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Abstract We study a substructure appearing in mixed-integer programming reformu-
lations of chance-constrained programs with stochastic right-hand-sides over a finite
discrete distribution,whichwe call themixing setwith a knapsack constraint. Recently,
Luedtke et al. (Math. Program. 122(2):247–272, 2010) and Küçükyavuz (Math Pro-
gram 132(1):31–56, 2012) studied valid inequalities for such sets. However, most of
their resultswere focused on the equal probabilities case (when the knapsack constraint
reduces to a cardinality constraint). In this paper, we focus on the general probabil-
ities case (general knapsack constraint). We characterize the valid inequalities that
do not come from the knapsack polytope and use this characterization to generalize
the results previously derived for the equal probabilities case. Our results allow for a
deep understanding of the relationship that the set under consideration has with the
knapsack polytope. Moreover, they allow us to establish benchmarks that can be used
to identify when a relaxation will be useful for the considered types of reformulations
of chance-constrained programs.
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1 Introduction

Many optimization problems in real world applications allow to some extent a number
of violated constraints, which results in a decrease in the quality of service, as well
as a decrease in the cost of production. These optimization problems have been a
main motive to study probabilistic (in particular, chance-constrained) programming.
A difficultywhen dealingwith these optimization problems is that the feasible region is
not necessarily convex. In this paper, we consider mixed-integer programming (MIP)
reformulations of chance-constrained programs with joint probabilistic constraints in
which the right-hand-side vector is random with a finite discrete distribution.1 This
model was first proposed in Sen [16], studied in Ruszczyński [15], and extended by
Luedtke et. al [14] and Küçükyavuz [12]. This reformulation gives rise to a mixing-
type set [10] subject to an additional knapsack constraint, which is the focus of this
paper.2

Formally, consider the following chance-constrained programming problem

min c�x
s.t. P(Bx ≥ ξ) ≥ 1 − ε

x ∈ X,

(PLP)

where X is a polyhedron, B is a matrix with d rows, ξ is a random variable in R
d

with finite discrete distribution, ε ∈ (0, 1), and c is an arbitrary cost vector. Let ξ take
values ξ1, . . . , ξn with probabilitiesπ1, . . . , πn , respectively.Wemay assumewithout
loss of generality that ξ j ≥ 0, for all j ∈ [n] := {1, . . . , n} (by a mere simple linear
transformation). Thus, since ε < 1, Bx ≥ 0 for every feasible solution x to (PLP). By
definition, for each j ∈ [n], π j > 0 and

∑n
j=1 π j = 1.We can reformulate the chance

constraint in (PLP) using linear inequalities and auxiliary binary variables as follows:
let z ∈ {0, 1}n where z j = 0 guarantees that Bx ≥ ξ j . Then (PLP) is equivalent to

min c�x
s.t. y = Bx

y + ξ j z j ≥ ξ j ∀ j ∈ [n]∑n
j=1 π j z j ≤ ε

z ∈ {0, 1}n
x ∈ X.

(CMIP)

We may assume for all j ∈ [n] that π j ≤ ε. Indeed, if π j > ε for some j ∈ [n], then
z j = 0 for all feasible solutions (x, y, z) to the above system, so we may as well drop
the index j . Now let

1 Sometimes the finite discrete distribution given is an approximation of an unknown continuous distribu-
tion, obtained via a Sample Average Approximation (SAA) technique.
2 Prior to our work, the main focus seems to have been on the equal probabilities case, justified by employ-
ing the SAA technique. Our more general framework of the general probabilities case allows for more
sophisticated techniques such as Importance Sampling. See the recent work of Barrera et al. [6] for further
details.
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On the mixing set with a knapsack constraint 193

D :=
⎧
⎨

⎩
(y, z) ∈ R

d+ × {0, 1}n :
n∑

j=1

π j z j ≤ ε; y + ξ j z j ≥ ξ j , ∀ j ∈ [n]
⎫
⎬

⎭
.

Then (PLP) can be rewritten as

min c�x
s.t. Bx ∈ projyD

x ∈ X.

This motivates us to study the set D. For each κ ∈ [d], let

Dκ :=
{

(yκ , z) ∈ R+ × {0, 1}n :
∑n

j=1 π j z j ≤ ε

yκ + ξ
j
κ z j ≥ ξ

j
κ , ∀ j ∈ [n]

}

. (1)

Then observe that

D =
⋂

κ∈[d]

{
(y, z) ∈ R

d+ × {0, 1}n : (yκ , z) ∈ Dκ

}
.

Therefore, instead of D, we study the lower dimensional sets Dκ .
Fix κ ∈ [d] and for notational convenience, let h j := ξ

j
κ for each j ∈ [n]. Let∑

j∈[n] a j z j ≤ p be a valid inequality for Dκ where a ∈ R
n+, p ∈ R+, a j ≤ p for

all j ∈ [n], and ∑
j∈[n] a j > p. Observe that this inequality may be the knapsack

constraint
∑n

j=1 π j z j ≤ ε. In this paper, we focus on the set

Q :=
⎧
⎨

⎩
(y, z) ∈ R+ × {0, 1}n :

n∑

j=1

a j z j ≤ p; y + hi zi ≥ hi , ∀i ∈ [n]
⎫
⎬

⎭
.

Specifically, we try to understand the convex hull of Q. We assume without loss of
generality that h1 ≥ h2 ≥ · · · ≥ hn ≥ 0.

Note that the assumption that a j ≤ p for all j ∈ [n] implies that Q is a full-
dimensional set. (The points (h1+1, 0), (h1, e1), . . . , (h1, en) are in Q, where e j is the
j th n-dimensional unit vector.) Also, the assumption that

∑
j∈[n] a j > p implies that

y ≥ hn , for all y ∈ Q. Observe that the set Q contains as a substructure the intersection
of a mixing-type set, introduced by Günlük and Pochet [10], and a knapsack constraint
(hence the title of our paper). Various structural properties of conv(Q)were studied in
[12] and [14]when theknapsack constraint

∑
j∈[n] a j z j ≤ p is a cardinality constraint.

In Luedtke et al. [14], a characterization of all valid inequalities for conv(Q) was
given3, and in both [12] and [14], explicit classes of facet-defining inequalities were
introduced.

3 As shown in Luedtke [13], some valid inequalities for Q are also of value in the extremely general case
where each mixing constraint is replaced by a set of arbitrary linear constraints.

123



194 A. Abdi, R. Fukasawa

1.1 Our contributions

The main contribution of this paper is to generalize the results in [12] and [14]. In
particular, we show that the extended formulation and polynomial time separation that
these two papers obtain for the cardinality constrained case follow from the results
that we establish for LP relaxations of the knapsack set. We also introduce a class
of explicit facet-defining inequalities for conv(Q), and give a necessary condition on
the constant right-hand-side term for any inequality to be facet-defining. Additionally,
we provide a compact extended formulation for (CMIP) similar to the one given in
[12]. Finally, we present computational experiments to illustrate how our results can
be used to set benchmarks to identify when a relaxation is useful and worth a deeper
investigation.

1.2 Outline

In this paper, we do not make any assumptions on the knapsack constraint. In Sect.
2 we characterize the set of all valid inequalities for conv(Q). In Sect. 3 we study
how different relaxations of the knapsack polytope can be used to obtain relaxations
of conv(Q). We discuss in Sect. 4 some properties of facet-defining inequalities of
conv(Q) and introduce an explicit class of facet-defining inequalities. In Sect. 5 we
provide a compact integer extended formulation for the whole set (CMIP) that we are
interested in. Computational experiments are provided in Sect. 6 and a conclusion in
Sect. 7.

