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Abstract We consider two models for stochastic equilibrium: one based on the
variational equilibrium of a generalized Nash game, and the other on the mixed com-
plementarity formulation. Each agent in the market solves a single-stage risk-averse
optimization problemwith both here-and-now (investment) variables and (production)
wait-and-see variables. A shared constraint couples almost surely the wait-and-see
decisions of all the agents.An important characteristic of our approach is that the agents
hedge risk in the objective functions (on costs or profits) of their optimization problems,
which has a clear economic interpretation. This feature is obviously desirable, but in
the risk-averse case it leads to variational inequalities with set-valued operators—a
class of problems for which no established software is currently available. To over-
come this difficulty, we define a sequence of approximating differentiable variational
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inequalities based on smoothing the nonsmooth risk measure in the agents’ problems,
such as average or conditional value-at-risk. The smoothed variational inequalities
can be tackled by the PATH solver, for example. The approximation scheme is shown
to converge, including the case when smoothed problems are solved approximately.
An interesting by-product of our proposal is that the smoothing approach allows us
to show existence of an equilibrium for the original problem. To assess the proposed
technique, numerical results are presented. The first set of experiments is on randomly
generated equilibrium problems, for which we compare the proposed methodology
with the standard smooth reformulation of average value-at-risk minimization (using
additional variables to rewrite the associated max-function). The second set of experi-
ments dealswith a part of the real-life European gas network, forwhichDantzig–Wolfe
decomposition can be combined with the smoothing approach.

Keywords Stochastic equilibrium · Risk aversion · Generalized Nash game ·
Variational inequality · Complementarity · Dantzig–Wolfe decomposition

Mathematics Subject Classification 65K10 · 90C30 · 49J53

1 Introduction

Over the last decades and in a worldwide trend, many industries that were consid-
ered as “natural monopolies” in the 1970s (electricity, telecommunications, natural
gas, water supply) were restructured to introduce competition into one or more of
their horizontal segments. Nevertheless, even in the most liberalizing countries, some
strategical sectors continue to be subject to regulations in quality, price and entry.
Such is the case for networks transmitting and distributing electricity or transporting
natural gas. For these oligopolistic industries, the regulatory mechanisms have impor-
tant implications not only for supporting wholesale and retail competition but also to
maintain the network reliability. To have a full understanding of the market behaviour,
it is necessary to understand the impact of distortions introduced by the regulator when
capping prices, or when applying rewards and incentives for efficient production, like
the emission allowance allocation system in [49].

We consider equilibrium problems for a market with competing risk-averse agents
that try to maximize profit subject to coupling constraints resulting from regula-
tory interventions or market clearing conditions. Among related literature, however
mostly casting the problem in deterministic or risk-neutral settings, we refer to
[1,10,11,16,25,26,35,36,38,48].We alsomention [9], which emphasizes the tradeoff
between maximal profit and minimal risk for thermal power producers in a pool-based
electricity market. In this work, we adopt the modeling of [32]. Our approach is com-
prehensive enough to include the electricity generation-capacity expansionmodel [17]
and the European natural gas market model in [23], set in a stochastic environment.

This type of problems requires the interplay of various areas, like optimization,
game theory, mixed complementarity problems (MCP), and variational inequalities
(VI). The latter, in particular, can be employed for capturing certain solutions of convex
Generalized Nash Equilibrium Problems (GNEP). Specifically, the VI formulation
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finds a Variational Equilibrium, a special Nash equilibrium that privileges points
that lead to equal marginal values for all the players in the game; see [19] and also
[18,28,29].

In the presence of uncertainty, VIs give rise to numerous challenges already in the
risk-neutral case. To start with and as discussed in Sect. 2 below, where and how to
introduce uncertainty and risk in a tractable/convenient way is not straightforward,
and a number of different approaches have been considered.

After having decided how to handle uncertainty, a further challenge is how to endow
a VI with risk aversion in an economically meaningful and computationally tractable
manner. We focus on computable stochastic equilibrium prices for a market in which
agents exhibit risk aversion. Specifically, in our model each agent in the market solves
a single-stage risk-averse optimization problem with:

– here-and-now and wait-and-see variables (investment and production, respec-
tively), and

– a shared constraint that couples almost surely the wait-and-see decisions of all the
agents (related to market clearing); see (1) below.

Regarding the modeling paradigms of competition, dynamics and hierarchy described
in [34], sincewe put all agents in the same decision level and uncertainty is not revealed
stagewise but once for all, our proposal emphasizes competition over the two other
paradigms.

The introduction of risk functionals in the agents’ problems gives rise to some
numerical issues that have to be dealt with. For nonsmooth risk measures like the
widely used conditional or average value-at-risk (AVaR [42]), we obtain VIs with
set-valued operators. Currently, there appears to be no established efficient software
available for VIs of this class, unless the VI is integrable, i.e., it is actually an opti-
mization problem (in our equilibrium model, this amounts to eliminating the shared
constraint, a nonrealistic setting, since clearing the market is of course a necessity).
We therefore build a family of approximating VIs with single-valued operators, com-
prised by gradients of functions obtained from smoothing the AVaR. The smoothed
functions are also risk measures but, unlike the AVaR, they are not coherent. When the
smoothing parameter goes to zero, we show convergence of the approximation scheme
for stochastic equilibrium models based on both the GNEP and the MCP approaches.
By this token, we can also show existence of an equilibrium for the original risk-averse
problem, under some natural conditions.

The sequence of smoothed approximating VI problems is solved by PATH [13,21].
We note that nonsmoothness resulting from minimization and from the positive-part
function in the definition of AVaR can in principle be handled using the standard refo-
mulation which introduces extra variables and shifts certain terms from the objective
functions to the constraints in the agents’ problems. However, as discussed in Sect. 4,
such a strategy does not scale well, as it makes the problem size grow quickly with
the number of scenarios, hence leading to unsolvable instances much faster.

The rest of the paper is organized as follows. In Sect. 2 we describe our setting:
the approach to handling uncertainty, risk aversion, and the GNEP and MCP models
of the market. An approximation scheme for the set-valued VIs obtained by smooth-
ing the nondifferentiable risk measures, and the corresponding convergence theory,
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are presented in Sect. 3. Section 4 describes our solution method based on random
samples for a sample space with a finite number of scenarios, and the variational
formulations of the two models. This section also contains structural and computa-
tional comparisons with the reformulation resulting from what would appear to be the
standard (smooth) reformulation of the average-value-at-risk, which requires extra
variables and constraints. In particular, we provide numerical validation of the advan-
tage of our approach as the number of scenarios grows. Section 5 contains numerical
results investigating the effects or risk aversion, volatility, and other issues, for part of
the real-life European gas network. In addition, it is shown how the Dantzig–Wolfe
decomposition [22,31] of VIs can improve solution times in this context.

Our notation is mostly standard. The inner product (in an arbitrary space) is denoted
by 〈·, ·〉, and the notation x ⊥ v means that 〈x, v〉 = 0. By [·]+ we denote the postive-
part function, i.e., [x]+ = max{0, x}. The nonnegative orthant in R

l is denoted by
R
l+. For a convex function ψ , its subdifferential at a point x is the set ∂ψ(x) = {v :

ψ(x ′) ≥ ψ(x) + 〈v, x ′ − x〉 for all x ′}; for a convex function of two variables like
ψ(x, x ′), ∂xψ stands for the subdifferential mapping of ψ with respect to the variable
x . For a vector x , the notation (xi , x̄−i ) means that the second block of components
of x is fixed in the given context.

Let C be a closed convex set. Its normal cone at the point x is the set NC (x) = {w :
〈w, x ′ − x〉 ≤ 0 for all x ′ ∈ C} if x ∈ C and the empty set otherwise. By PC (·) we
denote the orthogonal projection mapping onto the closed convex set C .

For a single-valued mapping F , the usual variational inequality [20] is stated as

VI (F,C) : find x̄ ∈ C such that 〈F(x̄), x − x̄〉 ≥ 0 for all x ∈ C.

Equivalently, VI (F,C)means finding an x̄ that satisfies the inclusion F(x̄)+NC (x̄) 	
0, or the projection equation x̄ − PC (x̄ − F(x̄)) = 0.

If Ψ is a a set-valued mapping Ψ , the associated VI is the problem

VI (Ψ,C): find x̄∈C such that for some w̄∈Ψ (x̄), 〈w̄, x − x̄〉 ≥ 0 for all x ∈ C.

