t)‖
)∫ θ

t0

(
1

t

∫ ∞

t
‖g(s)‖ds

)

dt

−
∫ θ

t0

1

tα+1

d

dt
(tα ḣ(t))dt.

Let us estimate the integrals in the second member of the last inequality:

(1) The first term is finite, in view of Lemma 4.1.
(2) The second term is also finite, since the relation ‖x(t) − z‖ ≤ ‖x(t0) − z‖ +∫ t

t0
‖ẋ(s)‖ds implies

∫ θ

t0

‖g(t)‖‖x(t) − z‖
t

dt ≤
(‖x0 − z‖

t0
+ sup

t≥t0
‖ẋ(t)‖

)∫ +∞

t0
‖g(t)‖dt < +∞.

(3) For the third term, integration by parts gives

∫ θ

t0

(
1

t

∫ ∞

t
‖g(s)‖ds

)

dt = ln θ

∫ ∞

θ

‖g(s)‖ds − ln t0

∫ ∞

t0
‖g(s)‖ds

+
∫ θ

t0
‖g(t)‖ ln t dt.

(4) For the fourth term, set I = ∫ θ

t0
1

tα+1
d
dt (t

α ḣ(t))dt , and integrate by parts twice to
obtain
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I =
[
1

t
ḣ(t)

]θ

t0

+ (α + 1)
∫ θ

t0

1

t2
ḣ(t)dt

= C0 + 1

θ
ḣ(θ) + (1 + α)

θ2
h(θ)

+ 2(1 + α)

∫ θ

t0

1

t3
h(t)dt ≥ C0 + 1

θ
ḣ(θ),

for some constant C0, because h ≥ 0. Finally, notice that

|ḣ(θ)| = |〈ẋ(θ), x(θ) − z〉| ≤ sup
t≥t0

‖ẋ(t)‖
(

‖x(0) − z‖ + θ sup
t≥t0

‖ẋ(t)‖
)

.

Collecting the above results, we deduce that

B∞ ln

(
θ

t0

)

≤ C1 + ln θ

∫ ∞

θ

‖g(s)‖ds +
(

sup
t≥t0

‖ẋ(t)‖
)∫ θ

t0
‖g(t)‖ ln t dt,

for some other constantC1. Dividing by ln( θ
t0

), and letting θ → +∞, we conclude that
B∞ ≤ 0, by usingLemma5.11withψ(t) = ln t . This implies thatW∞ ≤ �(z)−inf �

for every z ∈ H, which leads to W∞ ≤ 0.
On the other hand, it is easy to see that

W (t) ≥ �(x(t)) − inf � −
(

sup
t≥t0

‖ẋ(t)‖
)∫ +∞

t
g(s)ds.

Passing to the limit, as t → +∞, we deduce that

0 ≥ W∞ ≥ lim sup�(x(t)) − inf �.

Sincewe always have inf � ≤ lim inf �(x(t)), we conclude that limt→+∞ �(x(t)) =
inf �. ��

4.2 Fast convergence of the values

We are now in position to prove the following:

Theorem 4.2 Let argmin� �= ∅, and let x : [t0,+∞[→ H be a solution of (29)

with α ≥ 3 and
∫∞
t0

t ‖g(t)‖ dt < +∞. Then �(x(t)) − minH � = O
(

1
t2

)
.

Proof The proof follows the arguments used for Theorem 2.7. Take x∗ ∈ S =
argmin�. For t0 ≤ t ≤ T , define the energy function

Eα,g,T (t) := 2

α − 1
t2(�(x(t)) − inf

H
�) + (α − 1)‖x(t) − x∗

+ t

α − 1
ẋ(t)‖2 + 2

∫ T

t
τ 〈x(τ ) − x∗ + τ

α − 1
ẋ(τ ), g(τ )〉dτ.
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Let us show that

Ėα,g,T (t) + 2
α − 3

α − 1
t (�(x(t)) − min

H
�) ≤ 0.

Derivation of Eα,g,T gives

Ėα,g,T (t) := 4

α − 1
t (�(x(t)) − inf

H
�) + 2

α − 1
t2〈∇�(x(t)), ẋ(t)〉

− 2t

〈

x(t) − x∗ + t

α − 1
ẋ(t), g(t)

〉

+ 2(α − 1)

〈

x(t) − x∗ + t

α − 1
ẋ(t), ẋ(t) + 1

α − 1
ẋ(t) + t

α − 1
ẍ(t)

〉

= 4

α − 1
t (�(x(t)) − inf

H
�) + 2

α − 1
t2〈∇�(x(t)), ẋ(t)〉

+ 2(α − 1)

〈

x(t) − x∗ + t

α − 1
ẋ(t),

t

α − 1

(α

t
ẋ(t) + ẍ(t) − g(t)

)〉

= 4

α − 1
t (�(x(t)) − inf

H
�) + 2

α − 1
t2〈∇�(x(t)), ẋ(t)〉

− 2t

〈

x(t) − x∗ + t

α − 1
ẋ(t),∇�(x(t))

〉

= 4

α − 1
t

(

�(x(t)) − inf
H

�

)

− 2t〈x(t) − x∗,∇�(x(t))〉.

Using the subdifferential inequality for �, and rearranging the terms, we obtain

Ėα,g,T (t) + 2
α − 3

α − 1
t (�(x(t)) − inf

H
�) ≤ 0. (35)

As a consequence, for α ≥ 3, the function Eα,g,T is nonincreasing. In particular,
Eα,g,T (t) ≤ Eα,g,T (t0), which gives

2

α − 1
t2(�(x(t)) − inf

H
�) + (α − 1)‖x(t) − x∗

+ t

α − 1
ẋ(t)‖2 ≤ C + 2

∫ t

t0
τ 〈x(τ ) − x∗ + τ

α − 1
ẋ(τ ), g(τ )〉dτ, (36)

with

C = 2

α − 1
t0
2(�(x0) − inf

H
�) + (α − 1)‖x0 − x∗ + t0

α − 1
ẋ(t0)‖2.
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From (36), we infer that

1

2
‖x(t) − x∗ + t

α − 1
ẋ(t)‖2 ≤ C

2(α − 1)
+ 1

α − 1

∫ t

t0
‖x(τ ) − x∗

+ τ

α − 1
ẋ(τ )‖‖τg(τ )‖dτ.

