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Abstract The existing choices for the step lengths used by the classical steepest
descent algorithm forminimizing a convex quadratic function require in the worst case
O(C log(1/ε)) iterations to achieve a precision ε, where C is the Hessian condition
number.We showhow to construct a sequence of step lengthswithwhich the algorithm
stops in O(

√
C log(1/ε)) iterations, with a bound almost exactly equal to that of the

Conjugate Gradient method.
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1 Introduction

We study the quadratic minimization problem

(Pz) minimize
z∈Rn

f̄ (z) = cT z + 1

2
zT Hz,

where c ∈ Rn and H ∈ Rn×n is symmetric with eigenvalues

0 < μ1 ≤ μ2 ≤ · · · ≤ μn,

and condition number C = μn/μ1. The problem has a unique solution z∗ ∈ Rn .
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The steepest descent algorithm, also called gradient method, is a memoryless
method defined by

z0 ∈ Rn given, zk+1 = zk − λk∇ f (zk). (1)

The only distinction among different steepest descent algorithms is in the choice of
the step lengths λk . The worst-case performance of a scheme is based on a stopping
rule, which depends on a precision ε > 0.

Assume that an initial point z0 ∈ Rn is given. Let ε > 0 be a given precision.
Let M be a matrix whose columns Mi , i = 1, . . . ,m, are orthonormal eigenvectors
of H . We define four different stopping rules referred as τε, which will be used by
algorithms:

i. f̄ (z) − f̄ (z∗) ≤ ε2( f̄ (z0) − f̄ (z∗)).
ii. ‖z − z∗‖ ≤ ε‖z0 − z∗‖.
iii. ‖∇ f̄ (z)‖ ≤ ε‖∇ f̄ (z0)‖.
iv. |MT

i (z − z∗)| ≤ ε|MT
i (z0 − z∗)|, i=1,…,n.

The first and second stopping rules are useful for characterizing the performance
bounds for the algorithms, but they are usually not implementable. The third rule is
practical. The fourth rule will be discussed in Sect. 3 and will be used in this paper. It
means that all components of z− z∗ in the basis defined the columns of M are reduced
by a factor of ε in absolute values. It implies all the others.

The steepest descent problem The problem to be solved in this paper is: given ε > 0
and x0 ∈ Rn , find an integer k > 0 and a set {λ0, λ1, . . . , λk−1} of positive num-
bers such that the point zk produced by the algorithm (1) satisfies the stopping
rule (iv).

The steepest descent method, also called gradient method, was devised by Augus-
tine Cauchy [3]. He studied a minimization problem and described a steepest descent
step with exact line search, which we shall call “Cauchy step”. For (Pz), the Cauchy
step is

λk = argmin
λ≥0

f̄ (xk − λ∇ f̄ (xk)). (2)

The steepest descent method with Cauchy steps will be called Cauchy algorithm.
Steepest descent is the most basic algorithm for the unconstrained minimization of

continuously differentiable functions, with step lengths computed by a multitude of
line search schemes.

The quadratic problem is the simplest non-trivial non-linear programming problem.
Being able to solve it is a pre-requisite for any method for more general problems, and
this is the first reason for the great effort dedicated to its solution. A second reason is
that the optimal solution of (Pz) is the solution of the linear system Hz = −c.

It was soon noticed that the Cauchy algorithm generates inefficient zig-zagging
sequences. This phenomenon was established by Akaike [1], and further developed
by Forsythe [7]. A clear explanation is found in Nocedal, Sartenaer and Zhu [13]. For
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On the worst case performance of the steepest descent… 309

some time the steepest descent method was displaced by methods using second order
information.

In the last years gradientmethods returned to the scene due to the need to tackle large
scale problems, withmillions of variables, and due to novel methods for computing the
step lengths. Barzilai and Borwein [2] proposed a new step length computation with
surprisingly goodproperties,whichwas further extended to non-quadratic problemsby
Raydan [15], and studied byDai [4], Raydan and Svaiter [16] among others. In another
line of research, several methods were developed to enhance the Cauchy algorithm
by breaking its zig-zagging pattern. These methods, which will not be studied in this
paper, are explained in De Asmundis et al. [5,6] and in our paper [10].

None of these papers studies the worst-case performance of the algorithm applied
to quadratic problems. This will be our task.

