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Abstract We revisit the proofs of convergence for a first order primal–dual algorithm
for convex optimization which we have studied a few years ago. In particular, we
prove rates of convergence for a more general version, with simpler proofs and more
complete results. The new results can deal with explicit terms and nonlinear proximity
operators in spaces with quite general norms.
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1 Introduction

In thisworkwe revisit a first-order primal–dual algorithmwhichwas introduced in [15,
26] and its accelerated variants which were studied in [5]. We derive new estimates
for the rate of convergence. In particular, exploiting a proximal-point interpretation
due to [16], we are able to give a very elementary proof of an ergodic O(1/N ) rate
of convergence (where N is the number of iterations), which also generalizes to non-
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linear norms [18], to overrelaxed [9,16] and inertial [19] variants. In the second part,
we give new,more precise estimates of the convergence rate for the accelerated variants
of the algorithm. We conclude the paper by showing the practical performance of the
algorithm on a number of randomly generated standard optimization problems.

The new proofs we propose easily incorporate additional smooth terms such as con-
sidered in [9,31] (where convergence is already been proved, without rates), and [4]
(where the proofs of [5] are extended to the framework of [31] which considers gen-
eral monotone operators—in this setting one must also mention the recent work [10]
for a Douglas–Rachford approach to the same problem, with a slightly different algo-
rithm also presenting very good convergence properties). Also, a very recent work of
Drori, Sabach andTeboulle, establishes similar results on a closely related primal–dual
(“PAPC”) algorithm [11], which also handles explicit terms, but cannot jointly handle
(without further splitting) nonsmooth functions in both the primal and dual variables.

We must observe that in addition, our proofs carry on to the nonlinear (or Banach
space) setting. They can indeed take into account without effort non-linear proximity
operators, based on Bregman distance functions (except in the accelerated variables
of the accelerated schemes), in the spirit of the “Mirror-descent” methods introduced
by Nemirovski and Yudin [21]. These were extensively studied by many authors,
see in particular [2,6,29], and [20] in a primal–dual framework. See also [8,25] for
recent advances on such primal–dual algorithms, including stochastic versions. On the
other hand, in the standard Euclidean setting, the algorithm we study can be shown
to be a particular linearized variant of the ADMM algorithm for which a convergence
theory, with more precise results, is found in [28]. We should add that the relationship
between the type of algorithms which we study here and the ADMM was already
stressed in [5] and that, in particular, one can derive from the analysis in [5] and in this
paper convergence rates for the ADMM which are different from the ones currently
found in the literature, see for instance [17].

We are addressing the following problem

min
x∈X

max
y∈Y

L(x, y) = 〈K x, y〉 + f (x) + g(x) − h∗(y), (1)

which is the convex–concave saddle-point form of the “primal” minimization problem

min
x∈X

f (x) + g(x) + h(K x). (2)

Here,X andY are, in themost general setting, real reflexiveBanach spaces endowed
with corresponding norms ‖·‖x and ‖·‖y . Note however that in this setting it is quite
restrictive to assume that K is bounded, so that the reader could assume that they are
finite-dimensional. The only point where it matters is the fact that the estimates we
compute never involve the dimension of the current spaces, except possibly through
quantities such as ‖K‖. For notational simplicity, we will drop the subscript for the
normswhenever there is no ambiguity. The dual spaces (spaces of all continuous linear
functionals) are denoted by X ∗, and Y∗. For x∗ ∈ X ∗ and x ∈ X , the bilinear form
〈x∗, x〉 gives the value of the function x∗ at x . Similar, for y∗ ∈ Y∗ and y ∈ Y, 〈y∗, y〉
gives the value of the function y∗ at y. The norms of the dual spaces are defined as
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‖x∗‖∗ = sup
‖x‖≤1

〈
x∗, x

〉
, ‖y∗‖∗ = sup

‖y‖≤1

〈
y∗, y

〉
.

By definition, we also have that

〈
x∗, x

〉 ≤ ‖x‖ · ‖x∗‖∗,
〈
y∗, y

〉 ≤ ‖y‖ · ‖y∗‖∗.

We further assume that the following assumptions are fulfilled:

(i) K : X → Y∗ is a bounded linear operator, with corresponding adjoint operator
K ∗ : Y → X ∗ defined by

〈K x, y〉 = 〈K ∗y, x
〉 ∀(x, y) ∈ X × Y .

