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Abstract This paper considers optimization problems with cardinality constraints.
Based on a recently introduced reformulation of this problem as a nonlinear program
with continuous variables, we first define some problem-tailored constraint qualifica-
tions and then show how these constraint qualifications can be used to obtain suitable
optimality conditions for cardinality constrained problems. Here, the (KKT-like) opti-
mality conditions hold under much weaker assumptions than the corresponding result
that is known for the somewhat related class of mathematical programs with comple-
mentarity constraints.
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1 Introduction

Consider the cardinality-constrained optimization problem

min
x

f (x) s.t. x ∈ X, ‖x‖0 ≤ κ (1.1)

with a set X ⊆ R
n described by some standard constraints

X := {
x ∈ R

n | gi (x) ≤ 0 (i = 1, . . . ,m), hi (x) = 0 (i = 1, . . . , p)
}

(1.2)

and ‖x‖0 denoting the number of nonzero components of the vector x . Throughout the
paper, we assume implicitly that f, gi , hi : R

n → R are continuously differentiable,
and that the parameter κ is less than n (otherwise, there would be no sparsity constraint
on the cardinality of the solution vector).

Problem (1.1) has many important applications including portfolio optimization
problems with constraints on the number of assets [7], the subset selection problem in
regression [16], or the compressed sensing technique applied in signal processing [9].
It is, however, very difficult to solve due to the presence of the cardinality constraint
‖x‖0 ≤ κ . It is usually viewed as a mixed-integer problem since it can be reformulated
in such away by introducing suitable binary variables, see [7].Methods for the solution
of cardinality-constrained optimization problems therefore typically apply or adapt
techniques from discrete optimization and often consider only special instances of
our problem (1.1), see [6,7,10,17,24,26,29] and references therein for a couple of
examples. A notable exception is the paper [3] where the authors use ideas from
continuous optimization in order to find suitable stationary points of the problem (1.1)
with X = R

n . Since the particular structure of the additional constraints described by
X plays a central role in the subsequent analysis, our results are completely different
from those presented in [3].

Here we follow an observation which is very close to the one made in [11] in
the context of the related class of sparse optimization problems. This observation was
slightly afterwards (and independently) also made by the authors of the accompanying
paper [8] for cardinality-constrained problems: It is not difficult to see that x∗ is a
solution of (1.1) with X given by (1.2) if and only if there exists a suitable vector y∗
such that (x∗, y∗) is a solution of the mixed-integer program

min
x,y

f (x) s.t. gi (x) ≤ 0 ∀i = 1, . . . ,m,

hi (x) = 0 ∀i = 1, . . . , p,
eT y ≥ n − κ,

yi ∈ {0, 1} ∀i = 1, . . . , n,

xi yi = 0 ∀i = 1, . . . , n,
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Optimization problems with cardinality constraints for... 355

where e := (1, . . . , 1)T ∈ R
n denotes the all one vector. Using the standard relaxation

of the binary constraints yi ∈ {0, 1}, we arrive at the following continuous optimization
problem:

min
x,y

f (x) s.t. gi (x) ≤ 0 ∀i = 1, . . . ,m,

hi (x) = 0 ∀i = 1, . . . , p,
eT y ≥ n − κ,

0 ≤ yi ≤ 1 ∀i = 1, . . . , n,

xi yi = 0 ∀i = 1, . . . , n,

(1.3)

which is sometimes called the relaxed problem due to its derivation. As pointed out
in the accompanying paper [8], there is still a very close relation between the two
problems (1.1) and (1.3): x∗ is a solution (global minimum) of (1.1) with X as in
(1.2) if and only if there exists a vector y∗ such that the pair (x∗, y∗) solves (1.3).
Furthermore, every local minimum of (1.1), where the feasible set is given by (1.2),
yields a localminimumof (1.3), and the converse is also true under suitable conditions,
see [8] for more details.

Hence (1.3) provides a reformulation of the difficult cardinality constrained
optimization problem as a minimization problem in continuous variables. This refor-
mulation has been used to obtain suitable methods for the solution of problem (1.1) in
[8] which are, of course, not able to find a global minimum, but an appropriate station-
ary point in an efficient way, see also the extensive numerical results presented in [11]
for sparse optimization problems. Here we want to exploit the relationship between
the two problems (1.1) and (1.3) in order to obtain suitable optimality conditions for
the original cardinality-constrained problem.

There is, however, still a difficulty since the reformulation (1.3) typically does not
satisfy the standard constraint qualifications known for nonlinear programs, hence the
usual KKT theory cannot be applied, at least not directly. In addition, the reformula-
tion (1.3) looks similar to a mathematical program with complementarity constraints
(MPCC) for which, in the meantime, there exists a rich theory, cf. [14,20] for some
background material on MPCCs.

However, direct application of most MPCC-tailored constraint qualifications is not
possible in general. Furthermore, and most interestingly, it turns out that a direct
inspection of the problem (1.3) yields results that are much stronger than the corre-
sponding ones known for generalMPCCs. Observations of this kind have already been
given in [8] and will also arise in this paper, cf. Sect. 5 for a more detailed discussion.

The paper is organized in the following way: We first recall some basic definitions
and a result on polar cones in Sect. 2. We then derive suitable constraint qualifications
tailored to the cardinality-constrained problem (1.1) in Sect. 3 and provide sufficient
conditions for these constraint qualifications. The main results are given in Sect. 4
where we use the previously introduced constraint qualifications to prove that a strong
(KKT-like) stationarity result holds under very mild conditions (much less restrictive
than for the corresponding result known for MPCCs). A detailed comparison of our
results for the cardinality-constrained problem with the corresponding results known
for MPCCs is given in Sect. 5.

Notation: ei denotes the i-th unit vector in R
n . We denote by R+ := [0,∞) and

R− := (−∞, 0] the set of nonnegative and nonpositive numbers, respectively. In this
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paper we use the term positive linear independence in the following sense. We say
that a finite set of vectors ai (i ∈ I ) and b j ( j ∈ J ) is positively linearly independent
if there are no nonzero multipliers (λ, μ) with λi ≥ 0 (i ∈ I ) such that

∑

i∈I
λi ai +

∑

j∈J

μ j b j = 0;

otherwise these vectors are called positively linearly dependent. Note that, from the
context, it should usually be clear which coefficients are sign-constrained and which
coefficients are not. Following standard terminology in the optimization community,
we call an affine-linear function simply linear.

2 Preliminaries

This section presents some preliminary material that will play an essential role in our
subsequent analysis. To this end, we recall the definitions of several constraint quali-
fications for standard nonlinear programs and a result which simplifies the calculation
of the cones that play a central role later on.

Let us begin by considering a nonlinear program in the standard form

min
x

f (x) s.t. gi (x) ≤ 0 ∀i = 1, . . . ,m,

hi (x) = 0 ∀i = 1, . . . , p,
(2.1)

Let X denote the feasible set of this program. Then the (Bouligand) tangent cone of
X at a feasible point x∗ ∈ X is defined by

TX (x∗) :=
{
d ∈ R

n
∣
∣ ∃{xk} ⊆ X, ∃{tk} ↓ 0 : xk → x∗ and lim

k→∞
xk − x∗

tk
= d

}
.

On the other hand, the corresponding linearization cone of X at x∗ ∈ X is given by

LX (x∗) := {
d ∈ R

n
∣
∣∇gi (x

∗)T d ≤ 0 (i : gi (x∗) = 0),

∇h j (x
∗)T d = 0 ( j = 1, . . . , p)

}
.

