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Abstract A trust-region-based algorithm for the nonconvex unconstrained multiob-
jective optimization problem is considered. It is a generalization of the algorithm
proposed by Fliege et al. (SIAM J Optim 20:602–626, 2009), for the convex prob-
lem. Similarly to the scalar case, at each iteration a subproblem is solved and the step
needs to be evaluated. Therefore, the notions of decrease condition and of predicted
reduction are adapted to the vectorial case. A rule to update the trust region radius
is introduced. Under differentiability assumptions, the algorithm converges to points
satisfying a necessary condition for Pareto points and, in the convex case, to a Pareto
points satisfying necessary and sufficient conditions. Furthermore, it is proved that
the algorithm displays a q-quadratic rate of convergence. The global behavior of the
algorithm is shown in the numerical experience reported.
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1 Introduction

In this work, let us consider the multiobjective optimization problem where a set a
objective functions must be minimized simultaneously

min
x∈Rn

F(x), F : R
n → R

m .

Since there is not a single point which minimize all the functions simultaneously the
concept of optimality is established in terms of Pareto optimality or efficiency. Let us
recall that a point is said to be Pareto optimal or efficient, if there does not exist a
different point with the same or smaller objective function values such that there is a
decrease in at least one objective function value. Applications of this type of problems
can be found in different areas. For instance [14,17,18] to mention some of them.

Among the strategies for multiobjective optimization problems we can mention
the scalarization approach [11,12]. The idea is to solve one or several parameterized
single-objective problems, resulting in a corresponding number of Pareto optimal
points. One of the drawbacks of this approach is the choice of the parameters that are
not known in advance (see [9, sect. 7]).

Algorithms that do not scalarize the problemhave recently been developed. Some of
these techniques are extensions of well known scalar algorithms [9,10], while others
take ideas developed in heuristic optimization [13]. For the latter, no convergence
proofs are known, and empirical results show that convergence generally is, as in the
scalar case, quite slow [20].

In this paper, we focus on some a priori parameter-free optimizations problems
developed in [9,10]. In such methods there is a scalarization procedure that does not
set parameters before solving the problem. The main idea of it consists in replacing,
at each iteration, each objective function with a quadratic model for it, as in the scalar
Newton’s method. With these local models they minimize the max-scalarization of
the variations of the quadratic approximations and obtain a descent direction for the
convex case. For globalization purposes [9,10] use a line search strategy and obtain
convergence to Pareto points in the convex case. In the present work we consider a
trust region algorithm for the nonconvex case by using some ideas of these works.

According to our knowledge there is not too much activity on this subject. In 2006,
Ashry [2] converts the multiobjective optimization problem in a scalar one and uses
a TR-algorithm for solving the general nonlinear porgramming problem. He uses an
algorithm based on the Byrd theory for equality constrained minimization. Recently
Qu et al. [16] have developed aTR-algorithm for the unconstrained vector optimization
case which has some points in common with ours. For instance, they apparently were
inspired by the work of Fliege et. al. [9] like us, but they focus the discussion on the
non differentiable case that is not our case. Finally, it is also interesting the work of
Villacorta et. al. [19] where they propose a TR-algorithm for the same problem with
a different subproblem and a different way to evaluate the step.

This work is organized as follows: the next section is devoted to state the optimal-
ity condition, the subproblem involved and some properties about its solution. The
algorithm is presented in the third section and the fourth one is dedicated to its global
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convergence properties. The fifth section is dedicated to the analysis of the local q-
quadratic rate of convergence of the algorithm. Numerical tests are presented in the
sixth section and in the last one some conclusions are established.

2 The subproblem and the optimality conditions

The problem under discussion consists to find an efficient point or Pareto optimum of
F : R

n → R
m , i.e. a point x� ∈ R

n such that

�y ∈ R
n, F(y) ≤ F(x�), F(y) �= F(x�),

where the inequality sign≤ between vectorsmust be understood in the componentwise
sense. This means that one is seeking to minimize F in the partial order induced by
the positive orthant R

m+.
A point x� is weakly efficient or weak Pareto optimum if

�y ∈ R
n, F(y) < F(x�),

where the vector strict inequality F(y) < F(x�) has to be understood componentwise
too.

Locally efficient points are also called local Pareto optimal, and locally weakly
efficient points are also called local weak Pareto optimal. Note that if F is R

m-convex
(i.e., if F is componentwise-convex), then each local Pareto optimal point is globally
Pareto optimal. Clearly, every locally efficient point is locally weakly efficient.

Throughout this paper, unless explicitly mentioned, we will assume that F ∈
C2 (Rn, R

m) , i.e., F is twice continuously differentiable on R
n , F(x) = ( f1(x), . . . ,

fm(x))T . For x ∈ R
n , denote by ∇F (x) ∈ R

m×n the Jacobian matrix of the vectorial
function F at x , by ∇ f j (x) ∈ R

n the gradient vector of the scalar function f j at x ,
and by ∇2 f j (x) ∈ R

n×n the Hessian matrix of f j at x .
Denoting the column spaceof the Jacobianmatrix byR (∇F (x)), a point is x� ∈ R

n

is critical for F if

R (∇F (x)) ∩ (−R
m++
) = ∅.

This is necessary condition for Pareto optimality [15].
Clearly, if x� is critical for F , then for all s ∈ R

n there exists an index j0 = j0(s) ∈
{1, . . . ,m} such that

∇ f j0
(
x�
)T

s ≥ 0.

We observe that if x ∈ R
n is noncritical, then there exists s ∈ R

n such that
∇ f j (x)T s < 0 for all j = 1, . . . ,m. As F is continuously differentiable,

lim
t→0

f j (x + ts) − f j (x)

t
= ∇ f Tj (x) s < 0, j = 1, . . . ,m.
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342 G. A. Carrizo et al.

Thus, s is a descent direction for F at x ; i.e., there exists t0 > 0 such that

F (x + ts) < F(x) for all t ∈ (0, t0] .

The next proposition due to Fliege et. al. [9] establishes the relationship between the
properties of being a critical and an optimal point.

Proposition 1 Let F is continuously differentiable on R
n, i.e. F ∈ C1 (Rn, R

m).

(i) If x� is locally weak Pareto optimal, then x� is a critical point for F.
(ii) If F is R

m-convex and x� is critical for F, then x� is weak Pareto optimal.
(iii) If F ∈ C2(Rn, R

m), and the Hessians matrices are positive definite for all x and
for all j , and if x� is critical point for F, then x� is Pareto optimal.

With the purpose to obtain a descent direction for F at x , in [10] the problem

min
s.t.

α + 1
2 ‖s‖2

(∇F (x) s) j ≤ α, j = 1, . . . ,m,
(1)

is solved. In this problem α is an auxiliar variable and s is used in order to obtain a
step for the iterations. If a point x is a critical point then the minimum of (1) is 0 (see
Lemma 1 of [10]). In this way the authors obtain a steepest descent direction.

In [9] a Newton direction is defined as the solution of

min
s∈Rn

max
j=1,...,m

[
∇ f j (x)

T s + 1

2
sT∇2 f j (x) s

]
. (2)

Because the problem (2) is not differentiable, the following problem is introduced

min
s.t.

t

∇ f j (x)T s + 1
2 s

T∇2 f j (x) s − t ≤ 0, j = 1, . . . ,m,

(t, s) ∈ R × R
n,

which is differentiable and has the same solution as (2). In [9] the convex case is
considered and the direction s, solution of the problem, is a descent direction. Unfor-
tunately, in the nonconvex case can not be guaranteed that the direction s given by this
subproblem will be a descent direction, It can be seen in the next example.

Example 1 Consider F (x1, x2) =
[
ex1−1 + ex2−1,

x21−x22
2 − 10x1 + x2

]T
. Clearly

f1 is convex and f2 is not. For this, the associated subproblem (2) at the point x =
(1, 1) is

min
s.t.

t

1
2 s

T
[
1 0
0 −1

]
s + [−10 1] s − t ≤ 0,

1
2 s

T
[
1 0
0 1

]
s + [1 1] s − t ≤ 0.
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The approximate solution is t = −0.6024 and s = (−0.1284, −1.1883)T . This
direction is a descent direction for f1 but is not for f2.