Throughout the whole paper we will keep the notation “L” for the norm of this
operator, defined by

L := ‖K‖ = sup
‖x‖≤1, ‖y‖≤1

〈K x, y〉 = sup
‖x‖≤1

‖K x‖∗ = ‖K ∗‖ = sup
‖y‖≤1

‖K ∗y‖∗.

Hence, we also have that

〈K x, y〉 ≤ ‖K x‖∗‖y‖ ≤ L ‖x‖‖y‖,
〈
K ∗y, x

〉 ≤ ‖K ∗y‖∗‖x‖ ≤ L ‖x‖‖y‖.

For example, let ‖·‖x = ‖·‖p and ‖·‖y = ‖·‖q , with p, q ≥ 1, i.e. the usual �p

norms, then

‖K‖ = sup
‖x‖p≤1

‖K x‖q ′ = sup
‖y‖q≤1

‖K ∗y‖p′ = sup
‖x‖p≤1
‖y‖q≤1

〈K x, y〉 ,

with p′, q ′ such that 1/p + 1/p′ = 1, and 1/q + 1/q ′ = 1.
(ii) f is a proper, lower semicontinuous (l.s.c.), convex function, with ∇ f Lipschitz

continuous on X , i.e.

‖∇ f (x) − ∇ f (x ′)‖∗ ≤ L f ‖x − x ′‖, ∀x, x ′ ∈ X ;

(iii) g, h are proper, l.s.c., convex functions with simple structure, in the sense that
their proximal maps

min
x

g(x) + 1

τ
Dx (x, x̄), min

y
h∗(y) + 1

σ
Dy(y, ȳ),

can be computed for any τ, σ > 0.
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Here Dx and Dy areBregmanproximity/distance functions based on1-strongly convex
(w.r.t. the respective norms) functions ψx and ψy , defined by

Dx (x, x̄) = ψx (x) − ψx (x̄) − 〈∇ψx (x̄), x − x̄〉 ,

Dy(y, ȳ) = ψy(y) − ψy(ȳ) − 〈∇ψy(ȳ), y − ȳ
〉
.

Following [13], we assume that ψx , ψy are continuously differentiable on open sets
Sx , Sy , continuous on Sx , Sy , and that given any converging sequences (xn) and (yn),

xn → x ⇒ lim
n→∞ Dx (x, xn) = 0, yn → y ⇒ lim

n→∞ Dy(y, yn) = 0. (3)

We may of course assume that Sx and Sy are the respective domains of ψx , ψy . We
need, in addition to [13], to assume the strong convexity of our functions to ensure the
convergence of the algorithms studied in this paper. This restricts the possible class
of Bregman functions, notice however that classical examples such as the entropy
ψx (x) = ∑d

i=1 xi log xi is well-known to be 1-strongly convex with respect to the
1-norm [2,29] when restricted to the unit simplex, it is also strongly convex with
respect to the 2-norm on bounded sets of (R+)d . Eventually, we must assume here
that dom g ⊆ dom ψx = Sx and dom h∗ ⊆ dom ψy = Sy .

Clearly, the Lipschitz continuity of f implies that

f (x ′) ≤ f (x) + 〈∇ f (x), x ′ − x
〉+ L f

2
‖x ′ − x‖2, ∀x, x ′ ∈ X . (4)

Furthermore, the 1-strongly convexity of ψx and ψy easily implies that for any x, x̄
and y, ȳ, it holds

Dx (x, x̄) ≥ 1
2‖x − x̄‖2, Dy(y, ȳ) ≥ 1

2‖y − ȳ‖2.

The most common choice for ψx and ψy is the usual squared Euclidean norm 1
2‖·‖22

(or Hilbertian in infinite dimension), which yields

D(x, x̄) = 1

2
‖x − x̄‖22.

We will refer to this classical case as the “Euclidean case”. In this case, it is standard
that given a convex, l.s.c. function φ, if û is the minimizer of

φ(u) + 1

2
‖u − ū‖22

(which we call the “Euclidean proximity map” of φ at ū), then by strong convexity
one has for all u

φ(u) + 1

2
‖u − ū‖22 ≥ φ(û) + 1

2
‖û − ū‖22 + 1

2
‖u − û‖22.
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On the ergodic convergence rates of a first-order… 257

It turns out that this property is true also for non-Euclidean proximity operators, that
is

û = argmin
u

φ(u)+D(u, ū) �⇒ ∀u, φ(u)+D(u, ū) ≥ φ(û)+D(û, ū)+D(u, û).