2 Modelling equilibrium problems in the presence of risk aversion

We consider two different models for stochastic equilibrium, based on game theory
and on complementarity. It is worthmentioning several relatedworks, startingwith the
studyon endogenous stochastic equilibria in [39, Sec. 5]. Stochastic linear complemen-
tarity models are explored in [5,7] from an expected-residual and robust perspectives,
respectively. Stochastic mathematical programs with equilibrium constraints are ana-
lyzed in [30,37,44]. For the natural gas market, the deterministic MCP model from
[15,23]was revisited in a stochastic risk-neutral setting in [14]. For electricitymarkets,
game-theoretical andMCP formulations have been considered in [17,27], respectively.

Regarding the merits of the two modelling approaches, it is sometimes argued
that the MCP formulation provides an adequate framework for imperfect markets.
Nevertheless, at least in a deterministic environment, it is shown in [31] that equivalent
equilibria can be obtained by GNEP and byMCP. Since the two models are eventually
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cast in this paper as related stochastic VIs, we shall carry on our discussion for both
of them in parallel.

2.1 The setting

The VI under consideration comes from writing an equilibrium problem for a market
with N agents trying to optimize their activities. In a deterministic environment the
VI operator has components of the form Fi (x) = ∇xi f

i (x), i = 1, . . . , N , for certain
functions f i and subvectors xi , representing the objective functions and the actions
of each agent.

In a stochastic environment, the operator and the feasible set depend on uncertain
parameters, say ξ . In this context, deciding what is a “good” VI formulation is not
straightforward. In particular, the mathematical model needs to define how to deal
with the fact that parameters are random. In addition, if agents are risk-averse, Fi is
a (set-valued) subdifferential instead of a (single-valued) gradient.

As a first step to handle uncertainty, decisions are separated into here-and-now and
wait-and-see types, [45]. For a market with N agents trying to optimize their activ-
ities of production and invesment in capacity expansion, the i th agent distinguishes
between:

– “investment” variables zi ∈ R
ni , of the here-and-now type: they are decided prior

to any realization of uncertainty (the capacity expansion is decided before knowing
the amount of future product demand).

– There are also “generation” variables qiω ∈ R
mi
, of the wait-and-see type, depend-

ing on some uncertainty that becomes known when the decision must be taken.
These variables are random functions in the probability space L p(Ω,F ,P) for
p ∈ [1,+∞), a measure P, and a sample space Ω equipped with a sigma-algebra
F . For example, when the random vector ξω represents the product demand, the
decision of how much to produce can be taken after observing a realization of ω.

The second step when handling uncertainty is to determine how random variables
unveil along time steps and if the decision maker has access to this information.
There is a variety of situations, ranging from deterministic clairvoyant models to
multistage models with recourse. In the former, decisions are taken considering only
one realization of uncertainty (wait-and-see variables are meaningless in this setting).
In the latter, here-and-now variables are fixed before all realizations, but wait-and-see
variables are determined stagewise, as the random variables unveil.

For our problem we choose a single-stage model with recourse, with both here-
and-now and wait-and-see variables, as some decisions need to be taken before any
realization, while others may wait until randomness is realized. Differently from the
multistage model, uncertainty is unveiled at once: realizations in Ω are known to the
decision maker a priori.

The single-stage model with recourse is the simplest one involving wait-and-see
variables. Handling uncertainty by a two-stagemodelwith recoursewould be desirable
(the impact of stochastic data would be better dealt with) but, contrary to what is
customary in optimization, there are some equilibrium problems for which multistage
formulations are not possible. We shall come back to this important issue in Sect. 2.4.

123



456 J. P. Luna et al.

Wait-and-see variables are functions of the uncertainty. Thus, formally, the most
suitable notation for such variables would be qi (ω). Nevertheless in what follows we
write qiω instead, for the sake of better readability in various long expressions involving
ω that will appear in our development; for example, but not only, (4) and (5).

2.2 The ith agent problem

Continuingwith the investment-production illustration, for each realizationω ∈ Ω the
i th agent decisions to invest andproduce dependon available resources and technology,
represented by feasible sets Xi

ω, endogenous to each agent.
The wait-and-see actions of the other agents, represented by the quantities q̄−i

ω

below, have an impact on the i th agent’s costs and remuneration. The total cost of the
agent is the sum of an investment cost I i and (stochastic) production costs ciω:

I i (zi ) + ciω(qiω, q̄−i
ω ).

Here again, the above notation for the cost shortens the functional dependence on the
random variable: ciω(qiω, q̄−i

ω ) stands for ci (qi (ω), q−i (ω);ω).
After transformation of the product and eventual transportation losses, the pro-

duced volume qiω differs from the actual amount reaching its final destination. This
phenomenon is represented here by the random affine functions hiω, depending only
on wait-and-see variables: out of the production qiω, the amount hiω(qiω) is eventually
delivered to the client.

If the product is remunerated at a unit price πω, the random revenue of the i th agent
is

〈πω, hiω(qiω)〉 −
(
I i (zi ) + ciω(qω)

)
.

The remuneration price πω is considered exogenous for most of the agents, except for
those agents large enough to exert market power, see Remark 1 below. The price πω

is a Lagrange multiplier of some constraint coupling the agents’ actions in the market,
for example a market clearing condition requiring that supply meets demand, written
in the abstract form:

S :=
⎧
⎨
⎩
((

qiω
)

ω∈Ω

)N

i=1
:

N∑
j=1

h j
ω(q j

ω) ≤ 0 ∈ R
m0

a.e.ω ∈ Ω

⎫
⎬
⎭ . (1)

We associate to the inequality in S a nonnegative Lagrange multiplier πω ∈
L p∗(Ω,F ,P;Rm0

) with 1/p + 1/p∗ = 1 (πω denotes a vector function of ω).
To ensure feasibility of the agents’ problems, in what follows we assume that the

property of relatively complete recourse is satisfied:

for all (z1, . . . , zN ) there exists (q1ω, . . . , qN
ω ) such that

{
(zi , qiω) ∈ Xi

ω∑N
j=1 h

j
ω(q j

ω) ≤ 0
a.e.ω ∈ Ω.
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2.3 Two equilibrium models with risk aversion

The market equilibrium will be given by a primal-dual point of the form

(z̄, q̄, π̄) =
((

z̄i ,
(
q̄iω

)
ω∈Ω

)N
i=1, (π̄ω)ω∈Ω

)
,

representing decisions of the agents and equilibrium prices, respectively.
The concept of equilibriumdepends on two important issues: howeach agent hedges

risk, and how the agents interpret their own actions on the market. Regarding the first
item, we model the i th agent aversion to volatility by a monotone convex risk measure
ρi (·), assumed to be a proper function, see [12, Chapter 6].

For a random outcome Y ∈ L1(Ω,F ,P) representing a loss and a given confidence
level 1−ε ∈ (0, 1), an important example of a coherent riskmeasure is thewell-known
average value-at-risk introduced in [42] as conditional value-at-risk:

AVaRε(Y ) := min
u

{
u + 1

1 − ε
E[Yω − u]+

}
. (2)

An observation relevant for the subsequent computational developments is that the
AVaR measure is nondifferentiable. In fact, as explained in [24, Sec.VI.4.5], potential
nonsmoothness of a function likeAVaR is induced not only by the positive-part function
involved in its definition, but also by the fact that it is a value-function (i.e., optimal
value of an optimization problem). In particular, differentiability at a point depends on
the minimum being attained; we refer to Remark 4.5.4 in [24, Chapter VI] for more
details.

For a given risk-aversion parameter κ i ∈ [0, 1], and letting E denote the expected
value function, the agent’s different degrees of risk aversion are expressed by the
function

ρi (Y ) := (1 − κ i )E(Y ) + κ i AVaRεi (Y ). (3)

Determining how the agents interpret their own actions on the market depends on
the modeling choice. We shall focus on equilibrium models based on either the GNEP
or the MCP approaches. In the first case each agent in the market minimizes cost,
guessing the decisions q̄−i

ω of the other agents, paying attention to satisfy the shared
constraint in the set S defined in (1). A variational equilibrium [18] corresponds to the
additional requirement that the optimal Lagrange multipliers associated to the shared
constraint are the same for all the players, say π̄ω. Such an equilibrium is desirable, as
it has the economic interpretation of being fair—at an equilibrium all the agents are
remunerated at the same price.