Therefore, to overcome this difficulty in the nonconvex case, to obtain a descent
direction we add the linear inequality constraints ∇ f j (x)T s − t ≤ 0, j = 1, . . . ,m,

min
s.t.

t

∇ f j (x)T s + 1
2 s

T∇2 f j (x) s − t ≤ 0, j = 1, . . . ,m,

∇ f j (x)T s − t ≤ 0, j = 1, . . . ,m,

(t, s) ∈ R × R
n .

The resulting problem could be not bounded, so we introduce a trust region, ‖s‖ ≤
�:

min
s.t.

t

∇ f j (x)T s + 1
2 s

T∇2 f j (x) s − t ≤ 0, j = 1, . . . ,m,

∇ f j (x)T s − t ≤ 0, j = 1, . . . ,m,

‖s‖ ≤ �,

(t, s) ∈ R × R
n,

(3)

where � > 0.

Remark 1 The trust region is applied only to the original variables of the problem
s ∈ R

n and not to the variable t which has been introduced only to avoid the nondif-
ferentiability of the problem.

The problem (3) is the key in our development, so we will analyze some of its
properties. Let us define θ(x) as the optimal value of problem (3) and s(x) as the value
of s in an optimal solution of (3).

Is important to note that s (x) could not be a function because the problem (3) is
not convex, therefore has no unique solution. The relation among a critical point x�,
the Newton step s(x�) and the value θ(x�) is established in the next lemma,

Lemma 1 Let θ(x) be as above, then:

(a) For any x ∈ R
n, θ(x) is well defined, continuous and θ(x) ≤ 0.

(b) s(x) is bounded.
(c) The following statements:

(i) x� is not a critical point.
(ii) θ (x�) < 0.
(iii) s (x�) �= 0.
satisfy (i) ⇔ (i i) ⇒ (i i i). Moreover, if the vectorial function F is R

m-convex,
then (i), (i i) and (i i i) are equivalents.

Proof It’s clear that

θ(x) = min‖s‖≤�
max

j=1,...,m

{
∇ f j (x)

T s + 1

2
sT∇2 f j (x) s,∇ f j (x)

T s

}
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is well defined because it is the maximum of continuous functions over a compact set,
the feasible set of the subproblem. Then θ (x) is well defined.

Due to (t, s) = (0, 0) is feasible a point, from (3), θ(x) ≤ 0.
Now, we prove the continuity of θ (x). As any point in R

n is in the interior of a
compact subset of R

n , it is enough to show continuity of θ on an arbitrary compact
set W ⊆ R

n . For each x ∈ W and j = 1, . . . ,m, we define

φx, j (z) = ∇ f j (z)
T s(x) + 1

2
s(x)T∇2 f j (z) s(x)

and

ψx, j (z) = ∇ f j (z)
T s(x).

The family
{
φx, j , ψx, j

}
x∈W, j=1,...,m is equicontinuous. Therefore, the family

Φx (z) = max
j=1,...,m

{
ϕx, j (z), ψx, j (z)

}
,

where the maximum is over ϕx,1(z), . . . , ϕx,m(z), ψx,1(z), . . . , ψx,m(z), is equicon-
tinuous too.

Given ε > 0; there exists δ > 0 such that ∀y, z ∈ W

‖z − y‖ < δ ⇒ |Φx (z) − Φx (y)| < ε, ∀x ∈ W.

Hence, for ‖z − y‖ < δ,

θ(z) ≤ max
j=1,...,m

{
∇ f j (z)

T s(y) + 1

2
s(y)T∇2 f j (z) s(y),∇ f j (z)

T s(y)

}

= Φy(z)

≤ Φy(y) + ∣∣Φy(z) − Φy(y)
∣
∣

< θ(y) + ε.

i.e. θ(z) − θ(y) < ε. Interchanging the roles of z and y, we conclude that
|θ(y) − θ(z)| < ε. Therefore (a) has been proved.

The values of s (x) are clearly bounded because of the trust region.
To prove the implications of (c):
(i) ⇒ (i i) If x� is not critical

R (∇F
(
x�
)) ∩ (−R

m++
) �= ∅,

so ∃s̃ ∈ R
n such that ∇ f j (x�)T s̃ < 0 for all j = 1, . . . ,m.

Then there exists t̃ < 0 such that

∇ f j
(
x�
)T

s̃ − t̃ < 0 j = 1, . . . ,m.
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If s̃T∇2 f j (x�) s̃ ≤ 0 for all j = 1, . . . ,m, then

∇ f j
(
x�
)T

s̃ + 1

2
s̃T∇2 f j

(
x�
)
s̃ < t̃ < 0. (4)

If s̃T∇2 f j (x�) s̃ > 0 for some j = 1, . . . ,m, then choosing ls̃, with l small
enough, we have that there exists t̂ < 0

∇ f j
(
x�
)T

s̃l + 1

2
l2s̃T∇2 f j

(
x�
)
s̃ < t̂ < 0, j = 1, . . . ,m. (5)

Then, for (4), (5) and the fact that s is a descent direction for F at x�, θ (x�) < 0.
(i i) ⇒ (i) If θ (x�) < 0 then ∃(t, s), feasible for (3), with x = x�, such that

∇ f j
(
x�
)T

s ≤ t < 0 j = 1, . . . ,m,

soR (∇F (x�)) ∩ (−R
m++
) �= ∅, i.e. x� is not critical.

(i i) ⇒ (i i i) Assume that s (x�) = 0, then

θ (x�) = min
s.t.

t

∇ f j (x�)T s + 1
2 s

T∇2 f j (x�) s − t ≤ 0, j = 1, . . . ,m,

∇ f j (x�)T s − t ≤ 0, j = 1, . . . ,m,

‖s‖ ≤ �,

(t, s) ∈ R × R
n

= min
s.t.

t

−t ≤ 0, t ∈ R

= 0.

This contradicts θ (x�) < 0. Then s(x�) �= 0.
Finally, assuming that F is R

m-convex we prove (i i i) ⇒ (i). Due to∇2 f j (x�) are
positive definite for j = 1, . . . ,m, and s = s (x�) �= 0 we have

∇ f j
(
x�
)T

s < ∇ f j
(
x�
)T

s + 1

2
s
(
x�
)T ∇2 f j

(
x�
)
s
(
x�
) ≤ θ

(
x�
) ≤ 0,

for j = 1, . . . ,m, then R (∇F (x̄)) ∩ (−R
m++
) �= φ, therefore, x� is not critical. ��

The relation (i i i) ⇒ (i i) is not true in the nonconvex case, as it can be seen in the
next example.
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Example 2 Consider min
s.t.

[
cos(x1) + ex2 − x2 −cos(x2) − ex1 − x1

]T .

The associate TR-subproblem (3) at the point x = (0 0)T is

min
s.t.

t

[0 0] s + 1
2 s

T
[−1 0

0 1

]
s − t ≤ 0,

[0 0] s − t ≤ 0,
‖s‖ ≤ �,

(t, s) ∈ R × R
2.

Clearly, the solutions are t = 0 and s ∈ R
2 such that |s2| ≤ |s1|. Thus, there are

solutions with s �= 0 and t = 0.

3 The trust region algorithm

Algorithms which use trust regions establish a quadratic model around the current
iterate and later solve a subproblem. This subproblem consists in finding theminimizer
of the quadratic model in a compact set, the trust region. We will propose an algorithm
defining a quadratic model for each objective function:

q j
k (s) = ∇ f j (xk)

T s + 1

2
sT∇2 f j (xk) s.

In contrast to the scalar case we do not minimize the quadratic models but the
maximun of them in a descent direction. In each iterate xk , the next algorithm solve
the trust region subproblem (3),whose solution allows us to define the next iterate xk+1.
The trial step sk is obtained like the component s from the solution of the subproblem
(3) in x = xk . In the steps 3 and 4 of the next algorithm a criterion for evaluating and
accepting the step is presented, and, in the step 5, a rule for updating the trust region
radius is established.