1.1 Complexity results

We are studying performance bounds for first-order methods – methods that use only
function and derivative values. The best such method for the quadratic problem is the
Conjugate Gradient method (and equivalent Krylov space methods): it is known that
no first order method can be faster than it, and its performance bound (which then is
the complexity of the problem with first order oracle) is given by

k ≤
⌈√C

2
log

(
2

ε

)⌉
(3)

iterations to achieve the stopping rule (i), where 	a
 denotes the smallest integer ā
such that ā ≥ a.

This complexity study is found in Nemirovsky and Yudin [12], in Polyak [14], and
a detailed proof of (3) is in Shewchuk [17]. See [9] for a tutorial on basic complexity
results.

The two most widely known choices of step lengths for which there are complexity
studies are:

• The Cauchy step, or exact step (2), the unique minimizer of f along the direction
−g with g = ∇ f (xk), given by

λk = gT g

gT Hg
. (4)

• The short step: λk = 1/μn , a fixed step length.

The complexity results for these methods are: the first stopping rule is achieved in

k ≤
⌈C
4
log

(
1

ε

)⌉
, k ≤

⌈C
2
log

(
1

ε

)⌉
,

respectively for the Cauchy and short step lengths. These bounds are tight, and we are
unaware of any steepest descent algorithm with a better worst case performance.
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310 C. C. Gonzaga

In this paper we show that given μ1, μn and ε, there exist k ∈ N and a set{
λ j | j = 1 . . . k

}
such that the steepest descent method applied from any initial point

with the step lengths λ j in any order produces a point that satisfies all four stopping
rules. The bound to be found in this paper is

k =

⎡
⎢⎢⎢⎢⎢

cosh−1
(
2

ε

)

cosh−1
(
1 + 2

C − 1

)
⎤
⎥⎥⎥⎥⎥

≈
⌈√C

2
log

(
2

ε

)⌉

These two values differ by less than 1 for ε < 0.1 andC > 2, as can be seen by plotting
both functions. A weaker relationship between both bounds will also be derived in
Sect. 3.

The values λ j will be the inverses of the roots of a Chebyshev polynomial to be
constructed in Sect. 3. In Sect. 2we list some properties of Chebyshev polynomials and
hyperbolic functions, which will be used in Sect. 4 to prove the performance bound.

The association of Chebyshev polynomials to steepest descent has been used by
numerical analysts, but we are unaware of any complexity studies along this line. See
Frank [8].

2 Tools

Let us list some well-known facts on Chebyshev polynomials1 (see for instance [11])
and a technical result on hyperbolic functions.
Chebyshev polynomials. The Chebyshev polynomial of first kind Tk(·) satisfies:
• For x ∈ [−1, 1], Tk(x) = cos(k cos−1(x)) ∈ [−1, 1], with Tk(1) = 1.
• For x > 1, Tk(x) = cosh(k cosh−1(x)) > 1
• The roots of Tk are

x j = cos

(
1 + 2 j

2k
π

)
, j = 0, 1, . . . , k − 1.

• The maximizers of |Tk(x)| in [−1, 1] are x̄ j = cos( jπ/k), j = 0, 1, . . . , k.

Hyperbolic functions. The hyperbolic cosine satisfies

cosh(x) = ex + e−x

2
≥ ex

2
, cosh′(x) = sinh(x), cosh′′(x) = cosh(x).

Its Taylor approximation at 0 gives for x ≥ 0

cosh(x) = 1 + x2

2
+ cosh(δ)x4

4! ≥ 1 + x2

2
,

1 A brief tutorial on Chebyshev polynomials is found in Wikipedia, https://en.wikipedia.org/wiki/
Chebyshev_polynomials.
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On the worst case performance of the steepest descent… 311

where δ ∈ [0, x]. It follows that cosh(x) − 1 is well approximated by x2/2 for small
values of x ≥ 0. Setting y = x2/2 and taking the inverse function, it follows that for
small values of y > 0,

√
2y ≥ cosh−1(1 + y) ≈ √

2y.

This fact will be useful, and so we give a formal proof here, whose only purpose is to
quantify the ‘≈’ above.

Lemma 1 Let x̄ > 0 be a given real number. Then for any x ∈ [0, x̄],
√
2x ≥ cosh−1(1 + x) ≥ γ (x̄)

√
2x,

where γ (0) = 1 and for y > 0, γ (y) = cosh−1(1 + y)√
2y

< 1.