2 A characterization of valid inequalities for conv(Q)

To start, let ν := max
{
k ∈ Z : ∑k

j=1 a j ≤ p
}
. Note 0 < ν < n. Define for each

k ∈ {0, 1, . . . , ν} the knapsack set

Pk :=
⎧
⎨

⎩
z ∈ {0, 1}n :

n∑

j=1

a j z j ≤ p; z1 = · · · = zk = 1

⎫
⎬

⎭
,

and define φ : {0, 1, . . . , ν} × R
n → R, as follows: for 0 ≤ k ≤ ν and α ∈ R

n , let

φ(k, α) := min

⎧
⎨

⎩

n∑

j=k+1

α j z j : z ∈ Pk

⎫
⎬

⎭
.

Note φ(k, α) ≤ 0.
The following theorem characterizes the set of all valid inequalities for conv(Q).

Theorem 1 Take (γ, α, β) ∈ R × R
n × R. Then

γ y +
∑

j∈[n]
α j z j ≥ β (2)
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On the mixing set with a knapsack constraint 195

is a valid inequality for conv(Q) if, and only if, γ ≥ 0 and

γ hk+1 +
k∑

j=1

α j + φ(k, α) ≥ β, ∀ 0 ≤ k ≤ ν. (3)

Proof Suppose that (2) is a valid inequality of conv(Q) for some (γ, α, β) ∈ R ×
R
n ×R. Since (1, 0) is in the recession cone of conv(Q), it follows that γ ≥ 0. Take

0 ≤ k ≤ ν. Choose z∗ ∈ Pk so that
∑n

j=k+1 α j z∗j = φ(k, α). Let y∗ = hk+1. Observe
that (y∗, z∗) ∈ Q as z∗1 = · · · = z∗k = 1. Hence, since (2) is valid for Q, it follows
that

β ≤ γ y∗ +
∑

j∈[n]
α j z

∗
j

= γ hk+1 +
k∑

j=1

α j +
n∑

j=k+1

α j z
∗
j

= γ hk+1 +
k∑

j=1

α j + φ(k, α).

Since this holds for all 0 ≤ k ≤ ν, it follows that (3) holds.
Conversely, suppose that γ ≥ 0 and (3) holds. Let (y∗, z∗) ∈ Q. Let h0 := +∞.

Since
∑n

j=1 a j z∗j ≤ p there exists 0 ≤ k ≤ ν for which z∗1 = . . . = z∗k = 1 but
z∗k+1 = 0. Observe that z∗ ∈ Pk . Since z∗k+1 = 0 we get that y∗ ≥ hk+1, and so as
γ ≥ 0 it follows that

γ y∗ +
∑

j∈[n]
α j z

∗
j ≥ γ hk+1 +

k∑

j=1

α j +
n∑

j=k+1

α j z
∗
j

≥ γ hk+1 +
k∑

j=1

α j + φ(k, α)

≥ β

as (3) holds. Therefore, (2) is valid for (y∗, z∗), and since this is true for all (y∗, z∗) ∈
Q, (2) is a valid inequality for conv(Q). 
�

The following proposition states that conv(Q) has all the facets of the knapsack
polytope as a subset of its facets.

Proposition 2 The inequality ∑

j∈[n]
α j z j ≥ β (4)

defines a facet of conv(Q) if and only if it defines a facet of conv(P0)
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196 A. Abdi, R. Fukasawa

Proof The proof of this proposition is straightforward fromTheorem 1 and the follow-
ing facts: (i) any valid inequality for conv(P0) is also valid for conv(Q) and conversely
(ii) any inequality of the form (4) valid for conv(Q) is also valid for conv(P0). 
�

We end this section by collecting the coefficient vectors of all valid inequalities of
conv(Q) as follows:

C :=
⎧
⎨

⎩
(γ, α, β) ∈ R+ × R

n × R : γ hk+1 +
k∑

j=1

α j + φ(k, α) ≥ β,∀0 ≤ k ≤ ν

⎫
⎬

⎭
.

Following the terminology of [10], we refer to C as the coefficient polyhedron of Q.
It is worth mentioning that the coefficient polyhedron C is reminiscent of the polar of
a polyhedron.

3 A relaxation scheme for conv(Q)

The results in the previous section suggest that in order for us to describe conv(Q),
we must be able to obtain the convex hull of the knapsack polytope. Since this is a
far-stretched task in itself (see for instance [4,5,11,17]), we consider in this section
what happens if we have a polyhedral relaxation of the knapsack polytope.

For each 0 ≤ k ≤ ν, let Rk be a (strengthened) LP relaxation of Pk in the following
sense: for some matrix Ak and column vector bk we have Rk = {

z ∈ [0, 1]n : Akz ≤
bk

}
, Rk ∩ {0, 1}n = Pk , and

Rk ⊆
⎧
⎨

⎩
z ∈ [0, 1]n :

n∑

j=1

a j z j ≤ p; z1 = · · · = zk = 1

⎫
⎬

⎭
. (5)

For each 0 ≤ k ≤ ν, define ϕ : {0, 1, . . . , ν} × R
n → R as follows:

ϕ(k, α) := min

⎧
⎨

⎩

n∑

j=k+1

α j z j : z ∈ Rk

⎫
⎬

⎭
.

Observe that ϕ is a lower bound on φ as Pk ⊆ Rk . Let

Cϕ :=
⎧
⎨

⎩
(γ, α, β) ∈ R+ × R

n × R : γ hk+1 +
k∑

j=1

α j + ϕ(k, α) ≥ β, ∀ 0 ≤ k ≤ ν

⎫
⎬

⎭

and

Qϕ :=
⎧
⎨

⎩
(y, z) ∈ R+ × [0, 1]n : γ y +

n∑

j=1

α j z j ≥ β, ∀ (γ, α, β) ∈ Cϕ

⎫
⎬

⎭
.
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On the mixing set with a knapsack constraint 197

Notice that Cϕ ⊆ C and consequently, conv(Q) ⊆ Qϕ . In words, what we are doing
is picking polyhedral relaxations R0, . . . , Rν of the knapsack sets P0, . . . , Pν and
defining a relaxation Qϕ of conv(Q) based on them, which is argued in the following
proposition.

Proposition 3 Qϕ is an LP relaxation of Q, i.e. Qϕ ∩ (
R+ × {0, 1}n) = Q and

Qϕ ⊆
⎧
⎨

⎩
(y, z) ∈ R+ × [0, 1]n :

n∑

j=1

a j z j ≤ p; y + hi zi ≥ hi , ∀i ∈ [n]
⎫
⎬

⎭
.

Proof We first prove that
∑n

j=1 a j z j ≤ p is a valid inequality for Qϕ . It suffices to
show (0,−a,−p) ∈ Cϕ . Take 0 ≤ k ≤ ν. Then, as (5) holds, it follows that

0 · hk+1 +
k∑

j=1

(−a j ) + ϕ(k,−a) ≥ −
k∑

j=1

a j + ( k∑

j=1

a j − p
) = −p.

As this is true for all 0 ≤ k ≤ ν, it follows that (0,−a,−p) ∈ Cϕ and so
∑n

j=1 a j z j ≤
p is a valid inequality for Qϕ .

Given i ∈ [n] we next prove y + hi zi ≥ hi is valid for Qϕ . It suffices to show
(γ, α, β) := (1, hi ei , hi ) ∈ Cϕ , where ei is the i th unit vector in Rn . Choose 0 ≤ k ≤
ν. Observe that ϕ(k, hi ei ) ≥ 0, and in fact, ϕ(k, hi ei ) = 0 since

∑k
j=1 e j ∈ Pk ⊆ Rk .

If k < i then

γ hk+1 +
k∑

j=1

α j + ϕ(k, α) = hk+1 ≥ hi = β.

Otherwise, k ≥ i and so

γ hk+1 +
k∑

j=1

α j + ϕ(k, α) = hk+1 + hi ≥ hi = β.