Algorithm 1 Set x0 ∈ R
n, �0 > 0, 0 < η1 < η2 < 1, 0 < γ1 < γ2 < 1, tol > 0

and k = 0

1. Evaluate ∇ f j (xk), ∇2 f j (xk) , j = 1, . . . ,m, and solve the subproblem (3) with
x = xk and � = �k , in order to obtain (tk, sk).

2. If |tk | < tol, stop.
3. Set

ρ
j
k = f j (xk) − f j (xk + sk)

q j
k (0) − q j

k (sk)
.

4. If ρ j
k ≥ η1 ∀ j , xk+1 = xk + sk; otherwise xk+1 = xk .
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5. Update the trust region radius:

�k+1 ∈

⎧
⎪⎨

⎪⎩

(�k,∞) if η2 ≤ ρ
j
k ∀ j.

(γ2�k,�k
]

if η1 ≤ ρ
j
k ∀ j and ∃l such that ρl

k < η2.[
γ1�k, γ2�k

]
if ∃l such that ρl

k ≤ η1.

6. k ← k + 1.

In scalar trust region algorithms, at each iteration, the trial step is evaluated using
the agreement between the functional and the model reduction around xk , (i.e: ρk). In
our algorithm m quotients: ρ

j
k , j = 1, . . . ,m, one for each objective function, were

used. We said that the k-th iteration is very successful if ρ j
k ≥ η2 for all j = 1, . . . ,m,

and, in such case, we increase the trust region radius, i.e. �k+1 ∈ (�k,∞). We say
that the k-th iteration is successful if ρ j

k ≥ η1 for all j = 1, . . . ,m, and there are some
index l such that ρl

k ≤ η2, in such case, we update the new trust region radius taking
�k+1 ∈ (γ2�k,�k

]
. In other case, we said that the k-th iteration is unsuccessful and

we reduce the trust region radius, i.e. �k+1 ∈ [γ1�k, γ2�k
]
.

It is important to note that, due to θ(x) ≤ 0, if xk is not a critical point, the direction
sk obtained by the subproblem (3) is a descent direction for F at xk . Moreover, the
stoping criteria established in the 2nd step is suiteable due to the continuity of θ(x).
Furthermore, we have shown that the subproblem (3) is well defined.

To establish the well-definedness of the algorithm it is necessary to choose the
step sk among the vectors s such that (θ (xk) , s) be a solution of (3). After that,
q j
k (0)−q j

k (sk) > 0 for all j = 1, . . . ,m, has to be proved at every noncritical xk and
itis necessary to prove that Algorithm 1 will accept a step in a finite number of inner
iterations. This will be discussed in the Remarks 6 and 7.

4 Global convergence analysis

The global convergence analysis shares characteristics from the analysis developed
for the scalar case and the hypothesis also are similar, see [4]. Assuming second order
information, we will suppose uniformerly boundness of the first and second order
derivatives of F :

(A1) F ∈ C2(Rn, R
m).

(A2) The Hessian matrices are uniformely bounded:

∥∥∥∇2 f j (x)
∥∥∥ ≤ κH ∀x ∈ R

n, for j = 1, . . . ,m.

(A3) f j (x) is lower bounded for j = 1, . . . ,m.
(A4) Exists �max > 0 such that

�k ≤ �max, ∀k ≥ 0.
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(A5) Exists κG > 0 such that

∥∥∇ f j (x)
∥∥ ≤ κG ∀x ∈ R

n, for j = 1, . . . ,m.

Remark 2 The hypothesis (A3) can be asummed without loss of generality. See [19].

Remark 3 The hypothesis (A4) is an algorithmic assumption: it allows us to have an
bound for all quadratics models q j

k , j = 1, . . . ,m. This assumption is necessary in

order to the ratios ρ
j
k , j = 1, . . . ,m, result to be well defined.

Remark 4 The hypothesis (A2) and (A5) might seem too strong but if we consider
that the level sets of the functions f j , j = 1, . . . ,m, are bounded, this requirement is
automatically satisfied because the continuity of ∇ f j and ∇2 f j , j = 1, . . . ,m, and
the fact that our method is a descent method [4].

In the scalar case, the strategy consists in obtaining that the reduction produced
by a step be at least a fraction of the reduction produced by the Cauchy step. In the
vectorial case, since it does not have a Cauchy step with the optimal length for all the
functionals, the strategy consists in estimating the optimal reduction for each of the
models with a descent direction different of the steepest descent for it. The bound for
the reduction predicted by a quadratical model q j

k at xk in a descent direction for F is
given by the next lemma.

Lemma 2 Let v ∈ R
n a descent direction for F at xk , a noncritical point. For each

j = 1, . . . ,m, there exists t > 0, such that
∥∥tv
∥∥ ≤ �k and

q j
k

(
tv
) ≤ q j

k (tv) , ∀t > 0 such that ‖tv‖ ≤ �k . (6)

Furthermore

q j
k (0) − q j

k (tv) ≥ −1

2

∇ f j (xk)T v

‖v‖ min

{

−∇ f j (xk)T v

‖v‖ κH
,�k

}

.

Proof The existence of t > 0 is straightforward. Let us consider the function φ(t) :
[0, �k/ ‖v‖] → R defined as

φ(t) = q j
k (tv).

The function φ is continuous in a compact set, [0, �k/ ‖v‖], then there exists t ∈
[0, �k/ ‖v‖] such that

q j
k

(
ts
) ≤ q j

k (ts) , ∀t > 0 such that ‖tv‖ ≤ �k .

Furthermore, t > 0 becauseφ′(0) = ∇ f j (xk)T v < 0, due to v is a descent direction
for f j at xk .
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In the second part, for each quadratic model let us consider the cases in which the
curvature along the line defined by v is positive or not. If v is a direction such that

vT∇2 f j (xk)v > 0, (7)

the model has a minimizer on the line tv:

t� = −∇ f j (xk)T v

vT∇2 f j (xk)v
> 0.

Then, if the minimizer is inside the trust region (‖t�v‖ ≤ �k), we took t = t�, then

q j
k

(
tv
) = −∇ f j (xk)T v

vT∇2 f j (xk) v
∇ f j (xk)

T v + 1

2

(
−∇ f j (xk)T v

vT∇2 f j (xk) v

)2

vT∇2 f j (xk) v

= −1

2

(∇ f j (xk)T v
)2

vT∇2 f j (xk) v
.

Now, using the hypothesis (A2) and the fact q j
k (0) = 0, we obtain

q j
k (0) − q j

k

(
tv
) = 1

2

(∇ f j (xk)T v
)2

vT∇2 f j (xk) v
≥ 1

2

(∇ f j (xk)T v
)2

‖v‖2 κH
. (8)

On the other hand, if ‖t�v‖ > �k , the minimizer along the line tv is outside the
trust region, then t is defined as t = �k‖v‖ , then

q j
k

(
tv
) = �k

‖v‖∇ f j (xk)
T v + 1

2

(
�k

‖v‖
)2

vT∇2 f j (xk) v. (9)

From ‖t�v‖ > �k , we have
−∇ f j (xk)T v

vT∇2 f j (xk) v
‖v‖ = ∥∥t�v∥∥ > �k = t ‖v‖ and, for (7),

∇ f j (xk)T v

t
< −vT∇2 f j (xk) v.

Therefore, using the last inequality, (9), the hypothesis and the fact
∥∥tv
∥∥ = �k ,

q j
k (0) − q j

k

(
tv
)

> − �k

‖v‖∇ f j (xk)
T v + 1

2

(
�k

‖v‖
)2 ∇ f j (xk)T v

t

= − �k

‖v‖∇ f j (xk)
T v + 1

2

�k

‖v‖∇ f j (xk)
T v

= −1

2

�k

‖v‖∇ f j (xk)
T v. (10)
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If it happens that vT∇2 f j (xk) v ≤ 0, the minimum value of the model in the trust
region is reached at its border, then we take t = �k‖v‖ and

q j
k

(
tv
) = �k

‖v‖∇ f j (xk)
T v + 1

2

�2

‖v‖2 vT∇2 f j (xk) v ≤ �k

‖v‖∇ f j (xk)
T v. (11)

Then, since v is a descent direction for F at xk ,

q j
k (0) − q j

k

(
tv
) ≥ − �k

‖v‖∇ f j (xk)
T v ≥ −1

2

�k

‖v‖∇ f j (xk)
T v, (12)

where the first inequality due to (11).
Summarizing, for (8), (10), (12), and using again that v is a descent direction for

F at xk ,

q j
k (0) − q j

k

(
tv
) ≥ −1

2

∇ f j (xk)T v

‖v‖ min

{

−∇ f j (xk)T v

‖v‖ κH
,�k

}

.