As part of our subsequent analysis, we will derive suitable expressions for the tangent
and linearization cones corresponding to the specially structured nonlinear program
from (1.3).

We also recall that, given an arbitrary cone C ⊆ R
n , its polar cone is defined by

C ◦ :=
{
v ∈ R

n | vT d ≤ 0 ∀d ∈ C
}

.

Note that the polar cone is sometimes also denoted by C ∗ in the literature, see, for
example, [23].

In the special case of a polyhedral convex cone, there is a simple duality relation
known from convex analysis, see, e.g., [4, Proposition B.16].
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Lemma 2.1 Let the cones

C1 :=
{
d ∈ R

n | aTi d ≤ 0 (i = 1, . . . ,m), bTi d = 0 (i = 1, . . . , p)
}

and

C2 :=
{

v ∈ R
n

∣
∣ v =

m∑

i=1

λi ai +
p∑

i=1

μi bi , λi ≥ 0 (i = 1, . . . ,m)

}

be given. Then C1 = C ◦
2 and C2 = C ◦

1 .

Based on the previously introduced notions, we are able to restate the definitions of
several constraint qualifications known for standard nonlinear programs.

Definition 2.2 Let x∗ be a feasible point of the nonlinear program (2.1). Then we say
that x∗ satisfies the

(a) linear independence constraint qualification (LICQ) if the gradient vectors

∇gi (x
∗) (i : gi (x∗) = 0), ∇hi (x

∗) (i = 1, . . . , p)

are linearly independent;
(b) Mangasarian–Fromovitz constraint qualification (MFCQ) if the gradient vectors

∇hi (x∗) (i = 1, . . . , p) are linearly independent and, in addition, there exists a
vector d ∈ R

n such that ∇hi (x∗)T d = 0 (i = 1, . . . , p) and ∇gi (x∗)T d < 0
(i : gi (x∗) = 0) hold;

(c) constant rank constraint qualification (CRCQ) if for any subsets I1 ⊆ {i :
gi (x∗) = 0} and I2 ⊆ {1, . . . , p} such that the gradient vectors

∇gi (x) (i ∈ I1), ∇hi (x) (i ∈ I2)

are linearly dependent in x = x∗, they remain linearly dependent for all x in a
neighborhood of x∗;

(d) constant positive linear dependence condition (CPLD) if for every subsets I1 ⊆
{i : gi (x∗) = 0} and I2 ⊆ {1, . . . , p} such that the gradient vectors

∇gi (x) (i ∈ I1) and ∇hi (x) (i ∈ I2)

are positive-linear dependent in x = x∗, they are linearly dependent for all x in a
neighborhood of x∗;

(e) Abadie constraint qualification (ACQ) if TX (x∗) = LX (x∗) holds;
(f) Guignard constraint qualification (GCQ) if TX (x∗)◦ = LX (x∗)◦ holds.

Most of these constraint qualifications are well-known from the literature, see, e.g.,
[2,18]. One exception might be the CPLD condition which was introduced in [22]
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358 M. Červinka et al.

and later shown to be a constraint qualification in [1]. The following implications hold
between these conditions:

LICQ
MFCQ

CRCQ
CPLD ACQ GCQ

Almost all of these implications follow directly from the corresponding definitions.
The only exception is that CPLD implies ACQ, but this observation can be derived
from [1,5]. It is clear from the above diagram that LICQ is the strongest and GCQ is
the weakest constraint qualification among those considered here. In fact, it is possible
to show that (in a certain sense), GCQ is the weakest possible constraint qualification
which guarantees that a local minimum of the program (2.1) is also a stationary point,
see [2] for more details.

3 Abadie- and Guignard-type constraint qualifications

Though being one of the weakest constraint qualifications for optimization problems,
standard ACQ is usually violated at a feasible point of the cardinality-constrained
optimization problem (1.1), see Example 3.6 for a counterexample. We therefore
introduce a problem-tailored modification of the standard ACQ in this section which
will be satisfied under much weaker assumptions than the usual ACQ condition. In a
similar way, we also develop a variant of the standard GCQ condition. Quite surpris-
ingly, however, this modified GCQ condition turns out to be equivalent to the usual
GCQ assumption. We call these modified ACQ- and GCQ-conditions CC-ACQ and
CC-GCQ (CC = cardinality constraints).

3.1 Derivation of Abadie- and Guignard-type constraint qualifications

Let Z be the feasible set of the continuous optimization problem (1.3), and let the pair
(x∗, y∗) ∈ Z be any feasible point. We then introduce the following index sets:

Ig(x
∗) := {i ∈ {1, . . . ,m} | gi (x∗) = 0},

I0(x
∗) := {i ∈ {1, . . . , n} | x∗

i = 0}
I±0(x

∗, y∗) := {i ∈ {1, . . . , n} | x∗
i �= 0, y∗

i = 0},
I00(x

∗, y∗) := {i ∈ {1, . . . , n} | x∗
i = 0, y∗

i = 0},
I0+(x∗, y∗) := {i ∈ {1, . . . , n} | x∗

i = 0, y∗
i ∈ (0, 1)},

I01(x
∗, y∗) := {i ∈ {1, . . . , n} | x∗

i = 0, y∗
i = 1}.

Note that the subscripts are used to indicate the signs of the variables x∗
i and y∗

i . The
definitions of these index sets immediately show that we have the partitions

{1, . . . , n} = I0(x
∗) ∪ I±0(x

∗, y∗)
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and
I0(x

∗) = I00(x
∗, y∗) ∪ I0+(x∗, y∗) ∪ I01(x

∗, y∗).

We further note that the index set I±0(x∗, y∗) could alternatively be called I±(x∗)
only, since x∗

i �= 0 together with the assumed feasibility of (x∗, y∗) immediately
yields y∗

i = 0. However, we prefer to use double indices also for this index set since
this makes it easier to remember the sign distribution of the two components x∗

i and
y∗
i .
Using these index sets, the linearization cone of Z at (x∗, y∗) is given by

LZ (x∗, y∗) = {
d = (dx , dy) | ∇gi (x

∗)T dx ≤ 0 ∀i ∈ Ig(x
∗),

∇hi (x
∗)T dx = 0 ∀i = 1, . . . , p,

eT dy ≥ 0 if eT y∗ = n − κ,

eTi dy ≥ 0 ∀i ∈ I±0(x
∗, y∗) ∪ I00(x

∗, y∗),
eTi dy ≤ 0 ∀i ∈ I01(x

∗, y∗),
x∗
i e

T
i dy + y∗

i e
T
i dx = 0 ∀i = 1, . . . , n

}

An alternative representation of the linearization cone, that is better suited for our
purposes, is given in the following result whose proof is rather obvious and therefore
omitted.

Lemma 3.1 Let (x∗, y∗) ∈ Z be a feasible point of the program (1.3). Then the
linearization cone of Z at (x∗, y∗) is given by

LZ (x∗, y∗) = {
d = (dx , dy) | ∇gi (x

∗)T dx ≤ 0 ∀i ∈ Ig(x
∗),

∇hi (x
∗)T dx = 0 ∀i = 1, . . . , p,

eT dy ≥ 0 if eT y∗ = n − κ,

eTi dy = 0 ∀i ∈ I±0(x
∗, y∗),

eTi dy ≥ 0 ∀i ∈ I00(x
∗, y∗),

eTi dy ≤ 0 ∀i ∈ I01(x
∗, y∗),

eTi dx = 0 ∀i ∈ I01(x
∗, y∗),

eTi dx = 0 ∀i ∈ I0+(x∗, y∗)
}
.