Alternatively, when modeling the equilibrium as a MCP, each agent maximizes the
remuneration. The agents’ actions are coupled by the constraint set S and a comple-
mentarity condition between each constraint in S and πω, a.e.ω ∈ Ω . Coupling
constraints do not enter the agents’ optimization problems. In the MCP model, each
agent takes decisions independently of both the other agents’ decisions q̄−i

ω and the
shared constraint.
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For the risk-averse GNEPmodel, we let Ri be a risk measure [in our computational
developments, it will be a smoothed version of (3), aiming to approximate a solution
of the problem associated to (3)]. We thus have

Stochastic GNEP:
solve

for i = 1, . . . , N

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min I i (zi ) + Ri
(
ciω(qiω, q̄−i

ω )
)

s.t. zi ∈ R
ni , qi ∈ L p(Ω,F ,P;Rmi

),

and, a.e.ω ∈ Ω :
(zi , qiω) ∈ Xi

ω,

hiω(qiω) +
N∑

i = j=1

h j
ω(q̄ j

ω) ≤ 0.

(4)

A variational equilibrium of the game is the triple (z̄, q̄, π̄), where π̄ ∈ L p∗(Ω,F ,P)

is the multiplier associated to the last constraint above (the same for all the players),
For the risk-averse complementarity equilibrium, we consider the model

Stochastic MCP:
solve

for i = 1, . . . , N

⎧⎪⎨
⎪⎩

min I i (zi ) + Ri
(
ciω(qiω, q̄−i

ω ) − 〈πω, hiω(qiω)〉
)

s.t. zi ∈ R
ni , qi ∈ L p(Ω,F ,P;Rmi

),

(zi , qiω)) ∈ Xi
ω a.e.ω ∈ Ω,

(5)

together with 0 ≤ πω ⊥
N∑
j=1

h j
ω(q j

ω) ≤ 0 a.e.ω ∈ Ω.

As shown in Sect. 4 below, bothmodels (4) and (5) of equilibriumwith risk aversion
can be cast as stochastic VIs; see also [32]. Theorem 3 shows existence of an equilib-
rium for these models, using an argument which in fact makes use of the smoothing
approach itself.

Remark 1 Price cap, regulatory interventions, and market power.
In energy markets there is often a higher entity; for example, a regulating agency

representing the consumers, or an independent system operator. This entity acts on the
market by capping prices, or by encouraging the demand satisfaction and the respect
of environmental constraints. As shown in [32], for both the GNEP and MCP models
it is possible to incorporate an additional player, say the 0th agent, to represent such
a regulator. For example, in the presence of a price cap PC ∈ L p∗(Ω,F ,P), the

variable q0ω ∈ R
m0

represents a deficit in demand while c0ω(q0ω, q̄0ω) = 〈PCω, q0ω〉
measures the impact that capping prices has on the market when the realization of
uncertainty is given by ω.

Both our models can also incorporate market power. Following [23], when a price-
sensitive demand curve is available, there are given intercept d0 and matrix P defining
the inverse demand function as P · +d0. In this case, for the MCP model the remu-
neration changes from 〈πω, hiω(qiω)〉 to

〈
(1 − ϕi )πω + ϕi (

N∑
j=1

h j
ω(q j

ω) + d0), h
i
ω(qiω)

〉
,
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for a factor ϕi ∈ [0, 1] representing the strength of the agent in the market. For the
GNEP, [32] shows that modelling market power is equivalent to having an additional
player who tries to maximize the revenue resulting from the portion of the total pro-
duction that is not affected by the market power of the agents, at the price given by
the inverse demand function. ��

2.4 On two-stage models and shared constraints

In both (4) and (5), each agent in the market solves a single-stage risk-averse opti-
mization problem. To justify this modeling choice we now explain why two-stage
formulations, such as the ones proposed in [6,47], are not applicable in our case.

In the stochastic model in [6] the wait-and-see variables account for feasibility
deviation. Themodification of theD-gap function therein gives a new residual function
whose recourse term “adjusts” the here-and-now decision. Being based on a VI’s gap
function, such an approach would be suitable for risk-neutral agents, which is not our
setting.

A two-stage stochastic Nash game with risk aversion is considered in [47]. Regard-
ing this work, the slight yet fundamental difference with our formulation is the
following. The shared constraint in (1) makes the i th decision qiω depend on the
whole wait-and-see vector: qiω = qiω(q̄−i

ω ). This is in contrast to relation (1.3) in [47],
where the wait-and-see variable qiω, denoted by yi , depends only on the here-and-now
variables zi , z−i denoted by xi , x−i in that work. The fact that yi is independent of
y−i in [47] becomes evident when inspecting the sets (1.4) and (1.5) therein, and
comparing their expression with our feasible set (1).

It is precisely because of the feasible set of the format (1) that two-stage formulations
for (4) or (5) are not possible. As there can be multiple second-stage solutions, it is
not clear how to define the recourse function. This difficulty is independent of risk
aversion; it arises already when trying to give a meaning to two-stage Nash games
for problems whose shared constraints couple second-stage variables (corresponding
to our wait-and-see variables). To illustrate this phenomenon, take a singleton set Ω ,
so that there are no subindices ω in (4). To further simplify the writing, let the i th-
cost function depend only on the i th player and suppose the endogenous feasible sets
are polyhedral, Xi = {(zi , qi ) : T i zi + Wiqi = bi }. The corresponding GNEP has
deterministic problems, for i = 1, . . . , N :

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

min
(zi ,qi )∈Rni ×Rmi

I i (zi ) + Ri
(
ci (qi )

)

s.t. T i zi + Wiqi = bi

hi (qi ) +
N∑

i = j=1

h j (q j ) ≤ 0.

To reformulate the i th player problem in two levels (corresponding to a two-stage
formulation in the stochastic setting), we would need a first level problem only on
variables zi :
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min
zi∈Rni

I i (zi ) + Ri
(
Qi (zi )

)
.

The second-level function, akin to the recourse function in a two-stage problem, is
given by

Qi (zi ) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

min
qi∈Rmi

ci (qi )

s.t. Wiqi = bi − T i zi

hi (qi ) +
N∑

i = j=1

h j (q j ) ≤ 0.

Observing the second-level optimization problem above we realize that, for the func-
tion Qi to be well defined, some rule regarding the variables q−i = (q j : j = i)
needs to be established (a “selection”). This difficulty is a direct consequence of the
combination of two features: having here-and-now variables and having a shared con-
straint. Without a shared constraint, the second-level problems can be solved. Without
the here-and-now variables, the VI can be derived, and a variational equilibrium can
be found. With both the shared constraints and the here-and-now variables, the VI
involves the gradient of the second-level function, which is not explicit, but known
only implicitly (because it is a value function).

Likely for this reason, the work [27] considers a single-stage game formulation
with here-and-now and wait-and-see variables, similar to (4). There are two important
differences with our approach, however:

– First, the risk measure Ri in the cited work is set on a cost function that depends
only on here-and-now variables and on an uncertain parameter, say ϕω. In our
notation, this would correspond to replacing ciω(qiω, q̄−i

ω ) in (4) by ϕωzi .
– Second, in [27] the feasible sets Xi

ω do not involve here-and-now variables. Instead
of (zi , qiω) ∈ Xi

ω in (4), the constraint is qiω ∈ Xi
ω.

3 A convergent approximation scheme

From this section on we now focus on equilibrium models (4) and (5) with finite
sampling space: given a number K > 0,

Ω = ΩK := {ω1, . . . , ωK },

for scenarios ωk with probability pk for k = 1, . . . , K . In (4) and (5), qω becomes qk
for some k ∈ {1, . . . , K } and similarly for all the random elements. Hence, instead of
having L p-functions we deal with concatenation of objects with K -components, for
instance

qK :=
(
qk = qωk

)K
k=1

is a vector of dimension K
N∑
i=1

mi .
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When the agents hedge risk in their individual problems with nonsmooth measures,
such as ρi = AVaR, the mapping in the corresponding variational inequality has set-
valued components. As there currently appears to be no established software to handle
such problems, the corresponding formulation is basically intractable, at least unless
one resorts to some reformulations, discussed in detail in Sect. 4.2 below. Roughly
speaking, nonsmoothness associated to minimization which involves the positive-part
function (like in the definition (2) of AVaR) can be removed by introducing additional
variables andmoving certain terms from the objective functions to the constraints in the
agents’ problems. This approach, and its disadvantages in our setting, are discussed in
Sect. 4 below. In this section, we consider how to deal with the nonsmoothness issues
without going through such reformulations.