Proof Note that for x > 0, cosh−1(1 + x) = γ (x)
√
2x . All we need is to prove that

x ∈ R+ → γ (x) is continuous and decreases for x > 0 (and then γ (x) ≥ γ (x̄) for
x ∈ [0, x̄]).

Continuity: using l’Hôspital’s rule,

lim
x→0+ γ (x) = lim

x→0+

√
2√

x + 2
= 1.

Computing the derivative for x > 0,

d

dx
γ (x) =

2
√

x
x+2 − cosh−1(1 + x)

2x
√
2x

.

The denominator is positive. So we must prove that the numerator

N (x) = 2

√
x

x + 2
− cosh−1(1 + x)

is negative for x > 0.
Since N (0) = 0, N (x) will be negative for x > 0 if N ′(x) < 0. Computing this

derivative, for x > 0,

N ′(x) = −
√
x

(x + 2)3/2
< 0,

completing the proof. ��

3 An infinite dimensional problem

Problem (Pz) has a unique solution z∗. For the analysis, the problemmay be simplified
by assuming that z∗ = 0, and so f̄ (z) = zT Hz/2. The matrix H may be diagonalized
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312 C. C. Gonzaga

by setting z = My, where M has orthonormal eigenvectors of H as columns. Then
the function becomes

f (y) = 1

2
yT Dy, D = diag(μ1, μ2, . . . , μn). (5)

M defines a similarity transformation, and hence for z = My,

‖z‖ = ‖y‖, ‖∇ f̄ (z)‖ = ‖∇ f (y)‖, ∇ f̄ (z) = M∇ f (y).

We define the diagonalized problem

(Py) minimize
y∈Rn

f (y) = 1

2
yT Dy.

The steepest descent iterationswith step lengthsλ j forminimizing respectively f (·)
from the initial point y0 = MT z0, and f̄ (·) from the initial point z0, are related by
zk = Myk . The stopping rule (iv) for the diagonalized problem becomes |yi | ≤ ε|y0i |,
i = 1, . . . , n, and clearly implies all the others. For instance, if rule (iv) holds at y,

f (y) = 1

2

n∑
i=1

μi y
2
i ≤ ε2

2

n∑
i=1

μi (y
0
i )

2 = ε2 f (y0),

and rule (i) holds.
The stopping rules are equivalent for these two sequences. Thus, we may restrict

our study to the diagonalized problem.
Given y0 ∈ Rn , consider the sequence generated by the steepest descent algorithm

defined by

y j+1 = y j − λ j∇ f (y j ), (6)

where λ j is the step length at the j-iteration. As ∇ f (y j ) = Dy j and D is diagonal,
we have, for all i = 1, . . . , n,

y j+1
i = (1 − λ jμi )y

j
i .

Using this recursively, we obtain

yki =
k−1∏
j=0

(1 − λ jμi )y
0
i . (7)

So, each variable may be seen independently, and the order of the step lengths
{λ0, . . . , λk−1} is irrelevant with respect to satisfying the stopping criterion. The stop-
ping rule (iv), |yki | ≤ ε|y0i | for i = 1, . . . , n, will be satisfied if

∣∣∣∣∣∣
k−1∏
j=0

(1 − λ jμi )

∣∣∣∣∣∣ ≤ ε, i = 1, . . . , n,
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which in its turn is implied by

∣∣∣∣∣∣
k−1∏
j=0

(1 − λ jw)

∣∣∣∣∣∣ ≤ ε, w ∈ [μ1, μn].

The left hand side defines a polynomial p(·) such that |p(w)| ≤ ε for w ∈ [μ1, μn]
and p(0) = 1, with roots 1/λ j , j = 1, . . . , k. Dividing this inequality by ε, it can be
satisfied by solving the following infinite dimensional problem:

Find a polynomial pk(·) of degree k ∈ N such that |pk(w)| ≤ 1 for w ∈ [μ1, μn]
and p(0) = 1/ε, with roots 1/λ j > 0, j = 1, . . . , k.