Applying Lemma 5.13, we obtain

‖x(t) − x∗ + t

α − 1
ẋ(t)‖ ≤

(
C

α − 1

) 1
2 + 1

α − 1

∫ t

t0
τ‖g(τ )‖dτ, (37)

and so

sup
t≥t0

‖x(t) − x∗ + t

α − 1
ẋ(t)‖ < +∞. (38)

Using (37) in (36), we conclude that

2

α − 1
t2(�(x(t)) − inf

H
�) ≤ C + 2

((
C

α − 1

) 1
2 + 1

α − 1

∫ ∞

t0
τ‖g(τ )‖dτ

)

∫ ∞

t0
τ‖g(τ )‖dτ,

and the result follows. ��
Remark 4.3 As a consequence, the energy function

Eα,g(t) := 2

α − 1
t2(�(x(t)) − inf

H
�) + (α − 1)‖x(t) − x∗ + t

α − 1
ẋ(t)‖2

+ 2
∫ +∞

t
τ 〈x(τ ) − x∗ + τ

α − 1
ẋ(τ ), g(τ )〉dτ

is well defined on [t0,+∞[, and is a Lyapunov function for the dynamical system
(29).

4.3 Convergence of the trajectories

In the case α > 3, provided that the second member g(t) is sufficiently small for large
t , we are going to show the convergence of the trajectories of (29), as it occurs for the
unperturbed system studied in the previous sections

Theorem 4.4 Let argmin� �= ∅, and let x : [t0,+∞[→ H be a solution of (29)
with α > 3 and

∫∞
t0

t ‖g(t)‖ dt < +∞. Then, x(t) converges weakly, as t → +∞, to
a point in argmin�.

123



Fast convergence of inertial dynamics and algorithms with… 151

Proof Step 1 Recall, from the proof of Theorem 4.2, that the energy function Eα,g

defined in Remark 4.3 satisfies

Ėα,g(t) + 2
α − 3

α − 1
t

(

�(x(t)) − inf
H

�

)

≤ 0.

Integrating this inequality, we obtain

Eα,g(t) + 2
α − 3

α − 1

∫ t

t0
τ

(

�(x(τ )) − inf
H

�

)

dτ ≤ Eα,g(t0).

By the definition of Eα,g , and neglecting its nonnegative terms, we infer that

2
∫ +∞

t
τ 〈x(τ ) − x∗ + τ

α − 1
ẋ(τ ), g(τ )〉dτ

+ 2
α − 3

α − 1

∫ t

t0
τ

(

�(x(τ )) − inf
H

�

)

dτ ≤ Eα,g(t0),

and so

2
α − 3

α − 1

∫ t

t0
τ

(

�(x(τ )) − inf
H

�

)

dτ

≤ Eα,g(t0) + 2
∫ +∞

t0

∥
∥
∥
∥x(τ ) − x∗ + τ

α − 1
ẋ(τ )

∥
∥
∥
∥ ‖τg(τ )‖〉dτ

≤ Eα,g(t0) + 2 sup
t≥t0

∥
∥
∥
∥x(t) − x∗ + t

α − 1
ẋ(t)

∥
∥
∥
∥

∫ +∞

t0
‖τg(τ )‖〉dτ.

by (38). Since α > 3, we deduce that

∫ +∞

t0
τ(�(x(τ )) − inf

H
�)dτ < +∞. (39)

Step 2 Let us show that

∫ ∞

t0
t‖ẋ(t)‖2dt < +∞.

By taking the scalar product of (29) by t2 ẋ(t), we get

t2〈ẍ(t), ẋ(t)〉 + αt‖ẋ(t)‖2 + t2〈∇�(x(t)), ẋ(t)〉 = t2〈g(t), ẋ(t)〉.

Using the Chain Rule and the Cauchy–Schwarz inequality, we obtain

1

2
t2

d

dt
‖ẋ(t)‖2 + αt‖ẋ(t)‖2 + t2

d

dt
�(x(t) ≤ ‖tg(t)‖‖t ẋ(t)‖.
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Integration by parts yields

t2

2
‖ẋ(t)‖2 − t02

2
‖ẋ(t0)‖2 −

∫ t

t0
s‖ẋ(s)‖2ds + α

∫ t

t0
s‖ẋ(s)‖2ds

+ t2(�(x(t)) − inf
H

�) − t0
2
(

�(x(t0)) − inf
H

�

)

− 2
∫ t

t0
s

(

�(x(s)) − inf
H

�

)

ds ≤
∫ t

t0
‖sg(s)‖‖sẋ(s)‖ds.

As a consequence,

t2

2
‖ẋ(t)‖2 + (α − 1)

∫ t

t0
s‖ẋ(s)‖2ds ≤ C0

+ 2
∫ t

t0
s(�(x(s)) − inf

H
�)ds +

∫ t

t0
‖sg(s)‖‖sẋ(s)‖ds (40)

for some constant C0 depending only on the Cauchy data. Since
∫∞
t0

s(�(x(s)) −
infH �)ds < +∞ by (39), and α > 1, we deduce that

1

2
‖t ẋ(t)‖2 ≤ C1 +

∫ t

t0
‖sg(s)‖‖sẋ(s)‖ds (41)

for someother constantC1,whichwemay assume to be nonnegative.ApplyingLemma
5.13, we obtain

‖t ẋ(t)‖ ≤ √
2C1 +

∫ t

t0
‖sg(s)‖ds,

and so

sup
t≥t0

‖t ẋ(t)‖ < +∞. (42)

Returning to (40), we deduce that

(α − 1)
∫ t

t0
s‖ẋ(s)‖2ds ≤ C + 2

∫ ∞

t0
s(�(x(s)) − inf

H
�)ds

+ sup
t≥t0

‖t ẋ(t)‖
∫ ∞

t0
‖sg(s)‖ds, (43)

which gives

∫ ∞

t0
t‖ẋ(t)‖2dt < +∞.
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Moreover, combining (38) and (42), we deduce that

sup
t≥t0

‖x(t)‖ < +∞, (44)

and the trajectory x is bounded.
Step 3As before, we prove the weak convergence by means of Opial’s Lemma 5.7.

Take x∗ ∈ argmin�, and define h : [0,+∞[→ R
+ by

h(t) = 1

2
‖x(t) − x∗‖2.

By the Chain Rule,

ḣ(t) = 〈x(t) − x∗, ẋ(t)〉,
ḧ(t) = 〈x(t) − x∗, ẍ(t)〉 + ‖ẋ(t)‖2.

Combining these two equations, and using (29), we obtain

ḧ(t) + α

t
ḣ(t) = ‖ẋ(t)‖2 + 〈x(t) − x∗, ẍ(t) + α

t
ẋ(t)〉,

= ‖ẋ(t)‖2 + 〈x(t) − x∗,−∇�(x(t)) + g(t)〉.

By the monotonicity of ∇� and the fact that ∇�(x∗) = 0, we have

〈x(t) − x∗,−∇�(x(t))〉 ≤ 0, (45)

and we infer that

ḧ(t) + α

t
ḣ(t) ≤ ‖ẋ(t)‖2 + ‖x(t) − x∗‖‖g(t)‖.