��
It is important to note that the previous lemma is true for each f j , j = 1, . . . ,m,

because v is a descent direction for F at xk , but, naturally, at first glance, the value of
t will be different for each function f j , j = 1, . . . ,m.

Remark 5 The reduction obtained in the quadratic models q j
k using the direction sk

given by the solution of the subproblem (3) can be bounded below using the bound
given by the previous lemma. For that, let us observe q j

k (sk) ≤ tk , for j = 1, . . . ,m,
for the definition of the subproblem (3). If Algorithm 1 does not terminate at the second
step, −tk = |tk | ≥ tol

q j
k (0) − q j

k (sk) ≥ −tk ≥ tol, for j = 1, . . . ,m. (13)

On the other hand, the assumptions (A2), (A4) and (A5) allow us to obtain the
bound

q j
k (0) − q j

k (tsk) = −t∇ f j (xk)
T sk − 1

2
t2sTk ∇2 f j (xk) sk

≤ ∥∥∇ f j (xk)
∥
∥
∥
∥tsk

∥
∥+ 1

2

∥
∥tsk

∥
∥2 κH

≤ κG�max + 1

2
�2

maxκH , (14)

where t = t j satisfies (6).
So, using (13) and (14), we obtain

q j
k (0) − q j

k (sk)

q j
k (0) − q j

k (tsk)
≥ tol

κG�max + 1
2�

2
maxκH

= β.
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Using Lemma 2, we can claim that for every xk and sk generated by Algorithm 1, we
have

q j
k (0) − q j

k (sk) ≥ −β
1

2

∇ f j (xk)T s

‖s‖ min

{

−∇ f j (xk)T s

‖s‖ κH
,�k

}

> 0, (15)

for j = 1, . . . ,m, except when xk is a critical point.

Remark 6 It is important to observe that the bound (15) is greater than zero then the
ratios ρ

j
k are well defined.

The next result establishes the conditions to accept a step and enlarge the trust
region radius.

Lemma 3 Assuming (A2), if sk is solution of (3) such that
∣∣∇ f j (xk)T sk

∣∣ �= 0 and

�k ≤ β
∣
∣∇ f j (xk)T sk

∣
∣ (1 − η2)

2κH ‖sk‖ , (16)

for all j = 1, . . . ,m, then the k-th iteration is successful and �k+1 ≥ �k .

Proof From the fact that 0 < η2 < 1, 1
2 (1 − η2) < 1, and, for (16), we have

�k <
β
∣∣∇ f j (xk)T sk

∣∣

κH ‖sk‖ .

Then, it is possible to rewrite the bound for the decreased observed in the models (15):

q j
k (0) − q j

k (sk) ≥ −β
1

2

∇ f j (xk)T sk
‖sk‖ �k . (17)

On the other hand

∣
∣∣ρ j

k − 1
∣
∣∣ =

∣∣
∣∣∣
f j (xk) − f j (xk + sk)

−q j
k (sk)

− 1

∣∣
∣∣∣
=
∣∣
∣∣∣
f j (xk) − f j (xk + sk) + q j

k (sk)

−q j
k (sk)

∣∣
∣∣∣
.

Expanding f j by Taylor series around xk ; there exists ξ = xk + λsk , with λ ∈ (0, 1)
so that

∣
∣∣ρ j

k − 1
∣
∣∣ =

∣∣
∣∣∣
f j (xk) − f j (xk) − ∇ f j (xk)T sk − 1

2 s
T
k ∇2 f j (ξ) sk + q j

k (sk)

−q j
k (sk)

∣∣
∣∣∣

=
∣∣
∣∣∣
− 1

2 s
T
k ∇2 f j (ξ) sk + 1

2 s
T
k ∇2 f j (xk) sk

−q j
k (sk)

∣∣
∣∣∣

= 1

2

∣∣sTk
(∇2 f j (ξ) − ∇2 f j (xk)

)
sk
∣∣

∣∣∣−q j
k (sk)

∣∣∣
.
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Finally, by the Cauchy-Schwartz inequality:

∣∣∣ρ j
k − 1

∣∣∣ ≤ 1

2

‖sk‖2
∥∥∇2 f j (ξ) − ∇2 f j (xk)

∥∥
∣
∣∣q j

k (0) − q j
k (sk)

∣
∣∣

.

The numerator can be bounded by using the assumption (A2) and since sk is a
descent direction and it is inside of the trust region, by (17):

∣∣∣ρ j
k − 1

∣∣∣ ≤ 1

2

�2
k2κH∣∣∣q j

k (0) − q j
k (sk)

∣∣∣
≤ �2

kκH

−β 1
2

∇ f j (xk)T sk
‖sk‖ �k

,

then by using again the fact that sk is a descent direction it is possible to write

∣∣
∣ρ j

k − 1
∣∣
∣ ≤ 2�k ‖sk‖ κH

−β∇ f j (xk)T sk
= 2�k ‖sk‖ κH

β
∣∣∇ f j (xk)T sk

∣∣

< 1 − η2,

where the last inequality due to (16). Therefore we obtain ρ
j
k > η2 for j = 1, . . . ,m,

then, considering the 5th. step of Algorithm 1, the step is accepted and the trust radius
is increased, except in case that �k = �max, so �k+1 ≥ �k . ��
Remark 7 From this lemma we can claim that a step will be accepted in a
finite number of inner iterations; Let’s observe that if xk is not critical, then{∣
∣∇ f j (xk)T sk

∣
∣

‖sk‖ : j = 1, . . . ,m

}
, will be bounded below by min j=1,...,m

{∥∥∇ f j (xk)
∥∥}

> 0. Therefore, after a finite numbers of inner iterations, in which the step is rejected
and the trust radius reduced, the inequality (16) will be satisfied and the step accepted.

Lemma 4 Assuming that there exists σ > 0 such that
∣
∣∇ f j (xk)T sk

∣
∣

‖sk‖ > σ for all indices
k and j , then there exists �min so that �k > �min for all k.

Proof Let us suppose a subsequence of trust region radius
{
�ki

}
such that �ki → 0

where the kth iterate is the first one such that

�k+1 ≤ γ1σβ (1 − η2)

2κH
. (18)

Since k is the the first index satisfying the inequality γ1�k ≤ �k+1, we have

�k ≤ σβ (1 − η2)

2κH
≤ 1 − η2

2κH

β
∣∣∇ f j (xk)T sk

∣∣

‖sk‖ ,

where the second inequality due to the hypothesis of this lemma. Then, for Lemma
3, the previous iteration was very successful and the radius must increase, which is a
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contradiction with the assumption that k is the first index that satisfies (18). Therefore
there does not exist k which satisfies (18) so that

�k+1 >
γ1σβ (1 − η2)

2κH
= �min ∀k.

��
Theorem 1 Assuming there are a finite number of successful iterations, then xk = x�

for all k large enough and x� is a critical point.

Proof Following the algorithm x� = xk = xk+l for all l > 0 where k is the last index
of a successful iterate then, since the next iterations are rejected �k → 0.

If for all j = 1, . . . , n,
∣∣∇ f j (xk)T sk

∣∣ �= 0, by Lemma 4, some future iterate
must be successful, contradicting the fact that xk was the last successful iterate, hence∣∣∇ f j (xk)T sk

∣∣ = 0, and this implies that xk is a critical point. ��
Theorem 2 Let {xk} and {sk} generated by Algorithm 1, then

lim inf
k→∞ max

j=1,...,m

{∣∣∇ f j (xk)T sk
∣∣

|sk |

}

= 0.