In order to derive suitable constraint qualifications which take into account the partic-
ular structure of the nonlinear program (1.3), we now introduce the CC-linearization
cone (CC = cardinality constraints) by

L CC
Z (x∗, y∗) = {

d = (dx , dy) | ∇gi (x
∗)T dx ≤ 0 ∀i ∈ Ig(x

∗),
∇hi (x

∗)T dx = 0 ∀i = 1, . . . , p,

eT dy ≥ 0 if eT y∗ = n − κ,

eTi dy = 0 ∀i ∈ I±0(x
∗, y∗),
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eTi dy ≥ 0 ∀i ∈ I00(x
∗, y∗),

eTi dy ≤ 0 ∀i ∈ I01(x
∗, y∗),

eTi dx = 0 ∀i ∈ I01(x
∗, y∗),

eTi dx = 0 ∀i ∈ I0+(x∗, y∗),
(eTi dx )(e

T
i dy) = 0 ∀i ∈ I00(x

∗, y∗)
}
.

Comparing this definition with the representation of the standard linearization cone
from Lemma 3.1, it turns out that the only difference is that we included the last line
into the CC-linearization cone. In particular, we therefore have

L CC
Z (x∗, y∗) ⊆ LZ (x∗, y∗). (3.1)

While the linearization cone is, by definition, a polyhedral convex cone, simple
examples such as Example 3.6 show that both the tangent cone TZ (x∗, y∗) and the
CC-linearization coneL CC

Z (x∗, y∗) are, in general, nonconvex, specifically, they are,
usually, the union of finitely many polyhedral convex cones.

This observation can be made precise by introducing certain subsets of the feasible
set Z . Recall that (x∗, y∗) ∈ Z still denotes a given (fixed) feasible point of the
program (1.3). For an arbitrary subset I ⊆ I00(x∗, y∗), we then define the restricted
feasible sets

ZI := {
(x, y) | gi (x) ≤ 0 ∀i = 1, . . . ,m,

hi (x) = 0 ∀i = 1, . . . , p,

eT y ≥ n − κ,

xi = 0, yi ∈ [0, 1] ∀i ∈ I0+(x∗, y∗) ∪ I01(x
∗, y∗) ∪ I,

yi = 0 ∀i ∈ I±0(x
∗, y∗) ∪ (

I00(x
∗, y∗)\I ) }

,

i.e., we split the bi-active index set I00(x∗, y∗) into the two sets I and I00(x∗, y∗)\I
and require that xi = 0 on the first set and yi = 0 on the second set. In particular, we
therefore have ZI ⊆ Z for all I ⊆ I00(x∗, y∗). Furthermore, we have the following
result showing that the tangent cone is indeed the union of finitely many polyhedral
convex cones.

Proposition 3.2 Let (x∗, y∗) ∈ Z be feasible for the program (1.3). Then the tangent
cone and its polar satisfy the following equations:

(a) TZ (x∗, y∗) = ⋃
I⊆I00(x∗,y∗) TZI (x

∗, y∗).
(b) TZ (x∗, y∗)◦ = ⋂

I⊆I00(x∗,y∗) TZI (x
∗, y∗)◦.

Proof Statement (a) was given in [8]. Formally, that paper assumes that gi and hi
are linear. However, a simple inspection of that proof shows that possibly nonlinear
functions gi and hi do not change anything. Furthermore, part (b) then follows from
(a) and [2, Theorem 3.1.9]. ��
A similar representation can be shown for the CC-linearization cone.
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Proposition 3.3 Let (x∗, y∗) ∈ Z be feasible for (1.3). Then the CC-linearization
cone and its polar satisfy the following equations:

(a) L CC
Z (x∗, y∗) = ⋃

I⊆I00(x∗,y∗) LZI (x
∗, y∗).

(b) L CC
Z (x∗, y∗)◦ = ⋂

I⊆I00(x∗,y∗) LZI (x
∗, y∗)◦.

Statement (b), once again, follows from part (a) by applying [2, Theorem 3.1.9] to the
nonempty cones LZI (x

∗, y∗). On the other hand, the first statement can be obtained
relatively easily by exploiting the structure of the linearization cone LZI for an arbi-
trary index set I ⊆ I00(x∗, x∗) given by

LZI (x
∗, y∗) = {

d = (dx , dy) | ∇gi (x
∗)T dx ≤ 0 ∀i ∈ Ig(x

∗),
∇hi (x

∗)T dx = 0 ∀i = 1, . . . , p,
eT dy ≥ 0 if eT y∗ = n − κ,

eTi dx = 0 ∀i ∈ I0+(x∗, y∗) ∪ I01(x
∗, y∗) ∪ I,

eTi dy ≥ 0 ∀i ∈ I,
eTi dy ≤ 0 ∀i ∈ I01(x

∗, y∗),
eTi dy = 0 ∀i ∈ I±0(x

∗, y∗) ∪ (
I00(x

∗, y∗)\I ) }
.

(3.2)
We therefore skip the details of the proof.

Since the tangent cone is always a subset of the corresponding linearization cone,
Propositions 3.2 and 3.3 immediately yield the inclusions

TZ (x∗, y∗) =
⋃

I⊆I00(x∗,y∗)
TZI (x

∗, y∗) ⊆
⋃

I⊆I00(x∗,y∗)
LZI (x

∗, y∗) = L CC
Z (x∗, y∗).

(3.3)
Together with (3.1), we therefore get the following result.

Proposition 3.4 The inclusions

TZ (x∗, y∗) ⊆ L CC
Z (x∗, y∗) ⊆ LZ (x∗, y∗)

hold for any feasible point (x∗, y∗) ∈ Z.

Recall that the standard ACQ requiresTZ (x∗, y∗) = LZ (x∗, y∗). However, taking
into account that the tangent cone is usually nonconvex as a finite union of polyhedral
convex cones, whereas the linearization cone is polyhedral convex by its definition,
it follows that the ACQ assumption typically does not hold in our context. On the
other hand, the CC-linearization cone is also nonconvex, and Proposition 3.4 indeed
motivates the following modifications of standard ACQ and standard GCQ.

Definition 3.5 Let (x∗, y∗) ∈ Z be feasible for the program (1.3). Then we say that

(a) CC-ACQ holds at (x∗, y∗) if TZ (x∗, y∗) = L CC
Z (x∗, y∗) holds.

(b) CC-GCQ holds at (x∗, y∗) if TZ (x∗, y∗)◦ = L CC
Z (x∗, y∗)◦ holds.

Note that CC-ACQ implies CC-GCQ, whereas the converse is not true in general.
Moreover, standardACQalso impliesCC-ACQ,whereas the following example shows
that CC-ACQ might hold also in situations where standard ACQ is violated.
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Example 3.6 Consider the simplest possible cardinality-constrained problem

min f (x) s.t. ‖x‖0 ≤ 1

with x ∈ R
2 and the corresponding relaxed problem

min
x,y

f (x) s.t. y1 + y2 ≥ 1,

0 ≤ yi ≤ 1 ∀i = 1, 2,

xi yi = 0 ∀i = 1, 2.