To overcome the difficulty presented by the set-valued VI operators, while preserv-
ing the decomposable structure, we define a sequence of approximating problems that
employ smooth risk measures Ri = ρi

τ where τ > 0 is a parameter. The correspond-
ing VIs are smooth single-valued, and can be tackled using the popular PATH solver
[13,21]. As the smoothing parameter τ tends to zero, the corresponding solutions of
the smoothed VIs asymptotically approach solutions of the original problems, i.e.,
those with the nonsmooth risk measures Ri = ρi . It is interesting to mention that
thanks to this convergence result, we can also show the existence of an equilibrium
for the original problem; see Theorem 3 below.

Smoothing techniques are common in optimization and complementarity; see, e.g.,
[2–4,40] and also [20, Chapter 11.8]. In the stochastic setting those ideas have been
used, for example, by [33] to smooth risk constraints, by [30] to handle stochastic
optimization problems with equilibrium constraints, and by [6] in a VI setting.

An important differencebetween [33] andourwork is that in the former smoothing is
employed for an optimization problemwith only here-and-nowvariables.As explained
in Sect. 2 and Remark 2, dealing with VIs and wait-and-see variables coupled by the
shared constraint notably complicates the issues, and thereforemakes our development
substantially different.

Let us start with a general setting, without considering for now any special structure
of the nonsmooth risk measures ρi ; the AVaR structure, however, will be important
eventually. Let VI(F,C) be the variational inequality associated to (4) or to (5), with
the risk measure Ri therein being this ρi for a finite sample space ΩK . For brevity,
we shall not define here the operator F and the set C formally, as their versions for a
finite number of scenarios will be stated in Sect. 4 (see Proposition 3, which describes
the structure). For now, the important point is that F contains some single-valued
continuous components and set-valued components given by subdifferentials ∂ρi , and
C is a closed convex set. Let VI(Fτ ,C) be the variational inequality associated to (4)
or to (5), with the risk measure Ri therein being some smooth function ρi

τ approxi-
mating ρi . As a practical computational matter, for some applications (in particular,
when many smoothed problems need to be solved to arrive at satisfactory solutions) it
can make good sense to solve the problems VI(Fτ ,C) approximately, tightening the
stopping criterion along the way. It is natural to measure approximation to a solution
of VI(Fτ ,C) in terms of its natural residual [20]. Thus, for τ > 0 given, we say that
a point xτ ∈ C is an δ(τ )-approximate solution of VI(Fτ ,C), if it holds that
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‖xτ − PC (xτ − Fτ (xτ ))‖ ≤ δ(τ ). (6)

Naturally, δ(·) ≥ 0, and if δ(τ ) = 0 then xτ is an exact solution of VI(Fτ ,C).
The first convergence statement below (Theorem 1) can clearly be made more

general if we do not refer specifically to VIs associated to (4) or (5). Moreover,
certainly various conceptually related results can be found in the literature, as the
proof relies on the property known as gradient consistency [2,4]. We note, however,
that our setting is that of variational inequalities (and with inexact solutions) rather
than optimization, where gradient consistency had been mostly explored. Thus a proof
of Theorem1 is in order.We alsomention that, according to Theorem1,wewould have
to show continuous convergence and differentiability of our smoothed risk measures,
which is not automatic from more general smoothing schemes. Recall that potential
sources for nonsmootness in AVaR come not only from the positive-part function,
but also from it being a value-function of an optimization problem. Value-functions
are not composite functions, for which smoothing schemes are commonly designed.
Also, in our case continuous convergence is not enough to ensure that the smoothed
risk measures we introduce fit the assumptions in general smoothing schemes such as
[33,40,46]. Remark 2 gives further details related to this discussion.

Theorem 1 (Convergence of solutions of approximating VIs) Let {ρi
τ (·)} be a

sequence of differentiable convex functions, which converges continuously to the (pos-
sibly nonsmooth) risk measure ρi (·), as τ → 0. Let VI(Fτ ,C) be the VI associated to
(4) or to (5), with the risk measure Ri (·) therein being ρi

τ (·) for a finite sample space
ΩK . Let δ(·) be any function such that δ(τ ) → 0 as τ → 0.

As τ → 0, every accumulation point of any sequence of any δ(τ )-approximate (in
the sense of (6)) solutions of VIs (Fτ ,C) is a solution of the VI (F,C).

Proof Sinceρi
τ (·) converges continuously toρi (·), the following “gradient consistency

property” takes place: for any sequences τ j → 0, yτ j → ȳ and ∇ρi
τ j

(yτ j ) → w̄, it

holds that w̄ ∈ ∂ρi (ȳ). This property then implies that if {x j } → x̄ and τ j → 0, then
for every accumulation point v̄ of the sequence {Fτ j (x j )} it holds that v̄ ∈ F(x̄).

Let now x̄ be an accumulation point of some sequence {x j } of δ(τ j )-approximate
solutions of VI (Fτ j ,C) as τ j → 0. Without loss of generality (passing onto a further
subsequence if necessary), we can assume that {x j } → x̄ as j → ∞. Under our
assumptions, it is immediate that x̄ ∈ C and that the sequence {Fτ j (x j )} is bounded.
Passing yet onto a further subsequence if necessary, we can assume that {Fτ j (x j )}
converges to v̄. Then we have that v̄ ∈ F(x̄).

Since x j is an δ(τ j )-approximate solution of VI (Fτ j ,C), the condition (6) means
that there exists some element eτ j in the unit ball such that

x j − PC (x j − Fτ j (x j )) = δ(τ j )eτ j .

By the classical characterization of the orthogonal projection, this means that

x j − Fτ j (x j ) − (x j − δ(τ j )eτ j ) ∈ NC (x j − δ(τ j )eτ j ),

123



An approximation scheme for risk-averse... 463

so that

−Fτ j (x j ) + δ(τ j )eτ j ∈ NC (x j − δ(τ j )eτ j ).

As it holds that −Fτ j (x j ) + δ(τ j )eτ j → v̄ and x j − δ(τ j )eτ j → x̄ as j → ∞, using
the fact that the normal cone mapping is outer semicontinuous, we conclude that that
−v̄ ∈ NC (x̄), and so 0 ∈ F(x̄) + NC (x̄). This means that x̄ solves the VI (F,C), as
claimed. ��

The method for defining smoothing approximations of nonsmooth functions
depends strongly on the structure of the function at hand. In the rest of this section,
we study the case of the nonsmooth risk measure AVaR.

By the definition of AVaR in (2), we see that there are two sources of nonsmoth-
ness: the positive-part function [·]+ and the definition of the risk measure through a
minimization problem (as a value-function).

The nonsmoothness of the positive-part function and its smooth approximations is a
well-studied issue. We start with recalling the main elements of the general smoothing
framework of [3]; see also [20, Chapter 11.8]. To construct smooth approximations of
the [·]+ function, one starts with a nonnegative piecewise continuous function d with
finite number of pieces, such that

∫ +∞

−∞
d(t)dt = 1 and

∫ +∞

−∞
|t |d(t)dt < ∞.

Then, for τ > 0, the approximating function στ : R → R is given by

στ (x) :=
∫ x

−∞

∫ y

−∞
1

τ
d
( t
τ

)
dt dy. (7)

This function is well defined and it is convex, because d is nonnegative (στ becomes
strictly convex when d is positive).

Table1 gives some examples of smoothing functions, their generators d, and the
constants

D1 :=
∫ 0

−∞
|t |d(t)dt and D2 :=

[∫ +∞

−∞
td(t)dt

]+
(8)

useful to bound the closeness of στ to the positive-part function.
In particular, we recall the following facts from [3, Proposition 2.2]:

– the function στ is nondecreasing, convex, and continuously differentiable (if d is
k-times continuously differentiable, then στ is (k + 2)-times continuously differ-
entiable);

– for every x ∈ R it holds that

− D2τ ≤ στ (x) − [x]+ ≤ D1τ. (9)
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Table 1 Examples of smoothing functions

d(t) στ (x) D1 D2

e−t

(1 + e−t )2
x + τ log(1 + e− x

τ ) log 2 0

2

(t2 + 4)
3
2

x +
√
x2 + 4τ2

2
1 0

{
1 if 0 ≤ t ≤ 1
0 otherwise

⎧⎪⎨
⎪⎩

0 if x < 0
x2
2τ if 0 ≤ x ≤ τ

x − τ
2 if x > τ

0 1
2

{
1 if − 1

2 ≤ t ≤ 1
2

0 otherwise

⎧⎨
⎩
0 if x < − τ

2
1
2τ

(
x + τ

2
)2 if |x | ≤ τ

2
x if x > τ

2

1
8 0

Given a function στ (·) as in (7), consider

τAVaRε(Y ) := min
u∈R

{
u + 1

1 − ε
E

(
στ (Yω − u)

)}
, (10)

defined for Y ∈ L1 := L1(Ω,F ,P;R). The functions ρτ and ρ in Sect. 3 correspond,
respectively, to τAVaRε and AVaRε.