Hence, (1, hi ei , hi ) ∈ Cϕ implying that y + hi zi ≥ hi .
As a result,

Qϕ ⊆ {
(y, z) ∈ R+ × [0, 1]n :

n∑

j=1

a j z j ≤ p; y + hi zi ≥ hi , ∀i ∈ [n]}.

It remains to show Qϕ ∩ (
R+ ×{0, 1}n) = Q. The inclusion relation above implies

thatQϕ∩(
R+×{0, 1}n) ⊆ Q, and sinceQ ⊆ Qϕ , it follows thatQϕ∩(

R+×{0, 1}n) ⊇
Q. Thus, Qϕ ∩ (

R+ × {0, 1}n) = Q, finishing the proof. 
�
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198 A. Abdi, R. Fukasawa

3.1 Compact extended formulations for Qϕ and Cϕ

Having shown that we can define a relaxation of conv(Q) based on LP relaxations
of the knapsack polytope, we now start with a theorem that proposes an alternate
formulation of Qϕ . It provides insight into the structure of Qϕ in terms of disjunctive
programming and allows the derivation of the extended formulations discussed in this
subsection.

Theorem 4 For each 0 ≤ k ≤ ν, let Sk := {
(hk+1, z) : z ∈ Rk

}
. Then

Qϕ = conv

(
ν⋃

k=0

Sk

)

+ {
(y, z) ∈ R+ × R

n : z = 0
}
. (6)

Proof Observe that

Cϕ =
{

(γ, α, β) ∈ R+ × R
n × R : γ y +

n∑

j=1

α j z j ≥ β, ∀ (y, z) ∈
ν⋃

k=0

Sk

}

.

It is therefore clear that

S := conv

(
ν⋃

k=0

Sk

)

+ {
(y, z) ∈ R+ × R

n : z = 0
} ⊆ Qϕ.

Suppose, for a contradiction, there exists a point (y∗, z∗) ∈ Qϕ − S. Then there is a
valid inequality γ ∗y + ∑n

j=1 α∗
j z j ≥ β∗ for S that is violated by (y∗, z∗). However,

(γ ∗, α∗, β∗) ∈ Cϕ , implying that

γ ∗y∗ +
n∑

j=1

α∗
j z

∗
j ≥ β∗,

as (y∗, z∗) ∈ Qϕ , a contradiction. Therefore, S = Qϕ , as required. 
�

Given the results in Theorem 4, we can now apply Balas’s theory of disjunctive
programming [2,3] to (6), enabling us to get the following extended formulation for
Qϕ . Recall that Rk = {

z ∈ [0, 1]n : Akz ≤ bk
}
for 0 ≤ k ≤ ν.

Corollary 5 Qϕ = projy,z EQϕ for

EQϕ :=
{
(y, z, λ, ω) ∈ R+ × [0, 1]n × R

ν+1+ × R
(ν+1)n
+ : (7) − (11)

}
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On the mixing set with a knapsack constraint 199

where

ν∑

k=0

λk = 1 (7)

ν∑

k=0

ωk = z (8)

ωk ≤ λk1, ∀0 ≤ k ≤ ν (9)

Akωk ≤ bkλk, ∀0 ≤ k ≤ ν (10)

y ≥
ν∑

k=0

hk+1λk . (11)

Moreover, we can actually get an extended formulation for Cϕ as well, according
to the following proposition.

Proposition 6 Cϕ = projγ,α,βECϕ for

ECϕ :=
{
(γ, α, β, σ, ρ) ∈ R+ × R

n × R × R

∑ν
k=0 nk− × R

(ν+1)n
− : (12); (13)

}

where

γ hk+1 +
k∑

j=1

α j + (bk)�σ k + (ρk)�1 ≥ β, ∀ 0 ≤ k ≤ ν (12)

(Ak)�σ k + ρk ≤ αk, ∀ 0 ≤ k ≤ ν (13)

and where, for each 0 ≤ k ≤ ν, αk = (0, 0, . . . , 0, αk+1, αk+2, . . . , αn) ∈ R
n.

Proof For 0 ≤ k ≤ ν and α ∈ R
n , we know that

ϕ(k, α) = min
∑n

j=k+1 α j z j
s.t. Akz ≤ bk

z ≤ 1
z ≥ 0.

which, by strong LP duality, is equal to

ϕ(k, α) = max (bk)�σ k + (ρk)�1
s.t. (Ak)�σ k + ρk ≤ αk

σ k, ρk ≤ 0.

Note now that weak LP duality impliesCϕ ⊇ projγ,α,βECϕ , and by strong LP duality,
we have Cϕ ⊆ projγ,α,βECϕ . Therefore, Cϕ = projγ,α,βECϕ . 
�
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200 A. Abdi, R. Fukasawa

We note that these results generalize the previous results of [12,14] where the
extended formulations were considered by using the LP relaxation of the cardinality
constrained case, which in that case coincides with the convex hull of the knapsack
polytope.

3.2 On the strength of the relaxations

Here we consider what can be said about the strength of the proposed relaxations,
given knowledge about the strength of the LP relaxations of the knapsack polytope.
Our first theorem shows that if the relaxation is exact for a given subset of variables,
then all the inequalities that are allowed to use negative coefficients for the same subset
of variables are guaranteed to be considered in the relaxation.

To do so, let us define for any subset J ⊆ [n] the sets

RJ
k = Rk ∩ {z ∈ R

n : z j = 0,∀ j /∈ J : j > k}
P J
k = Pk ∩ {z ∈ R

n : z j = 0,∀ j /∈ J : j > k},

that is, the sets Rk and Pk when we restrict ourselves only to variables in J . We now
want to consider what happens when the relaxations RJ

k are exact.

Theorem 7 Suppose, for a given subset J ⊆ [n], we have that

min

⎧
⎨

⎩

n∑

j=k+1

α j z j : z ∈ RJ
k

⎫
⎬

⎭
= min

⎧
⎨

⎩

n∑

j=k+1

α j z j : z ∈ P J
k

⎫
⎬

⎭
, ∀α ∈ R

n .

Take (y∗, z∗) ∈ Qϕ . Then γ y∗ + ∑
j∈[n] α j z∗j ≥ β, for all (γ, α, β) ∈ C such that

{ j ∈ [n] : α j < 0} ⊆ J .

Proof Choose (γ, α, β) ∈ C such that { j ∈ [n] : α j < 0} ⊆ J . Observe that, in
this case, the argument of φ(k, α) will be in RJ

k since for all j with α j ≥ 0 we can
just set z j = 0 and either improve or not change the value of φ(k, α). Similarly, the
argument of ϕ(k, α) will be in P J

k . Therefore, we have that φ(k, α) = ϕ(k, α) for all
0 ≤ k ≤ ν, and so (γ, α, β) ∈ Cϕ . As a consequence, since (y∗, z∗) ∈ Qϕ , we have
that γ y∗ + ∑

j∈[n] α j z∗j ≥ β, as desired. 
�

While this theorem may seem strange at first, what it is saying is that as long as
we can describe completely the convex hull of the knapsack polytope restricted to
a set J , then we are guaranteed that all the points in Qϕ satisfy all the inequalities
where the only negative coefficients allowed are in J . For instance, when we are in the
cardinality constrained case, we have that J = [n] and so this says that all inequalities
of conv(Q) must be satisfied by Qϕ . As another special case, for instance, one can
derive the following corollary.
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On the mixing set with a knapsack constraint 201

Corollary 8 Suppose that

Rk ⊆
⎧
⎨

⎩
z ∈ [0, 1]n :

∑n
j=k+1�da j�z j ≤

⌊
d
(
p − ∑k

j=1 a j
)⌋

,

∀d ∈
{

1
a j

: j ∈ [n]
}

⎫
⎬

⎭
.