If we choose the feasible point (x∗, y∗) with x∗ = (0, 0)T and y∗ = (0, 1)T and
denote the feasible set of the relaxed problem by Z , we obtain

TZ (x∗, y∗) = {
(dx , dy) | (dx )2 = 0, dy = 0

}

∪ {
(dx , dy) | dx = 0, (dy)1 ≥ 0, (dy)2 ≤ 0, (dy)1 + (dy)2 ≥ 0

}
,

LZ (x∗, y∗) = {
(dx , dy) | (dx )2 = 0, (dy)1 ≥ 0, (dy)2 ≤ 0, (dy)1 + (dy)2 ≥ 0

}
,

where the tangent cone TZ (x∗, y∗) and the linearization cone LZ (x∗, y∗) can be
calculated, e.g., using Proposition 3.2 and Lemma 3.1, respectively. Here,TZ (x∗, y∗)
is nonconvex, more precisely, it is the union of two polyhedral convex cones, and
consequently TZ (x∗, y∗) � LZ (x∗, y∗). Hence standard ACQ is violated in this
example. On the other hand, a simple computation shows that the CC-linearization
coneL CC

Z (x∗, y∗) and the tangent coneTZ (x∗, y∗) coincide, hence CC-ACQ holds.

Example 3.6 shows that CC-ACQ is indeed weaker than standard ACQ. Since Propo-
sition 3.4 implies that

LZ (x∗, y∗)◦ ⊆ L CC
Z (x∗, y∗)◦ ⊆ TZ (x∗, y∗)◦, (3.4)

it follows that standard GCQ implies CC-GCQ, and it is rather tempting to believe that
CC-GCQ is also strictly weaker than standard GCQ. Surprisingly, however, it turns
out that CC-GCQ and standard GCQ coincide. This is a consequence of the following
result.

Theorem 3.7 Let (x∗, y∗) ∈ Z be feasible for (1.3). Then LZ (x∗, y∗)◦ =
L CC

Z (x∗, y∗)◦.

Proof In view of (3.4), we only have to show that L CC
Z (x∗, y∗)◦ ⊆ LZ (x∗, y∗)◦.

To verify this inclusion, let us first calculate the corresponding polar cones. Using
the representation of LZ (x∗, y∗) given in Lemma 3.1 and applying Lemma 2.1, we
immediately obtain

LZ (x∗, y∗)◦ = {w = (wx , wy) |

wx =
∑

i∈Ig(x∗)
λi∇gi (x

∗) +
p∑

i=1

μi∇hi (x
∗) +

∑

i∈I01∪I0+
γi ei ,
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wy = −δe +
∑

i∈I±0∪I00∪I01

νi ei ,

λi ≥ 0 for all i ∈ Ig(x
∗),

δ ≥ 0 if eT y∗ = n − κ and otherwise δ = 0,

νi ≥ 0 for all i ∈ I01(x
∗, y∗),

νi ≤ 0 for all i ∈ I00(x
∗, y∗)}.

In order to calculate the polar cone ofL CC
Z (x∗, y∗), we use the formula from Propo-

sition 3.3. Using the representation of the linearization cones LZI (x
∗, y∗) stated in

(3.2) and applying once again Lemma 2.1, we obtain for all I ⊆ I00(x∗, y∗)

LZI (x
∗, y∗)◦ = {w = (wx , wy) |

wx =
∑

i∈Ig(x∗)
λi∇gi (x

∗) +
p∑

i=1

μi∇hi (x
∗) +

∑

i∈I01∪I0+∪I

γi ei ,

wy = −δe +
∑

i∈I±0∪I00∪I01

νi ei ,

λi ≥ 0 for all i ∈ Ig(x
∗),

δ ≥ 0 if eT y∗ = n − κ and otherwise δ = 0,

νi ≥ 0 for all i ∈ I01(x
∗, y∗),

νi ≤ 0 for all i ∈ I }.

Now, take an arbitrary element w = (wx , wy) ∈ L CC
Z (x∗, y∗)◦. Then w ∈

LZI (x
∗, y∗)◦ for all I ⊆ I00(x∗, y∗). In particular, taking I = ∅, we obtain suit-

able scalars λ̂i , μ̂i , δ̂, γ̂i , ν̂i such that the above representation holds with I = ∅ so
that, in particular, we have

γ̂i = 0 ∀i ∈ I00(x
∗, y∗).

On the other hand, taking I = I00(x∗, y∗), we get possibly different coefficients λ̃i ,
μ̃i , δ̃, γ̃i , ν̃i such that the above representation holds with I = I00(x∗, y∗) which, in
particular, yields

ν̃i ≤ 0 ∀i ∈ I00(x
∗, y∗).

Since none of the constraints occurring in ZI depends on both x and y, the partial
derivativeswith respect to x and y are completely independent of each other. Therefore,
defining λi , μi , η, γi , νi by

λi := λ̂i ∀i ∈ Ig(x
∗),

μi := μ̂i ∀i = 1, . . . , p,

γi := γ̂i ∀i ∈ I0+(x∗, y∗) ∪ I01(x
∗, y∗) ∪ I00(x

∗, y∗),
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i.e., using the scalars of the first representation for the derivatives with respect to the
x-vector, and

δ := δ̃,

νi := ν̃i ∀i ∈ I00(x
∗, y∗) ∪ I01(x

∗, y∗) ∪ I±0(x
∗, y∗),

i.e., using the coefficients of the second representation for the derivatives with respect
to the y-vector, we altogether obtain

wx =
∑

i∈Ig(x∗)
λi∇gi (x

∗) +
p∑

i=1

μi∇hi (x
∗) +

∑

i∈I0+∪I01∪I00

γi ei ,

wy = −δe +
∑

i∈I00∪I01∪I±0

νi ei

with λi ≥ 0 for all i ∈ Ig(x∗), δ ≥ 0 and δ = 0 if we have eT y∗ > n − κ , γi = 0 for
all i ∈ I00(x∗, y∗), νi ≤ 0 for all i ∈ I00(x∗, y∗), and νi ≥ 0 for all i ∈ I01(x∗, y∗).
This shows that w = (wx , wy) ∈ LZ (x∗, y∗)◦, and therefore completes the proof. ��
Note that the previous proof exploits the structure of the polar conesLZI (x

∗, y∗)◦ only
for the two extreme cases I = ∅ and I = I00(x∗, y∗). Motivated by the terminology
coined in [13], the property LZ (x∗, y∗)◦ = L CC

Z (x∗, y∗)◦ might be called the CC-
intersection property.

Using Theorem 3.7 together with the definition of CC-GCQ, we immediately get
the following consequence.

Corollary 3.8 Let (x∗, y∗) ∈ Z be feasible for (1.3). Then CC-GCQ holds at (x∗, y∗)
if and only if GCQ holds there.

3.2 Sufficient conditions for CC-ACQ

This section presents some conditions which imply that CC-ACQ (hence also CC-
GCQ and thus standard GCQ) holds. A first and very simple result is contained in our
next lemma.

Lemma 3.9 Let (x∗, y∗) ∈ Z be feasible for the program (1.3), and assume that each
of the restricted feasible sets Z I with I ⊆ I00(x∗, y∗) satisfies the standard ACQ.
Then CC-ACQ (hence also GCQ) holds at (x∗, y∗).

Proof The statement follows immediately from (3.3), since the only inclusion in that
formula is now an equality due to the assumed ACQ condition. ��
Since linear constraints automatically satisfy the standard ACQ condition, it follows
that CC-ACQ also holds in the case of linear functions gi , hi .