Note again that smoothness of τAVaRε is not automatic from smoothness of στ ,
as we have a value-function (rather than a composite function, say). That τAVaRε is
indeed (twice) differentiable will be shown in Proposition 2. Before, we establish some
basic properties including, in particular, the continuous convergence of smoothed risk
measures to AVaR. The smoothed functions being risk measures on their own is also
clearly meaningful.

Proposition 1 (τAVaRε is a well-defined risk measure continuously converging to
AVaRε) Given a function στ (·) as in (7) and τAVaRε in (10), the following hold:

(i) The function τAVaRε is well defined. In particular, for any τ > 0 and all Y ∈ L1
there exists uτ (Y ), the “smoothed value-at-risk”, realizing the minimum in (10).

(ii) The function τAVaRε is a risk measure.
(iii) For D1 and D2 from (8) and all Y ∈ L1, it holds that

∣∣∣AVaRε(Y ) −τ AVaRε(Y )

∣∣∣ ≤ max(D1, D2)τ

1 − ε
.

(iv) The family of risk measures τAVaRε converges continuously to the risk measure
AVaRε as τ tends to zero, i.e., whenever a sequence {yτ } converges to y as τ → 0,
the sequence {τAVaRε(yτ )} converges to AVaRε(y).
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Proof GivenY ∈ L1,we exhibit that theAVaRε-minimand T := u+ 1
1−ε

E

(
[Yω−u]+

)

is coercive in the u-variable, because

T ≥
⎧⎨
⎩
u if u ≥ 0,(
1 − 1

1 − ε

)
u + 1

1 − ε
E

(
Yω

)
if u < 0.

As a result,

− D2τ

1 − ε
+ T ≤ u + 1

1 − ε
E

(
στ (Yω − u)

)
≤ D1τ

1 − ε
+ T . (11)

So the τAVaRε-minimand is coercive too, and there exists uτ (Y ) realizing theminimum
in (10), as claimed.

The second item now follows from the risk measure definition in [12, Chapter 6.3].
In particular, in addition to begin convex, the smoothed function satisfies the properties
of translation-equivariance and monotonicity:

τAVaRε(Y + a) = a +τ AVaRε(Y ) and τAVaRε(Y ) ≥ τAVaRε(Y
′) for all a ∈ R,

for Yω ≥ Y ′
ω a.e.ω ∈ Ω .

Regarding the third assertion, we take the infimum values over u in the chain of
inequalities (11) to obtain

− D2τ

1 − ε
+ AVaRε(Y ) ≤τ AVaRε(Y ) ≤ D1τ

1 − ε
+ AVaRε(Y ).

Finally, to show the last statement, note that the previous item implies that the sequence
{τAVaRε} converges uniformly to AVaRε. Since the limit function AVaRε is itself a
continuous function, [43, Thm. 5.43] implies that the convergence is in fact continuous.

��
Remark 2 On some other smoothing schemes of nonsmooth functions.

A very general smoothing scheme is given in [40], which covers also noncon-
vex functions. It was subsequently used in a number of works related to smoothing
techniques; e.g., [33,46].

It can be seen that the generality of [40] (related to being able to handle noncon-
vexity) is not suitable for our case, because assumptions therein allow functions στ for
which the objective function of the optimization problem in (10) would be unbounded
below. In this case, the definition (10) returns τAVaRε = −∞, i.e., the smoothed risk
measure is not even well-defined. ��
Remark 3 τAVaRε is not coherent.

As shown in Proposition 1(ii), our smoothed functions are risk measures. For the
risk measure to be coherent, it must also be positively homogeneous, i.e, it should
hold that

ρτ (tY ) = tρτ (Y ) for any t > 0 and Y ∈ L1.

123



466 J. P. Luna et al.

Since the smoothing στ does not satisfy this property in general (c.f. Table 1), τAVaRε

is not coherent.
Nevertheless, all the smoothing functions in Table 1 satisfy for t > 0 and x ∈ R the

relation στ (t x) = tστ/t (x). As a result, the τAVaRε risk measure satisfies the property

ρτ (tY ) = tρτ/t (Y ) for any t > 0 and Y ∈ L1,

which gives coherence in the limit, i.e., for τ = 0 and, hence, for the AVaRε (a well-
known result). We mention that the threshold risk measures from [8] propose (in a
different context) a relation similar to the above, as a substitute for coherence. ��

ByProposition 1, we see that to deduce fromTheorem1 convergence of our approx-
imating approach, we still need to show that the smoothed risk measures in (10) are
differentiable. Note that differentiability of the smoothed positive-part function is
immediate, of course, but there is still the issue of the risk measures being value-
functions of an optimization problem. We now state the differentiability properties of
smoothed risk measures for a finite sample space ΩK .

Proposition 2 (Differentiability properties of τAVaRε) Let a function στ (·) be given
as in (7), τAVaRε be defined by (10), and let uτ (Y ) be a minimizer in (10). Suppose
Ω = ΩK = {ω1, . . . , ωK } is finite and let pk be the probability of an event ωk ∈ Ω

for k = 1, . . . , K. The following statements hold:

(i) The function τAVaRε is differentiable, with its gradient given by

∇τAVaRε(Y ) = 1

1 − ε

(
pkσ

′
τ (Yωk − uτ (Y ))

)K
k=1

.

(ii) If σ ′
τ (·) > 0 then the function τAVaRε is twice differentiable, with the second

derivative given by

∂2[τAVaR(Y )]
∂Yωi ∂Yω j

= pωi σ
′′
τ

(
Yωi − uτ (Y )

)

1 − ε

[
δi j − p jσ

′′
τ

(
Yω j − uτ (Y )

)

E[σ ′′
τ (Y − uτ (Y ))]

]
,

where δi j denotes the Kronecker’s delta function and i, j ∈ {1, . . . , K }.
Proof In the finite-dimensional setting, τAVaRε is a value-function

τAVaRε(Y ) = min
u

g(Y, u) = g(Y, uτ (Y ))

for g(Y, u) := u+ 1
1−ε

E

(
στ (Yωk −u)

)
. Since by Proposition 1(i) theminimum in (10)

is attained “at finite distance” and g is differentiable, the value-function in question is
differentiable by Corollary 4.5.3 in [24, Ch.VI], and

∂τAVaRε(Yωk )

∂Yωk

= ∂g(Yωk , u
τ (Y ))

∂Yωk

= pk
1 − ε

σ ′(Yωk − uτ (Y )).
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Wenext analyze the existence and calculus of second derivatives.Given aminimizer
uτ (Ȳ ) corresponding to τAVaR(Ȳ ) = g(Ȳ , uτ (Ȳ )), it holds that

∂g

∂u
(Ȳ , uτ (Ȳ )) = 0.

By the convexity of στ ,

∂2g

∂u2
(Y, u) = 1

1 − ε
E

(
σ ′′

τ (Yk − u)
)

≥ 0.

As ∂2g
∂u2

(Ȳ , uτ (Ȳ )) > 0 if στ (·) > 0, by the Implicit Function Theorem there exist

neighborhoods V of Ȳ andU of uτ (Ȳ ) and a differentiable function u : V → U such
that, among other properties, for all Y ∈ V it holds that

∂g

∂u
(Y, u(Y )) = 0. (12)

By the convexity of g(Y, ·), we have that τAVaR(Y ) = g(Y, u(Y )); τAVaR is differen-
tiable and

∇τAVaR(Y ) = ∂g

∂Y
(Y, u(Y )) + ∂g

∂u
(Y, u(Y ))∇u(Y ) = ∂g

∂Y
(Y, u(Y )) .

This shows that τAVaR is twice differentiable. Differentiating (12) we obtain

∂2g

∂Y ∂u
(Y, u(Y )) + ∂2g

∂u2
(Y, u(Y ))∇u(Y ) = 0,

implying the explicit formula for ∇u(Y ) as ∂2g
∂u2

(Y, u(Y )) > 0 on the relevant neigh-
borhood. Substituting the expression for ∇u(Y ) into

∇2[τAVaR](Y ) = ∂2g

∂Y 2 (Y, u(Y )) + ∂2g

∂u∂Y
(Y, u(Y ))∇u(Y ),

we obtain the needed formula in item (ii). ��
Our final result of this section states that, for both the GNEP model (4) and the

MCP model (5), accumulation points of (approximate) solutions of the smoothed VIs
solve the original VI formulations with nonsmooth measures.