Proof Let us suppose that exists ε, such that ∀k there exist j ∈ {1, . . . ,m} such that

∣∣∇ f j (xk)T sk
∣∣

‖sk‖ ≥ ε. (19)

Let S be the index set of successful iterations, then, for k ∈ S,

f j (xk) − f j (xk+1) ≥ η1

(
q j
k (0) − q j

k (sk)
)

≥ η1β

(

−1

2

∇ f j (xk)T sk
‖sk‖ min

{

−∇ f j (xk)T sk
‖sk‖ κH

,�k

})

,

where the first inequality due to the iteration was successful and the second to the
bound for the expected descent (15). Then, due to sk being a descent direction and by
(19)

f j (xk) − f j (xk+1) ≥ η1εβ
1

2
min

{

−∇ f j (xk)T sk
‖sk‖ κH

,�k

}

≥ η1εβ
1

2
min

{
ε

κH
,�min

}
,

for k ∈ S.
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Then, summing over all the successful iterations up to the k-th index,

f j (x0) − f j (xk+1) =
k∑

l=0,l∈S

(
f j (xl) − f j (xl+1)

)

≥
k∑

l=0,l∈S
η1εβ

1

2
min

{
ε

κH
,�min

}

≥ σkη1εβ
1

2
min

{
ε

κH
,�min

}
,

where σk is the number of successful iterations up to the k-th. Then if

lim
k→∞,k∈S

σk < +∞,

the Theorem 1 implies the first result. If

lim
k→∞ σk = ∞,

the difference f j (x0) − f j (xk+1) goes to infinite for (19) and Lemma 4, and f j will
not be bounded contradicting (A3). Therefore does not exist ε > 0 that satisfies (19)
for some j ∈ {1, . . . ,m}. Then

lim infk→∞ max
j=1,...,m

{∣∣∇ f j (xk)T sk
∣∣

|sk |

}

= 0.

��
Finally, if we assume bounded level sets for the function F we can claim the next

corollary.

Corollary 1 Let {xk} be generated by Algorithm 1, and assume that the level sets of
the functions f j , j = 1, . . . ,m, are bounded, then {xk} converges to a Pareto critical
point.

Proof Set A = {x ∈ R
n : f j (x) ≤ f j (x0) , j = 1, . . . ,m

}
. Due to the fact that the

level sets of f j , j = 1, . . . ,m, are bounded, A is bounded. Furthermore, the set A
is closed because f j , j = 1, . . . ,m, are continuous functions. Then A is compact.
Therefore, the sequence {xk} generated by Algorithm 1 has an acumulation point x�.
Later, due to the Theorem 2, x� is a critical point. ��

5 The convex case and the local convergence analysis

In the convex case, obviously it is possible to obtain better results: at first glance the
subproblem involves a convex feasible set, which makes it easier. Furthermore the
theoretical results for the multiobjective problem are stronger.
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In the local discussion we need to add the following assumption:

(A6) There existsU ⊆ R
n such that the sequence generated by Algorithm 1 {xk} ⊂ U

and there exists a > 0 such that

a ‖v‖2 ≤ vT∇2 f j (x)v, j = 1, . . . ,m,

for all x ∈ U and v ∈ R
n .

This condition, clearly, implies the local strict convexity of the quadratical models q j
k

of the subproblem (3) for j = 1, . . . ,m.
For solving nonlinear programs there are several optimality conditions [3] based on

the Lagrangian function associated to the problem and many of them are established
for the differentiable problem, so we will consider the problem

min t
s.t. ∇ f j (x)T s + 1

2 s
T∇2 f j (x) s − t ≤ 0, j = 1, . . . ,m

∇ f j (x)T s − t ≤ 0, j = 1, . . . ,m
‖s‖2
2 − �2

2 ≤ 0,
(t, s) ∈ R × R

n,

(20)

which is differentiable and equivalent to (3).
For the subproblem (20) the associated Lagrangian function is

L
(
t, s, λ1, λ2, λ

)
= t +

m∑

j=1

λ1j

(
∇ f j (x)

T s + 1

2
sT∇2 f j (x)s − t

)

+
m∑

j=1

λ2j

(
∇ f j (x)

T s − t
)

+ λ

(
‖s‖2
2

− �2

2

)

, (21)

with λ1, λ2 ∈ R
n , λ ∈ R.

Due to the convexity of the quadratical models q j
k , the subproblem (20) satisfies

the Slater constraint qualification [3], then, for the optimal value of (20) there exist
the multipliers λ1j , λ

2
j , λ, with j = 1, . . . ,m, satisfying the first order necessary con-

ditions: The gradient of the Lagrangian function vanishes, the point is feasifle and
satisfies the complementary condition for the multipliers.

Remark 8 If x is not a critical point, from Lemma 1, s(x) �= 0, and, from the strict
convexity of the functionals f j , j = 1, . . . ,m, the Hessian matrices ∇2 f j , j =
1, . . . ,m, are positive definite. Then the linear constraints never will be active and,
from the complementarity condition, the multipliers λ2j = 0, for all j = 1, . . . ,m.

The relationship between the variables and the multipliers occurs from the previous
remark and the fact that the gradient vector of Lagrangian function vanishes at the
optimal solution of (20).

[
1
0

]
+

m∑

j=1

λ1j

([
0 0
0 ∇2 f j (x)

] [
0
s

]
+
[

0
∇ f j (x)

]
−
[
1
0

])
+ λ

[
0
s

]
= 0,
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which it can be written

1 −
m∑

j=1

λ1j = 0,

m∑

j=1

λ1j∇2 f j (x)s +
m∑

j=1

λ1j∇ f j (x) + λs = 0.

Since ∇2 f j (x), j = 1, . . . ,m are positive definite for all x ∈ U , after arithmetic
calculations, we obtain

s = −
⎡

⎣
m∑

j=1

λ1j∇2 f j (x) + λI

⎤

⎦

−1
m∑

j=1

λ1j∇ f j (x). (22)

Therefore, we have obtained expressions of s and t as function of x, λ and λ1.

Remark 9 Let us observe that for obtaining (22) is enough that λ1j > 0 for some

j = 1, . . . ,m, but this equation is valid if and only if λ2j = 0 for all j = 1, . . . ,m.

Assuming strict convexity of f j (x) we can ensure that λ2j = 0 for all j = 1, . . . ,m. If
the strict convexity assumption is dropped, it is not possible to ensure the uniqueness
of the multipliers λ1j , j = 1, . . . ,m, and the solution as well.

In order to discuss the rate of convergence of Algorithm 1 we establish some
technical lemmas.

Lemma 5 Let us assume that for any ε, δ > 0 such that ‖x − y‖ < δ then

∥∥
∥∇2 f j (x) − ∇2 f j (y)

∥∥
∥ < ε j = 1, . . . ,m.

Then ∀x, y such that ‖x − y‖ < δ the following inequalities hold

∥∥∥∇ f j (y) −
(
∇ f j (x) + ∇2 f j (x)(y − x)

)∥∥∥ ≤ ε ‖y − x‖ ,

and
∣∣∣
∣ f j (y)−

(
f j (x)+∇ f j (x)

T (y−x)+ 1

2
(y − x)T ∇2 f j (x) (y − x)

)∣∣∣
∣ ≤

ε

2
‖y − x‖2 ,

for all j = 1, . . . ,m. If∇2 f j is Lipschitz continuouswith constant L for j = 1, . . . ,m,
then

∥∥∥∇ f j (y) −
(
∇ f j (x) + ∇2 f j (x)(y − x)

)∥∥∥ ≤ L

2
‖y − x‖2

for all j = 1, . . . ,m.
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Proof This is easy applying Lemmas 4.1.10 and 4.1.12 from [8]. ��
The next lemma establishes the relationship between the absolute value of the

solution of the subproblem, |θ(x)|, and the size of the step, ‖s(x)‖.
Lemma 6 Let U ⊆ R

n and a > 0 satisfying (A6), then

a

2
‖s(x)‖2 ≤ |θ(x)| .

Proof We should analyze two different cases according to the trust region constraint
being active or not. In both cases, the term associated to the trust region in the
Lagrangian function (21) vanishes, for this reason we develop only the case when
the trust region is inactive. The another case is analogous.