Corollary 3.10 Let (x∗, y∗) ∈ Z be feasible for the program (1.3), and assume that
the functions gi and hi are all linear. Then CC-ACQ (hence also GCQ) holds at
(x∗, y∗).
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Our next aim is to show that the assertion of Corollary 3.10 may also hold for pos-
sibly nonlinear functions gi and hi under suitable assumptions. To this end, we first
recall a number of other tailored constrained qualifications that were introduced in [8]
for cardinality-constrained optimization problems. To motivate these definitions, let
(x∗, y∗) be a feasible point of the relaxed program (1.3), and define the corresponding
tightened nonlinear program TNLP(x∗):

min
x

f (x) s.t. g(x) ≤ 0, h(x) = 0, xi = 0 (i ∈ I0(x
∗)).

We then say that (x∗, y∗) satisfies a constraint qualification for the relaxed problem
(1.3) if x∗ satisfies the corresponding standard constraint qualification for TNLP (x∗).
In this way, we obtain the following definitions.

Definition 3.11 Let (x∗, y∗) be feasible for the relaxed problem (1.3). Then (x∗, y∗)
satisfies

(a) CC-LICQ if the gradients

∇gi (x
∗) (i ∈ Ig(x

∗)), ∇hi (x
∗) (i = 1, . . . , p), ei (i ∈ I0(x

∗))

are linearly independent;
(b) CC-MFCQ if the gradients

∇gi (x
∗) (i ∈ Ig(x

∗)), and ∇hi (x
∗) (i = 1, . . . , p), ei (i ∈ I0(x

∗))

are positively linearly independent;
(c) CC-CRCQ if for any subsets I1 ⊆ Ig(x∗), I2 ⊆ {1, . . . , p}, and I3 ⊆ I0(x∗) such

that the gradients

∇gi (x) (i ∈ I1), ∇hi (x) (i ∈ I2), ei (i ∈ I3)

are linearly dependent in x = x∗, they remain linearly dependent in a neighbor-
hood of x∗;

(d) CC-CPLD if for any subsets I1 ⊆ Ig(x∗), I2 ⊆ {1, . . . , p}, and I3 ⊆ I0(x∗) such
that the gradients

∇gi (x) (i ∈ I1), and ∇hi (x) (i ∈ I2), ei (i ∈ I3)

are positively linearly dependent in x = x∗, they are linearly dependent in a
neighborhood of x∗.

Note that all these constraint qualifications depend on the vector x∗ only, and not on the
vector pair (x∗, y∗). Hence these conditionsmay be viewed as constraint qualifications
for the original cardinality constrained optimization problem (1.1).

We claim that the following implications among all these constraint qualifications
hold:
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CC-LICQ
CC-MFCQ

CC-CRCQ
CC-CPLD CC-ACQ CC-GCQ

Note that these implications are the direct counterparts of those known for the
corresponding standard constraint qualifications, cf. Sect. 2.Most of these implications
(therefore) follow directly from the corresponding definitions. The only nontrivial
part is that CC-CPLD implies CC-ACQ. To verify this statement, we begin with a
preliminary result.

Lemma 3.12 Let (x∗, y∗) ∈ Z be feasible for the relaxed program (1.3), and suppose
that CC-CPLD holds at (x∗, y∗). Then, for any I ⊆ I00(x∗, y∗), standard CPLD is
satisfied for the restricted feasible set Z I .

Proof Consider a fixed index set I ⊆ I00(x∗, y∗). The corresponding feasible set ZI

then has constraints that either depend on x or on y, but never on both. Consequently, it
suffices to verify CPLD for the constraints depending on x and on y separately. Since
all constraints depending on y are linear, they satisfy CRCQ and thus also CPLD. It
therefore suffices to show that the standard CPLD condition holds for those constraints
that depend on x only. We can restrict ourselves to the gradient vectors that arise by
taking the partial derivatives with respect to the x-variables only, since the partial
derivatives with respect to the y-variables are in this case all zero. More precisely, this
means that we have to show that for all subsets I1 ⊆ Ig(x∗), I2 ⊆ {1, . . . , p}, and
I3 ⊆ I0+(x∗, y∗) ∪ I01(x∗, y∗) ∪ I such that the gradient vectors

∇gi (x
∗) (i ∈ I1), and ∇hi (x

∗) (i ∈ I2), ei (i ∈ I3)

are positively linearly dependent, they are linearly dependent in a whole neighborhood
of x∗. However, since I3 may, in particular, be viewed as a subset of I0(x∗), this
statement follows immediately from the definition of CC-CPLD. ��
Similar to the previous result, one can also show that CC-CRCQ implies that a piece-
wise CRCQ condition holds, by which we mean that standard CRCQ holds for all sets
ZI , I ⊆ I00(x∗, y∗). On the other hand, CC-LICQ does not imply piecewise LICQ.
In fact, piecewise LICQ would require that the following gradients (with respect to x
and y) are linearly independent for all subsets I ⊆ I00(x∗, y∗):

(∇gi (x∗)
0

)
(i ∈ Ig(x

∗)),
(∇hi (x∗)

0

)
(i = 1, . . . , p),

(
0

−e

)
( if eT y∗ = n − κ),

(
ei
0

)
(i ∈ I0+ ∪ I01 ∪ I ),

(
0

−ei

)
(i ∈ I ),

(
0

ei

)
(i ∈ I01),

(
0

ei

)
(i ∈ I±0 ∪ (I00\I )).

While CC-LICQ implies that those gradients which have nonzero entries with respect
to the x-part are linearly independent, it is clear that the other gradients are linearly
dependent whenever eT y∗ = n − κ holds and the set I0+ := I0+(x∗, y∗) is empty, a
situation that typically holds at a solution of the cardinality-constrained optimization
problem.
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In a similar way, it is also possible to see that CC-MFCQ does, in general, not imply
a piecewise MFCQ condition. We skip the corresponding details especially since this
observation will not be used subsequently.

Lemma 3.12 allows us to state the following generalization of Corollary 3.10.

Theorem 3.13 Let (x∗, y∗) ∈ Z be feasible for the program (1.3), and assume that
CC-CPLD holds. Then CC-ACQ (hence also GCQ) holds at (x∗, y∗).

Proof Since CC-CPLD holds at (x∗, y∗), it follows from Lemma 3.12 that standard
CPLD holds for each of the feasible sets ZI , I ⊆ I00(x∗, y∗). But standard CPLD
implies that standard ACQ holds for each of the feasible sets ZI . The statement
therefore follows immediately from Lemma 3.9. ��

4 Stationarity conditions

This section shows that, in every local minimum (x∗, y∗) of the relaxed program
(1.3), in which a suitable CC-constraint qualification holds, certain KKT-type opti-
mality conditions are satisfied. We distinguish two optimality conditions here, one
is called strong stationarity (and is equivalent to the standard KKT conditions), and
the other one is called M-stationarity. We first note that strong stationarity provides a
necessary optimality condition under theCC-GCQassumption.Under certain assump-
tions, strong stationarity is also a sufficient condition for a local minimum. The slightly
weaker M-stationarity condition is therefore a necessary optimality condition under
the CC-GCQ condition, too. This type of stationary points arises quite naturally as
limit points within the algorithmic framework in [8].

We begin by stating the two stationarity concepts that will be used in our analysis.
To shorten the notation, we sometimes abbreviate index sets such as I00 := I00(x∗, y∗)
when the reference point (x∗, y∗) is clear from the context.