Equivalently

ḧ(t) + α

t
ḣ(t) ≤ k(t), (46)

with

k(t) := ‖ẋ(t)‖2 + ‖x(t) − x∗‖‖g(t)‖ ≤ ‖ẋ(t)‖2 + C2‖g(t)‖

because the trajectory x is bounded, by (44). Recall that
∫ +∞
t0

t‖g(t)‖dt < +∞ by

assumption, and
∫∞
t0

t‖ẋ(t)‖2dt < +∞ by (13). Hence, the function t �→ tk(t)

belongs to L1(t0,+∞). Applying Lemma 5.9, with w(t) = ḣ(t), we deduce that
ḣ+(t) ∈ L1(t0,+∞), which implies that the limit of h(t) exists, as t → +∞. This
proves item (i) of Opial’s Lemma 5.7. For item (i i), observe that every weak limit
point of x(t) as t → +∞ must minimize �, since limt→+∞ �(x(t)) = inf �. ��

123



154 H. Attouch et al.

Remark 4.5 Throughout the proof of Theorem 4.4, we proved that

∫ ∞

t0
t

(

�(x(t)) − min
H

�

)

dt < +∞, and
∫ ∞

t0
t‖ẋ(t)‖2dt < +∞.

We also proved that supt≥t0 t ‖ẋ(t)‖ < +∞, and hence limt→∞ ‖ẋ(t)‖ = 0.

4.4 Strong convergence results

For strong convergence, we have the following:

Theorem 4.6 Let � : H → R be a continuously differentiable convex function, and
let x : [t0,+∞[→ H be a solution of (29) with α > 3 and

∫∞
t0

t ‖g(t)‖ dt < +∞.
Then x(t) converges strongly, as t → +∞, in any of the following cases:

(i) The set argmin� has nonempty interior;
(ii) The function � is even; or
(iii) The function � is uniformly convex.

In order to prove this result, it suffices to adapt the arguments given in Sect. 3 for
the unperturbed case. Since it is relatively straightforward, we leave it as an exercise
to the reader.

5 Convergence of the associated algorithms

In this section, we analyze the fast convergence properties of the associated Nesterov-
type algorithms. To avoid repeating similar arguments, we state the results and develop
the proofs directly for the perturbed version.

5.1 A dynamical introduction of the algorithm

Time discretization of dissipative gradient-based dynamical systems leads naturally
to algorithms, which, under appropriate assumptions, have similar convergence prop-
erties. This approach has been followed successfully in a variety of situations. For
a general abstract discussion see [5,6]. For dynamics with inertial features, see [2–
4,9]. To cover practical situations involving constraints or non-smooth data, we need
to broaden our scope. This leads us to consider the non-smooth structured convex
minimization problem

min {�(x) + �(x) : x ∈ H} (47)

where � : H → R ∪ {+∞} is a proper lower semicontinuous convex function;
and � : H → R is a continuously differentiable convex function, whose gradient is
Lipschitz continuous.
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The optimal solutions of (47) satisfy

∂�(x) + ∇�(x) � 0,

where ∂� is the subdifferential of �, in the sense of convex analysis. In order to
adapt our dynamic to this non-smooth situation, we will consider the corresponding
differential inclusion

ẍ(t) + α

t
ẋ(t) + ∂�(x(t)) + ∇�(x(t)) � g(t). (48)

This dynamical system is within the following framework

ẍ(t) + a(t)ẋ(t) + ∂�(x(t)) � g(t), (49)

where � : H → R ∪ {+∞} is a proper lower semicontinuous convex function, and
a(·) is a positive damping parameter.

It is interesting to establish the asymptotic properties, as t → +∞, of the solutions
of the differential inclusion (48). Beyond global existence issues, one must check
that the Lyapunov analysis is still valid. In view of the validity of the subdifferential
inequality for convex functions, the (generalized) chain rule for derivatives over curves
(see [15]), most results presented in the previous sections can be transposed to this
more general context, except for the stabilization of the acceleration, which relies on
the Lipschitz character of the gradient. However, a detailed study of this differential
inclusion goes far beyond the scope of the present article. See [8] for some results in
the case of a fixed positive damping parameter, i.e., a(t) = γ > 0 fixed, and g = 0.
Thus, setting �(x) = �(x) + �(x), we can reasonably assume that, for α > 3, and∫ +∞
t0

t‖g(t)‖dt < +∞, for each trajectory of (48), there is rapid convergence of the
values

�(x(t)) − min� ≤ C

t2
,

and weak convergence of the trajectory to an optimal solution.
We shall use these ideas as a guideline, in order to introduce corresponding fast

converging algorithms, making the link with Nesterov [26–29] and Beck–Teboulle
[14]; and so, extending the recent works of Chambolle–Dossal [19] and Su–Boyd–
Candès [35] to the perturbed case.

In order to preserve the fast convergence properties of the dynamical system (48),
we are going to discretize it implicitely with respect to the nonsmooth function�, and
explicitely with respect to the smooth function �.

Taking a fixed time step size h > 0, and setting tk = kh, xk = x(tk) the
implicit/explicit finite difference scheme for (48) gives

1

h2
(xk+1 − 2xk + xk−1) + α

kh2
(xk − xk−1) + ∂�(xk+1) + ∇�(yk) � gk, (50)
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where yk is a linear combination of xk and xk−1, that will be made precise later on.
After developing (50), we obtain

xk+1 + h2∂�(xk+1) � xk +
(
1 − α

k

)
(xk − xk−1) − h2∇�(yk) + h2gk . (51)

A natural choice for yk leading to a simple formulation of the algorithm (other choices
are possible, offering new directions of research for the future) is

yk = xk +
(
1 − α

k

)
(xk − xk−1). (52)

Using the classical proximal operator (equivalently, the resolvent of the maximal
monotone operator ∂�)

proxγ�(x) = argminξ∈H
{

�(ξ) + 1

2γ
‖ξ − x‖2

}

= (I + γ ∂�)−1 (x), (53)

and setting s = h2, the algorithm can be written as

{
yk = xk + (

1 − α
k

)
(xk − xk−1)

xk+1 = proxs� (yk − s(∇�(yk) − gk)) .
(54)

For practical purposes, and in order to fit with the existing literature on the subject, it
is convenient to work with the following equivalent formulation

{
yk = xk + k−1

k+α−1 (xk − xk−1)

xk+1 = proxs� (yk − s(∇�(yk) − gk)) .
(55)

Indeed, we have k−1
k+α−1 = 1 − α

k+α−1 . When α is an integer, we obtain the same
sequences (xk) and (yk), up to the reindexation k �→ k+α −1. For general α > 0, we
can easily verify that the algorithm (55) is still associated with the dynamical system
(48).

This algorithm is within the scope of the proximal-based inertial algorithms [3,24,
25], and forward-backward methods. In the unperturbed case, gk = 0, it has been
recently considered by Chambolle–Dossal [19] and Su–Boyd–Candès [35]. It enjoys
fast convergence properties which are very similar to that of the continuous dynamic.