Theorem 2 (Convergence of solutions of VIs with smoothed risk measures) Let
VI(Fτ ,C) be the (single-valued operator) variational inequality associated to (4)
or to (5), with the risk measure Ri (·) therein defined by

ρi
τ (·) = (1 − κ i )E(·) + κ i τAVaRεi (·), κ i ∈ [0, 1],
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for a finite sample space ΩK . Let δ(·) be any function such that δ(τ ) → 0 as τ → 0.
Then, as τ → 0, every accumulation point of any sequence of any δ(τ )-approximate

solutions of VIs (Fτ ,C) solves the (set-valued operator) VI (F,C), associated to (4)
or (5), with the risk measure Ri (·) therein given by

ρi (·) = (1 − κ i )E(·) + κ i AVaRεi (·).

Proof The assertion follows combining Theorem 1 with Propositions 1 and 2. ��

4 Assessing the practical value of the smoothing approach

We assume that all the investment and production functions are convex. Recall that
the coupling constraint hk(·) in the set Sk is affine. In both models and for each player
i = 1, . . . , N , we take endogenous sets of polyhedral form Xi

k for k = 1, . . . , K .
We make the natural assumptions that the sets in question are bounded and there is
relatively complete recourse.

In Sect. 3 we outlined our proposal on how to deal with the set-valued VI operators
associated to (4) or (5) by the smoothing approximation technique. Another possibility
is to reformulate the positive-part function in (3) in the following (standard) way,
introducing additional variables and constraints:

AVaRε(YK ) =

⎧⎪⎨
⎪⎩
min u + 1

1 − ε
E[TK ]

s.t. u ∈ R, and, for k = 1, . . . , K :
Tk ≥ Yk − u and Tk ≥ 0.

(13)

In this section we compare, theoretically and computationally:

– VI obtained from the GNEP (4) with smoothed risk measure R =τ AVaRε defined
in (10).

– VI obtained from GNEP (4) reformulating the original risk measure R = AVaRε

using extra variables and constraints, as outlined in (13).

4.1 VI derivation and existence results

Some computational drawbacks resulting from the reformulation (13) are commented
in Sect. 4.2 below. We mention here that the constraint T i

k ≥ cik − ui couples all
the agents’ variables, while only appearing in the i th agent’s problem. Note also that
this changes the nature of the game, which is no longer of Generalized Nash type
(the constraint in Sk is individual to each player, no longer shared). For this reason, to
obtain a VI formulation for computing a variational equilibrium using (13), in item (ii)
of Proposition 3 below, and in each player’s problem, the constraints in question have
to be “lifted” into the VI operator introducing Lagrange multipliers ηik . And there is
actually yet another reason that requires lifting those constraints into the VI operator:
grouping those constraints for all the agents in a VI formulation may give nonconvex
feasible sets. This is because while the cost functions cik are convex in the variables
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qik , it is not uncommon for them to be nonconvex in the entire variable qk . In that case,
combining those constraints would give a problem with a nonconvex set, with all the
resulting difficulties.

We now state the VIs given by our approach and by the reformulation (13). Without
loss of generality, we shall assume that κ i = 1 in (3), so that the objective functions
in the agents’ problems have simpler expressions.

Proposition 3 (Two single-valued VIs for GNEP)

(i) For the smoothed stochastic GNEP based on τAVaRε, with the agents’ problems

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

min I i (zi ) +τ AVaRεi (c
i
K (qiK , q̄−i

K ))

s.t. zi ∈ R
ni , qiK ∈ R

mi K ,

and, for k = 1, . . . , K :
(zi , qik) ∈ Xi

k,

hik(q
i
k) +

N∑
i = j=1

h j
k (q̄

j
k ) ≤ 0,

(14)

for i = 1, . . . , N, the associated VI (Fτ ,C) has the following structure:

(a) The VI operator is Fτ (z, qK ) =
N∏
i=1

Fi
τ (z

i , qK ), with components

Fi
τ (z

i , qK ) :=
( ∇ I i (zi )(

∇qik

[
τAVaRεi (c

i
k(q

i
k, q̄

−i
k ))

])K
k=1

)
.

(b) The VI feasible set is

C :=
K∏

k=1

(
N∏
i=1

Xi
k ∩ Sk

)
,

where Sk :=
{(

zi , qik
)N
i=1 :

N∑
i=1

hik(q
i
k) ≤ 0 ∈ R

m0

}
.

(ii) For the stochastic GNEP reformulating AVaRε via additional variables and con-
straints, with agents’ problems given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min I i (zi ) + ui + 1

1 − εi
E[T i

K ]
s.t. zi ∈ R

ni , qiK ∈ R
mi K , ui ∈ R, T i

K ∈ R
K ,

and, for k = 1, . . . , K :
(zi , qik) ∈ Xi

k,

hik(q
i
k) +

N∑
i = j=1

h j
k (q̄

j
k ) ≤ 0,

T i
k ≥ cik(q

i
k, q̄

−i
k ) − ui , T i

k ≥ 0,

(15)
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for i = 1, . . . , N, the associated VI (F̃, C̃) has the following structure:
(a) The VI operator is

F̃(z, qK , u, TK , ηK ) =
K∏

k=1

N∏
i=1

F̃ i
k (z

i , qk, u
i , T i

k , ηik),

with components

F̃ i
k (z

i , qk, u
i , T i

k , ηik) :=

⎛
⎜⎜⎜⎜⎜⎜⎝

∇ I i (zi )
ηik∇qik

cik(q
i
k, q

−i
k )

1 − ηikpk
1 − εi

− ηik

−cik(q
i
k, q

−i
k ) + ui + T i

k

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(b) The VI feasible set is

C̃ :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C∏N
i=1 R

K∏
k=1

N∏
i=1

R+

K∏
k=1

N∏
i=1

R+

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Proof Direct, by writing the optimality conditions for the N problems of the agents.
��

Existence of an equilibrium for risk-averse GNEPs is a difficult subject. Existence
was shown for a risk-averse Nash game with a market for risk (but no shared con-
straints) in [39, Sec. 5]. When there are only finitely many scenarios for the random
variable (Ω is finite), both [27,41] provide sufficient conditions for the existence of
a variational equilibrium based on coercivity of the VI operator, following [20]. The
next theorem states an important consequence of our approach, that ensures existence
of an equilibrium for our models, with an argument which in fact makes use of our
smoothing approach itself.

Theorem 3 (Existence of solutions in stochastic GNEP with risk aversion) Let VI
(F,C) be associated to the stochastic GNEP (4) with the risk measure Ri (·) therein
given by ρi (·) = AVaRεi (·) for a finite sample space ΩK , i.e., let the set C be defined
in Proposition 3 (i(b)) and let the VI operator be F(z, qK ) = ∏N

i=1 F
i (zi , qK ) with

components

Fi (zi , qK ) :=
( ∇ I i (zi )(

∂qik

[
AVaRεi (c

i
k(q

i
k, q̄

−i
k ))

])K
k=1

)
.
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If the sets Xi
k , i = 1, . . . , N, k = 1, . . . , K, are convex and compact, then VI (F,C)

has a solution.

Proof By compactness of the sets Xi
k , the set C is compact. Further, Fτ defined in

Proposition 3 (i(a)) is a single-valued continuous mapping. Hence, the VI(Fτ ,C) has
a solution [20, Corollary 2.2.5], for each τ > 0. Belonging toC , any sequence of such
solutions (indexed by τ ) is bounded, and thus has accumulation points. By Theorem 2,
any of those accumulation points (which exist) solves VI(F,C). Hence, the latter VI
has a solution. ��

Existence for the MCP formulation (5) can be obtained similarly, recalling the
difference in the argument of the risk measure and in the treatment of the shared
contraint in Sk .

4.2 Computational comparison with the smooth reformulation

Wefirst discuss some structural properties of the twovariational formulations in Propo-
sition 3.At first sight, because the original riskmeasure is employed in (15) (though via
its reformulation!) and the resulting problem is single-valued, it might seem that the
VI(F̃, C̃) in item (ii) might be preferable. This first impression neglects several chal-
lenges that complicate the solution of the reformulation VI(F̃, C̃), especially when K
is large (to better represent uncertainty, having more events in the sampling space is
preferable). In particular:

(i) As the number of scenarios grows, the additional number of variables and con-
straints induced by the reformulation poses a clear numerical drawback: it adds
(2K + 1)N variables to the VI, and 2K N nonnegativity constraints. This is
already quite significant in itself, as K grows.