(5)
This is easily deduced from the optimality conditions for û, see [6,30].

Before closing this section, we point out that most of our results still hold, if the
function h is a convex l.s.c. function of the form [4,19,31]

h(y) = min
y1+y2=y

h1(y1) + h2(y2), (6)

so that

h∗(y) = h∗
1(y) + h∗

2(y),

h∗
1 having simple structure while ∇h∗

2 can be evaluated and is Lipschitz continuous
with parameter Lh∗

2
. For the ease of presentation we will not consider this situation

but we will mention when our results can be extended to this case.

2 The general iteration

Iteration: (x̂, ŷ) = PDτ,σ (x̄, ȳ, x̃, ỹ)

⎧
⎨

⎩

x̂ = argmin
x

f (x̄) + 〈∇ f (x̄), x − x̄〉 + g(x) + 〈K x, ỹ〉 + 1
τ

Dx (x, x̄)

ŷ = argmin
y

h∗(y) − 〈K x̃, y〉 + 1
σ

Dy(y, ȳ).
(7)

The main iterate of the class of primal–dual algorithms we consider in this paper
is defined in (7). It takes the points (x̄, ȳ) as well as the intermediate points (x̃, ỹ) as
input and outputs the new points (x̂, ŷ). It satisfies the following descent rule:

Lemma 1 If (7) holds, then for any x ∈ X and y ∈ Y one has

L(x̂, y) − L(x, ŷ) ≤ 1

τ
Dx (x, x̄) − 1

τ
Dx (x, x̂) − 1

τ
Dx (x̂, x̄) + L f

2
‖x̂ − x̄‖2

+ 1

σ
Dy(y, ȳ) − 1

σ
Dy(y, ŷ) − 1

σ
Dy(ŷ, ȳ)

+ 〈K (x − x̂), ỹ − ŷ
〉− 〈K (x̃ − x̂), y − ŷ

〉
. (8)

Proof From the first line in the above iteration (7) and property (5), it follows:

〈∇ f (x̄), x〉 + g(x) + 〈K x, ỹ〉 + 1
τ

Dx (x, x̄)

≥ 〈∇ f (x̄), x̂
〉+ g(x̂) + 〈K x̂, ỹ

〉+ 1
τ

Dx (x̂, x̄) + 1
τ

Dx (x, x̂).
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Moreover, from the convexity of f and (4) it follows

f (x) ≥ f (x̄) + 〈∇ f (x̄), x − x̄〉 ≥ f (x̂) + 〈∇ f (x̄), x − x̂
〉− L f

2
‖x̂ − x̄‖2.

Combining this with the previous inequality, we arrive at

f (x) + g(x) + 1
τ

Dx (x, x̄) + L f

2
‖x̂ − x̄‖2

≥ f (x̂) + g(x̂) + 〈K (x̂ − x), ỹ
〉+ 1

τ
Dx (x̂, x̄) + 1

τ
Dx (x, x̂). (9)

In the same way:

h∗(y) + 1
σ

Dy(y, ȳ) ≥ h∗(ŷ) − 〈K x̃, ŷ − y
〉+ 1

σ
Dy(ŷ, ȳ) + 1

σ
Dy(y, ŷ). (10)

Summing (9), (10) and rearranging the terms appropriately, we obtain (8) ��.

3 Non-linear primal–dual algorithm

In this sectionwe address the convergence rate of the non-linear primal–dual algorithm
shown in Algorithm 1:

Algorithm 1: O(1/N ) Non-linear primal–dual algorithm

• Input: Operator norm L := ‖K‖, Lipschitz constant L f of ∇ f , and Bregman
distance functions Dx and Dy .