For α = 3 and gk = 0, we recover the classical FISTA algorithm developed by
Beck–Teboulle [14], based on the acceleration method introduced by Nesterov [26]
in the smooth case and by Güler [21] in the proximal setting:

{
yk = xk + k−1

k+2 (xk − xk−1)

xk+1 = proxs� (yk − s∇�(yk)) .
(56)

An important question regarding the (FISTA) method, as described in (56), is the
convergence of sequences (xk) and (yk), which is still an open question. A major
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interest to consider the broader context of algorithms (55) is that, for α > 3, these
sequences converge, even when inexactly computed, provided the errors or perturba-
tions are sufficiently small.

5.2 Fast convergence of the values

We will see that the fast convergence properties of algorithm (54) can be obtained in
a parallel way with the convergence analysis in the continuous case in Theorem 4.2.

Theorem 5.1 Let � : H → R∪{+∞} be proper, lower-semicontinuous and convex,
and let � : H → R be convex and continuously differentiable with L-Lipschitz
continuous gradient. Suppose that S = argmin(�+�) �= ∅, and let (xk) be a sequence
generated by algorithm (55)with α ≥ 3, 0 < s < 1

L , and
∑

k∈N k‖gk‖ < +∞. Then,

(� + �)(xk) − min(� + �) ≤ C(α − 1)

2s (k + α − 2)2
, (57)

where

C = 2s

α − 1
(α − 2)2 (�(x0) − �∗) + (α − 1)‖y0 − x∗‖2

+ 2s

⎡

⎣
∞∑

j=0

( j + α − 1) ‖g j‖
⎤

⎦

⎡

⎣
√ E(0)

α − 1
+ 2s

α − 1

∞∑

j=0

( j + α − 1) ‖g j‖
⎤

⎦

Proof To simplify notations, we set � = � + �, and take x∗ ∈ argmin�. As in the
continuous case, we shall prove that the energy sequence (E(k)) given by

E(k) := 2s

α − 1
(k + α − 2)2 (�(xk) − �(x∗) + (α − 1)‖zk − x∗‖2

+
∞∑

j=k

2s ( j + α − 1)
〈
g j , z j+1 − x∗〉 , (58)

with

zk := k + α − 1

α − 1
yk − k

α − 1
xk, (59)

is non-increasing (we shall justify further that it is well defined). Note that E(k)
equals the Lyapunov function considered by Su–Boyd–Candès in [35, Theorem 4.3],
plus a perturbation term. For each y ∈ H, we set �k(y) := �(y) − 〈gk, y〉, and
�k(y) = �(y) + �k(y). Since ∇�k(y) = ∇�(y) − gk , we deduce that ∇�k is still
L-Lipschitz continuous. By introducing the operator Gs,k : H → H, defined by

Gs,k(y) = 1

s

(
y − proxs� (y − s∇�k(y))

)
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for each y ∈ H, we can write

proxs� (y − s∇�k(y)) = y − sGs,k(y),

and rewrite algorithm (55) as

{
yk = xk + k−1

k+α−1 (xk − xk−1);
xk+1 = yk − sGs,k(yk).

(60)

The variable zk , defined in (59), will play an important role. It comes naturally into
play as a discrete version of the term t

α−1 ẋ(t)+x(t)−x∗ which enters Eα,g(t). Simple
algebraic manipulations give

zk+1 = k + α − 1

α − 1
xk+1 − k

α − 1
xk

= k + α − 1

α − 1
(xk+1 − xk) + xk, (61)

and also

zk+1 = k + α − 1

α − 1

(
yk − sGs,k(yk)

)− k

α − 1
xk

= zk − s

α − 1
(k + α − 1)Gs,k(yk). (62)

The operator Gs,k satisfies

�k(y − sGs,k(y)) ≤ �k(x) + 〈
Gs,k(y), y − x

〉− s

2
‖Gs,k(y)‖2 (63)

for all x, y ∈ H (see [14,19,31,35]), since s ≤ 1
L , and∇�k is L-lipschitz continuous.

Let us write successively this formula at y = yk and x = xk , then at y = yk and
x = x∗. We obtain

�k(yk − sGs,k(yk)) ≤ �k(xk) + 〈
Gs,k(yk), yk − xk

〉− s

2
‖Gs,k(yk)‖2, and

�k(yk − sGs,k(yk)) ≤ �k(x
∗) + 〈

Gs,k(yk), yk − x∗〉− s

2
‖Gs,k(yk)‖2,

respectively. Multiplying the first inequality by k
k+α−1 , and the second one by

α−1
k+α−1 , then adding the two resulting inequalities, and using the fact that xk+1 =
yk − sGs,k(yk), we obtain

�k(xk+1) ≤ k

k + α − 1
�k(xk) + α − 1

k + α − 1
�k(x

∗) − s

2
‖Gs,k(yk)‖2

+
〈

Gs,k(yk),
k

k + α − 1
(yk − xk) + α − 1

k + α − 1

(
yk − x∗)

〉

.
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We rewrite the scalar product above as

〈

Gs,k(yk),
k

k + α − 1
(yk − xk) + α − 1

k + α − 1
(yk − x∗)

〉

= α − 1

k + α − 1

〈

Gs,k(yk),
k

α − 1
(yk − xk) + yk − x∗

〉

= α − 1

k + α − 1

〈

Gs,k(yk),
k + α − 1

α − 1
yk − k

α − 1
xk − x∗

〉

= α − 1

k + α − 1

〈
Gs,k(yk), zk − x∗〉 .

We obtain

�k(xk+1) ≤ k

k + α − 1
�k(xk) + α − 1

k + α − 1
�k(x

∗)

+ α − 1

k + α − 1

〈
Gs,k(yk), zk − x∗〉− s

2
‖Gs,k(yk)‖2. (64)

We shall obtain a recursion from (64). To this end, observe that (62) gives

zk+1 − x∗ = zk − x∗ − s

α − 1
(k + α − 1)Gs,k(yk).

After developing

‖zk+1 − x∗‖2 = ‖zk − x∗‖2 − 2
s

α − 1
(k + α − 1)

〈
zk − x∗,Gs,k(yk)

〉

+ s2

(α − 1)2
(k + α − 1)2 ‖Gs,k(yk)‖2,

and multiplying the above expression by (α−1)2

2s(k+α−1)2
, we obtain

(α − 1)2

2s (k + α − 1)2

(
‖zk − x∗‖2 − ‖zk+1 − x∗‖2

)

= α − 1

k + α − 1

〈
Gs,k(yk), zk − x∗〉− s

2
‖Gs,k(yk)‖2.

Replacing this expression in (64), we obtain

�k(xk+1) ≤ k

k + α − 1
�k(xk) + α − 1

k + α − 1
�k(x

∗)

+ (α − 1)2

2s (k + α − 1)2

(
‖zk − x∗‖2 − ‖zk+1 − x∗‖2

)
.
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Equivalently,

�k(xk+1) − �k(x
∗) ≤ k

k + α − 1

(
�k(xk) − �k(x

∗)
)

+ (α − 1)2

2s (k + α − 1)2

(
‖zk − x∗‖2 − ‖zk+1 − x∗‖2

)
.

