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Abstract Although stochastic programming problems were always believed to be
computationally challenging, this perception has only recently received a theo-
retical justification by the seminal work of Dyer and Stougie (Math Program A
106(3):423-432, 2006). Amongst others, that paper argues that linear two-stage sto-
chastic programs with fixed recourse are #P-hard even if the random problem data
is governed by independent uniform distributions. We show that Dyer and Stougie’s
proof is not correct, and we offer a correction which establishes the stronger result
that even the approximate solution of such problems is #P-hard for a sufficiently high
accuracy. We also provide new results which indicate that linear two-stage stochastic
programs with random recourse seem even more challenging to solve.
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1 Introduction

We consider linear two-stage stochastic programs of the form

maximize ¢ x +E Q(x,g)
subjectto Ax = b, x € R},

(1a)
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where the problem data ¢ € R", A € R””X’il and b € R™! is deterministic. For a
fixed realization & € R¥ of the random vector &, Q(x, &) denotes the optimal value of
the second-stage problem

maximize ¢(&)'y (1b)
subjectto  T(§)x + W(&)y = h(§), y e R?,

where ¢ : R > Rm, T . RF — Rm2>m W . RE — RM2%12 gpnd p : RF — R™
depend affinely on §. The stochastic program (1) has fixed recourse if the recourse
matrix W does not depend on the realization of &, and it displays random recourse
otherwise. By convention, the optimal values of (1a) and (1b) are defined to be +o0 if
the respective problems are infeasible. For a survey of the vast stochastic programming
literature, which dates back to the 1950s, we refer to [2,10,11].

While stochastic programming problems were always believed to be difficult to
solve, this suspicion has only been confirmed recently by the seminal work of Dyer and
Stougie [4]. Amongst others, that paper argues that calculating the expected recourse
value E[Q(x, &)] for a fixed first-stage decision x is #P-h~ard1 even if the stochastic
program (1) exhibits fixed recourse and the random vector & is governed by a uniform
distribution supported on [0, 1]¥. This result has attracted significant attention in the
stochastic programming and robust optimization communities, where it provides a
formal justification for developing approximate solutions schemes. The proof of this
statement studies the expected recourse value Q(«, 8) = E[Q(€; «, B)] of the second-
stage problem

maximize &'y — fz

2
subjectto y <az, y e R, z€[0,1] @

under the uniform distribution supported on [0, 17¥, where a € ]R'i and 8 € Ry are
fixed parameters. Note that problem (2) does not involve any first-stage decisions. It
is claimed in [4] that 1 — Q(e, B) coincides with the volume of the knapsack polytope
P(a,B) = {& € [0, 1* aT‘;' < B}, the calculation of which is known to be
#P-hard [5]. We now show that this claim is false.

Proposition 1 For o = e and = 1, where e € R¥ is the vector of all ones, the
expected recourse value of problem (2) satisfies

k—2 1
Q(a’ﬂ):T+m

Proof Itis shown in [4] that for a given realization & of the random vector E , the unique
optimal second-stage decisionsare y = 0andz = Oifa'§ < Bandy =aandz = 1
otherwise. We thus conclude that the expected recourse value of problem (2) satisfies

I The complexity class #P contains the counting problems associated with the decision problems in the
complexity class NP (e.g., counting the number of Hamiltonian cycles in a graph), see [6,9]. Thus, a
counting problem is in #P if the items to be counted (e.g., the Hamiltonian cycles) can be validated as such
in polynomial time. By definition, a #P problem is at least as difficult as the corresponding NP problem. It
is therefore commonly believed that #P-hard problems, which are the hardest problems in #P, do not admit
polynomial-time solution methods.
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O,B)=E [max {eTg -1, O}]
= E[eTE - 1] +E[max {l - eTg, 0}]

/ dsl/l - /1 > '&dg,{(1_eT5)

2 (k+ Dy’

where the integral in the penultimate line can be viewed as the normalization constant
of a Dirichlet distribution of order k£ 4+ 1 with parameters (eT, 2)T and thus evaluates

to 1/(k+ 1), see [1]. O

Proposition 1 implies that 1 — Q(e, 1) is strictly negative for k > 4 and can therefore
not be equal to the volume of the polytope P (e, 1).