• Initialization: Choose (x0, y0) ∈ X × Y, τ, σ > 0
• Iterations: For each n ≥ 0 let

(xn+1, yn+1) = PDτ,σ (xn, yn, 2xn+1 − xn, yn) (11)

The elegant interpretation in [16] shows that by writing the algorithm in this form
(which “shifts” the updates with respect to [5]), in the Euclidean case, that is ‖·‖x =
‖·‖y = ‖·‖2, and Dx (x, x ′) = 1

2‖x − x ′‖22, Dy(y, y′) = 1
2‖y − y′‖22, then it is an

instance of the proximal point algorithm [27], up to the explicit term ∇ f (xn), since

(
K ∗ + ∂g

−K + ∂h∗
)

(zn+1) + Mτ,σ (zn+1 − zn) �
(−∇ f (xn)

0

)
,

where the variable z ∈ X ×Y represents the pair (x, y), and the matrix Mτ,σ is given
by

Mτ,σ =
( 1

τ
I −K ∗

−K 1
σ

I

)
, (12)

which is positive-definite as soon as τσ L2 < 1. A proof of convergence is easily
deduced. Moreover, since in our particular setting we never really use the machinery
of monotone operators, and rely only on the fact that we are studying a specific

123



On the ergodic convergence rates of a first-order… 259

saddle-point problem, the results are a bit improved: in particular we deal easily with
the explicit term f and non-linear proximity operators.

Theorem 1 Let (xn, yn), n = 0, . . . , N − 1 be a sequence generated by the non-
linear primal–dual algorithm (11). Let the step size parameters τ, σ > 0 be chosen
such that for all x, x ′ ∈ dom g and y, y′ ∈ dom h∗ it holds that

(
1

τ
− L f

)
Dx (x, x ′) + 1

σ
Dy(y, y′) − 〈K (x − x ′), y − y′〉 ≥ 0. (13)

Then, for any (x, y) ∈ X × Y it holds that

L(X N , y)−L(x, Y N ) ≤ 1

N

(
1

τ
Dx (x, x0) + 1

σ
Dy(y, y0) −

〈
K (x − x0), y − y0

〉)
,

(14)
where X N = 1

N

∑N
n=1 xn, and Y N = 1

N

∑N
n=1 yn.

Proof According to the iterative scheme (11), the estimate (8) becomes

L(xn+1, y) − L(x, yn+1) ≤
[
1

τ
Dx (x, xn) + 1

σ
Dy(y, yn) − 〈K (x − xn), y − yn 〉

]

−
[
1

τ
Dx (x, xn+1) + 1

σ
Dy(y, yn+1) −

〈
K (x − xn+1), y − yn+1

〉 ]

−
[
1

τ
Dx (xn+1, xn) + 1

σ
Dy(yn+1, yn) −

〈
K (xn+1 − xn), yn+1 − yn

〉

− L f

2
‖xn+1 − xn‖2

]
. (15)

Thanks to (13), the terms in the brackets are non-negative. Now we sum the last
estimate from n = 0, . . . , N − 1 and find

N∑

n=1

L(xn, y) − L(x, yn) ≤ 1

τ
Dx (x, x0) + 1

σ
Dy(y, y0) −

〈
K (x − x0), y − y0

〉
,

where we have removed negative terms on the right hand side. Equation (14) follows
from the convexity of (ξ, η) �→ L(ξ, y) − L(x, η). ��

Remark 1 Observe that since Dx (·, x ′) and Dy(·, y′) are 1-convex, (13) is ensured as
soon as (

1

τ
− L f

)
1

σ
≥ L2. (16)
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260 A. Chambolle, T. Pock

Remark 2 The rate (14) can also be written solely in terms of the distance functions
Dx and Dy . In fact, for any α > 0,

∣∣∣
〈
K (x − x0), y − y0

〉∣∣∣ ≤ L‖x − x0‖‖y − y0‖

≤ αL

2
‖x − x0‖2 + L

2α
‖y − y0‖2 ≤ αL Dx (x, x0)

+ L

α
Dy(y, y0).

In case L f = 0, τσ L2 = 1 and choosing α = 1/(τ L), the rate (14) becomes

L(X N , y) − L(x, Y N ) ≤ 2

N

(
1

τ
Dx (x, x0) + 1

σ
Dy(y, y0)

)
. (17)

In the Euclidean setting, that is ‖·‖x = ‖·‖y = ‖·‖2 = 〈·, ·〉 1
2 , and D(x, x ′) =

1
2‖x − x ′‖22, D(y, y′) = 1

2‖y − y′‖22, the estimate (15) reduces to

L(xn+1, y) − L(x, yn+1) ≤ 1

2
‖z − zn‖2Mτ,σ

− 1

2
‖z − zn+1‖2Mτ,σ

− 1

2
‖zn+1 − zn‖2Mτ,σ

+ L f

2
‖xn+1 − xn‖22,

with Mτ,σ defined in (12). This can also be rewritten as

L(xn+1, y) − L(x, yn+1) ≤
〈
zn+1 − zn, z − zn+1

〉

Mτ,σ

+ L f

2
‖xn+1 − xn‖22 (18)

while the final estimate (14) becomes

L(X N , y) − L(x, Y N ) ≤ 1

2N
‖z − z0‖2Mτ,σ

. (19)

Observe that this rate is different from the rate obtained in [5], which does only depend
on the diagonal part of Mτ,σ (each rate can be bounded by twice the other).