Recalling that �(y) = �k(y) + 〈gk, y〉, we obtain

�(xk+1) − �(x∗) ≤ k

k + α − 1

(
�(xk) − �(x∗)

)

+ (α − 1)2

2s (k + α − 1)2

(
‖zk − x∗‖2 − ‖zk+1 − x∗‖2

)

+ 〈
gk, xk+1 − x∗〉− k

k + α − 1

〈
gk, xk − x∗〉

= k

k + α − 1

(
�(xk) − �(x∗)

)

+ (α − 1)2

2s (k + α − 1)2

(
‖zk − x∗‖2 − ‖zk+1 − x∗‖2

)

+
〈

gk, xk+1 − xk + α − 1

k + α − 1
(xk − x∗)

〉

.

Multiplying by 2s
α−1 (k + α − 1)2, we obtain

2s

α − 1
(k + α − 1)2

(
�(xk+1) − �(x∗)

)

≤ 2s

α − 1
k (k + α − 1)

(
�(xk) − �(x∗)

)

+ (α − 1)
(
‖zk − x∗‖2 − ‖zk+1 − x∗‖2

)

+ 2s

α − 1
(k + α − 1)2

〈

gk, xk+1 − xk + α − 1

k + α − 1
(xk − x∗)

〉

,

which implies

2s

α − 1
(k + α − 1)2

(
�(xk+1) − �(x∗)

)

+ 2s
α − 3

α − 1
k
(
�(xk) − �(x∗)

) ≤ 2s

α − 1
(k + α − 2)2

(
�(xk) − �(x∗)

)

+ (α − 1)
(
‖zk − x∗‖2 − ‖zk+1 − x∗‖2

)

+ 2s

α − 1
(k + α − 1)2

〈

gk, xk+1 − xk + α − 1

k + α − 1
(xk − x∗)

〉

, (65)
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in view of

k (k + α − 1) = (k + α − 2)2 − k(α − 3) − (α − 2)2

≤ (k + α − 2)2 − k(α − 3).

Setting

G(k) = 2s

α − 1
(k + α − 2)2 (�(xk) − �∗) + (α − 1)‖zk − x∗‖2,

we can reformulate (65) as

G(k + 1) + 2s
α − 3

α − 1
k
(
�(xk) − �(x∗)

)

≤ G(k) + 2s

α − 1
(k + α − 1)2

〈

gk, xk+1 − xk + α − 1

k + α − 1
(xk − x∗)

〉

.

Equivalently,

G(k + 1) + 2s
α − 3

α − 1
k
(
�(xk) − �(x∗)

)

≤ G(k) + 2s (k + α − 1)

〈

gk,
k + α − 1

α − 1
(xk+1 − xk) + xk − x∗

〉

.

Using (61), we deduce that

G(k + 1) + 2s
α − 3

α − 1
k
(
�(xk) − �(x∗)

)

≤ G(k) + 2s (k + α − 1)
〈
gk, zk+1 − x∗〉 . (66)

Fix an integer K , and set

EK (k) = G(k) +
K∑

j=k

2s ( j + α − 1)
〈
g j , z j+1 − x∗〉 ,

so that (66) is equivalent to

EK (k + 1) + 2s
α − 3

α − 1
k
(
�(xk) − �(x∗)

) ≤ EK (k),

and we deduce that the sequence (EK (k))k is nonincreasing. In particular, EK (k) ≤
EK (0), which gives
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G(k) +
K∑

j=k

2s ( j + α − 1)
〈
g j , z j+1 − x∗〉

≤ G(0) +
K∑

j=0

2s ( j + α − 1)
〈
g j , z j+1 − x∗〉 .

As a consequence,

G(k) ≤ G(0) +
k−1∑

j=0

2s ( j + α − 1)
〈
g j , z j+1 − x∗〉 . (67)

By the definition of G(k), neglecting some positive terms, and using the Cauchy–
Schwarz inequality, we infer that

‖zk − x∗‖2 ≤ 1

α − 1
G(0) + 2s

α − 1

k∑

j=1

( j + α − 2) ‖g j−1‖‖z j − x∗‖.

Applying Lemma 5.14 with ak = ‖zk − x∗‖, we deduce that

‖zk − x∗‖ ≤ M :=
√ G(0)

α − 1
+ 2s

α − 1

∞∑

j=0

( j + α − 1) ‖g j‖. (68)

Note that M is finite, because
∑

k∈N k‖gk‖ < +∞. Returning to (67) we obtain

G(k) ≤ C := G(0) + 2s

⎛

⎝
∞∑

j=0

( j + α − 1) ‖g j‖
⎞

⎠

×
⎛

⎝
√ G(0)

α − 1
+ 2s

α − 1

∞∑

j=0

( j + α − 1) ‖g j‖
⎞

⎠ .

By the definition of G(k), we finally obtain

2s

α − 1
(k + α − 2)2 (�(xk) − �∗) ≤ C.

which gives (57) and completes the proof. ��
Remark 5.2 In [22], Kim–Fessler introduce an extra inertial term in the FISTAmethod
that allows them to reduce the constant by a factor of 2 in the complexity estimation.
It would be interesting to know whether this variant can be obtained by another dis-
cretization in time of our inertial dynamic, or a different one.
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5.3 Convergence of the sequence (xk)

Let us now study the convergence of the sequence (xk).

Theorem 5.3 Let � : H → R∪{+∞} be proper, lower-semicontinuous and convex,
and let � : H → R be convex and continuously differentiable with L-Lipschitz
continuous gradient. Suppose that S = argmin(�+�) �= ∅, and let (xk) be a sequence
generated by algorithm (55)with α > 3, 0 < s < 1

L , and
∑

k∈N k‖gk‖ < +∞. Then,

(i)
∑

k k
(
(� + �)(xk) − inf(� + �)

)
< +∞;

(ii)
∑

k‖xk+1 − xk‖2 < +∞; and
(iii) xk converges weakly, as k → +∞, to some x∗ ∈ argmin(� + �).

Proof We follow the same steps as those of Theorem 4.4:
Step 1 Recall from (66) that

G(k + 1) + 2s
α − 3

α − 1
k
(
�(xk) − �(x∗)

) ≤ G(k) + 2s (k + α − 1)
〈
gk, zk+1 − x∗〉 .

By (68), the sequence (zk) is bounded. Summing the above inequalities, and using
α > 3, we obtain item i).

Step 2 Rewrite inequality (63) as

�k(y − sGs,k(y)) + 1

2s
‖y − sGs,k(y) − x‖2 ≤ �k(x) + 1

2s
‖x − y‖2.