The remainder of this paper develops as follows. In Sect. 2 we correct the proof
of Dyer and Stougie and show that calculating the expected recourse value of a linear
two-stage stochastic program with fixed recourse is indeed #P-hard. Moreover, we
strengthen the original result by showing that approximating this expected recourse
value within an exponentially small error remains #P-hard. Similar arguments as in [4]
then allow us to conclude that finding an approximately optimal solution is #P-hard as
well. Section 3 shows that linear two-stage stochastic program with random recourse
are #P-hard to approximate within an exponentially small error, and NP-hard to approx-
imate within an inverse polynomial error. Unless P = NP, these stronger results
preclude the existence of fully polynomial-time approximation schemes (FPTAS) for
the generic linear two-stage stochastic program (1), see [6]. We provide concluding
remarks in Sect. 4.

Notation Vectors and matrices are denoted by bold lower-case and upper-case letters,
respectively, while scalars are printed in regular font. We notationally highlight random
objects by a tilde sign. We use e; and e to refer to the i-th canonical basis vector and
the vector of ones, respectively. In both cases, the dimension will be clear from the
context. We define the indicator function ¢} as Ijg) = 1 if the logical expression
€ holds true and 0 otherwise. For any matrix M € R™*", we define its norm by
M|y = maxeern{[|Mx]l1 : [lx[l1 = 1}.

2 Stochastic programs with fixed recourse

In this section we correct the #P-hardness proof of Dyer and Stougie for linear
two-stage stochastic programs with fixed recourse. To this end, we show first that
calculating the volume of a knapsack polytope P(a, ) = {£€ € [0,1]F : aT& < B}

to within a sufficiently high accuracy is #P-hard.

Lemma 1 Computing the volume of the knapsack polytope P (o, B) for o € Rﬁ_ and
B € Ry to within an absolute accuracy of € is #P-hard whenever
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1
€< X .
2k (fleells + 2Ktk + DTG o

3)

The proof of Lemma 1 relies on a reduction from the #PARITY problem, which is
known to be #P-hard [5, Lemma 1].

#PARITY
Instance. Given are & € N¥ and 8 € N, which encode the knapsack polytope
P(a, B).
Question. For K = P (e, B) N {0, 1}*, compute

D=|{eK :e'Eiseven}| — |{§ € K :e'&isodd}|.

Proof of Lemma 1 Consider an instance of the #PARITY problem with input & € NK
and B € N, and select any non-negative € satisfying (3). If «'e < p, then the
knapsack polytope P (e, 8) reduces to the unit hypercube, in which case the solution
to the #PARITY problem is D = 0. From now on we may thus focus on the case
T

a'e> B _

Introduce knapsack budgets y; = (8 + k]ﬁ)’ j =0,...,k, and define the Vander-
monde matrix '
)" ) (0)°
F=| @ 1
0 ot ()
Note that

det(F) = [] i—w) #0

O<i<j<k

because all knapsack budgets are mutually distinct. Thus, F is invertible. We also find

k

_ Lty _ e+pf
IF~" = max ] o< S < (el +2f G+ DY @
i=0,....k j=0|yj_yi| (m)
J#

where the first equality follows from [7, Theorem 1] and the observation that || F -y =
I (F~"T || s, which holds since the 1-norm of a matrix is the maximum of its column
sums and the oo-norm is the maximum of its row sums. The last inequality follows
from the fact that @ "e > B. Next, set g = [Vol(P (e, 1)), . .., Vol(P(et, i)',
which contains the volumes of the k + 1 knapsack polytopes with budgets yyp, .. ., V.
As F is invertible, the system of linear equations

k
Fx = (k! oej)g
=1

J

@ Springer



A comment on “computational complexity of stochastic...” 561

has a unique solution x* € R¥*!, We know from the proof of Theorem 1 in [5] that
x* is in fact an integer vector and that its first element coincides with the solution D
of the #PARITY problem.