Take (y∗, z∗) ∈ Qϕ . Then, for each (γ, α, β) ∈ C with the property that ai = a j for
all αi , α j < 0, we have

γ y∗ +
∑

j∈[n]
α j z

∗
j ≥ β.

In particular, if a1 = a2 = · · · = an then Qϕ = conv(Q).

Next we study the case where ϕ is guaranteed to approximate φ. More precisely,
suppose there exists a δ ∈ (0, 1) such that for every 0 ≤ k ≤ ν,

(�) max
{
w�z : z ∈ Pk

} ≥ (1 − δ)max
{
w�z : z ∈ Rk

}
for all w ∈ R

n .

That is, we have that for each 0 ≤ k ≤ ν and α ∈ R
n ,

(�′) (1 − δ)ϕ(k, α) ≥ φ(k, α) ≥ ϕ(k, α).

(Recall φ(k, α) ≤ 0.) We now show that such approximation factor can be translated
into the inequalities in the following way. For any α ∈ R

n , let S−(α) := ∑ (
α j :

1 ≤ j ≤ n, α j < 0
)
. Then, the next lemma shows that we are guaranteed that all

inequalities for conv(Q) are not violated by much if we consider Qϕ .

Proposition 9 If (γ, α, β) ∈ C and R0, R1, . . . , Rν satisfy (�), then
(γ, α, β + δS−(α)) ∈ Cϕ .

Proof Take (γ, α, β) ∈ C . By (�′), for each 0 ≤ k ≤ ν,

γ hk+1 +
∑

j≤k

α j + ϕ(k, α) ≥ γ hk+1 +
∑

j≤k

α j + φ(k, α) + δϕ(k, α) ≥ β + δϕ(k, α).

On the other hand,

δϕ(k, α) = δmin

⎧
⎨

⎩

∑

j>k

α j z
∗
j : z∗ ∈ Rk

⎫
⎬

⎭
≥ δS−(α),

so

γ hk+1 +
∑

j≤k

α j + ϕ(k, α) ≥ β + δS−(α).

Since this is true for all 0 ≤ k ≤ ν, it follows that (γ, α, β + δS−(α)) ∈ Cϕ . 
�
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202 A. Abdi, R. Fukasawa

One application of Proposition 9, for instance, is to consider Bienstock’s approx-
imate formulation for the knapsack polytope. As shown in Bienstock [8], for every
0 ≤ k ≤ ν and δ > 0, there exists a polyhedron Rδ

k of dimension O
(
δ−1n1+�1/δ�)

that is described by O
(
δ−1n2+�1/δ�) constraints whose projection onto z satisfies the

desired property (�).

4 Facet-defining inequalities for conv(Q)

The results in the previous section allow us to study several different relaxations of
conv(Q) by studying relaxations of the knapsack polytope.

In this section, we focus on developing new classes of facet-defining inequalities for
conv(Q) that do not arise from facet-defining inequalities for the knapsack set P0. By
Theorem 1 and Proposition 2, such inequalities must have the form y+∑

j∈[n] α j z j ≥
β.

We begin this section by giving an overview of the known classes of facet-defining
inequalities for conv(Q).We then describe a property of facet-defining inequalities for
conv(Q) that generalizes the results for the previously known facet-defining inequal-
ities. Finally, we will introduce a new explicit class of facet-defining inequalities that
subsumes all the previously known classes.

The first proposed class of facet-defining inequalities for conv(Q) were the so-
called strengthened star inequalities.

Theorem 10 [14] The strengthened star inequalities

y +
a∑

j=1

(ht j − ht j+1)zt j ≥ ht1, ∀ T = {t1, . . . , ta} ⊆ {1, . . . , ν} (14)

with t1 < · · · < ta and hta+1 := hν+1 are valid for conv(Q). Moreover, (14) is
facet-defining for conv(Q) if and only if ht1 = h1. 
�

As shown in [1,9,10], the strengthened star inequalities can be separated in poly-
nomial time and are sufficient to describe the convex hull of

{
(y, z) ∈ R+ × {0, 1}n : y + hi zi ≥ hi , ∀ i ∈ [n]}.

However, as onemay expect, when a knapsack constraint is enforced (to obtain Q), the
convex hull becomes much more complex, so the facet-defining inequalities become
more difficult to find.

In 2010, Luedtke et al. [14] found a general class of facet-defining inequalities for
conv(Q). Subsequently, Küçükyavuz [12] introduced a larger and subsuming class
of facet-defining inequalities for conv(Q), called the (T,ΠL) inequalities. Here, we
only state the latter class.

Theorem 11 [12] Suppose that a1 = · · · = an = 1, p is a positive integer and
m ∈ [p]. Suppose further that
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On the mixing set with a knapsack constraint 203

(i) T := {t1, . . . , ta} ⊆ [m] where t1 < · · · < ta,
(i) L ⊆ {m + 2, . . . , n} is of size p −m and ΠL := (�1, . . . , �p−m) is a permutation

of the elements of L such that � j > m + j , for j ∈ [p − m].
Set ta+1 := m + 1. Let Δ1 := hm+1 − hm+2, and for 2 ≤ j ≤ p − m, define

Δ j := max
{
Δ j−1, hm+1 − hm+1+ j −

∑ (
Δi : �i > m + j, i < j

)}
.

Then the (T,ΠL) inequality

y +
a∑

j=1

(ht j − ht j+1)zt j +
p−m∑

j=1

Δ j (1 − z� j ) ≥ ht1 (15)

is valid for conv(Q). Furthermore, (15) is facet-defining inequality for conv(Q) if
and only if ht1 = h1. �

Observe that the (T,∅) inequalities are simply the strengthened star inequalities. A
common aspect of Theorems 10 and 11 (and the other class of facet-defining inequal-
ities in Luedtke et al. [14]) is the condition on the right-hand-side constant for the
inequality to be facet-defining. The following result provides a generalization of those
conditions to any facet-defining inequality of conv(Q).

Proposition 12 If

y +
∑

j∈[n]
α j z j ≥ β (16)

is valid for conv(Q) then β ≤ h1 + φ(0, α). Moreover, if (16) is facet-defining for
conv(Q), then β = h1 + φ(0, α).

Proof Take z∗ ∈ P0 so that
∑

j∈[n] α j z∗j = φ(0, α). As (h1, z∗) ∈ Q we have

h1 + φ(0, α) = h1 +
∑

j∈[n]
α j z

∗
j ≥ β.

Suppose now that (16) is facet-defining. Since conv(Q) is full-dimensional and (16)
is a facet-defining inequality different from z1 ≤ 1, it follows that there is a point
(y′, z′) ∈ Q on the facet defined by (16) such that z′1 = 0. Then y′ = y′ + h1z′1 ≥ h1,
and since z′ ∈ P0, it follows that

β = y′ +
∑

j∈[n]
α j z

′
j ≥ h1 + φ(0, α).

Hence, β = h1 + φ(0, α). 
�
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We note that for (14) we have φ(0, α) = 0 and for (15) we have φ(0, α) =
−∑p−m

i=1 Δi , so the above theorem implies the previously stated results on the right-
hand-side constants of the inequalities.

We now introduce a class of valid inequalities for conv(Q) subsuming all the
preceding classes of facet-defining inequalities. Let s0 := 0 and for each m ∈ [n], let
sm := ∑m

j=1 a j .

Theorem 13 Choose m ∈ {0, 1, . . . , ν} such that p − sm ≤ n − m − 1. Let s be an
integer such that p − sm ≤ s ≤ n − m − 1. For 1 ≤ j ≤ s, let m( j) := max{k : k ∈
[n], j ≥ sk − sm}. Suppose that
(V1) T := {t1, . . . , ta} ⊆ {1, . . . ,m} where t1 < · · · < ta ,
(V2) L := {�1, . . . , �s} ⊆ {m + 2, . . . , n} where �1, . . . , �s are pairwise distinct,
(V3) a j ≥ 1 for all j ∈ L.