Take y = yk , and x = xk . Since xk+1 = yk − sGs,k(yk), and yk − xk = k−1
k+α−1 (xk −

xk−1), we obtain

�k(xk+1) + 1

2s
‖xk+1 − xk‖2 ≤ �k(xk) + 1

2s

(k − 1)2

(k + α − 1)2
‖xk − xk−1‖2.

By the definition of �k , this is

�(xk+1) + 1

2s
‖xk+1 − xk‖2 ≤ �(xk)

+ 1

2s

(k − 1)2

(k + α − 1)2
‖xk − xk−1‖2 + 〈gk, xk+1 − xk〉 . (69)

Set θk = �(xk) − �(x∗), dk = 1
2‖xk − xk−1‖2, a = α − 1. By the Cauchy–Schwarz

inequality, (69) gives

1

s

(

dk+1 − (k − 1)2

(k + a)2
dk

)

≤ (θk − θk+1) + ‖gk‖‖xk+1 − xk‖.
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Multiply by (k + a)2 to get

1

s

(
(k + a)2dk+1 − (k − 1)2dk

)
≤ (k + a)2 (θk − θk+1)

+ (k + a)2‖gk‖‖xk+1 − xk‖.

Summing for k = 1, . . . , K , we obtain

K∑

k=1

(
(k + a)2dk+1 − (k − 1)2dk

)
≤ s

K∑

k=1

(k + a)2 (θk − θk+1)

+ s
K∑

k=1

(k + a)2‖gk‖‖xk+1 − xk‖.

Performing a similar computation as in Chambolle–Dossal [19, Corollary 2], we can
write

(K + a)2dK+1 +
K∑

k=2

a (2k + a − 2) dk

≤ s
(
(a + 1)2θ1 − (K + a)2θK+1

+
K∑

k=2

(2k + 2a − 1) θk +
K∑

k=1

(k + a)2‖gk‖‖xk+1 − xk‖
)

. (70)

By item (i), we have
∑

k (2k + 2a − 1) θk < +∞. Hence there exists some constant
C such that

(K + a)2‖xK+1 − xK ‖2 ≤ C + 2s
K∑

k=1

(k + a)2‖gk‖‖xk+1 − xk‖ (71)

for all K ∈ N. We now proceed as in the proof of Theorem 4.4. To this end, write (71)
as

a2k ≤ C + 2s
k∑

j=1

( j + a)‖g j‖a j ,

where a j := ( j + a)‖x j+1 − x j‖. Recalling that
∑

k k‖gk‖ < +∞, apply Lemma
5.14 with β j = ( j + a)‖g j‖ to deduce that

sup
k

k‖xk+1 − xk‖ < +∞. (72)
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Injecting this information in (70), we obtain

∑

k

a (2k + a − 2) dk ≤ C +
∑

k

(2k + 2a − 1) θk

+ sup
k

((k + a)‖xk+1 − xk‖)
∑

k

(k + a)‖gk‖.

Since a = α − 1 ≥ 2, item (i) and the definition of dk , together give

∑
k‖xk+1 − xk‖2 < +∞,

which is i i).
Step 3 We finish by applying Opial’s Lemma 5.8 with S = argmin(� + �). By

Theorem 5.1, we have (� +�)(xk) → min(� +�). The weak lower-semicontinuity
of � + � gives item (i i) of Opial’s Lemma. Thus, the only point to verify is that
lim ‖xk − x∗‖ exists for each x∗ ∈ argmin(� + �). Take any such x∗. We shall show
that limk→∞ hk exists, where hk := 1

2‖xk − x∗‖2.
The beginning of the proof is similar to [3] or [19], and consists in establishing a

discrete version of the second-order differential inequality (46). We use the identity

1

2
‖a − b‖2 + 1

2
‖a − c‖2 = 1

2
‖b − c‖2 + 〈a − b, a − c〉 ,

which holds for any a, b, c ∈ H. Taking b = x∗, a = xk+1, c = xk , we obtain

1

2
‖xk+1 − x∗‖2 + 1

2
‖xk+1 − xk‖2 = 1

2
‖xk − x∗‖2 + 〈

xk+1 − x∗, xk+1 − xk
〉
,

which is equivalent to

hk − hk+1 = 1

2
‖xk+1 − xk‖2 + 〈

xk+1 − x∗, xk − xk+1
〉
. (73)

By the definition of yk , we have

xk − xk+1 = yk − xk+1 − k − 1

k + α − 1
(xk − xk−1).

Therefore,

hk − hk+1 = 1

2
‖xk+1 − xk‖2 + 〈

xk+1 − x∗, yk − xk+1
〉

− k − 1

k + α − 1

〈
xk+1 − x∗, xk − xk−1

〉
. (74)
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We now use the monotonicity of ∂�. Since −s∇�(x∗) ∈ s∂�(x∗), and yk − xk+1 −
s∇�(yk) + sgk ∈ s∂�(xk+1), we have

〈
yk − xk+1 − s∇�(yk) + sgk + s∇�(x∗), xk+1 − x∗〉 ≥ 0.

Equivalently,

〈
yk − xk+1, xk+1 − x∗〉+ s

〈∇�(x∗) − ∇�(yk) + gk, xk+1 − x∗〉 ≥ 0.

Replacing in (74), we obtain

hk+1 − hk + 1

2
‖xk+1 − xk‖2 + s

〈∇�(yk) − ∇�(x∗) − gk, xk+1 − x∗〉

− k − 1

k + α − 1

〈
xk+1 − x∗, xk − xk−1

〉 ≤ 0. (75)

On the other hand, the co-coercivity of ∇� gives

〈∇�(yk) − ∇�(x∗), xk+1 − x∗〉 = 〈∇�(yk) − ∇�(x∗), xk+1 − yk
〉

+ 〈∇�(yk) − ∇�(x∗), yk − x∗〉

≥ 1

L
‖�(yk) − ∇�(x∗)‖2

+ 〈∇�(yk) − ∇�(x∗), xk+1 − yk
〉

≥ 1

L
‖�(yk) − ∇�(x∗)‖2 − ‖∇�(yk)

− ∇�(x∗)‖‖xk+1 − yk‖
≥ − L

2
‖xk+1 − yk‖2 (76)

(vertex of the parabola). Combining (75) and (76), we deduce that

hk+1 − hk + 1

2
‖xk+1 − xk‖2 − sL

2
‖xk+1

−yk‖2 − s‖gk‖‖xk+1 − x∗‖
− k − 1

k + α − 1

〈
xk+1 − x∗, xk − xk−1

〉 ≤ 0. (77)

Replace k by k − 1 in (73) to obtain

hk−1 − hk = 1

2
‖xk − xk−1‖2 − 〈

xk − x∗, xk − xk−1
〉
. (78)
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Combine (77) with (78) to deduce that

hk+1 − hk − k − 1

k + α − 1
(hk − hk−1)