Definition 4.1 Let (x∗, y∗) be feasible for the relaxed program (1.3). Then (x∗, y∗)
is called

(a) S-stationary (S = strong) if there exist multipliers λ ∈ R
m, μ ∈ R

p, and γ ∈ R
n

such that the following conditions hold:

∇ f (x∗) +
∑

i∈Ig(x∗)
λi∇gi (x

∗) +
p∑

i=1

μi∇hi (x
∗) +

∑

i∈I01∪I0+
γi ei = 0,

λi ≥ 0 ∀i ∈ Ig(x
∗).

(b) M-stationary (M = Mordukhovich) if there exist multipliers λ ∈ R
m, μ ∈ R

p,
and γ ∈ R

n such that the following conditions hold:

∇ f (x∗) +
∑

i∈Ig(x∗)
λi∇gi (x

∗) +
p∑

i=1

μi∇hi (x
∗) +

∑

i∈I01∪I0+∪I00

γi ei = 0,

λi ≥ 0 ∀i ∈ Ig(x
∗).
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The notions of S- and M-stationarity are motivated by a similar terminology used in
the context of MPCCs, see Sect. 5 for more details. It is clear from the definition
that M-stationarity is implied by S-stationarity. We further note that S-stationarity was
shown to be equivalent to the usual KKT conditions of the relaxed program (1.3) in
[8].

As a consequence of the previous section, we can show that a local minimum
satisfying CC-GCQ is a strongly stationary point of the relaxed program (1.3).

Theorem 4.2 Let (x∗, y∗) be a local minimum of (1.3) such that CC-GCQ holds at
(x∗, y∗). Then (x∗, y∗) is an S-stationary point.

Proof Since CC-GCQ holds at (x∗, y∗) by assumption, it follows from Corollary 3.8
that standard GCQ holds at (x∗, y∗). Under standard GCQ, however, the usual KKT
conditions are necessary optimality conditions at the localminimum (x∗, y∗), see, e.g.,
[2]. On the other hand, these KKT conditions are shown to be equivalent to strong
stationarity in [8]. Hence the assertion follows. ��
Since, by Corollary 3.10, CC-GCQ holds if both gi and hi are linear, we re-obtain the
following result from [8] as a special case of our theory.

Corollary 4.3 Assume that all functions gi and hi are linear, and let (x∗, y∗) be
a local minimum of the corresponding relaxed program (1.3). Then (x∗, y∗) is an
S-stationary point.

For standard nonlinear programs it is well-known that any KKT point yields a global
minimum provided that we have a convex program. The cardinality-constrained pro-
gram is, of course, nonconvex, therefore we cannot expect a result of this kind.
However, under a convexity-type condition, the following result shows that every
strongly stationary point yields a local minimum of the relaxed program (1.3). This
observation is similar to one in the MPCC-setting, see [28].

Theorem 4.4 Assume that f and each gi are convex and each hi is linear. Let (x∗, y∗)
be an S-stationary point of the relaxed program (1.3). Then (x∗, y∗) is a localminimum
of this program.

Proof Let (x, y) be an arbitrary feasible point of the relaxed program (1.3). We then
obtain

f (x) ≥ f (x∗) + ∇ f (x∗)T (x − x∗)
= f (x∗) −

∑

i∈Ig(x∗)
λi︸︷︷︸
≥0

∇gi (x
∗)T (x − x∗)

︸ ︷︷ ︸
≤gi (x)−gi (x∗)=gi (x)≤0

−
p∑

i=1

μi ∇hi (x
∗)T (x − x∗)︸ ︷︷ ︸

=hi (x)−hi (x∗)=0

−
∑

i∈I01∪I0+
γi e

T
i (x − x∗)

≥ f (x∗) −
∑

i∈I01∪I0+
γi (xi − x∗

i ).
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Since we take the last sum only over all indices i ∈ I01(x∗, y∗) ∪ I0+(x∗, y∗), it
follows that, in a sufficiently small neighborhood of (x∗, y∗), we still have yi �= 0
for all i ∈ I01(x∗, y∗) ∪ I0+(x∗, y∗), hence the feasibility of the pair (x, y) yields
xi = 0. Consequently, we have f (x) ≥ f (x∗) for all (x, y) in a sufficiently small
neighborhood of (x∗, y∗). ��
Note that the previous proof shows that the S-stationary point (x∗, y∗) is actually a
global minimum of the relaxed program (1.3) under the convexity-type assumption
provided that γi = 0 for all indices i such that y∗

i �= 0. Of course, this assumption is
usually not satisfied.

5 Comparison with MPCCs

This section gives a detailed comparison between (a special class of) cardinality-
constrained optimization problems on the one hand and MPCCs on the other hand.
Despite several similarities, it turns out that both problems have substantially dif-
ferent properties. In particular, this justifies to treat cardinality-constrained problems
separately.

A MPCC is an optimization problem of the form

min
x

f (x) s.t. gi (x) ≤ 0 ∀i = 1, . . . ,m,

hi (x) = 0 ∀i = 1, . . . , p, (5.1)

Gi (x) ≥ 0, Hi (x) ≥ 0,Gi (x)Hi (x) = 0 ∀i = 1, . . . , q,

see [14,20] for more information on this problem class.
In the special case where some of the inequality constraints g(x) ≤ 0 correspond to

nonnegativity constraints x ≥ 0, say g(x) = (g̃(x),−x) for a suitable function g̃, the
cardinality-constrained problem (1.3) is (after a redefinition of g by setting g := g̃)
of the form

min
x,y

f (x) s.t. gi (x) ≤ 0 ∀i = 1, . . . ,m,

hi (x) = 0 ∀i = 1, . . . , p,

eT y ≥ n − κ, (5.2)

yi ≤ 1 ∀i = 1, . . . , n,

xi ≥ 0, yi ≥ 0, xi yi = 0 ∀i = 1, . . . , n,

i.e., it is an MPCC in the variables (x, y) with Gi (x, y) := xi , Hi (x, y) := yi and the
constraint eT y ≥ n − κ being part of the standard inequality constraints in (5.1). The
situation x ≥ 0 occurs, for example, in portfolio optimization, see [7].

In order to compare the results obtained in this paper for cardinality constrained
problems with those known for MPCCs, let us state the corresponding definitions
for MPCCs, see [19,25,27] for some discussion and a derivation of these stationarity
concepts.

123
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Definition 5.1 Let x∗ be feasible for (5.1). Then x∗ is called

(a) W-stationary (W = weakly), if there are multipliers λ ∈ R
m, μ ∈ R

p, γ ∈ R
q

and ν ∈ R
q such that the following conditions hold:

∇ f (x∗) +
∑

i :gi (x∗)=0

λi∇gi (x
∗) +

p∑

i=1

μi∇hi (x
∗) −

∑

i :Gi (x∗)=0

γi∇Gi (x
∗)

−
∑

i :Hi (x∗)=0

νi∇Hi (x
∗) = 0,

λi ≥ 0 ∀i : gi (x∗) = 0;

(b) C-stationary (C = Clarke), if it is W-stationary and, in addition, it holds that
γiνi ≥ 0 for all i such that Gi (x∗) = 0 and Hi (x∗) = 0;

(c) M-stationary (M = Mordukhovich), if it is W-stationary and, in addition, for all i
such that Gi (x∗) = 0 and Hi (x∗) = 0, we either have γi , νi ≥ 0 or γiνi = 0;

(d) S-stationary (S = strongly), if it is W-stationary and, in addition, it holds that
γi , νi ≥ 0 for all i such that Gi (x∗) = 0 and Hi (x∗) = 0.