Remark 3 If we assume in addition that the inequality τσ L2 < 1 is strict (which
follows from (16) if L f > 0, and has to be assumed else), then we can deduce as
in [5] convergence results for the algorithm, whenever a saddle-point z∗ = (x∗, y∗)
exists. The first thing to observe is that this inequality yields that

1

τ
Dx (x, x ′) + 1

σ
Dy(y, y′) − 〈K (x − x ′), y − y′〉 ≥ α

(
‖x − x ′‖2 + ‖y − y′‖2

)

(20)
for someα > 0.As a consequence, it follows from (15) that the sequence zn = (xn, yn)

is globally bounded [indeed,L(X N , y∗)−L(x∗, Y N ) ≥ 0]. Obviously, this also yields
a bound for Z N = (X N , Y N ). Wemay thus assume that a subsequence (Z Nk )k weakly
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On the ergodic convergence rates of a first-order… 261

converges inX ×Y to some Z = (X, Y ), and from (14) and the lower-semicontinuity
of f, g, h∗ it follows that the limit Z is a saddle-point.

In finite dimension, we can also show the convergence of the whole sequences zn

and Z N to the same saddle-point. The proof follows the proof in [5,26], in the linear
case. Let us assume that z is a limit point for a subsequence (znk )k , then since (15)
guaranties the summability of ‖zn+1 − zn‖2, we have that also znk±1 → z. It follows
that z is a fixed point of the algorithm and thus a saddle-point [which we now denote
z∗ = (x∗, y∗)].

Let m ≥ 0 be the limit of the nonincreasing sequence

1

τ
Dx (x∗, xn) + 1

σ
Dy(y∗, yn) − 〈K (x∗ − xn), y∗ − yn 〉 ,

we wish to show that m = 0. Since znk → z∗ we deduce

lim
k→∞

1

τ
Dx (x∗, xnk ) + 1

σ
Dy(y∗, ynk ) = m.

Using assumption (3), we deduce m = 0. The convergence of the global sequence
follows from (20). In Hilbert spaces of infinite dimension, the same proof shows
weak convergence of the sequence for Euclidean proximity operators, invokingOpial’s
theorem [24].

Remark 4 In theEuclidean setting andwhen g = 0, a better algorithm (in fact, optimal,
see [21,23]) is proposed in [7], which yields a rate of order O(L f /N 2 + L/N ).

Remark 5 In case h has the composite form (6), then the theorem still holds with the
condition (16) replaced with

(
1

τ
− L f

)(
1

σ
− Lh∗

2

)
≥ L2. (21)

4 Overrelaxed and inertial variants

In this section, we consider overrelaxed and inertial versions of the primal–dual algo-
rithm. We will only consider the Euclidean setting, that is ‖·‖x = ‖·‖y = ‖·‖2 =
〈·, ·〉 1

2 , and D(x, x ′) = 1
2‖x − x ′‖22, D(y, y′) = 1

2‖y − y′‖22, since our proofs heavily
rely on the fact that ‖·‖22 = 〈·, ·〉.
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262 A. Chambolle, T. Pock

4.1 Relaxed primal–dual algorithm

Algorithm 2: O(1/N ) Overrelaxed primal–dual algorithm

• Input: Operator norm L = ‖K‖2,2, Lipschitz constant L f of ∇ f , Bregman
distance functions D(x, x ′) = 1

2‖x − x ′‖22, D(y, y′) = 1
2‖y − y′‖22.

• Initialization: Choose z0 = (x0, y0) ∈ X × Y, τ, σ > 0 and ρn ∈ (0, 2)
• Iterations: For each n ≥ 0 let

{
(ξn+1, ηn+1) = PDτ,σ (xn, yn, 2ξn+1 − xn, yn)

zn+1 = (1 − ρn)zn + ρnζ n+1 (22)

where zn = (xn, yn) and ζ n = (ξn, ηn).