(ii) Note that the shared constraint in (1) couples all agents i = 1, . . . , N for each
realization k. In contrast, the additional relations involving the terms

T i
k − cik(q

i
k, q

−i
k ) + ui , i = 1, . . . , N , k = 1, . . . , K ,

couple also all the realizations k = 1, . . . , K via the value-at-risk variable ui .
The latter also corresponds to requiring that (z, q, u, T ) ∈ ∏N

i=1
∏K

k=1 S̃
i
k , where

S̃ik :=
{
(z,i , qk, u

i T i
k ) : h̃ik(qk, ui , T i

k ) := cik(q
i
k, q

−i
k ) − ui − T i

k ≤ 0
}

.

The set S̃ik can be nonconvex if the function c
i
k is nonconvex on the entire variable

qk (this is the case of agent “0” in the game employed for numerical experiments
below). Thus, the corresponding formulation may have this underlying (undesir-
able) nonconvex feature of the feasible set, even if it is made somewhat implicit
by “lifting” the constraint in question into the VI operator (using a Lagrange
multiplier).

(iii) Another possibly negative impact on thenumerical performance is that the second
block of components in F̃ i

k becomes nonlinear on variables qk and ηik . Even in the
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simple settingwith quadratic costs, with linear gradients∇cik , the corrresponding
bilinear relation presents a computationally undesirable feature.

(iv) Finally, we now explain how the fact of having wait-and-see variable compli-
cates solving the AVaR reformulation. As mentioned in Remark 2.4, the work
[27] also deals with risk-averse GNEPs. To handle AVaR’s nonsmoothness, the
authors employ the usual reformulation with more variables and constraints, like
in Proposition 3(ii). A modeling issue that makes the VI in that work easier to
handle than ours is the following. In [27], the AVaR only involves here-and-now
variables that are endogenous, there are no other agents’ variables in the AVaR
argument (see equation (4) in [27]). This corresponds to having the costs ci
depending only on qi . The difference is crucial, as the constraints resulting from
the AVaR reformulation will not couple along scenarios the agents’ decisions
(see page 1104 in [27]). The reformulated Nash game remains a GNEP (with an
increased number of variables and constraints, of course) that the authors solve
by means of a distributed gradient projection scheme with good scalability prop-
erties for the considered problems, thanks to the cutting-plane method employed
for the projection step. In our setting, this approach is not directly applicable,
for the reasons above.

4.2.1 Benchmark specifications

To compare computational issues induced by the twoVI formulations in Proposition 3,
we consider the following simplification of the gas network model discussed in Sect. 5
below:

– The game has three players: producers 1 and 2 and the agent 0, the latter rep-
resenting the consumers. Their wait-and-see decisions are q1k , q

2
k and q0k for

k = 1, . . . , K , the number of scenarios. The here-and-now variables z1 and z2

limit the production capacity; for example, as 0 ≤ q1k ≤ z1. There is no variable
z0, and q0k corresponds to demand left unsatisfied.

– Agent 0 aims at minimizing the deficit in demand by means of an inverse demand
function, as in Remark 1 (deficit is discouraged by setting a very low price at low
production levels). Producers 1 and 2 minimize investment and production costs.

– The product demand follows a normal process with mean 90, and 5 as standard
deviation.

The model was coded in Python, using the Matlab interface of PATH to solve the
VIs with tolerance 10−6. The runs were performed on a PC operating under Ubuntu
12.04 LTS with Intel Core i7-2600 3.40GHz × 8 processors and 15GB of memory.

We ran 10 random instances of the game for each of the following sizes of ΩK :

ΩK has K scenarios, for K ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}.

4.2.2 Performance of the smoothing approach

Our solution method solves a sequence of smoothed VIs, indexed by j = 0, 1, 2, . . .,

using for the positive-part function the approximation στ (x) = x+√
x2+4τ 2
2 (the second
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Fig. 1 Players behaviour with low (left) and high (right) levels of risk aversion

option in Table 1). Starting with τ0 = 10−3, we set τ j+1 = 0.5τ j , and increase j until
certain stability is observed. Specifically, the process stops when consecutive values of
all the components of the decision variables are sufficiently close. I.e., for a decision
variable called, say, x̄ , it holds that

∣∣x̄ j+1 − x̄ j
∣∣

max
(
1,

∣∣x̄ j+1
∣∣) ≤ 0.01, (16)

and the same is valid for all the components of all the decision variables.
We ran a first set of experiments with quadratic generation costs and risk aversion

parameter ε = 0.25 for all players. The average solving time was 45 seconds; it took
less than five VI solves for our smoothing method to trigger the stopping test ( j ≤ 5
in (16)) on average, i.e., taking the mean over all the instances and all the considered
scenarios.

The excellent quality of the primal and dual solutions obtained with the τAVaR-
smoothed game (14) was confirmed by the fact that in all the runs the final values were
(numerically) identical to the “exact” solutions obtained with the AVaR-reformulation
(15).

For the τAVaR solution and the three players (i = 0, 1, 2), Fig. 1 shows the value

of variables
(
qki

)K=100

k=1
taking ε = 0.75 and ε = 0.25 in (14) (left and right, respec-

tively).
We observe a clear impact of the risk aversion factor: on the left graph, agents are

relatively risk-neutral, and their production is practically the same for all scenarios,
because the variation of demand is entirely absorbed by the consumers, in the form
of a deficit, qk0 . By contrast, on the right graph, agents are more risk averse and
their production follows closely the demand profile. The higher sensitivity of player
2 (horizontal lines in the graph) is explained by this player having higher generation
costs. For these experiments, both the τAVaR-methodology and solving (15) ran in less
than 50 seconds, averaging over all instances and scenarios.

To better assess the impact of the smoothing approach on computing times, we
created a second set of instances with nonquadratic convex generation costs. This
yields highly nonlinear VI operators in Proposition 3. We first note that the stopping
test for the smoothing method was triggered after six VI solves on average: j ≤ 6
in (16). The second observation is a noticeable difference in the total solution time:
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Fig. 2 Total solution time and PATH time, for a sequence of smoothed τAVaR problems (dark color) and
for reformulated AVaR problems (lighter color)

with our approach the average time spent in each scenario was about half a second,
while the AVaR reformulation needed more than eight seconds per scenario. We note
that the above refers to total time, i.e., time required to build each VI from the input
problem data, and the PATH solution time. In addition, we computed the PATH time
separately.

Figure 2 shows these times for both approaches, as a function of the number of
scenarios.

The top graph in Fig. 2 illustrates the increasing time that the AVaR-reformulation
needs, as (15) uses more and more scenarios. For K = 10 and 20, both approaches
take approximately the same total time (the length of the darker and lighter color
bars are similar). By contrast, for K ≥ 50, the reformulation takes at least 9 times
longer than our smoothing approach. The bottom graph makes clear that the reason for
this difference in performance is not the PATH time, which is actually better for the
reformulation (though becomes quite comparable as K grows), but the time required
to mount the VI models. Except for the case of K = 50, we see that PATH solves (15)
faster than the sequence of (6 in average) smoothed VIs (14) (the case K = 50, which
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Fig. 3 PATH time ratios between solving VI with AVaR reformulation and a sequence of smoothed VIs
using τAVaR

is out of the trend, should be thought of as an example of the importance of running a
good number of realizations when dealing with stochastic data)). But the time taken
to build larger reformulation models (15) becomes eventually a problem, as K grows.

As a complement of information, for each K we computed the ratios

RK := PATH time to solve a sequence of smoothed VIs derived from (14) using τAVaR

PATH time to solve one VI derived from AVaR reformulation (15)
,

and obtained the values RK = {4.60, 6.00, 5.60, 4.20, 0.50, 2.90, 2.60, 2.60, 2.00,
1.30}, displayed graphically in Fig. 3.

Taking for example the casewith K = 90 scenarios, which required sevenVI solves
in the smoothing approach, we see that solving seven smoothed VIs (14) demanded
only twice the time required for the single reformulated VI (15). Solving faster one
smoothed VI is partly explained by its smaller size. But we also observed that PATH
was always much faster solving consecutive smoothed VIs, after having solved the
first one, thanks to a good use of warm starts.

In terms of scalability, the trend is clear. At least for our test problems, the single
VI for the AVaR reformulation will become unsolvable much earlier than VIs in our
approach. Note also that our approach allows for decomposition, and even paralleliza-
tion (see [31]), thus pushing the boundary even further. In fact, one of the subjects
of future research would be precisely combining Benders decomposition [14] along
scenarios with Dantzig–Wolfe decomposition for the players [31]. Using the latter
decomposition technique is discussed in the next section.