In what follows we assume that the vector g of the different knapsack polytopes’
exact volumes is not available but that we can compute an approximation g, = g +ed
withd € [—1, 111, Let x? be the solution of the perturbed system

k

Fx:(k!Haj)ge, (5)

J=1

and note that x} can be computed efficiently by Gaussian elimination, for instance.
By left-multiplying the above equation with F~! we obtain

k k k
x:= (k!Haj)F_1g+e(k!Haj)F_ld=x*+e(k!Haj)F_ld,
j=1 j=1 j=1
where the second equality follows from the definition of x*. Thus, we find
|t —x*|), =€ klﬁa. HF—ldH <! IF~" 1 ldh __Idih 1
A= i {2 (el + 2R +OFT = 264 1)~ 2
(6)

where the first inequality holds due to our choice of € and the definition of the matrix
norm, the second inequality follows from (4), and the third inequality holds because
d € [—1, 1]¥F1. As any two corresponding components of x} and x* differ by strictly
less than % and as the first component of x* coincides with D, we can compute D
by rounding the first component of x* to the nearest integer. In summary, we have
found the following procedure for solving the #PARITY problem: (i) construct F, (ii)
determine g, by calling k + 1 times an algorithm for computing the volume of a
knapsack polytope to within accuracy e, (iii) solve the system of linear equations
(5) to obtain x7}, and (iv) round the first component of x} to the nearest integer. All
operations with the exception of the volume calculations can be carried out in time
polynomial in the bit length of & and 8. Thus, if we could approximate the volume
of P(a, B) fora € Rﬁ_ and 8 € R in time polynomial in the bit length of & and 8,
then we could solve the #PARITY problem efficiently. We conclude that approximating
the volume of a knapsack polytope is at least as hard as solving the #P-hard #PARITY
problem. O

In the remainder we denote by Q(«, 8) = E[Q(g; o, B)] the expected recourse
value of the second-stage problem (2). We first show that the volume of the knapsack
polytope P (e, B) can be expressed in terms of the partial derivative 9 Q(e, 8)/98,
which we abbreviate as Q' (e, ).

Lemma 2 For every a € R’i and B € Ry we have Vol(P (e, B)) = Q'(a, B) + 1.
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Proof Recall that the unique optimal second-stage decisions of problem (2) are y = 0
andz = 0ifa'& < pand y = o and z = 1 otherwise, see [4]. Thus, we have
Qa, B) = E[max{aTE — B, 0}]. As E[€] = e/2 and because the relation

B
max{y — 8,0} =y —/O Ify>yrdy

holds for any B € R and y € R, we find

ale B
e, B) = - - E [/0 H[ungy] dY]
oale B
= [H[oﬁgzyﬂ @
oale

B
_ _/0 [1 — Vol(P(a, y))]dy,

where the second equality follows from Fubini’s theorem. Note that the volume
Vol(P(a, B)) of the knapsack polytope changes continuously with § € R, and thus
O(a, B) is continuously differentiable in . The claim then follows by differentiating
both sides of the above relation with respect to . O

We are now armed to prove the #P-hardness of computing Q(e, §) to high accuracy.
To this end, we show that calculating Q(e, 8) to high accuracy allows us to closely
approximate its derivative Q'(a, 8) and thus, by virtue of Lemma 2, the volume of
the knapsack polytope Vol(P («, )). The # P-hardness then follows from Lemma 1.

Theorem 1 Computing the expected recourse value Q(a, B) of the second-stage prob-
lem (2) for a € R]j_ and B € Ry to within an absolute accuracy of § is #P-hard
whenever

ak ?
<( T ) . @)
2k!(1 + ) (leellt + 2%k + DT o

Proof Consider a knapsack polytope P (e, ) encoded by the parameters & € Rli and
B € R4, where we assume without loss of generality that k > 2. Select any non-
negative 8 satisfying (7) and set & = 2+/6. In the following, we denote by Qs(a, 8)
and Qs (o, S + h) any §-approximations of the expected recourse values Q(«, 8) and
O(a, B + h), respectively. Then, we obtain