This may be finally be formulated as
(Pw) Given 0 < μ1 < μn , find a polynomial pk(·) of degree k ∈ N such that

max
w∈[μ1,μn ]

|pk(w)| ≤ 1, p(0) ≥ 1/ε,

with roots 1/λ j > 0, j = 1, . . . , k.
The following fact summarizes our development up to now:
Let pk be a solution of (Pw). Then the steepest descent algorithm with step lengths{

λ j , j = 0, . . . , k − 1
}
(in any order) applied to (Pz) from any initial point z0 ∈ Rn

produces a point zk that satisfies all four stopping rules.
Solution of (Pw). Our task is to find a polynomial with degree as low as we can which
solves the problem.Wedo it by constructing aChebyshev polynomial. First, we change
variables so that the set [μ1, μn] is mapped onto [−1, 1]. Set

w = μn − μ1

2
x + μn + μ1

2
, or x = 2w

μn − μ1
− μn + μ1

μn − μ1
.

Then x = 0 for w = (μ1 + μn)/2, x = −1 for w = μ1 and x = 1 for w = μn .

For w = 0, x = −μn + μ1

μn − μ1
= −C + 1

C − 1
.

With this change of variables, the problem is solved by a Chebyshev polynomial
Tk (see Fig. 1). We must satisfy the conditions |Tk(x)| ≤ 1 for x ∈ [−1, 1], which is
trivial, and |Tk(−(C + 1)/(C − 1))| ≥ 1/ε. Due to the symmetry of |Tk | and to the
fact that Tk(x) > 1 for x > 1, this condition is equivalent to

∣∣∣∣Tk
(
C + 1

C − 1

)∣∣∣∣ = Tk

(
1 + 2

C − 1

)
≥ 1

ε
.

Thus, using the properties of Chebyshev polynomials, we must satisfy

cosh

(
k cosh−1

(
1 + 2

C − 1

))
≥ 1

ε
.
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314 C. C. Gonzaga

Fig. 1 Chebyshev polynomial

The smallest integer that satisfies this is

k(C, ε) =

⎡
⎢⎢⎢⎢⎢

cosh−1
(
1

ε

)

cosh−1
(
1 + 2

C − 1

)
⎤
⎥⎥⎥⎥⎥

. (8)

We have proved our main result, expressed in the next theorem.

Theorem 1 Consider the problem (Pz), assume that the eigenvalues of H belong
to the interval [μ−, μ+], μ− > 0 and set C = μ+/μ−. Then the steepest descent
algorithm with step lengths

{
λ j = 1/w j , j = 0, 1, . . . , k − 1

}
, where

w j = μ+ − μ−

2
cos

(
1 + 2 j

2k
π

)
+ μ+ + μ−

2

and k = k(C, ε) defined in (8), satisfies the stopping rule in k steps, for any initial
point z0. The step lengths λ j can be applied in any order.

Proof The result follows directly by a change of variables and the reasoning above.��

Asimpler bound.Let us express the bound (8) in the shapeO(
√
C log(1/ε)).Numerical

values for the parameter appearing in the corollary below will follow its proof.

Corollary 1 In the conditions of Theorem 1, for C ≥ C̄ > 1,

k ≤
⌈

β(C̄)

√C
2

log

(
2

ε

)⌉
,
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On the worst case performance of the steepest descent… 315

where

β(C̄) = 2

cosh−1(1 + 2/(C̄ − 1))
√
C̄ − 1

Proof Let us examine numerator and denominator of (8).
Numerator: since cosh(x) > ex/2 for x ∈ R, cosh(log(2/ε)) > 1/ε for ε < 1, and

then cosh−1(1/ε) < log(2/ε).
Denominator: By Lemma 1, given C̄ > 1 and C ≥ C̄ (and hence 2/(C − 1) ≤

2/(C̄ − 1)),

cosh−1
(
1 + 2

C − 1

)
≥ γ

(
2

C̄ − 1

) √
4

C − 1
, (9)

with

γ

(
2

C̄ − 1

)
=

cosh−1
(
1 + 2

C̄ − 1

)
√

4

C̄ − 1

This value is near 1, as we see by calculating some values. Let us denote

β(C̄) = 1

γ (2/(C̄ − 1))
= 2

cosh−1(1 + 2/(C̄ − 1))
√
C̄ − 1

,

and obtain from (9):

1

cosh−1(1 + 2/(C − 1))
≤ β(C̄)

√
C − 1

2
.