≤ −1

2
‖xk+1 − xk‖2 + sL

2
‖xk+1 − yk‖2 + s‖gk‖‖xk+1 − x∗‖

+ k − 1

k + α − 1

(
1

2
‖xk − xk−1‖2 + 〈xk − xk−1, xk+1 − xk〉

)

. (79)

By the definition of yk = xk + k−1
k+α−1 (xk − xk−1), we have xk+1 − yk = xk+1 − xk −

k−1
k+α−1 (xk − xk−1). Hence,

‖xk+1 − yk‖2 = ‖xk+1 − xk‖2 +
(

k − 1

k + α − 1

)2

‖xk − xk−1‖2

− 2
k − 1

k + α − 1
〈xk+1 − xk, xk − xk−1〉

Substituting this in (79), we obtain

hk+1 − hk − γk (hk − hk−1) ≤ −
(

1 − sL

2

)

‖xk+1 − yk‖2 + s‖gk‖‖xk+1

− x∗‖ +
(
γk + γk

2
)

‖xk − xk−1‖2,

where γk = k−1
k+α−1 . Since 0 < s < 1

L , we have (1 − sL
2 ) > 0. On the other hand,

since γk < 1, we have γk + γk
2 < 2γk . Therefore,

hk+1 − hk − γk (hk − hk−1) ≤ s‖gk‖‖xk+1 − x∗‖ + 2γk‖xk − xk−1‖2. (80)

By (68), we know that the sequence (zk) is bounded. By (72), we know that
supk k‖xk+1 − xk‖ < +∞. Since xk = zk − k+α−1

α−1 (xk+1 − xk), we deduce that
the sequence (xk) is bounded. Returning to (80), we have

hk+1 − hk − γk (hk − hk−1) ≤ C‖gk‖ + 2γk‖xk − xk−1‖2

for some constantC . Now, item (ii), combinedwith the assumption
∑

k k‖gk‖ < +∞,
together give

hk+1 − hk − γk (hk − hk−1) ≤ ωk,

for some nonnegative sequence (ωk) such that
∑

k∈N kωk < +∞. Taking the positive
parts and applying Lemma 5.10 with ak = (hk − hk−1)

+, to obtain
∑

k

(hk − hk−1)
+ < +∞.
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Since (hk) is nonnegative, one easily sees that it must converge. This completes the
proof. ��
Remark 5.4 One reasonable conjecture is that strong convergence results can be
obtained for algorithm (54), by transposing the results of Sect. 3 from the contin-
uous to the discrete case. This direction will not be explored here, though.

Remark 5.5 The analysis carried out in this section for inertial forward-backward
algorithm (55) is a reinterpretation of the proof of the corresponding results in the
continuous case. In other words, we built a complete proof having the continuous
setting as a guideline. It would be interesting to know whether the results in [5,6] can
be applied in order to deduce the asymptotic properties without repeating the proofs.

5.4 Final comments

In the particular case α = 3, for a perturbed version of the classical FISTA algorithm,
Schmidt–Le Roux–Bach proved in [34] a result which is similar to Theorem 5.1, con-
cerning the fast convergence of the values. In [36], Villa–Salzo–Baldassarres–Verri use
the notion of ε-subdifferential in order to compute inexact proximal points in the algo-
rithm. In a recent article [10], Aujol–Dossal extend this study by introducing additional
perturbation terms to analyze the stability of the FISTA method, and prove conver-
gence of the sequences generated by the algorithm (in the spirit of Chambolle–Dossal
[19]). Although the results obtained in the previous papers have some similarities
to those of Theorems 5.1 and 5.3, our dynamic approach is original and opens the
door to new developments. One example is the following: In the dynamical system
studied here, second-order information with respect to time ultimately induces fast
convergence properties. On the other hand, in Newton-type methods, second-order
information with respect to space has a similar consequence. In a forthcoming paper,
and based on previous works [4] and [9], we study the solutions of the second-order
(both in time and space) evolution equation

ẍ(t) + α

t
ẋ(t) + β ∇2�(x(t)) ẋ(t) + ∇�(x(t)) = 0,

where � is a smooth convex function, and α, β are positive parameters. This inertial
system combines an isotropic viscous damping which vanishes asymptotically, and a
geometrical Hessian-driven damping, which makes it naturally related to Newton and
Levenberg-Marquardt methods.

The rich literature on the optimal damping of oscillating systems offers interesting
insight (see, for example, the recent paper by Ghisi–Gobbino–Haraux [20], which
deals with periodic damping).

Appendix: Some auxiliary results

In this section, we present some auxiliary lemmas to be used later on. The following
result can be found in [1]:
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Lemma 5.6 Let δ > 0, 1 ≤ p < ∞ and 1 ≤ r ≤ ∞. Suppose F ∈ L p([δ,∞[) is a
locally absolutely continuous nonnegative function, G ∈ Lr ([δ,∞[) and

d

dt
F(t) ≤ G(t)

for almost every t > δ. Then limt→∞ F(t) = 0.

To establish the weak convergence of the solutions of (1), we will use Opial’s
Lemma [30], that we recall in its continuous form. This argument was first used in
[16] to establish the convergence of nonlinear contraction semigroups.

Lemma 5.7 Let S be a nonempty subset ofH and let x : [0,+∞) → H. Assume that

(i) for every z ∈ S, limt→∞ ‖x(t) − z‖ exists;
(ii) every weak sequential limit point of x(t), as t → ∞, belongs to S.

Then x(t) converges weakly as t → ∞ to a point in S.

Its discrete version is

Lemma 5.8 Let S be a non empty subset ofH, and (xk) a sequence of elements ofH.
Assume that

(i) for every z ∈ S, limk→+∞ ‖xk − z‖ exists;
(ii) every weak sequential limit point of (xk), as k → ∞, belongs to S.

Then xk converges weakly as k → ∞ to a point in S.

The following allows us to establish the existence of a limit for a real-valued func-
tion, as t → +∞:

Lemma 5.9 Let δ > 0, and let w : [δ,+∞[→ R be a continuously differentiable
function which is bounded from below. Assume

tẅ(t) + αẇ(t) ≤ g(t), (81)

for some α > 1, almost every t > δ, and some nonnegative function g ∈ L1(δ,+∞).
Then, the positive part [ẇ]+ of ẇ belongs to L1(t0,+∞) and limt→+∞ w(t) exists.

Proof Multiply (81) by tα−1 to obtain

d

dt

(
tαẇ(t)

) ≤ tα−1g(t).

By integration, we obtain

ẇ(t) ≤ δα|ẇ(δ)|
tα

+ 1

tα

∫ t

δ

sα−1g(s)ds.
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Hence,

[ẇ]+(t) ≤ δα|ẇ(δ)|
tα

+ 1

tα

∫ t

δ

sα−1g(s)ds,

and so,

∫ ∞

δ

[ẇ]+(t)dt ≤ δα|ẇ(δ)|
(α − 1)δα−1 +

∫ ∞

δ

1

tα

(∫ t

δ

sα−1g(s)ds

)

dt.