First we consider the overrelaxed primal–dual Algorithm 2, whose convergence has
been considered already in [14,16]. It is known that an overrelaxation parameter close
to 2 can speed up the convergence but a theoretical justification was still missing.

Theorem 2 Assume ‖·‖x = ‖·‖y = ‖·‖2 = 〈·, ·〉 1
2 , Dx (x, x ′) = 1

2‖x − x ′‖22,
Dy(y, y′) = 1

2‖y − y′‖22. Let (ξn, ηn), n = 0, . . . , N − 1 be a sequence generated by
the overrelaxed Euclidean primal–dual algorithm (22). Let the step size parameters
τ, σ > 0 and the overrelaxation parameter ρn be a non-decreasing sequence in (0, ρ)

with ρ < 2 such that for all x, x ′ ∈ dom g and y, y′ ∈ dom h∗ it holds that

(
1

τ
− L f

2 − ρ

)
1

σ
> ‖K‖22. (23)

Then, for any z = (x, y) ∈ X × Y it holds that

L(X N , y) − L(x, Y N ) ≤ 1

2ρ0N
‖z − z0‖2Mτ,σ

, (24)

where X N = 1
N

∑N
n=1 ξn, and Y N = 1

N

∑N
n=1 ηn.

Proof We start with the basic inequality (8). According to (22), using z̄ = zn and
z̃ = (2ξn+1 − xn, yn) and ẑ = ζ n+1, we obtain

L(ξn+1, y) − L(x, ηn+1) ≤
〈
ζ n+1 − zn, z − ζ n+1

〉

Mτ,σ

+ L f

2
‖ξn+1 − xn‖22,

where Mτ,σ is defined in (12) and we have used the fact that 2 〈a, b〉M = ‖a‖2M +
‖b‖2M −‖a − b‖2M . Now, observe that from the second line in (22), the auxiliary point
ζ n+1 can be written as

ζ n+1 = zn + 1

ρn
(zn+1 − zn).
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Substituting back into the previous inequality, we have

L(ξn+1, y) − L(x, ηn+1)

≤
〈
zn + 1

ρn
(zn+1 − zn) − zn, z − zn − 1

ρn
(zn+1 − zn)

〉

Mτ,σ

+ L f

2
‖xn + 1

ρn
(xn+1 − xn) − xn‖22

= 1

ρn

〈
zn+1 − zn, z − zn 〉

Mτ,σ
− 1

ρ2
n
‖zn+1 − zn‖2Mτ,σ

+ L f

2ρ2
n
‖xn+1 − xn‖22

= 1

2ρn

(
‖z − zn‖2Mτ,σ

− ‖z − zn+1‖2Mτ,σ

)

− 2 − ρn

2ρ2
n

‖zn+1 − zn‖2Mτ,σ
+ L f

2ρ2
n
‖xn+1 − xn‖22

≤ 1

2ρn

(
‖z − zn‖2Mτ,σ

− ‖z − zn+1‖2Mτ,σ

)
− 2 − ρn

2ρ2
n

‖zn+1 − zn‖2Mτ,σ,ρn
,

where we have defined the metric

Mτ,σ,ρn =
((

1
τ

− L f
2−ρn

)
I −K ∗

−K 1
σ

I

)

,

which is positive definite for all n as soon as (23) is fulfilled. In addition, since ρn is
a non-decreasing sequence in (0, ρ) with ρ < 2, summing the above inequality for
n = 0, . . . , N − 1 and omitting all nonpositive terms on the right hand side, it follows

N∑

n=1

L(ξn, y) − L(x, ηn) ≤ 1

2ρ0
‖z − z0‖2Mτ,σ

.

The final estimate (24) follows from defining appropriate averages and the convexity
of the gap function. ��
Remark 6 The last result indeed shows that the convergence rate is improved by choos-
ing ρ0 as large as possible, i.e. close to 2. However, observe that in case the smooth
explicit term ∇ f is not zero, it might be less beneficial to use a overrelaxation para-
meter larger than one since it requires a smaller primal step size τ .