Finally, putting together the results for numerator and denominator, (8) is satisfied by

k =
⌈

β(C̄)

√
C − 1

2
log(2/ε)

⌉
≤

⌈
β(C̄)

√
C

2
log(2/ε)

⌉
,

for any C ≥ C̄ . ��
Numerical values: for C̄ = 2, 4, 10, 100, the values of β are respectively

1.14, 1.06, 1.02, 1.002. The corresponding values of γ (which appears in the proof)
are 0.88, 0.95, 0.98, 0.998.

4 Complexity for unknown eigenvalue bounds

In this section we study the diagonalized problem. All complexity results will also be
valid for the original problem.
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316 C. C. Gonzaga

Let us study the problem (Py) with no information on the eigenvalues. It is well-
known (see for instance [1]) that the Cauchy step λC (y) from a point y ∈ Rn with
g = ∇ f (y) satisfies

λC (y) = gT g

gT Dg
,

1

λC
∈ [μ1, μn].

So, we may assume that a number μ ∈ [μ1, μn] is known.
The Cheby algorithm. Consider the problem (Py) and values l < u, not necessarily
bounds for the eigenvalues. We shall call ‘Cheby’ algorithm the steepest descent with
steps λi given by Theorem 1 with μ− = l and μ+ = u. After its application from the
initial point y0, g0 = ∇ f (y0), we obtain a point y = Cheby(y0, l, u, ε) such that

|y j | ≤ ε|y0j |, |g j | ≤ ε|g0j |

for j ∈ {1, . . . , n} such that l ≤ μ j ≤ u.

The stopping rule. Let us use the stopping rule (iii), ‖∇ f (y)‖ ≤ ‖∇ f (y0)‖, because
the other rules are not implementable. The following scheme expands an interval
[li , ui ] and applies the Cheby algorithm, until the stopping rule is satisfied. Note that
we do not propose this as a practical method: our intent is to show a complexity bound.

Algorithm
Data: y0 ∈ Rn , g0 = ∇ f (y0), ε > 0, i = 1, μ ∈ [μ1, μn].
l1 = μ/2, u1 = 2μ, C1 = u1/ l1 = 4.
Apply the Cheby algorithm to find y1 = Cheby(y0, l1, u1, ε/2).
g = ∇ f (y1).
while ‖g‖ > ε‖g0‖

μC = 1

λC (yi )
= gT Dg

gT g
.

if μC > ui/2, set ui+1 = 4ui , li+1 = li .
else set li+1 = li/4, ui+1 = ui .
Apply the Cheby algorithm to find yi+1 = Cheby(y0, li+1, ui+1, ε/2),
and set g = ∇ f (yi+1).

i = i + 1, Ci = ui/ li = 4i .
end
l̄ = li , ū = ui , ī = i .

Lemma 2 At an iteration i of the algorithm:

(i) If ui ≥ 2μn then ū = ui (ui stops increasing).
(ii) If li ≤ μ1 then l̄ = li (li stops decreasing).
(iii) When the algorithm stops, l̄ ≥ μ1/4, ū ≤ 8μn and Cī ≤ 32C.

Proof Assumewithout loss of generality that ‖g0‖ = 1, and let us examine an iteration
i (if ‖g1‖ ≤ ε, the result is trivial).
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On the worst case performance of the steepest descent… 317

(i) Assume that ui ≥ 2μn . We know that μC ∈ [μ1, μn], and then μC ≤ μn ≤ ui/2.
By construction, ui+1 = ui (ui stops increasing).

(ii) Assume that li ≤ μ1. We must prove that μC > ui/2.

Let j̄ = max
{
j ∈ {1, . . . , n} | μ j ≤ ui

}
. By Theorem 1, after the application of the

Cheby algorithm with precision ε/2,

|g j | ≤ ε

2
|g0j |, for j = 1, 2, . . . , j̄ .

Hence

∑
j≤ j̄

g2j ≤ ε2

4

∑
j≤ j̄

(g0j )
2 ≤ ε2

4
<

‖g‖2
4

,

and consequently

∑
j> j̄

g2j >
3

4
‖g‖2 >

3

4
ε2 >

1

2
ε2.

It follows that

n∑
j=1

μ j g
2
j ≥ ui

∑
j> j̄

g2j >
ui
2

‖g‖2.

Dividing both sides by ‖g‖2,

μC =
∑n

j=1 μ j g2j
‖g‖2 >

ui
2

,

proving (ii).