Let us consider the case ‖s‖ < �. The complementarity conditions and Remark 8
implies:

L
(
t, s, λ1, λ2, λ

)
= t +

m∑

j=1

λ1j

(
∇ f j (x)

T s + 1

2
sT∇2 f j (x)s − t

)

= t.

From (22) and λ = 0, we obtain

m∑

j=1

λ1j∇ f j (x) = −
⎡

⎣
m∑

j=1

λ1j∇2 f j (x)

⎤

⎦ s.

Then, using the last two equalities,

L
(
t, s, λ1, λ2, λ

)
=
⎛

⎝−
⎡

⎣
m∑

j=1

λ1j∇2 f j (x)

⎤

⎦ s

⎞

⎠

T

s + 1

2

m∑

j=1

λ1j s
T∇2 f j (x)s

= −1

2

m∑

j=1

λ1j s
T∇2 f j (x)s

= t, (23)

where the equality (23) due to ∇2 f j (x) is symmetric, because f j ∈ C2 (Rn) for every
j = 1, . . . ,m.

Then t = − 1
2 s

T
(∑m

j=1 λ1j∇2 f j
)
s < 0, therefore, using the assumption (A6),

|t | ≥ 1

2
sT

⎛

⎝
m∑

j=1

λ1j∇2 f j

⎞

⎠ s ≥ a

2
‖s‖2 .

��
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The following lemma gives a bound to the subproblem in term of the gradients of
the objective functions.

Lemma 7 Let x ∈ U and a > 0 satisfying (A6), then

|θ(x)| ≤ 1

2a

∥
∥∥∥∥∥

m∑

j=1

λ j∇ f j (x)

∥
∥∥∥∥∥

2

for every λ j ≥ 0, j = 1, . . . ,m, such that
∑m

j=1 λ j = 1, and for all x ∈ U.

Proof For this lemma, it is useful to consider the dual problem of (3)

max
inf
(t,s)

{
t +∑m

j=1 λ1j

(∇ f j (x)T s + 1
2 s

T∇2 f j (x)s − t
)

+∑m
j=1 λ2j

(∇ f j (x)T s − t
)+ λ

( ‖s‖2
2 − �2

2

)}
.

For (A6), we have that all the constraints of (20) are convex and the Slater constraint
qualification is satisfied, therefore, there is not duality gap. It allows us to ensure that
the optimal value of the primal problem θ(x) is the optimal value of the dual problem

θ(x) = max inf
(t,s)

{
t +∑m

j=1 λ1j

(∇ f j (x)T s + 1
2 s

T∇2 f j (x)s − t
)

+∑m
j=1 λ2j

(∇ f j (x)T s − t
)+ λ

( ‖s‖2
2 − �2

2

)}
.

If we add the constraint
∑m

j=1 λ1j = 1, λ1j , λ ≥ 0 and λ2j = 0, we have

θ(x) ≥ max
s.a

inf
(t,s)

{
t +∑m

j=1 λ1j

(∇ f j (x)T s + 1
2 s

T∇2 f j (x)s − t
)+

+λ
( ‖s‖2

2 − �2

2

)}

λ1j , λ ≥ 0,∑m
j=1 λ1j = 1.

Now, using the constraint that we impose and the infimum properties we have

θ(x) = sup
λ1j ,λ≥0,
∑m

j=1 λ1j=1

inf
s

⎧
⎨

⎩

m∑

j=1

λ1j

(
∇ f j (x)

T s + 1

2
sT∇2 f j (x)s

)
+ λ

(
‖s‖2
2

− �2

2

)⎫⎬

⎭

≥ sup
λ1j ,λ≥0,
∑m

j=1 λ1j=1

⎧
⎨

⎩
inf
s

⎧
⎨

⎩

m∑

j=1

λ1j

(
∇ f j (x)

T s + 1

2
sT∇2 f j (x)s

)
⎫
⎬

⎭

+ λinf
s

{
‖s‖2
2

− �2

2

}}

.

123



Trust region for multiobjective optimization problem... 359

The minimum in the second term is obtained taking s = 0,

θ(x) ≥
sup

{
inf
s

{∑m
j=1 λ1j

(∇ f j (x)T s + 1
2 s

T∇2 f j (x)s
)}− λ�2

2

}

λ1j , λ ≥ 0,
∑m

j=1 λ1j = 1

Because −�2

2 < 0, the supremum must be λ = 0, then

θ(x) ≥ sup inf
s

{∑m
j=1 λ1j

(∇ f j (x)T s + 1
2 s

T∇2 f j (x)s
)}

λ1j ≥ 0,
∑m

j=1 λ1j = 1.

Using the hypothesis (A6),

θ(x) ≥ sup
λ1j ≥ 0,

∑m
j=1 λ1j = 1.

inf
s

m∑

j=1

λ1j
1

2
a ‖s‖2 +

m∑

j=1

λ1j∇ f j (x)
T s. (24)

Note that the last infimum is, actually, a minimum at the zero of the gradient,
because is taken over a convex function. Then, we obtain the gradient and find such
value of s

m∑

j=1

λ1j as +
m∑

j=1

λ1j∇ f j = 0,

s = −
∑m

j=1 λ1j∇ f j
∑m

j=1 λ1j a
.

Replacing it in (24)

θ(x) ≥ sup
λ1j ≥ 0,

∑m
j=1 λ1j = 1.

m∑

j=1

λ1j
1

2
a

∥
∥∥∥∥

∑m
j=1 λ1j∇ f j (x)
∑m

j=1 λ1j a

∥
∥∥∥∥

2

−
⎛

⎝
m∑

j=1

λ1j∇ f j (x)

⎞

⎠

T ∑m
j=1 λ1j∇ f j (x)
∑m

j=1 λ1j a

= sup
λ1j , ≥ 0,

∑m
j=1 λ1j = 1.

−1

2

∥
∥∥
∑m

j=1 λ1j∇ f j (x)
∥
∥∥
2

∑m
j=1 λ1j a

.

≥ −1

2

∥∥∥
∑m

j=1 λ1j∇ f j (x)
∥∥∥
2

a
,

where the last inequality is due to
∑m

j=1 λ1j = 1.
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Finally, taking in account that θ(x) ≤ 0 and with λ1j = λ j , we obtain

|θ(x)| ≤ 1

2a

∥
∥∥∥∥∥

m∑

j=1

λ j∇ f j (x)

∥
∥∥∥∥∥

2

,

∀λ j ≥ 0, j = 1, . . . ,m, such that
∑m

j=1 λ j = 1. ��
Remark 10 The bound giving by the previous lemma is valid not only for the multi-
pliers associated to the subproblem but also to any convex combination.

Lemma 8 Let U ⊆ R
n, x̂ and x̂+ = x̂ + s (̂x), a, r, δ, ε > 0 such that

(a) U ⊆ R
n and a > 0 satisfies (A6),

(b) B (̂x, r) ⊂ U,
(c)

∥∥∇2 f j (x) − ∇2 f j (y)
∥∥ ≤ ε ∀x, y ∈ B (̂x, r) such that ‖x − y‖ < δ,

(d) ‖s (x̂+)‖ < min {δ, r},
then

‖s (x̂+)‖ ≤ ε

a
‖̂s‖ .

Moreover, if ∇2 f j are Lipschitz continuous with constant L in B (̂x, r):

∥∥
∥∇2 f j (x) − ∇2 f j (y)

∥∥
∥ ≤ L ‖x − y‖ ∀x, y ∈ B (̂x, r) ,

then

‖s (x̂+)‖ ≤ L

2a
‖̂s‖2 .

Proof Let λ̂1j , λ̂
2
j , λ̂ > 0, j = 1, . . . ,m, the multipliers associated to the subproblem

(3) with x = x̂ .
From the convexity of the functionals f j , j = 1, . . . ,m, and since the trust region

constraint is inactive, the multipliers associated to them are all zero but λ̂1j , then∑m

j=1
λ̂1j = 1.