Note that S-stationarity implies M-stationarity, M-stationarity implies C-stationarity,
and C-stationarity implies W-stationarity. Furthermore, there exist examples which
show that each of these implications is strict, i.e., none of these concepts coincides for
general MPCCs.

Now, there are two different ways to look at the cardinality-constrained problem
(5.2) with nonnegativity constraints on the variables x : One way is to view this as
a special cardinality-constrained problem with the nonnegativity constraints x ≥ 0
as additional inequality constraints, and the other way is to view this problem as
an MPCC, with the nonnegativity constraints being a part of the complementarity
conditions. Taking the first point of view, we write down the S- and M-stationarity
conditions (in the sense of Definition 4.1) in the following result.

Lemma 5.2 Let (x∗, y∗) be feasible for (5.2). Then (x∗, y∗) is

(a) S-stationary if and only if there exist suitable multipliers such that the following
conditions hold:

∇ f (x∗) +
∑

i∈Ig(x∗)
λi∇gi (x

∗) +
p∑

i=1

μi∇hi (x
∗) +

∑

i∈I00∪I0+∪I01

γi ei = 0,

λi ≥ 0 ∀i ∈ Ig(x
∗),

γi ≤ 0 ∀i ∈ I00(x
∗, y∗).
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(b) M-stationary if and only if there exist suitable multipliers such that the following
conditions hold:

∇ f (x∗) +
∑

i∈Ig(x∗)
λi∇gi (x

∗) +
p∑

i=1

μi∇hi (x
∗) +

∑

i∈I00∪I0+∪I01

γi ei = 0,

λi ≥ 0 ∀i ∈ Ig(x
∗).

Proof (a) Applying the S-stationarity conditions from Definition 4.1 to (5.2) gives

∇ f (x∗) +
∑

i∈Ig(x∗)
λi∇gi (x

∗) −
∑

i∈I00∪I0+∪I01

λ+
i ei +

p∑

i=1

μi∇hi (x
∗)

+
∑

i∈I0+∪I01

γi ei = 0,

λi ≥ 0 ∀i ∈ Ig(x
∗),

λ+
i ≥ 0 ∀i ∈ I00(x

∗, y∗) ∪ I0+(x∗, y∗) ∪ I01(x
∗, y∗).

Replacing γi − λ+
i by a new γi for all i ∈ I0+(x∗, y∗) ∪ I01(x∗, y∗) and setting

γi := −λ+
i for all i ∈ I00(x∗, y∗) yields the desired statement.

(b) Writing down the M-stationarity conditions from Definition 4.1 to (5.2) yields

∇ f (x∗) +
∑

i∈Ig(x∗)
λi∇gi (x

∗) −
∑

i∈I00∪I0+∪I01

λ+
i ei +

p∑

i=1

μi∇hi (x
∗)

+
∑

i∈I00∪I0+∪I01

γi ei = 0,

λi ≥ 0 ∀i ∈ Ig(x
∗),

λ+
i ≥ 0 ∀i ∈ I00(x

∗, y∗) ∪ I0+(x∗, y∗) ∪ I01(x
∗, y∗).

Replacingγi−λ+
i by anewγi for each index i ∈ I00(x∗, y∗)∪I0+(x∗, y∗)∪I01(x∗, y∗)

gives the desired representation of M-stationarity. ��
Note the close relation between S- and M-stationarity conditions for the cardinality-
constrained problem from (1.3) and the corresponding stationarity conditions for the
specially structured problem (5.2) involving nonnegativity constraints: S-stationarity
differs only in the last sum where now also the bi-active index set I00 is included (with
some sign constraints on the corresponding multipliers). As for M-stationarity, there
is absolutely no difference though the problem itself is different!

Our definition of M- and S-stationarity for cardinality-constrained problems was
motivated by the corresponding concepts for MPCCs, and indeed in the special case
(5.2), the definitions turn out to be identical.

Lemma 5.3 Let (x∗, y∗) be feasible for (5.2). Then the point (x∗, y∗) is S-stationary
(M-stationary) in the sense of Definition 4.1 if and only if it is S-stationary (M-
stationary) in the sense of Definition 5.1.
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Proof (a) We first verify the statement for S-stationary points. Using the same index
sets as before, the S-stationarity conditions from Definition 5.1 read

∇ f (x∗) +
∑

i∈Ig(x∗)
λi∇gi (x

∗) +
p∑

i=1

μi∇hi (x
∗) −

∑

i∈I00∪I0+∪I01

γi ei = 0,

−δe +
∑

i∈I01
νi ei −

∑

i∈I±0∪I00

νi ei = 0,

λi ≥ 0 ∀i ∈ Ig(x
∗),

γi ≥ 0, νi ≥ 0 ∀i ∈ I00(x
∗, y∗),

δ ≥ 0 if eT y∗ = n − κ, else δ = 0,

νi ≥ 0 ∀i ∈ I01(x
∗, y∗).

Since the conditions on δ and ν are can always be satisfied by choosing δ = 0, ν = 0,
the S-stationarity conditions from Definition 5.1 hold if and only if the following
conditions hold:

∇ f (x∗) +
∑

i∈Ig(x∗)
λi∇gi (x

∗) +
p∑

i=1

μi∇hi (x
∗) −

∑

i∈I00∪I0+∪I01

γi ei = 0,

λi ≥ 0 ∀i ∈ Ig(x
∗),

γi ≥ 0 ∀i ∈ I00(x
∗, y∗).

Using Lemma 5.2 and replacing γi by −γi everywhere, these are precisely the S-
stationarity conditions from Definition 4.1.
(b) We next verify the corresponding statement for M-stationary points. The proof is
completely analogous to the one for S-stationary points, but it is stated here since it
yields an interesting observation that is stated formally in the subsequent Remark 5.4.

Let us first write down the M-stationarity conditions for problem (5.2) in the sense
of Definition 5.1:

∇ f (x∗) +
∑

i∈Ig(x∗)
λi∇gi (x

∗) +
p∑

i=1

μi∇hi (x
∗) −

∑

i∈I00∪I0+∪I01

γi ei = 0,

−δe +
∑

i∈I01
νi ei −

∑

i∈I±0∪I00

νi ei = 0,

λi ≥ 0 ∀i ∈ Ig(x
∗),

γi ≥ 0, νi ≥ 0 or γiνi = 0 ∀i ∈ I00(x
∗, y∗),

δ ≥ 0 if eT y∗ = n − κ, else δ = 0,

νi ≥ 0 ∀i ∈ I01(x
∗, y∗).

Using once again that the conditions on δ and ν can always be satisfied by choosing
δ = 0, ν = 0, it follows that there exist multipliers satisfying the M-stationarity
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conditions from Definition 5.1 if and only if there exist multipliers such that the
following simplified conditions hold:

∇ f (x∗) +
∑

i∈Ig(x∗)
λi∇gi (x

∗) +
p∑

i=1

μi∇hi (x
∗) −

∑

i∈I00∪I0+∪I01

γi ei = 0,

λi ≥ 0 ∀i ∈ Ig(x
∗).

(5.3)

But these are precisely the M-stationarity conditions given in Lemma 5.2 (note that
we can change the sign of the γi without loss of generality). ��
A simple inspection of part (b) in the previous proof shows that the M-stationarity
conditions of problem (5.2) in the sense of Definition 5.1 are satisfied by some mul-
tipliers if and only if the C-stationarity conditions hold for this problem, and this, in
turn, is also equivalent to the satisfaction of the W-stationarity conditions. Hence we
have the following observation.