Set ta+1 := m + 1. Choose Δ ∈ R
L such that 0 ≤ Δ�1 ≤ Δ�2 ≤ · · · ≤ Δ�s and

∑ (
Δ�i : �i > m( j), i ≤ j

) −
∑ (

Δ�i : �i ≤ m( j), i > j
) ≥ hm+1 − hm( j)+1

for all 1 ≤ j ≤ s. Then

y +
a∑

j=1

(ht j − ht j+1)zt j +
∑

i∈L
Δi (1 − zi ) ≥ ht1 (17)

is a valid inequality for conv(Q).

A proof is included in Sect. 4.2. Under certain conditions described below, (17)
becomes a facet-defining inequality for conv(Q).

Theorem 14 Choose m ∈ {0, 1, . . . , ν} such that p − sm ≤ n −m − 1 and p − sm is
an integer. For 1 ≤ j ≤ p − sm, let m( j) := max{k : k ∈ [n], j ≥ sk − sm}. Suppose
that

(F1) T := {t1, . . . , ta} ⊆ {1, . . . ,m} where t1 < · · · < ta and ht1 = h1,
(F2) L ⊆ {m + 2, . . . , n} is of size p − sm and (�1, . . . , �p−sm ) is a permutation of

the elements of L such that � j > m( j), for all 1 ≤ j ≤ p − sm,
(F3) a j = 1 for all j ∈ L, and ai ≤ sm for all i ∈ [n] − L.

Set ta+1 := m + 1. Let Δ�1 := hm+1 − hm(1)+1, and for 2 ≤ j ≤ p − sm, define

Δ� j := max
{
Δ� j−1 , hm+1 − hm( j)+1 −

∑ (
Δ�i : �i > m( j), i < j

)}
.

Then (17) is a facet-defining inequality for conv(Q).

A proof can be found in Sect. 4.3. The class above coincides with the (T,ΠL)

inequalities in the case when a1 = · · · = an = 1 and p is an integer.
Let us explain how this theorem implies that the (T,ΠL) inequalities (15) are

facet-defining for conv(Q). Observe that, in the context of Theorem 11, s j = j , for
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all 0 ≤ j ≤ n. Let s := p − m and note that m( j) = m + j , for all 1 ≤ j ≤ s.
Furthermore, � j > m + j = m( j) for all 1 ≤ j ≤ s. Hence, by Theorem 14, the
(T,ΠL) inequalities (15) are facet-defining for conv(Q).

Observe that Theorems 13 and 14 can also be applied to any scalar multiple of the
knapsack constraint, and this will potentially give us more facet-defining inequalities.
That is, one can apply Theorem 14 to

∑
j∈[n] da j z j ≤ dp, for any arbitrary positive

real number d. This is explained in the following example.

Example 1 Let a = (2, 1.5, 2.5, 1, 1, 1, 2, 1, 0.5, 0.5) and h = (809, 405, 202, 100,
60, 40, 30, 25, 23, 20) for n = 10 and p = 9. Note that ν = 6. For m = 6, T =
{1, 3, 5} and L = ∅, the (strengthened star) inequality

y + (809 − 202)z1 + (202 − 60)z3 + (60 − 30)z5 ≥ 809

is facet-defining for conv(Q).
Next set m = 3, T = {1, 2, 3} and L = {�1 = 5, �2 = 6, �3 = 8}. Then

m(1) = 4,m(2) = 5,m(3) = 6 and the hypotheses of Theorem 14 are satisfied.
Thus the inequality

y+(809 − 405)z1 + (405 − 202)z2 + (202 − 100)z3
+ 40(1 − z5) + 60(1 − z6) + 70(1 − z8) ≥ 809

is facet-defining for conv(Q).
Furthermore, one can replacea and pwith the equivalent choice of 2a and 2p. In this

case, setm = 5, T = {1, 2, 5} and L = {�1 = 9, �2 = 10}. Thenm(1) = 5,m(2) = 6
and the hypotheses of Theorem 14 are once again satisfied. Thus the inequality

y + (809 − 405)z1 + (405 − 60)z2 + (60 − 40)z5 + 0(1 − z9) + 10(1 − z10) ≥ 809

is facet-defining for conv(Q).

4.1 Separation of a subset of proposed facet-defining inequalities

Separating over all proposed facet-defining inequalities (17) seems to be hard, the
bottleneck being minimizing for a fixed z∗ the expression

∑
i∈L Δi (1 − z∗i ) over all

possible L’s, as the choice of L affects the values of Δ. To circumvent this difficulty,
Küçükyavuz [12] retricted the choices for L so as to control the values of Δ. With not
much more work, we can obtain a similar result for our general setting:

Proposition 15 There is an exact separation algorithm with running time O(p4)
that separates over the proposed facet-defining inequalities (17) for which there is a
partition of L into parts F,G where the following hold:

(1) m(1) < m(2) < · · · < m(p − sm),
(2) F = {m(1) + 1, . . . ,m(r) + 1} for some 1 ≤ r ≤ p − sm,
(3) G ⊆ {m(p − sm) + 1,m(p − sm) + 2, . . . , n}.

Theproof of this result is almost identical to that in [12], sowe refrain from including
it.
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4.2 Proof of Theorem 13

We prove Theorem 13 using the following two claims. Let R := [n] − L and define
α ∈ R

n as follows:

αi :=
⎧
⎨

⎩

ht j − ht j+1 , if i = t j for some 1 ≤ j ≤ a;
0, if i ∈ R − T ;
−Δi , if i ∈ L .

Claim 1 We have

φ(k, α) ≥
{∑

j∈L α j , if 0 ≤ k ≤ m;
∑

(α�i : i > sk − sm), if m + 1 ≤ k ≤ ν.

Proof of Claim. Since αi < 0 only for indices i ∈ L , it follows immediately that, for
0 ≤ k ≤ m,

φ(k, α) ≥
∑

j∈L
α j .

Next choose m + 1 ≤ k ≤ ν and let z ∈ Pk . Then

|{ j ∈ L : j > k, z j = 1}| =
∑

j∈L , j>k

z j ≤
∑

j∈L , j>k

a j z j by (V 3)

≤ p −
∑

j≤k

a j

= p − sk
≤ |L| − sk + sm
= |{�i ∈ L : i > sk − sm}|.

Therefore, as αi ≥ 0 for all i ∈ [n] − L and 0 ≥ α�1 ≥ · · · ≥ α�p−sm
, it follows that

∑

j>k

α j z j ≥
∑

j∈L , j>k

α j z j ≥
∑(

α�i : i > sk − sm
)
.

Since this is true for all z ∈ Pk , we must have

φ(k, α) ≥
∑ (

α�i : i > sk − sm
)
,

as claimed. 
�
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Claim 2
(
1, α, ht1 + ∑

i∈L αi
) ∈ C.

Proof of Claim. Let 0 ≤ k ≤ ν. If 0 ≤ k ≤ m, choose j ∈ {0, 1, . . . , a} so that
t j < k + 1 ≤ t j+1, where t0 := 0. In this case, φ(k, α) ≥ ∑

i∈L αi by Claim 1, so

hk+1 +
k∑

i=1

αi + φ(k, α) ≥ ht j+1 +
j∑

i=1

(hti − hti+1) +
∑

i∈L
αi

= ht1 +
∑

i∈L
αi .

Otherwise we have m + 1 ≤ k ≤ ν. Then
∑

i∈R,i≤k

αi =
∑

i∈T
αi = ht1 − hm+1.