The Lemma 7 allows to write

|θ(x̂+)| ≤ 1

2a

∥∥∥∥∥
∥

m∑

j=1

λ̂1j∇ f j (x̂+)

∥∥∥∥∥
∥

2

. (25)

On the other hand, let us define

G(x) =
m∑

j=1

λ̂1j f j (x) ,
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then

∇G (x̂+) = ∇G (̂x + s (̂x)) =
m∑

j=1

λ̂1j∇ f j (̂x + s (̂x)) ,

and also

∇2G (̂x) =
m∑

j=1

λ̂1j∇2 f j (̂x) . (26)

From (22) with x = x̂ and the fact λ = 0, we can write

ŝ = s
(
x̂
) = −

⎡

⎣
m∑

j=1

λ̂1j∇2 f j (̂x)

⎤

⎦

−1
m∑

j=1

λ̂1j∇ f j (̂x) = −∇2G (̂x)−1 ∇G (̂x) .

Since ∇2G is a convex combination of the ∇2 f j , j = 1, . . . ,m, it inherits the
uniform continuity, therefore Lemma 5 can be used having in mind the last equation,

∥∥∥∇G (̂x + ŝ) −
[
∇G (̂x) + ∇2G (̂x) ŝ

]∥∥∥ ≤ ε ‖̂s‖ ,

thus, by (26),

‖∇G (x̂+)‖ ≤ ε ‖̂s‖ .

Now, relating the last inequality with (25) and Lemma 6, we have

a

2
‖ŝ+‖2 ≤ |θ (x̂+)| ≤ 1

2a
(ε ‖̂s‖)2 ,

then

‖ŝ+‖ ≤ ε

a
‖̂s‖ .

If in addition ∇2 f j , j = 1, . . . ,m, are Lipschitz continuous with constant L , also
∇2G is Lipschitz continuous with the same constant. Then, once again Lemma 5 and
(25) allow us to write,

|θ (x̂+)| ≤ 1

2a
‖∇G (x̂+)‖2 = 1

2a

∥∥
∥∇G (̂x + ŝ) −

[
∇G (̂x) + ∇2G (̂x) ŝ

]∥∥
∥
2

≤ 1

4a
L2 ‖̂s‖4 ,

where the inequality follows from (26).
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Then, using Lemma 6,

a

2
‖ŝ+‖2 ≤ 1

2a

L2

4
‖̂s‖4 ,

meaning

‖ŝ+‖ ≤ L

2a
‖̂s‖2 .

��
The next theorem guarantees the convergence to an optimal Pareto point in a

neighborhood of any starting point. No assuming the existence of such a point is
an interesting characteristic of the result which has the flavor of the Kantorovich’s
theorem for the scalar case.

Theorem 3 Let be {xk} the sequence generated by Algorithm 1, and let be U ⊆ R
m,

a, r, δ, ε > 0 such that

(a) U ⊆ R
n and a > 0 satisfies the assumption (A6),

(b)
∥∥∇2 f j (x) − ∇2 f j (y)

∥∥ ≤ ε, ∀x, y ∈ U, such that ‖x − y‖ < δ,
(c) ε

a < 1 − η2, where η2 is the parameter to consider very successful an iteration
in Algorithm 1,

(d) B (x0, r) ⊆ U,
(e) ‖s (x0)‖ ≤ min

{
δ, r

(
1 − ε

a

)}
,

then

(i) ‖xk − x0‖ ≤ ‖s (x0)‖
1 − ( ε

a

)k

1 − ε
a

∀k ≥ 0.

(ii) ‖s (xk)‖ ≤ ‖s (x0)‖
(

ε
a

)k ∀k ≥ 0.
(iii) �k+1 ≥ �k ∀k ≥ 0.
(iv) ‖s (xk+1)‖ ≤ ‖s (xk)‖

(
ε
a

) ∀k ≥ 0.

Moreover the sequence {xk} converges to some local Pareto point.

Proof First we show that if items (i) and (i i) hold for some k, then items (i i i) and
(iv) also hold for that k.

Let us assume that (i) and (i i) hold for k and together with the triangular inequality,

‖xk+1 − x0‖ = ‖xk + s (xk) − x0‖ ≤ ‖xk − x0‖ + ‖s (xk)‖

≤ ‖s (x0)‖ 1 − ( ε
a

)k

1 − ε
a

+ ‖s (x0)‖
( ε

a

)k

= ‖s (x0)‖ 1 − ( ε
a

)k+1

1 − ε
a

.
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Then, by the hypothesis (c) and, 0 < η2 < 1, we have 0 ≤ ε
a ≤ 1, therefore, by

(e)

‖xk+1 − x0‖ ≤ r
(
1 − ε

a

) 1 − ( ε
a

)k+1

1 − ε
a

= r

(
1 −

( ε

a

)k+1
)

≤ r . (27)

In the same way, using (e) and (i),

‖xk − x0‖ ≤ r. (28)

Moreover, from (i i) and the definition of xk+1 (4th step of Algorithm 1)

‖xk+1 − xk‖ = ‖s (xk)‖ ≤ ‖s (x0)‖
( ε

a

)k ≤ ‖s (x0)‖ ≤ δ,

where the last inequality is due to (e).
Then, by (27) and (28), xk, xk + s (xk) ∈ B (x0, r) and ‖xk+1 − xk‖ ≤ δ.
Let us prove that (i i i) holds, proving that ρ j

k is greater than η2 for j = 1, . . . ,m.
Using Lemma 5

f j (xk + sk) − f j (xk) ≤ ∇ f j (xk)
T sk + 1

2
sTk ∇ f j (xk)

T sk + ε

2
‖sk‖2

= q j
k (sk) + ε

2
‖sk‖2

= η1q
j
k (sk) + (1 − η1) q

j
k (sk) + ε

2
‖sk‖2 , (29)

where, naturally, sk = s (xk).
Let us check that the sum of the two last terms is not positive, because the definition

of θ (xk) and from Lemmas 5 and 7,

(1 − η2) q
j
k (sk) + ε

2
‖sk‖2 ≤ (1 − η2) θ (xk) + ε

2
‖sk‖2

≤ − (1 − η2)
a

2
‖sk‖2 + ε

2
‖sk‖2

= a
‖sk‖2
2

( ε

a
− (1 − η2)

)
≤ 0,

where the last inequality is consequence of (c).
Then (29) becomes, f j (xk + sk) − f j (xk) ≤ η2q

j
k (sk). Since q j

k (sk) < 0 and

q j
k (0) = 0,

f j (xk) − f j (xk + sk)

q j
k (0) − q j

k (sk)
≥ η2,
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thus

�k+1 ≥ �k .

The item (iv) is true from Lemma 8 and from the fact that, satisfied (i i i), the step
is accepted.

Now let us prove by the induction principle the items (i) and (i i) for all k ≥ 0.
Clearly they hold for k = 0 by the assumptions. Let us suppose that they are valid

up to k. Since (i i i) holds, xk+1 = xk + sk , then

‖xk+1 − x0‖ ≤ ‖xk − x0‖ + ‖sk‖ ≤ ‖s (x0)‖ 1 − ( ε
a

)k

1 − ε
a

+ ‖s (x0)‖
( ε

a

)k

= ‖s (x0)‖
1 − ( ε

a

)k+1

1 − ε
a

,

therefore (i) holds for k + 1.
Using (iv) y (i i) for k we obtain

‖sk+1‖ ≤ ‖sk‖ ε

a
≤ ‖s0‖

( ε

a

)k+1
,

then (i i) is true for k + 1, and since (i i i) and (iv) are derived from (i) and (i i), the
four statements hold for k.

Now, from (i) and (i i),

∞∑

k=0

‖xk+1 − xk‖ =
∞∑

k=0

‖sk‖ ≤ ‖s0‖
∞∑

k=0

( ε

a

)k
< ∞,

then the sequence {xk} is a Cauchy sequence, then there exists x� such that xk → x�.
Since ‖sk‖ → 0 then θ (xk) → 0, by Lemma 5, q j

k (sk) ≤ θ(xk) ≤ 0, and by
continuity of θ(x), θ (x�) = 0. Thus x� is a local optimal Pareto point, because of
Lemma 5 and the Theorem 3.1 of [9]. ��

From the result and considering the Lipschitz continuity condition of the Hessian
matrices of the objective functions, the local q-quadratic rate of convergence is
obtained.