Applying Fubini’s Theorem, we deduce that

∫ ∞

δ

1

tα

(∫ t

δ

sα−1g(s)ds

)

dt =
∫ ∞

δ

(∫ ∞

s

1

tα
dt

)

sα−1g(s)ds

= 1

α − 1

∫ ∞

δ

g(s)ds.

As a consequence,

∫ ∞

δ

[ẇ]+(t)dt ≤ δα|ẇ(δ)|
(α − 1)δα−1 + 1

α − 1

∫ ∞

δ

g(s)ds < +∞.

Finally, the function θ : [δ,+∞) → R, defined by

θ(t) = w(t) −
∫ t

δ

[ẇ]+(τ ) dτ,

is nonincreasing and bounded from below. It follows that

lim
t→+∞ w(t) = lim

t→+∞ θ(t) +
∫ +∞

δ

[ẇ]+(τ ) dτ

exists. ��

In the study of the corresponding algorithms, we use the following result, which is
a discrete version of Lemma 5.9:

Lemma 5.10 Let α ≥ 3, and let (ak) and (ωk) be two sequences of nonnegative
numbers such that

ak+1 ≤ k − 1

k + α − 1
ak + ωk

for all k ≥ 1. If
∑

k kωk∈N < +∞, then
∑

k∈N ak < +∞.
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Proof Since α ≥ 3 we have α − 1 ≥ 2, and hence

ak+1 ≤ k − 1

k + 2
ak + ωk .

Multiplying this expression by (k + 1)2, we obtain

(k + 1)2ak+1 ≤ (k − 1)(k + 1)2

k + 2
ak + (k + 1)2ωk ≤ k2ak + (k + 1)2ωk .

Summing this inequality for j = 1, 2, . . . , k, we obtain

k2ak ≤ a1 +
k−1∑

j=1

( j + 1)2ω j .

Dividing by k2, and summing for k = 2, . . . , K , we obtain

K∑

k=2

ak ≤ a1

K∑

k=2

1

k2
+

K∑

k=2

1

k2

k−1∑

j=1

( j + 1)2ω j .

Applying Fubini’s Theorem to this last sum, and observing that
∑∞

k= j+1
1
k2

≤
∫∞
j

1
t2
dt = 1

j , we obtain

K∑

k=2

ak ≤ a1

K∑

k=2

1

k2
+

K−1∑

j=1

⎛

⎝
∞∑

k= j+1

1

k2

⎞

⎠ ( j + 1)2ω j

≤ a1

K∑

k=2

1

k2
+

K−1∑

j=1

( j + 1)2

j
ω j

≤ a1

∞∑

k=2

1

k2
+ 4

∞∑

j=1

jω j < +∞,

and the result follows. ��
The following is a continuous version of Kronecker’s Theorem for series (see, for

example, [23, page 129]):

Lemma 5.11 Take δ > 0, and let f ∈ L1(δ,+∞) be nonnegative and continuous.
Consider a nondecreasing functionψ : (δ,+∞) → (0,+∞) such that lim

t→+∞ ψ(t) =
+∞. Then,

lim
t→+∞

1

ψ(t)

∫ t

δ

ψ(s) f (s)ds = 0.
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Proof Given ε > 0, fix tε sufficiently large so that

∫ ∞

tε
f (s)ds ≤ ε.

Then, for t ≥ tε , split the integral
∫ t
δ

ψ(s) f (s)ds into two parts to obtain

1

ψ(t)

∫ t

δ

ψ(s) f (s)ds = 1

ψ(t)

∫ tε

δ

ψ(s) f (s)ds + 1

ψ(t)

∫ t

tε
ψ(s) f (s)ds

≤ 1

ψ(t)

∫ tε

δ

ψ(s) f (s)ds +
∫ t

tε
f (s)ds.

Now let t → +∞ to deduce that

0 ≤ lim sup
t→+∞

1

ψ(t)

∫ t

δ

ψ(s) f (s)ds ≤ ε.

Since this is true for any ε > 0, the result follows. ��
Using the previous result, we also obtain the following vector-valued version of

Lemma 5.9:

Lemma 5.12 Take δ > 0, and let F ∈ L1(δ,+∞;H) be continuous. Let x :
[δ,+∞[→ H be a solution of

t ẍ(t) + α ẋ(t) = F(t) (82)

with α > 1. Then, x(t) converges strongly inH as t → +∞.

Proof As in the proof of Lemma 5.9, multiply (82) by tα−1 and integrate to obtain

ẋ(t) = δα ẋ(δ)

tα
+ 1

tα

∫ t

δ

sα−1F(s)ds.

Integrate again to deduce that

x(t) = x(δ) + δα ẋ(δ)
∫ t

δ

1

sα
ds +

∫ t

δ

1

sα

(∫ s

δ

τα−1F(τ )dτ

)

ds.

Fubini’s Theorem applied to the last integral gives

x(t) = x(δ) + δα ẋ(δ)

α − 1

(
1

δα−1 − 1

tα−1

)

+ 1

α − 1

(∫ t

δ

F(τ )dτ − 1

tα−1

∫ t

δ

τα−1F(τ )dτ

)

. (83)

123



Fast convergence of inertial dynamics and algorithms with… 173

Finally, apply Lemma 5.11 to the last integral with ψ(s) = sα−1 and f (s) = ‖F(s)‖
to conclude that all the terms in the right-hand side of (83) have a limit as t → +∞.

��
Finally, in the analysis of the solutions for the perturbed system, we shall use the

following Gronwall-Bellman Lemma (see [15, Lemme A.5]):

Lemma 5.13 Let m : [δ, T ] → [0,+∞[ be integrable, and let c ≥ 0. Suppose
w : [δ, T ] → R is continuous and

1

2
w2(t) ≤ 1

2
c2 +

∫ t

δ

m(τ )w(τ)dτ

for all t ∈ [δ, T ]. Then, |w(t)| ≤ c +
∫ t

δ

m(τ )dτ for all t ∈ [δ, T ].

We shall also make use of the following discrete version of the preceding result:

Lemma 5.14 Let (ak) be a sequence of nonnegative numbers such that

a2k ≤ c2 +
k∑

j=1

β j a j

for all k ∈ N, where (β j ) is a summable sequence of nonnegative numbers, and c ≥ 0.

Then, ak ≤ c +
∑∞

j=1
β j for all k ∈ N.

Proof For k ∈ N, set Ak := max1≤m≤k am . Then, for 1 ≤ m ≤ k, we have

a2m ≤ c2 +
m∑

j=1

β j a j ≤ c2 + Ak

∞∑

j=1

β j .

Taking the maximum over 1 ≤ m ≤ k, we obtain

A2
k ≤ c2 + Ak

∞∑

j=1

β j .

Bounding by the roots of the corresponding quadratic equation, we obtain the result.
��
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