By Claim 1,

φ(k, α) ≥
∑ (

α�i : i > sk − sm
)
.

Let j := sk − sm . Note that m( j) = max{r : j ≥ sr − sm} = k as ai > 0 for all
i ∈ [n]. Then

hk+1 +
k∑

i=1

αi + φ(k, α)

= hk+1 +
∑

i∈R,i≤k

αi +
∑

i∈L ,i≤k

αi + φ(k, α)

≥ hk+1 + ht1 − hm+1 +
∑ (

α�i : �i ≤ k
) +

∑ (
α�i : i > j

)

= ht1+hk+1−hm+1+
∑

i∈L
αi −

∑ (
α�i : �i >k, i ≤ j

)+
∑ (

α�i : �i ≤k, i > j
)

= ht1+hk+1−hm+1+
∑

i∈L
αi +

∑ (
Δ�i : �i > k, i ≤ j

)−
∑ (

Δ�i : �i ≤k, i > j
)

≥ ht1 + hk+1 − hm+1 +
∑

i∈L
αi + hm+1 − hk+1

= ht1 +
∑

i∈L
αi .

As a result,
(
1, α, ht1 + ∑

i∈L αi
) ∈ C , proving Claim 2. 
�

Observe that Claim 2 implies that (17) is a valid inequality for conv(Q), as (17) is
equivalent to

y +
∑

j∈[n]
α j z j ≥ ht1 +

∑

i∈L
αi . (18)


�
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4.3 Proof of Theorem 14

As in the proof of Theorem 13, let R := [n] − L and define α ∈ R
n as follows:

αi :=
⎧
⎨

⎩

ht j − ht j+1 , if i = t j for some 1 ≤ j ≤ a;
0, if i ∈ R − T ;
−Δi , if i ∈ L .

We first show that (17) is a valid inequality for conv(Q). Observe first that (V1)–(V3)
are satisfied. It is clear by definition that 0 ≤ Δ�1 ≤ · · · ≤ Δ�s . Moreover, for each
1 ≤ j ≤ p − sm ,

hm+1 − hm( j)+1 ≤ Δ� j +
∑ (

Δ�i : �i > m( j), i < j
)

=
∑ (

Δ�i : �i > m( j), i ≤ j
)

(†)

=
∑ (

Δ�i : �i >m( j), i ≤ j
)−

∑ (
Δ�i : �i ≤ m( j), i > j

)
. (‡)

Above, (†) holds since � j > m( j), and (‡) holds since �i > m(i) ≥ m( j) for all i > j .
As a result, Theorem 13 applies and implies that (17) is indeed a valid inequality for
conv(Q).

We will next find n + 1 affinely independent points in Q that satisfy (17), or
equivalently (18), at equality:

1. For each k := t j ∈ T , let yk := hk and define zk ∈ {0, 1}n as follows:

zki :=
{
1, if i < k or i ∈ L;
0, otherwise.

We have (yk, zk) ∈ Q, because zki = 1 for i = 1, . . . , k − 1, and

n∑

i=1

ai z
k
i =

∑

i<k

ai z
k
i +

∑

i∈L
zki = sk−1 + |L| = sk−1 + p − sm ≤ p.

Moreover, (yk, zk) satisfies (18) at equality:

yk +
a∑

i=1

(hti − hti+1)z
k
ti +

∑

i∈L
αi z

k
i = ht j +

j−1∑

i=1

(hti − hti+1) +
∑

i∈L
αi

= ht j + ht1 − ht j +
∑

i∈L
αi

= ht1 +
∑

i∈L
αi .
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2. For each k := � j ∈ L , let f( j) := min{ f ∈ [ j] : Δ� j = Δ� f }. By definition we
must have, for each � j ∈ L ,

Δ� j = Δ�f( j) = hm+1 − hm(f( j))+1 −
∑ (

Δ�i : �i > m(f( j)), i < f( j)
)
,

and so

α� j +
∑ (

α�i : �i > m(f( j)), i < f( j)
) = hm(f( j))+1 − hm+1. (�)

Now let yk := hm(f( j))+1 and define zk ∈ {0, 1}n as follows:

zkt :=

⎧
⎪⎪⎨

⎪⎪⎩

0, if t = �i > m(f( j)) and i < f( j),
or t = � j ,

or t ∈ R and t > m(f( j));
1, otherwise.

Observe that � j > m( j) ≥ m(f( j)). We have (yk, zk) ∈ Q, because zki = 1 for
i = 1, . . . ,m(f( j)), and

n∑

i=1

ai z
k
i =

∑

i≤m(f( j))

ai + |{�i ∈ L : �i > m(f( j)), i ≥ f( j), i �= j}|

= sm(f( j)) + |{�i ∈ L : �i > m(f( j)), i ≥ f( j)}| − 1

= sm(f( j)) + |{�i ∈ L : i ≥ f( j)}| − 1 (��)

= sm(f( j)) + |L| − f( j)

= sm(f( j)) + p − sm − f( j)

≤ p by the definition of m.

Above, (��) holds because i ≥ f( j) implies that �i > m(i) ≥ m(f( j)). Moreover,
(yk, zk) satisfies (18) at equality:

yk +
a∑

i=1

(hti − hti+1)z
k
ti +

∑

i∈L
αi z

k
i

= hm(f( j))+1 + ht1 − hm+1 +
∑

i∈L
αi − α� j −

∑ (
α�i : �i > m(f( j)), i < f( j)

)

= hm(f( j))+1 + ht1 − hm+1 +
∑

i∈L
αi + hm+1 − hm(f( j))+1 by (�)

= ht1 +
∑

i∈L
αi .
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3. For all k ∈ R − T , let yk := h1 and define zk ∈ {0, 1}n as follows:

zki :=
{
0, if i ∈ R − {k};
1, otherwise.

Notice (yk, zk) ∈ Q, because

n∑

i=1

ai z
k
i = ak + |L| = ak + p − sm ≤ p

by (F3). Moreover,

yk +
a∑

i=1

(hti − hti+1)z
k
ti +

∑

i∈L
αi z

k
i = h1 +

∑

i∈L
αi = ht1 +

∑

i∈L
αi .

4. Lastly, let y0 := hm+1 and define z0 ∈ {0, 1}n as follows:

z0i :=
{
1, if i < m + 1 or i ∈ L;
0, otherwise.

Then (y0, z0) ∈ Q because z0i = 1 for all i < m + 1, and

n∑

i=1

ai z
k
i =

∑

i<m+1

ai z
k
i +

∑

i∈L
zki = sm + |L| = sm + p − sm = p.

Moreover,

y0 +
a∑

i=1

(hti − hti+1)z
0
ti +

∑

i∈L
αi z

0
i = hm+1 +

a∑

i=1

(hti − hti+1) +
∑

i∈L
αi

= hm+1 + ht1 − hm+1 +
∑

i∈L
αi

= ht1 +
∑

i∈L
αi .

Hence, the face defined by (17) contains (y0, z0), (y1, z1), . . . , (yn, zn), which
are, by a routine argument, affinely independent points in Q. As a result, (17) is a
facet-defining inequality for conv(Q). 
�

5 A compact extended formulation for (CMIP)

So far we have only focused on the single-constraint chance-constrained problem.
We now briefly turn to the general problem. In this section, we propose an extended
formulation for the set given by
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y = Bx (19)

x ∈ X (20)

y + ξ j z j ≥ ξ j , ∀ j ∈ [n] (21)
n∑

j=1

a j z j ≤ p (22)

z ∈ {0, 1}n . (23)

Let Qκ := Dκ and h j,κ := ξ
j
κ for all j ∈ [n] and κ ∈ [d]. Let (1κ , 2κ , . . . , nκ ) be

a permutation of [n] such that h1κ ,κ ≥ h2κ ,κ ≥ . . . ≥ hnκ ,κ , for all κ ∈ [d]. Let
νκ := max{t : ∑

j≤t a jκ ≤ p}, for all κ ∈ [d].