Qs(a, B+ h) — Qs(a, B)

+1 —Vol(P(a,ﬂ))‘

h
h) —
— Qa(avﬂ + l/)l Q(S(a’ ﬂ) _ Q/(Ol, ﬂ)‘
_ ‘Qs(ot, B+h) — Qs p) Qe p+h —Qa,p)
- h h
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5 h - 9 /
L[ Q Bt /2 Qe ﬂ)_Q(a’ﬂ)‘
<201 s (@] = VB[ 1+ s Q@ o)),
h 2 ge0.n £€[0,h]

where the first equality holds due to Lemma 2, and the second inequality follows from
Taylor’s theorem. To derive an upper bound on the last expression, we observe that
Q" (a, B) = dVol(P (e, B))/38 > 0 by virtue of Lemma 2. As shown in [5], the vol-
ume of the knapsack polytope P (e, 8) admits the following closed-form expression.

Zve{o,l}k(_l)eTv max{0, B — o T v}k

Vol(P (e, = 8
(P (e, B)) x H];:1 o (®)
To simplify the following derivation, we introduce the shorthand notation oz =
(a1, ..., ax_1) . Differentiating the right-hand side of (8) with respect to 8 yields
Q" (e, B)

e (=D P max{0, f — aTv}!

B k=I5 o

 Sacouitagmo(—DE P max(0, B — a0l 3 g o (<D U max{0, B — T v}

a (k= DT, o

_ Zefo ! (=D max{0, f — LY D S (=D max{0, f — v — o)t

a k= DT, o

1
= — (Vol(P(otg—1, B)) — Vol(P(etx—1, B —a))) < —.
o (679

Since this upper bound is independent of 8, we find that sup,¢ s Q" (a,0) < L.In

o "
summary, we have thus shown that

Qs(a’ ﬁ +h) - Q3(“s ﬂ)
h

+1—V01(P(a,ﬂ))‘ < ﬁ(1+i) < e,

Ok

where e = 1/2k!(||ec||1 + 2)" (k+ l)k+l H];:1 a ). Thus, we can compute the volume
of the knapsack polytope P (et, 8) to within an absolute accuracy of € by computing the
expected recourse values of Q(e, 8) and Q(«, S + h) to within accuracy §, dividing
their difference by 4 and adding 1. With the exception of computing the expected
recourse values, all of these operations can be carried out in time polynomial in the
bit length of the instance of (1) that corresponds to problem (2). We conclude that
computing the expected recourse value Q(e, 8) to within accuracy § is at least as hard
as computing the volume of a knapsack polytope P («, ) to within accuracy €. The
claim then follows from Lemma 1. O

Since the expected recourse value of problem (2) can be computed through a linear
two-stage stochastic program (1) with fixed recourse, we conclude that approximating
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the optimal value of a linear two-stage stochastic program with fixed recourse to high
accuracy is # P-hard as well.

Theorem 1 extends to the problem of determining an approximately optimal deci-
sion to problem (1). To this end, we call a feasible solution x to problem (1) e-optimal
if | f*—(c"x+E[Q(x, &)])| / max{| f*|, 1} < €, where f* denotes the optimal value
of problem (1).

For fixed ¢ € R, we consider the following instance of problem (1) with fixed
recourse: _

maximize —cx + E [Q(x, & a, ,8)]

subjectto x € [0, 1],

&)

where 1} follows a uniform distribution supported on [0, l]k , and for a fixed realization
& the recourse function Q(x, &; a, B) is the optimal value of the second-stage problem

maximize £y — Bz
subjectto y <az, ye R, 0 <z <ux.

As before, we restrict ourselves in the following to the nontrivial case where ale > B.

Theorem 2 Determining an e-optimal decision to the linear two-stage stochastic
program (9) with fixed recourse is #P-hard whenever € < §/(8 max{l, a e — B}) for
8 defined in Theorem 1.