Theorem 4 Under the assumptions of Theorem 3 and assuming that∇2 f j is Lipschitz
continuous with constant L in U, let

τk =
(

L

2a

)
‖sk‖
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and ξ ∈ (0, 1
2

)
then there exists k0 such that ∀k ≥ k0, τk < ξ and

∥
∥x� − xk+1

∥
∥ ≤ L

a

1 − τk

(1 − 2τk)2
∥
∥x� − xk

∥
∥2 ≤ L

a

1 − ξ

(1 − 2ξ)2

∥
∥x� − xk

∥
∥2 ,

where x� is an accumulation point of {xk} and a local optimal Pareto point.

Proof From Theorem 3, we have ‖sk‖ ≤ ‖s0‖
(

ε
a

)k
, then

τk ≤ L

2a
‖s0‖

( ε

a

)k
,

so, because ε
a < 1, there exists k0 such that ∀k ≥ k0

τk < ξ, (30)

From Lemma 8

‖sk+1‖ ≤ L

2a
‖sk‖2 . (31)

Let i > k ≥ k0 then

‖xi − xk+1‖ ≤
i∑

j=k+2

∥
∥x j − x j−1

∥
∥ ≤

i∑

j=k+2

∥
∥s j−1

∥
∥ ,

and, if i goes to ∞,

∥∥x� − xk+1
∥∥ ≤

∞∑

j=k+1

∥∥s j
∥∥ .

Applying the inequality (31)

∥∥x� − xk+1
∥∥ ≤ L

2a
‖sk‖2

∞∑

j=0

(
L

2a
‖sk‖

)2 j

≤ L

2a
‖sk‖2

∞∑

j=0

(τk)
2 j

.

Since (30), τk < 1
2 , a convergent geometric series is obtained, thus

∥
∥x� − xk+1

∥
∥ ≤ L

2a
‖sk‖2

∞∑

j=0

τ
j
k = L

2a
‖sk‖2 1

1 − τk
. (32)
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Therefore

∥∥x� − xk
∥∥ ≥ ‖xk+1 − xk‖ − ∥∥x� − xk+1

∥∥ ≥ ‖sk‖ − ‖sk‖2
L
2a

1 − τk

= ‖sk‖ 1 − 2τk
1 − τk

,

where the last equality occurs because the definition of τk ; then, because τk < 1
2 ,

‖sk‖ ≤ ∥∥x� − xk
∥∥ 1 − τk

1 − 2τk
.

Connecting the last inequality and (32)

∥∥x� − xk+1
∥∥ ≤ L

2a
‖sk‖2 1

1 − τk

= L

2a

∥∥x� − xk
∥∥2 1 − τk

(1 − 2τk)2

≤ L

2a

∥∥x� − xk
∥∥2 1 − ξ

(1 − 2ξ)2
,

because φ(t) = 1−t
(1−2t)2

is monotonically increasing (its derivative is positive) in
(
0, 1

2

)
. This proves the local q-quadratic convergence of Algorithm 1. ��

6 Numerical results

In order to exhibit the behavior of the algorithm we consider a set of ten problem
from the literature [6,7,9], one of this with variable size [9] and a new nonconvex
problem proposed in [5]. Each problem has been considered with different starting
points generated at random. The points have been clustered in three regions: the small
region is the set [−1, 1] × · · · × [−1, 1] ⊂ R

n , the medium region is [−10, 10] ×
· · ·× [−10, 10] ⊂ R

n , and the big region is [−100, 100]×· · ·× [−100, 100] ⊂ R
n ;

and the problems that originally were box constrained were tested with random points
in that region too. The algorithm has been coded in FORTRAN 95 in double precision
using GFortran compiler. The code has been executed on a personal computer with
a processor INTEL Core I3 with 3 Gb of memory RAM using Ubuntu 10.04 Linux
operation system.

We establish the maximum number of iterations as maxiter = 500, and the tol-
erance for the stopping criterion as ε = 10−8. The parameters in the algorithm are
chosen as follows: η1 = 10−1, η2 = 0.9. The trust region subproblem has been solved
by means the routine ALGENCAN [1].

To show the behavior of Algorithm 1 we compare it with the procedure pro-
posed by Qu, Goh and Lian [16] and the proposed by Villacorta, Oliveira and
Souberyran [19], using the problem proposed in [9]. For the algorithm proposed in
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Table 1 Average of iterations needed for convergence in each region

Prob. It. small reg. It. medium reg. It. big reg. It. original reg. Source

bk1 2.0 3.6 6.4 2.7 [6]

dg01 2.4 2.2 18.8 2.1 [6]

ex005 18.8 21.1 28.8 16.9 [6]

le1 7.9 17.1 20.2 12.7 [6]

mlf1 1.4 1.8 1.2 1.4 [6]

sk2 5.1 6.9 5.7 6.1 [6]

SCH 1.4 3.3 5.3 8.7 [7]

FON 5.7 1.0 1.0 3.2 [7]

POL 6.9 7.1 7.9 6.3 [7]

GAC 2.8 3.5 5.9 – [5]

Table 2 FGS problem [9]
Size Algorithm [19] Algorithm [16] Algorithm 1

It. Succes. It. Succes. It. Succes.

5 39.8 10 4.52 10 3.73 10

10 95.67 6 5.35 10 3.71 10

50 11.83 6 7.75 10 4.16 10

100 4.20 5 9.17 10 4.03 10

200 – 0 10.26 10 5.57 10

[19] many features, such as the parameters to update the trust region radius and to
evaluate the steps for acceptances as well as the election of the matrix for the sec-
ond order term, are not specified and should be chosen by the user. We consider
Bk = (∇2 f1 (xk) + ∇2 f2 (xk) + ∇2 f3 (xk)

)
/3. The parameters to evaluate the steps

and to update the trust region radius were established the same as our algorithm in
order to run both methods under the same conditions. The algorithm of [16] was coded
with the parameters suggested by the authors.

To visualize the whole behavior of the algorithm we present tables for each cluster
points. In Table 1 we show the average of iterations needed for each problem in each
region and the source of the problem. In Table 2, we present the number of iterations
for the problem proposed in [9] for Algorithm 1, [16] and [19]. In this table we can
observe a better performance of Algorithm 1 than the algorithm of [16], in a similar
way that Newton’s method is better than secant methods. The poor performance of the
algorithm of [19] is attributed to the fact that the subproblem can provide long steps
even when the current iterate is near to a Pareto critical point.

Moreover, in Fig. 1, we can observe the performance profile with the problems
clustered by the region where the starting point was located. Considering this graphic,
it is possible to observe that Algorithm 1 had a good performance independently of the
starting point. The good performance of the some of test problems for initial points in
the small region is due to have their Pareto frontier near zero.
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Fig. 1 Performance profile of Algorithm 1 according with the location of the starting points

7 Conclusions

A trust region algorithm for the nonconvex unconstrained multiobjective optimization
problem has been presented. From a theoretical point of view the proposed algorithm
exhibits a similar behavior to the scalar case. We remark that the notion of fraction
of Cauchy decrease has been adapted to the multiobjective problem. The algorithm
provides a sequence which has at least a subsequence converging to a weak Pareto
point. Moreover, under convexity assumptions the limit point of this subsequence is a
Pareto point. In this case, the locally q-quadratic rate of convergence of the algorithm
is proved.

An interesting local convergence result was obtained, where the information is
related to the staring point, not to the solution. In that sense it is possible to consider
Theorem 3 as similar to Kantorovich’s theorem [8].

From a practical point of view, the algorithm shows a good behavior in a set of
problems. With respect to the problem FGS we observe that our algorithm behave
better than the proposed by Qu, Goh and Lian [16] and, according with ours test, we
can not establish a good comparison with the algorithm [19].

In the future, following this line of research we consider to implement an algorithm
where the Hessian matrices be updated via a secant approximation. In order to obtain
q-superlinear rate of convergence we are trying to introduce a Dennis-More type
condition. On the other side we believe that the algorithm can be easily extended if
nonlinear constraints are added to the problem.

Acknowledgments The authors are grateful to the anonymous reviewers, whose comments improved this
work.
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