Theorem 16 The formulation

νκ+1∑

j=1

λ jκ ,κ = 1, ∀ κ ∈ [d] (24)

yκ −
νκ+1∑

j=1

h jκ ,κλ jκ ,κ ≥ 0, ∀ κ ∈ [d] (25)

zi −
νκ+1∑

j=1

ωi
jκ ,κ = 0, ∀ κ ∈ [d], i ∈ [n] (26)

⎛

⎝p −
j−1∑

i=1

aiκ

⎞

⎠ λ jκ ,κ −
n∑

i= j

aiκ ω
iκ
jκ ,κ ≥ 0, ∀ κ ∈ [d], j ∈ [νκ + 1] (27)

λ j,κ ≥ ωi
j,κ ≥ 0, ∀ κ ∈ [d], j ∈ [νκ + 1], i ∈ [n] (28)

ω
iκ
jκ ,κ ≥ λ jκ ,κ , ∀ κ ∈ [d], j ∈ [νκ + 1], i ∈ [ j − 1] (29)

λ j,κ ≥ 0, ∀ κ ∈ [d], j ∈ [νκ + 1] (30)
n∑

j=1

a j z j ≤ p (31)

y = Bx (32)

x ∈ X (33)

λ ∈ {0, 1}d+∑d
κ=1 νκ (34)

is an extended formulation for the set given by (19)–(23). The continuous relaxation
of the extended formulation defined by (24)–(33) is at least as strong as the continuous
relaxation of the formulation defined by (19)–(22).

We would like to point out that the extended formulation given above is almost the
same as the one given in [12], Theorem 8 except that our formulation replaces their
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(extended knapsack cover) constraint ([12]:32) by constraint (27). It is not difficult to
see that neither of the constraints ([12]:32) and (27) dominate the other. However, the
proof of Theorem 16 is precisely the same as the proof of that theorem, so we omit it.

6 Computational experiments

One of the advantages of our results is that they allow us to establish benchmarks
to identify which are good and useful relaxations to use in the context of chance
constrained problems. To illustrate this, we carried out computational experiments to
establish how well does one relaxation perform compared with another.

The setup that we chose to set the benchmarks is the same one proposed in [12],
that is, the probabilistic lot-sizing problem (originally described in [7]). In this setting,
we have that the right-hand-sides ξ

j
κ represent cumulative demands in time period

κ = 1, . . . , d under scenario j = 1, . . . , n and the probabilistic constraint is used to
ensure that the probability of shortage of products (or equivalently of not being able
to fully satisfy demands) is relatively low.

We generated random instances by considering that all the data is integer and
is generated randomly and independently of each other according to the following
uniform distributions below:

– the demands in anygiven timeperiod and in anygiven scenario areUniform(1,100),
– the variable production costs are Uniform(1,10),
– the setup costs are Uniform(1,1000)
– the holding costs are Uniform(1,5)
– the coefficients a j of the knapsack constraint of Q are Uniform(1,100) (the inter-
pretation of these coefficients a j is that they are a rescaling of the probabilities π j ,
which we consider as

a j∑n
l=1 al

).

We generated 20 such random instances for each given combination of values of
n (number of scenarios), d (number of time periods) and ε ∈ [0, 1] (value used to
determine the right-hand-side p in the knapsack constraint of Q).

Value p is determined as follows: given a set of knapsack coefficients {a j }nj=1 we

let p =
⌊
ε
(∑n

j=1 a j
)⌋
. That way the knapsack constraint

∑n
j=1 a j z j ≤ p is just a

rescaling of the constraint
∑n

j=1 π j z j ≤ ε, and we deal only with integer parameters.
The algorithm that was used to compare the relaxations is described in Algorithm 1

below. In it, some computational choices are implicitly described, such as a minimum
violation tolerance in order to declare a cut as violated, the cut normalization and a
maximum number of iterations that we allow for the cuts to not improve the bound
(to avoid potential issues like cycling).

The separation LP (35) presented in Algorithm 1 is used to separate all inequalities
that can be generated using Proposition 6, and that it is used to try to separate the
current LP solution from Dκ for a certain κ ∈ [d].

We also note that the algorithm depends on input parameter K which defines from
which of the sets Dκ will the algorithm try to separate the current solution. Besides
the choice ofK, the algorithm implicitly depends on the choice of knapsack relaxation
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Rk chosen (in the definition of ECϕ). Therefore we use Algorithm 1 to benchmark
different choices of Rk as follows: after completion of Algorithm 1 we compute the
final lower bound obtained (and thus the gap) for a particular choice of Rk and use this
value to evaluate how good this choice of relaxation is. We explicitly choose to ignore
the time, because we do not claim that this is the approach that should be used if you
are trying to solve such instances faster. Instead, what our approach serves is to try
to identify what is the potential of each choice of relaxation in terms of lower bound
improvement. With such results in hand, one can be guided as to where to look for
better cuts, knowing that the reason certain classes of cuts are or are not successful is
because of the relaxation they are derived from and not because of the success/failure
of some separation heuristic.

Algorithm 1: Benchmarking algorithm
Data: Formulation (CMIP) for our problem and a subset K ⊆ [d]
repeat

Solve the LP relaxation of (CMIP) with any additional cuts that have been found
so far.
Let (x∗, y∗, z∗) be the optimal solution to this relaxation.
for every κ ∈ K do

Solve the following separation LP:

min γ y∗
κ + ∑

j∈[n]
α j z∗j − β

s.t. (γ, α, β) ∈ projγ,α,βECϕ

||(γ, α, β)||∞ ≤ 1.

(35)

if The optimal value is < −0.001 then
(γ, α, β) defines a cut γ y∗

κ + ∑

j∈[n]
α j z∗j ≥ β separating (x∗, y∗, z∗) fromDκ

as defined in (1) (and thus from the set of feasible solutions to (CMIP)).
Add such cut to the LP relaxation of (CMIP).

end
end
if The LP bound did not improve in the last 10 iterations then

Stop. Finish cut generation.
end

until No cuts are found;

We report the gap closed by the end of the algorithm, calculated as follows: given
the optimal (or best known) integer solution value zI P for a given problem, the value
zLP of the relaxation of (CMIP) without any cuts and the value z f inal obtained at

completion of Algorithm 1, the gap closed is defined as
z f inal−zLP
zI P−zLP

.
We benchmarked different relaxations using the same separation procedures. The

results are summarized in Table 1. All computations are done on an Intel Core 2 Duo
with 2 CPUs of 3.06GHz with 16 GB RAM, using CPLEX 12.4. Below we describe
what the columns of Table 1 represent.
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Table 1 Benchmarks obtained from different relaxations

K d n ε(%) Gap closed (%)