Proof Note that £ [Q(x, E; o, ,3)] = Q(a, B)x, where Q(a, B) denotes the expected

recourse value of the second-stage problem (2). Thus, the optimal solution x* and the
optimal value f* of problem (9) satisfy x* = Oand f* = Oifc > Q(e, 8),x* € [0, 1]
and f* =0if ¢ = Q(a, B), and x* = 1 and f* = Q(e, B) — cif ¢ < Q(a, B).
Assume now that an e-optimal decision x to problem (9) could be found in polynomial
time, and consider the following bisection search:

1. Set[c,cl =[0,a"e — B].

2. Find the e-optimal solution x to problem (9) with ¢ = (¢ + ¢)/2.
3. Setc =cifx < % and set ¢ = ¢ otherwise.

4. Go back to Step 2 as long as ¢ — ¢ > §.

We claim that ¢ — % < Q,B) <c+ % in every iteration of this algorithm. This is
certainly the case in the first iteration. Assume now that the condition is satisfied in the
i-thiteration. We then distinguish the two cases | Q (e, 8) —c| > % and |Q(e, B)—c| <
S.

Assume first that |Q(e, B) — ¢| > %, and let x be an e-optimal solution to prob-
lem (9). Since ¢, Q(et, B) € [0, e — B], we have max{l, |Q(«, B) — c|x*} <
max{l,a’e — B} and thus
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[(Q(a, B) — ) (x* — x)] B - Te_
max(L 0@, B) —cix] <e= |Q(a, B) c||x x| <emax{l,a e— B}

Te_
— |x*_x’<emax{1,oe e—f}

T Q. B) —

= |x*—x|§

’

TN

where the last implication follows from the induction hypothesis and the definition of
€. Thus, x < % implies that x* = 0, thatis, ¢ > Q(«, 8), whereas x > % implies that
x* = 1 and therefore ¢ < Q(«a, B). In either case, we have ¢ — % <Qa,B)<c+ %
in the (i + 1)-th iteration. Note that the case c = Q(a, B) is excluded since we assumed
that |Q(at, B) — ¢| > 3.

Assume now that |Q(e, 8) — c| < % If we set ¢ = ¢ in the i-th iteration, then
|Q(, B) — €| < 3 in the (i + 1)-th iteration, that is, Q(et, B) < ¢ + 3, while ¢
remains unchanged. Likewise, if we set ¢ = ¢, then |Q(«, ) — ¢| < % in the next
iteration, that is, ¢ — % < OQ(«, B), while ¢ remains unchanged. Thus, the condition

c— % < Q(a,B) <c+ % is preserved in both cases. o

Another consequence of Theorem 1 is that computing the expected value of the
non-negative part of a linear combination of uniformly distributed random variables
is # P-hard.

Corollary 1 For fixed values o € ]Rﬁ_ and B € R, approximating the expectation
E [max {aTE - B, 0}]

to within an absolute accuracy § that satisfies the condition of Theorem 1 is #P-hard
even if & follows the uniform distribution supported on [0, 1]*.

3 Stochastic programs with random recourse

We now show that approximately computing the optimal value of the two-stage sto-
chastic program (1) with random recourse is strongly #P-hard, that is, the problem
remains #P-hard under a unary encoding [6]. Our proof relies on the auxiliary result
that calculating the volume of an order polytope to within high accuracy is #P-hard.
For aset § = {l,...,k} and a partial order < defined on S, the order polytope is
P(S;=)={6€l0, 11" : & <& Vi,jeS, i<}

Lemma 3 Computing the volume of the order polytope P (S; <) to within an absolute
accuracy of € is #P-hard whenever € < 5.

The proof of Lemma 3 constructs a reduction from the #LINEAREXTENSION prob-
lem, whose #P-hardness has been established in [3].
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#LINEAREXTENSION
Instance. Given are a set S = {1, ..., k} and a partial order < defined on S.
Question. Compute the number of linear extensions N (S; <) of S under <.

We remind the reader that a linear extension of S under < is a permutation iy, ..., ik
of the elements in S that satisfies £ < £’ whenever iy < ip.