4.2 Inertial primal–dual algorithm

Next, we consider an inertial version of the primal–dual algorithm, who has recently
been considered in [19] as an extension of the inertial proximal point algorithm of
Alvarez and Attouch [1]. It has already been observed in numerical experiments that
inertial terms leads to a faster convergence of the algorithm. Here we give a theoretical
evidence that indeed the presence of an inertial term leads to a smaller worst-case
complexity.
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Algorithm 3: O(1/N ) Inertial primal–dual algorithm

• Input:Operator norm L = ‖K‖2,2, Lipschitz constant L f of∇ f , andBregman
distance functions Dx (x, x ′) = 1

2‖x − x ′‖22 and Dy(y, y′) = 1
2‖y − y′‖22.

• Initialization: Choose (x−1, y−1) = (x0, y0) ∈ X × Y, τ, σ > 0 and αn ∈
[0, 1/3)

• Iterations: For each n ≥ 0 leta

{
ζ n = zn + αn(zn − zn−1)

(xn+1, yn+1) = PDτ,σ (ξn, ηn, 2xn+1 − ξn, ηn)
(25)

a Here as before, z = (x, y) and similarly, ζ = (ξ, η).

Theorem 3 Assume ‖·‖x = ‖·‖y = ‖·‖2 = 〈·, ·〉 1
2 , Dx (x, x ′) = 1

2‖x − x ′‖22,
Dy(y, y′) = 1

2‖y − y′‖22. Let (xn, yn), n = 0, . . . , N − 1 be a sequence generated
by the inertial Euclidean primal–dual algorithm (25). Let the step size parameters
τ, σ > 0 and the inertial parameter αn be a non-decreasing sequence in [0, α] with
α < 1/3 such that for all x, x ′ ∈ dom g and y, y′ ∈ dom h∗ it holds that

(
1

τ
− (1 + α)2

1 − 3α
L f

)
1

σ
> ‖K‖22. (26)

Then, for any z = (x, y) ∈ X × Y it holds that

L(X N , y) − L(x, Y N ) ≤ 1 − α0

2N
‖z − z0‖2Mτ,σ

, (27)

where X N = 1
N

∑N
n=1 xn, and Y N = 1

N

∑N
n=1 yn.

Proof We again start with the basic inequality (8). According to (25), using z̄ = ζ n

and ẑ = zn+1, we have

L(xn+1, y) − L(x, yn+1) ≤
〈
zn+1 − ζ n, z − zn+1

〉

Mτ,σ

+ L f

2
‖xn+1 − ξn‖22.

Plugging in the first line of (25) we arrive at

L(xn+1, y)−L(x, yn+1)

≤
〈
zn+1 − zn, z − zn+1

〉

Mτ,σ

− αn

〈
zn − zn−1, z − zn+1

〉

Mτ,σ

+ L f

2
‖xn+1 − xn − αn(xn − xn−1)‖22

≤
〈
zn+1 − zn, z − zn+1

〉

Mτ,σ

− αn

〈
zn − zn−1, z − zn + zn − zn+1

〉

Mτ,σ

+ L f

2

(
(1 + αn)‖xn+1 − xn‖22 + (αn + α2

n)‖xn − xn−1‖22
)
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≤ 1

2

(
‖z − zn‖2Mτ,σ

− ‖z − zn+1‖2Mτ,σ
− ‖zn+1 − zn‖2Mτ,σ

)

− αn

2

(
‖z − zn−1‖2Mτ,σ

− ‖z − zn‖2Mτ,σ
− ‖zn − zn−1‖2Mτ,σ

)

− αn

〈
zn − zn−1, zn − zn+1

〉

Mτ,σ

+ L f

2

(
(1 + αn)‖xn+1 − xn‖22 + (αn + α2

n)‖xn − xn−1‖22
)

.

Using the inequality | 〈a, b〉M | ≤ 1
2

(‖a‖2M + ‖b‖2M
)
we obtain the estimate

L(xn+1, y) − L(x, yn+1)

≤ 1

2

(
‖z − zn‖2Mτ,σ

− ‖z − zn+1‖2Mτ,σ

)
+ αn

2

(
‖z − zn‖2Mτ,σ

− ‖z − zn−1‖2Mτ,σ

)

+ αn − 1

2
‖zn+1 − zn‖2Mτ,σ

+ αn‖zn − zn−1‖2Mτ,σ

+ L f

2

(
(1 + αn)‖xn+1 − xn‖22 + (αn + α2

n)‖xn − xn−1‖22
)

.