R0 R1 R2 R3 R4 R5 SS

1 10 100 5 48.34 18.15 18.15 18.15 18.15 18.15 4.91

1 10 100 10 46.39 14.29 14.30 14.29 14.29 14.30 5.13

1 10 100 20 41.44 11.78 11.78 11.78 11.78 11.82 4.97

d/2 10 100 5 48.34 20.41 20.43 20.41 20.32 20.41 14.78

d/2 10 100 10 46.39 18.04 18.03 18.04 18.04 18.04 14.34

d/2 10 100 20 41.44 21.48 21.50 21.48 21.47 21.51 20.72

d 10 100 5 48.34 33.09 33.42 33.44 33.44 33.33 30.27

d 10 100 10 46.39 38.06 38.15 38.05 38.05 38.05 37.57

d 10 100 20 41.44 34.17 34.34 34.17 34.17 34.14 34.24

All 10 100 5 48.34 59.39 59.26 59.39 59.39 61.62 62.42

All 10 100 10 46.39 66.66 66.34 66.70 66.72 70.65 69.18

All 10 100 20 41.44 73.00 72.65 72.95 72.95 78.89 74.19

1 20 100 5 21.59 7.09 7.09 7.09 6.79 7.10 2.61

1 20 100 10 16.18 6.96 6.96 6.96 6.96 6.96 2.31

1 20 100 20 15.90 5.75 5.76 5.75 5.75 5.80 1.76

d/2 20 100 5 21.59 11.86 11.94 11.86 11.86 11.86 10.55

d/2 20 100 10 16.18 13.46 13.49 13.46 13.46 13.45 12.45

d/2 20 100 20 15.90 15.56 15.62 15.56 15.56 15.59 14.97

d 20 100 5 21.59 23.09 23.12 23.09 23.08 23.11 22.70

d 20 100 10 16.18 22.91 22.92 22.90 22.89 22.91 22.27

d 20 100 20 15.90 23.27 23.30 23.27 23.27 23.30 22.76

All 20 100 5 21.59 61.64 61.46 61.61 61.66 64.91 65.80

All 20 100 10 16.18 71.06 70.78 71.05 71.03 76.61 74.09

All 20 100 20 15.90 77.22 76.85 77.13 77.20 83.29 78.79

6.1 Choice of K

Typically, when trying to add cuts to strengthen an LP relaxation, the natural choice
for K is K = [d]. However, for our experiments, we also chose to generate cuts from
a single relaxation Dκ , that is, for a set K such that |K| = 1. The reasoning for that is
to try to isolate the effect of cuts for Dκ for a single κ from the combined effect that
several cuts can have in closing the gap (much like in the general MIP case where cuts
generated from different constraints may have a combined effect that may mitigate or
boost the advantages that each cut has individually).

We thus tried four different choices for K: K = {1}, K = {d/2}, K = {d},
and K = [d]. These are the values represented in the first column of Table 1 by
K = 1, d/2, d and All, respectively.
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6.2 Columns 2–4

The next three columns in Table 1 represent the data parameters of the instance as
described above.

6.3 Choice of knapsack relaxation

The next six columns represent the average gaps closed over the 20 instances generated
obtained by each choice of relaxation. Column R0 represents the results using only
CPLEX generated cuts (i.e. not using Algorithm 1). Columns R1-R5 use only cuts
generated using (35) (no CPLEX cuts) for different choices of polyhedral relaxations
Rk of the knapsack.

Column R1 presents results defining Rk as the LP relaxation of the knapsack Pk ,
R2 uses the relaxation proposed in [12] (obtained by using a single extended cover
inequality) and R3 combines both relaxations. Note that, even though in principle
the results in R3 should dominate R1 and R2, this does not always happen since we
abort the cut generation process if there has not been a bound improvement for some
prespecified number of iterations.

One can argue that these bounds will probably not be too good since the knapsack
relaxations used are not too strong. Therefore, we used strengthened formulations for
the knapsack relaxation Rk in bounds R4 and R5. The bound presented in column R4
uses the LP relaxation of the knapsack combined with the Chvátal-Gomory cuts of
the form

∑n
j=1� a j

al
�z j ≤ � p

al
�, for all l = 1, . . . , n.

Column R5 represents the bound obtained by using the LP relaxation of the knap-
sack strengthened with cover inequalities. The way we obtained cover inequalities
for a relaxation Rk was by using CPLEX’s cut generator in the following manner.
We set up a completely separate Integer Program whose feasible region is purely{
z ∈ {0, 1}n : ∑n

j=1 a j z j ≤ p ; z1 = . . . = zk = 1
}
. We then repeat the following

procedure 100 times:

1. Generate random objective function coefficients for each z j variable with the
coefficients being drawn from Uniform(1,100).

2. Turn off all CPLEX preprocessing, heuristics and also all cuts except covers and
cliques, which are left on in aggressive mode.

3. Let CPLEX solve only the root node of the Branch-and-cut tree and collect all
cuts generated by CPLEX.

4. Add all these cuts to a cut pool (discarding repeated cuts) keepingup to amaximum
of 500 cuts in this pool.

The relaxation Rk will then consist of the original LP relaxation of the knapsack
strengthened with any cut in the cut pool after this procedure.

We chose to generate cover cuts in this way to make use of CPLEX’s existing
heuristics for separating such cuts, which are likely much better than anything we
could implement for the purpose of this test. Once more we point out that this is a
particularly very time consuming process and is not recommended for efficiency.
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Finally, column SS represents the gap closed by the strengthened star inequali-
ties [14] (note that the results in columns R0, . . . , R5 did not include any strengthened
star inequalities).

From the experiments, we can see that, when using a single choice of Dκ (i.e.
|K| = 1), the choice of relaxation Rk has very little impact in thefinal bound.Moreover,
one can see that the choice of κ matters, as choosing κ = d has much more impact
in the bound than choosing κ = 1. This makes sense, since the constraint for κ = d
considers all cumulative demands from the first until the last period, so strengthening
Dκ potentially impacts previous periods implicitly as well. On the other extreme, for
κ = 1, the only period involved in Dκ is the first one and so strengthening it will not
affect any other future periods.

Moreover,we can observe a significant gain in bound by use of any of the relaxations
when K = [d]. However, no significant advantage comes from using any of the
relaxations R1, R3 or R4 instead of R2 as proposed in [12]. Thus, at least for the
problem and instances in consideration, the best approach would probably be to stick
to the inequalities proposed in [12]. However, one can note that using relaxation R5
allows a significant additional gap to be closed (up to 6% extra). Though significant, it
is not clear if such improvement is big enough to justify a big effort to implement any
cut separation using relaxation R5 more efficiently for practical purposes. However,
we note that in some problems, closing 6% extra gap may be the difference to allow
the solution of a problem in reasonable time. In any case, if this extra gap closed is
indeed crucial, then our results point to where to look for new cuts next.

The comparison with the strengthened star inequalities is also very interesting.
When looking at the results for |K| = 1, we see that if we just focus on κ = 1,
compared to the strengthened stars, the inequalities that can be derived from the results
in this paper close a lot more gap. However, when one considers κ = d/2, or κ = d,
the impact of the extra effort is quite diminished. In fact, considering K = [d], one
sees that the impact of the extra inequalities is much smaller (sometimes even worse
than using just strengthened stars).

These experiments show the usefulness of our results in that they allow us to set the
appropriate benchmarks and point to a definitive answer in terms of which direction to
pursue to find useful inequalities. In particular, the results show that, in this particular
problem, generating inequalities based on extended covers as proposed in [12] does
not seem computationally beneficial. One comment that is worthmaking is that it is not
contradictory that the strengthened star inequalities close more gaps than the inequali-
ties proposed using relaxations R1, . . . , R5 since the strengthened star inequalities are
derived using integrality of the variables directly, whereas the framework proposed
uses linear relaxations of the knapsack (so no integrality is directly used).

7 Conclusion

In this paper, we studied several different properties of the mixing set with a knapsack
constraint and identified the key difficulty in describing its convex hull, namely that
one must be able to describe the convex hull of the knapsack polytope. Since that
problem by itself is hard, we were able to devise a theory that allows one to use any
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polyhedral relaxation of the knapsack polytope and translate that knowledge into a
similar polyhedral knowledge about the desired set.We derived extended formulations
for both the set of points defined by this relaxation and the cuts obtained by them.
Moreover, these results generalize the results obtained in two previous papers [12,14]
dealing with the same set and we also were able to generalize a particular class of
facet-defining inequalities for such set.

Finally, our computational experiments show how these theoretical results can
be used to set benchmarks for identifying useful relaxations for particular chance-
constrained programs.
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