Remark 5.4 The M-, C-, and W-stationarity points in the sense of Definition 5.1 are
the same for the particular MPCC (5.2) that arises from our cardinality-constrained
problem in the case where all variables are assumed to be nonnegative. In view of
Lemma 5.3, this means that, in this particular situation, the M-stationary points in the
sense of Definition 4.1 are also the same as theW- and C-stationary points in the sense
of Definition 5.1.

On the other hand, S- and M-stationarity are different concepts. This is shown by the
following example.

Example 5.5 Consider the cardinality-constrained problem (1.1), (1.2) with n = 2,
κ = 1, objective function f (x) := x2 − x1 and feasible set X := {x | x ≥ 0, x21 +
(x2 − 1)2 ≤ 1}, see Fig. 1. The unique solution of this problem is x∗ := (0, 0). There
exist different corresponding optimal y-parts. For example, taking y∗ := (0, 1), it is
easy to see that (x∗, y∗) is not an S-stationary point; in particular, using Theorem 4.2,

0 1
x1

1

x2

Xx 0 ≤ 1

Fig. 1 Illustration of Example 5.5
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it follows that this problem does not satisfy GCQ, hence CC-GCQ is also violated.
However, (x∗, y∗) isM-stationary, for example, onemay takeλ = 0, γ1 = 1, γ2 = −1
to see that the conditions from Lemma 5.2 (b) hold.

On the other hand, x∗ together with y∗ := (1, 0) is also optimal, and this pair
turns out to be S-stationary. Indeed, a simple calculation shows that, for example, the
multipliers γ1 := 1, γ2 := −1, and λ := 0 satisfy the S-stationarity conditions from
Lemma 5.2 (a).

We next investigate the relation between our CC-linearized cone and the MPCC-
linearized cone, which for a point x∗ feasible for the MPCC (5.1) is defined by

L MPCC
Z (x∗) = {

d | ∇gi (x
∗)T d ≤ 0 if gi (x

∗) = 0,

∇hi (x
∗)T d = 0 ∀i = 1, . . . , p,

∇Gi (x
∗)T d = 0 if Gi (x

∗) = 0, Hi (x
∗) > 0,

∇Hi (x
∗)T d = 0 if Gi (x

∗) > 0, Hi (x
∗) = 0,

∇Gi (x
∗)T d ≥ 0 if Gi (x

∗) = 0, Hi (x
∗) = 0,

∇Hi (x
∗)T d ≥ 0 if Gi (x

∗) = 0, Hi (x
∗) = 0,

(∇Gi (x
∗)T d)(∇Hi (x

∗)T d) = 0 if Gi (x
∗) = 0, Hi (x

∗) = 0
}
,

see, e.g., [12,21].

Lemma 5.6 Let (x∗, y∗)be feasible for (5.2). ThenL MPCC
Z (x∗, y∗)=L CC

Z (x∗, y∗).

Proof For (x∗, y∗) feasible for (5.2), the MPCC-linearized cone is of the form

L MPCC
Z (x∗, y∗) = {

d = (dx , dy) | ∇gi (x
∗)T dx ≤ 0 ∀i ∈ Ig(x

∗),
∇hi (x

∗)T dx = 0 ∀i = 1, . . . , p,

eT dy ≥ 0 if eT y∗ = n − κ,

eTi dy ≤ 0 ∀i ∈ I01(x
∗, y∗),

eTi dx = 0 ∀i ∈ I0+(x∗, y∗) ∪ I01(x
∗, y∗),

eTi dy = 0 ∀i ∈ I±0(x
∗, y∗),

eTi dx ≥ 0 ∀i ∈ I00(x
∗, y∗),

eTi dy ≥ 0 ∀i ∈ I00(x
∗, y∗),

(eTi dx )(e
T
i dy) = 0 ∀i ∈ I00(x

∗, y∗)
}
,

which is exactly the same as the CC-linearized cone L CC
Z (x∗, y∗). ��

Consequently, for points (x∗, y∗) feasible for (5.2), the CC-constraint qualifications
CC-ACQ and CC-GCQ coincide with their MPCC counterparts MPCC-ACQ and
MPCC-GCQ.

However, even though there are these close connections between cardinality-
constrained problems and MPCCs in case x ≥ 0, the results we have proven in this
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paper are quite different from what can be shown for general MPCCs. We summarize
some of the major differences between general MPCCs and cardinality-constrained
optimization problems in the following remark.

Remark 5.7 (a) Standard GCQ holds for MPCCs under the MPCC-LICQ assump-
tion, but already under the MPCC-MFCQ condition it can be violated, see, e.g.,
[25]. The different behavior we observe for cardinality constrained problems is
due to the equalityLZ (x∗, y∗)◦ = L CC

Z (x∗, y∗)◦ established in the proof of The-
orem 3.7. This so-called intersection property, which implies CC-GCQ = GCQ, is
not satisfied for general MPCCs.

(b) As a consequence of the previous remark, it follows that S-stationarity is a
necessary optimality condition under the fairly strong MPCC-LICQ condition,
but neither under the MPCC-MFCQ nor under any weaker MPCC constraint
qualification. Recall that this is very much in contrast to the situation for
cardinality-constrained problems.

(c) Even if all functions involved in the MPCC are linear, a local minimum is, in
general, only an M-stationary point. A counterexample from [25] shows that the
stronger S-stationarity cannot be obtained without further assumptions.

(d) While W-, C-, M-, and S-stationarity are four different stationarity concepts that
arise in different contexts for general MPCCs, it turns out that these four station-
arity conditions reduce to only two when applied to the particular MPCC (5.2)
that results from the cardinality-constrained problem in case where this includes
nonnegativity constraints.

(e) For MPCCs, it is known that MPCC-LICQ implies a piecewise LICQ condi-
tion, whereas this is not true in our setting, cf. the corresponding discussion after
Lemma 3.12.

(f) Finally, wewould like to stress that the popularMPCC-LICQ condition is likely to
be violated for the problem (5.2). To this end, let (x∗, y∗) be a solution satisfying
y∗
i ∈ {0, 1} for all i = 1, . . . , n and such that the cardinality constraint eT y ≥ n−κ

is active; note that this situation is very likely to hold at a solution. Then the gradient
of the cardinality constraint is obviously linearly dependent on the gradientswhich
one obtains from the activity of the constraints yi ≥ 0 and yi ≤ 1. Hence MPCC-
LICQ is violated in this situation; for the same reason, also MPCC-MFCQ does
not hold.

6 Final remarks

In this paper, we exploited the relation between the cardinality-constrained opti-
mization problem and a suitable nonlinear program to define some problem-tailored
constraint qualifications which were then used to prove a KKT-type optimality con-
dition under fairly mild conditions. Like for standard nonlinear programs, these
constraint qualifications depend on the feasible set, but not directly on the objective
function.

There are some recent contributions to MPCCs where optimality conditions are
derived under certain assumptions which involve both the constraints and the par-
ticular objective function, cf. [15]. In this way, one might still get relatively strong
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optimality conditions even for problems with difficult constraints. It might therefore
be an interesting future research topic to see whether one can also obtain similar
results for cardinality-constrained problems, possibly under weaker assumptions than
in theMPCC-setting by taking into account the particular structure of our reformulated
cardinality-constrained problem.

Acknowledgments The authors would like to thank both referees for their very detailed comments which
helped quite a bit to improve the presentation of the paper.
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