5 Assessment on the European natural gas network

In this section we use data from a real-world problem, the gas network specified
in [23], with two particular goals. First, we analyze the agents’ strategies regarding
aversion to risk under different conditions of market volatility. Second, as a proof of
concept, we show that further advantage is to be gained with our approach applying
decomposition. At this time this is just a preliminary assessment, as after decomposing
as in [31], one could also parallelize, an option not yet implemented. Moreover, our
formulation allows for Benders decomposition [31] along scenarios as well. This is
another subject for future implementations of our proposals, currently underway.
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The gas network [23] considers agents of several types: producers, traders, lique-
fiers, re-gasifiers, storage and pipeline operators. This is an energy-only market (there
is no capacity market; so the investment variables and the corresponding objects
disappear from the general model described above). Consumers are represented by
the inverse demand function, a modelling referred to as “implicit” in [32]; see also
Remark 1. As there are no here-and-now variables, the risk-neutral and risk-averse
MCP models are equivalent in this case: our numerical results concern the GNEP
model only.

5.1 Information about solvers, problem and data

We use data of a “subnetwork” in [23], with 3 producers (Russia, the Netherlands and
Norway), 1 trader, 1 regasifier, 1 liquefier, and 1 storage operator (the Netherlands,
Belgium, Nigeria, and France, respectively), and the pipelines linking the agents. The
deterministic version of the model has 44 variables and 22 constraints.

To generate the stochastic demand, we created random reductions in the determin-
istic values of the intercept of the inverse demand function, sampling from a uniform
distribution andmultiplying by a factor representing volatility. The left and right graphs
in Fig. 4 show scenarios of the inverse demand function for France, for higher and
lower volatility, respectively. The deterministic function is plotted with circles. We
used the smoothing parameters in Sect. 4.2.2, ε = 0.1, and κ i = 0.1 for all the agents,
except the producers, for which we let κ i = 0.75 (producers are more risk averse).

5.2 Impact of volatility and risk aversion

We solved the GNEP model for an increasing number of scenarios, and made 5 runs
for every cardinality. Table 2 reports the average solution time in seconds (failures are
denoted with *****) for the risk neutral (RN), and the risk-averse game (RA) models.
A suffix lo or hi refers to the data with low or high volatility represented by Fig. 4.

We observe in Table 2 that (naturally) for all the instances the risk-neutral model
(κ i = 0 in (3)) is solved in less than one second. The interest of the case with just one
scenario (K = 1) is to check if all the models give the same solution. This was the case
for all of our runs. The increased CPU time for the risk-averse model when K = 1
can be seen as the price to pay for the nonlinearity introduced by the risk measure
τAVaR. Regarding the two instances with less or more volatility, it appears as if the
low volatility data made the VI more difficult to solve: with 8 and 16 scenarios it took

Fig. 4 Inverse demand function scenarios for France, high and low volatility (left and right)
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Table 2 Average CPU time in
seconds—low and high volatility

K RNlo RNhi RAlo RAhi

1 0.0 0.0 2.3 2.3

2 0.0 0.0 11.8 5.8

4 0.0 0.1 77.7 25.0

8 0.0 0.1 185.8 94.4

16 0.3 0.3 541.3 326.1

32 0.8 0.9 ***** *****

64 1.4 1.9 ***** *****

Fig. 5 Producers Profit per Scenario, risk neutral and risk averse profit under low and high volatility

PATH twice the time for RNlo compared to RNhi . We observed this phenomenon in all
of our runs. We conjecture that when uncertainty is more “alike” (as in Fig. 4 for the
right graph, with low volatility), there are more “similar” feasible points, which can be
interpreted as kind of degeneracy that might give Newtonian solvers like PATH some
problems. We observe that for K ≤ 16 all of the runs were successful (no failures)
while for K = 32, 64 no risk averse instance could be solved. For this reason, the runs
below consider K = 16.

To compare the quality of the output, we compute the profit of the producers,
averaged over 5 runs. Figure 5 shows the profit for each scenario, with and without
risk aversion, and for the two instances of volatility for a problem with K = 16. Since
the risk-neutral profit was (practically) identical in both volatility conditions, Fig. 5
displays only one RN curve. The risk-averse solutions are very sensitive to different
scenarios, especially if volatility is high. This is shown by the RAhi/ lo values for
scenarios 1 and 11 which represent, respectively, a very favourable and unfavourable
situations. This behaviour is more extreme for the instance with high volatility: the
producers accept to incur into losses for scenarios 6, 7, and 11, in view of the very
high gain in scenario 1. Table 3 reports the mean and 90%-quantile for each situtation,
exhibiting a pattern similar to the one observed in Fig. 5 (note in particular the spread
between the mean and the quantile).

It took longer for PATH to solve problemswith higher risk-aversion parameters.We
conjecture this is because risk-averse producers make it more difficult for the market
to reach an equilibrium. The profit statistics, as producers become more risk averse,
are reported in Table 4.
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Table 3 Producers’ profit statistics under varying volatility (K = 16)

RNlo mean Quantile0.9 RAlo mean quantile0.9 RNhi mean Quantile0.9 RAhi mean Quantile0.9

732.4 756.8 727.8 1989.3 285.9 406.8 1402.3 3347.8

Table 4 Producers’ profit statistics for increasing risk aversion

κ RAlo mean Quantile0.9 RAhi mean Quantile0.9

0.25 760.8 2804.4 911.0 6673.9

0.50 758.2 2944.8 1291.5 8548.0

0.75 740.1 3827.4 1315.6 12,016.8

1.00 748.3 3468.2 1810.7 10,712.6

By comparing the values with κ ≤ 0.75 in Table 4, it appears that increasing the
aversion to risk is beneficial for the producer (even more so in the high volatility
setting). However, becoming completely risk averse may not pay off: the values with
κ ≤ 0.75 are preferable for the producer compared to those obtained setting κ = 1.
A closer inspection of the output shows that when κ = 1, the high volatility problem
results in an equilibrium such that all of the profit quantiles give losses to the producers,
until the 8th one. But since scenario number 1 is highly favourable, the corresponding
gain pulls up the 9th quantile.

5.3 The benefits of decomposing

When using Matlab, the (compiled) mex-file of PATH limits the size of solvable VIs.
For larger instances it would inevitably become necessary to apply some type of
decomposition. For instance, the VI Dantzig–Wolfe approach [22,31]; the Benders’
decomposition [14]; or the distributed method in [27]. In particular, [31] presents a
rather broad and flexible framework, allowing for various kinds of data approxima-
tions, inexact solution of subproblems, and a potential for parallelization; all useful
for the model at hand.

In the current case, the problem has no (investment) here-and-now variables, and
the variables zi disappear from Ci in Proposition 3(i)(b). The feasible set has a struc-
ture amenable to Dantzig-Wolfe decomposition using the techniques in [31]. We use
the VI operator approximation called in [31] constant approximation. Specifically, at
each iteration for each fixed scenario, we replace the last term in the VI operator by
the vector with all the terms fixed to the last available value. With such an approxima-
tion and for our data, the subproblems in the Dantzig–Wolfe decomposition scheme
of [31] become quadratic programming problems; they are solved by Mosek solver
www.mosek.org. The master problems of [31] have a simplicial feasible set and a dif-
ferentiable VI operator that involves the derivatives of the smoothed risk measures; the
master problems are solved by PATH. For more details on this class of decomposition
methods and its convergence properties, see [31]. The interest of the approach as K
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Fig. 6 The advantage of decomposing

increases is investigated in [31]; for an alternative decomposition having also good
scalability properties, we refer to the distributed gradient projection scheme in [27].

Figure 6 shows the CPU times in seconds required by the direct solution of the
problem by PATH and by using the Dantzig–Wolfe decomposition (stopped when its
“gap measure” becomes smaller than 0.05

√
dim, with dim the dimension of the VI

variables). We considered an instance of high volatility with K = 4 scenarios, and
run the solvers 5 times. We observe that in most cases the decomposition approach
found an equilibrium (the same as PATH) in about 1/3 of the time required by applying
PATH directly to the VI. The exception is the third run. After a closer examination,
our understanding is that this instance was a difficult one in terms of feasibility, due
to a high stochastic demand. In such a case, solving a sequence of VIs sort of repeats
the difficulty on every iteration. This third run is also an example of the importance of
running several realizations (instances) of the same problem, before attempting any
conclusions in a stochastic setting.

Since various specific schemes within the Dantzig–Wolfe class of [31] can be
parallelized (in particular, the oneused in our implementationhere), additional speedup
is to be gained with a professional implementation.
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