Proof of Lemma 3 Fix an instance of the #L.INEAREXTENSION problem with input S
and <, and let ¥ be an approximation of Vol(P (S; <)) to within an absolute accuracy
of € € [0, 1/2k!). It is shown in [3] that the number of linear extensions N (S; <)
of S under < satisfies N(S; <) = k! Vol(P(S; <)). Thus, by multiplying & with k!
and rounding the result to the nearest integer, we can compute N (S; <). Since each
step except for the volume calculation can be carried out in time polynomial in the bit
length of (S, <), we conclude that approximating the volume of an order polytope is
at least as hard as solving the #P-hard #LINEAREXTENSION problem. O

Lemma 3 allows us to establish the first main~ result of this section. The result studies
the expected recourse value Q(S, <) = E[Q(§; S, <)] of the second-stage problem

maximize z
subjectto z< D (& —&))yij (10)
ijeSti<j
yeRVE ze(0,1]

under the uniform distribution supported on [0, 1]¥, where S and < are fixed para-
meters. Note that problem (10) exhibits random recourse but does not involve any
first-stage decisions.

Theorem 3 Computing the expected recourse value Q(S, X) of the second-stage
problem (10) for S and < to within an absolute accuracy of € is strongly # P-hard
whenever € < sz,

Proof One readily verifies that for a fixed realization & of the random vector E , the
optimal value of the second-stage problem (10) is 0 if § € P(S; <) and 1 otherwise.
We thus conclude that

(5, =) = EIQE S, 91 = E[Igpis o] = 1= VoI(P(S: 2)),

that is, computing the expected recourse value of (10) to within an absolute accuracy
of € allows us to compute the volume of the associated order polytope to within the
same accuracy. From Lemma 3 we know, however, that the latter problem is #P-hard.

It remains to show that computing the expected recourse value Q(S, <) is strongly
#P-hard. Assume, to the contrary, that there is a pseudo-polynomial time algorithm for
computing Q(S, <) to within an accuracy of ¢, that is, an algorithm whose runtime can
be bounded by a polynomial in the bit length of the description of the affine mappings
q, T, W and h in (1) that correspond to problem (10), as well as the largest numeric
value occuring in that description. Since the affine mappings in problem (10) only
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A comment on “computational complexity of stochastic...” 567

contain the coefficients —1, 0 and 1, the runtime of such an algorithm would indeed
be polynomial in the bit length of the description of problem (10). Thus, the existence
of a pseudo-polynomial time algorithm for computing Q(S, <) to within an accuracy
of € would imply that the volume of the associated order polytope could be computed
efficiently, which establishes the strong #P-hardness of the problem. O

Since the expected recourse value of problem (10) can be computed through a linear
two-stage stochastic program (1) with random recourse, we conclude that approximat-
ing the optimal value of a linear two-stage stochastic program with random recourse
to high accuracy is # P-hard as well.

We conclude this section by showing that determining an approximately opti-
mal decision to problem (1) with random recourse is strongly NP-hard. This implies
that unless the problems in NP admit an efficient solution scheme, there is no fully
polynomial-time approximation scheme (FPTAS) for computing the maximum of
problem (1) with random recourse, see [6].

To this end, we recall the definition of the strongly NP-hard Integer Feasibility
Problem [6]:

INTEGER FEASIBILITY PROBLEM
Instance. Given are A € Z"*" and b € Z" such that {y e R" : Ay < b} C
[0, 17".
Question. Is there a vector y € {0, 1}"* such that Ay < b?

The following lemma shows that we can round fractional solutions to the Integer
Feasibility Problem if they are sufficiently close to a binary vector.
Lemma 4 Fix any € < mini{(zj |A;; D7} that satisfies € < % The Inte-
ger Feasibility Problem has an affirmative answer if and only if there is a vector
y € ([0,e'1U1 — €, 11" such that Ay < b.