(iii) Lower bound: if l̄ = l1, the result is true because l1 = μ/2 ≥ μ1/2. Otherwise,
l̄ = li/4 for some i with li > μ1, and hence l̄ > μ1/4. Upper bound: if ū = u1,
ū = 2μ ≤ 2μn . Otherwise, ū = 4ui for some i such that ui < 2μC ≤ 2μn ,
because μC ∈ [μ1, μn]. Hence ū ≤ 8μn , completing the proof. ��

Lemma 3 Let p be the smallest integer such that 32C ≤ 4p. The algorithm will stop
with ī ≤ p, with a total number of steepest descent steps satisfying

K =
p∑

i=1

ki ≤ 12
√
C log(4/ε).

Proof The number of steps at each iteration with C ≥ 4 and precision ε/2 is given by
Corollary 1: as 	a
 ≤ a + 1 for a ∈ R,

ki ≤ 1.06

√
Ci

2
log(4/ε) + 1 ≤ √

Ci log(4/ε).
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318 C. C. Gonzaga

The last inequality is easily checked for Ci ≥ 4 and ε < 1, because 1.06 log(4)+1 <

2 log(4).
The number of iterations satisfies ī ≤ p, because 4ī = Cī ≤ 32C . Then C ≥

4ī−2/2, √
C ≥ 2ī−2/

√
2. (10)

In ī iterations, the total number of steepest descent steps is

K =
ī∑

i=1

ki ≤
ī∑

i=1

√
Ci log(4/ε) = log(4/ε)

ī∑
i=1

2i < log(4/ε)2ī+1.

Finally, using (10), 2ī+1 ≤ 8
√
2
√
C ≤ 12

√
C , completing the proof. ��

Remark If either a good lower bound or upper bound for the eigenvalues is known,
the scheme becomes much easier, just update the unknown bound by multiplying or
dividing it by 4 in each iteration. The bound on K will have a lower constant:

K ≤ 3
√
C log(2/ε).

Doing this simultaneously for both bounds would increase the complexity: the “diffi-
cult” thing was to decide which bound to change at each iteration, and it was done with
the help of the inverse Cauchy step. If a scheme like this is to be used in practice, note
that there must be more efficient ways of updating the upper bound (see for instance
[5] for methods for estimating short steps). Estimating the smallest eigenvalue is more
difficult. We assumed that all iterations start at the same initial point, which does not
seem reasonable in practice: one should start each iteration i of the scheme from yi .

5 Toward possible applications

The purpose of this paper is the establishment of a theoretical optimal performance
bound. Nevertheless, some practical hints can be suggested from these results. These
hints, together with efficient versions of steepest descent and practical methods for
estimating the bounds l̄ and ū, are explored in reference [10].

The Cauchy algorithm tends to generate steps that cycle around two limit points.
Our results say that the steps should be spaced according to the Chebyshev roots:
repeating step lengths is not as efficient as keeping them apart. They also suggest that
the step lengths should have a sinusoidal distribution, with a higher density of step
lengths near the extremities of the interval [1/μn, 1/μ1].

This is illustrated by the following strategy: assuming that μ1,μn and ε are known,
generate a list L = l1, l2, . . . , lk of Chebyshev steps as in Theorem 1. Choose any
steepest descent algorithm (Cauchy, short steps, Barzilai-Borwein,…) and do the fol-
lowing:

At iteration k, compute λk by the algorithm.
Find the item ī in L that minimizes |λk − li |.
Set λk = lī and remove the item lī from L .
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Fig. 2 Algorithms using Chebyshev roots

The algorithm will necessarily stop for k ≤ k(μn/μ1, ε). This procedure will
hopefully enhance any steepest descent method, by forcing it to use Chebyshev steps.
In Fig. 2 we show the effect of this enhancement on a run of the Cauchy and Barzilai-
Borwein algorithms applied to a problemwith logarithmically distributed eigenvalues,
C = 106, n = 104, ε = 10−5. The plots show the evolution of function values for
the algorithm with ordered Chebyshev roots, modified Cauchy (original Cauchy is too
slow, not shown), original Barzilai-Borwein and enhanced Barzilai-Borwein. We see
that the enhancement really did improve the convergence in this example.

At left, the figure shows function values; at right, min
{‖x j‖∞ | j ≤ k

}
.
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