Proof The ‘only if” direction is immediate. As for the ‘if” direction, fix a fractional
vector y as described in the statement and let y’ be the closest binary vector, that
is, y/ == 1if y; > 1 —€';:= 0if y; < €. We then observe that Zj Aijy} <
Zj Aijyj + Zj |Ajjle’ < Zj Aijyj+1<bi+1foralli =1,...,m.Due to the
integrality of A, y” and b, we thus conclude that Ay’ < b. o

In the following, we fix an instance (A, b) of the Integer Feasibility Problem and
consider the following instance of problem (1) with random recourse:

minimize x +E [Q(x, E)]
subjectto x € R,

(11)

where E follows a uniform distribution supported on [0, 1]%, and for a fixed realization
& the recourse function Q(x, &) amounts to the optimal value of the second-stage
problem
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minimize e’ y

subjectto y e R}, A e RY, x > eTy
iz &+ (b — A5 .

Vi=1,...,m.

yiz(1—&)+ (b— A& "L

Note that this problem does not have relatively complete recourse, that is, for small

values of x the second-stage problem may become infeasible with positive probability,

which in turn implies that this choice of x is infeasible in the first-stage problem (11).

Problems without relatively complete recourse are common in stochastic program-

ming, see [2]. Also, the problem satisfies n = m = k.

Theorem 4 Determining an e-optimal decision to the linear two-stage stochastic
program (11) with random recourse is strongly NP-hard whenever € < €’ /4n for €'
defined in Lemma 4.

Proof If the second-stage problem is feasible for a fixed &, then any optimal solution
(y(&), A(&)) to the second-stage problem satisfies y;(§) = max{§,1 — &}, i =
I,...,n,if A& < band y(§) = 0 otherwise. Assuming that {§ € R" : A& < b} # 0,
the optimal solution x* to problem (11) thus satisfies x* = max{> /L ; max{§;, 1—&} :
A& < b}. Lemma 4 then implies that the answer to the Integer Feasibility Problem is
affirmative if and only if x* = n, and it is negative if and only if x* < n — ¢’

Assume now that an e-optimal solution x to problem (11) could be found in poly-
nomial time. In that case, we obtain

#+E[o H] - v ~E[ow. B
max {1, x*+E [Q(X*’ g)]}

= ‘x* —x’ < € ~max{1,x*+IE[Q(x*,E)]}

6/

= [x* —x| < 2ne < 7

where the equivalence follows from the fact that E [Q(x*, .§ )] =E [Q(x, E )] since

x* and x are both feasible, the first implication holds since both x* and E [Q(x*, .§ )]
do not exceed n by construction, and the last implication follows from the definition
of €. We thus conclude that x* = n whenever x > n — % and x* < n — ¢ whenever

X < n-— %, that is, we could decide the NP-hard Integer Feasibility Problem in
polynomial time. O

4 Conclusion
Despite the hardness results addressed in this paper, there are many interesting two-

stage stochastic programs that can be solved to within workable accuracy. In [12] it
is argued, for instance, that two-stage stochastic programs with relatively complete
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recourse can be solved efficiently with the sample average approximation method to
a moderate relative accuracy of 10% or even 1%. Recall that a two-stage stochas-
tic program has relatively complete recourse if for every feasible first-stage decision
and for every possible realization of the uncertain parameters there exists a feasible
second-stage decision. We emphasize, however, that problem (1) was not assumed
to have relatively complete recourse. Modern methods of Quasi-Monte Carlo (QMC)
integration provide other effective tools for solving two-stage stochastic programs.
Specifically, it is known that integration via QMC algorithms overcomes the curse of
dimensionality in certain mixed Sobolev spaces [13]. This means that the number of
function evaluations needed to guarantee a relative accuracy of € across all integrands
in the underlying Sobolev space is at most polynomial in ¢ ~! and the dimension of .
This result is consistent with the complexity theorems discussed in this note because
the optimal value functions Q(x, &) of linear two-stage stochastic programs fail to
belong to the relevant Sobolev spaces. Moreover, the critical accuracies given in The-
orems 1 and 3, beyond which the evaluation of the expected value functions becomes
intractable, are exponentially small in the input sizes of the corresponding stochastic
programs. Under relatively complete recourse and other technical conditions, it can be
shown, however, that Q (x, £) can be approximated by appropriate Sobolev integrands,
which in turn implies that Q(x, &) can be integrated efficiently via QMC algorithms
with attractive convergence guarantees independent of the dimension of & [8].
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