Now, since αn ≥ 0 is non-decreasing and z−1 = z0, summing the above inequality
for n = 0, . . . , N − 1, we find:

N∑

n=1

L(xn, y) − L(x, yn) ≤ 1 − α0

2
‖z − z0‖2Mτ,σ

− 1

2
‖z − zN ‖2Mτ,σ

+ αN−1

2
‖z − zN−1‖2Mτ,σ

+
N−2∑

n=0

3αn+1 − 1

2
‖zn+1 − zn‖2Mτ,σ,αn+1

+ αN−1 − 1

2
‖zN − zN−1‖2Mτ,σ

+ L f

2
(1 + αN−1)‖x N − x N−1‖22,

where

Mτ,σ,αn =
(( 1

τ
− (1+αn)2

1−3αn
L f
)
I −K ∗

−K 1
σ

I

)

,

which is positive definite for all n as soon as (26) is fulfilled for all αn ≤ α < 1/3

since the function (1+αn)2

1−3αn
is monotonically increasing in αn . Our last estimate can be

further simplified as
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N∑

n=1

L(xn, y) − L(x, yn) ≤ 1 − α0

2
‖z − z0‖2Mτ,σ

+ αN−1

2
‖z − zN−1‖2Mτ,σ

+ αN−1 − 1

2
‖zN − zN−1‖2Mτ,σ

− 1

2
‖z − zN ‖2Mτ,σ

+ L f

2
(1 + αN−1)‖x N − x N−1‖22

It remains to show that the term in the last two lines of the above estimate is nonpositive.
In fact:

αN−1

2
‖z − zN + zN − zN−1‖2Mτ,σ

+ αN−1 − 1

2
‖zN − zN−1‖2Mτ,σ

− 1

2
‖z − zN ‖2Mτ,σ

+ L f

2
(1 + αN−1)‖x N − x N−1‖22

≤ αN−1

(
‖z − zN ‖2Mτ,σ

+ ‖zN − zN−1‖2Mτ,σ

)
+ αN−1 − 1

2
‖zN − zN−1‖2Mτ,σ

− 1

2
‖z − zN ‖2Mτ,σ

+ L f

2
(1 + αN−1)‖x N − x N−1‖22

=
(

αN−1 − 1

2

)
‖z − zN ‖2Mτ,σ

+ 3αN−1 − 1

2
‖zN − zN−1‖2Mτ,σ

+ L f

2
(1 + αN−1)‖x N − x N−1‖22

=
(

αN−1 − 1

2

)
‖z − zN ‖2Mτ,σ

+ 3αN−1 − 1

2
‖zN − zN−1‖2P ≤ 0,

as αn ≤ α < 1/3 and as the matrix

P =
⎛

⎝

(
1
τ

− 1+αN−1
1−3αN−1

L f

)
I −K ∗

−K 1
σ

I

⎞

⎠

is clearly positive definite if (26) is fulfilled. It remains to derive the ergodic rate by
defining appropriate averages and exploiting the convexity of the gap function. ��
Remark 7 This result again shows that it is beneficial to choose α0 as large as possible,
i.e. α0 close to 1/3 in order to reduce the constant on the right hand side. Similar to
the case of overrelaxation, larger values of αn leads to smaller primal step sizes τ and
hence an inertial term might be less beneficial in presence of an explicit term ∇ f .

Remark 8 Letting γ = τ L f we find that the parameter α should satisfy

α <

√
16γ + 9 − 3

2γ
− 1

in order for the left-hand side term in (26) to be positive (and then σ needs to be
chosen accordingly). We point out that this condition is a bit more restrictive than the
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condition in [19]. This is due to the fact that our convergence proof is based on the
Lipschitz continuity of ∇ f rather than its co-coercivity, which leads to the loss of a
factor 2 in the size of the primal step size τ relatively to the Lipschitz parameter L f .

5 Acceleration for strongly convex problems

Here in this section, we slightly improve the results in [5] on accelerated algorithms.
We address more precisely the natural generalization proposed in [9] (also [31]) and
studied in [4] (where rates of convergence are proven). The main novelty with respect
to [4] is a proof that in an ergodic sense, also the primal–dual gap is controlled and
decreases at rate O(1/N 2) where N is the number of iterations. In addition to our
assumptions (i)–(iii) we assume that

(iv) f or g (or both) are strongly convex with respective parameters γ f , γg and hence
the primal objective is strongly convex with parameter γ = γ f + γg > 0.

In fact, we observe that since

f (x) + g(x) =
(

f (x) − γ f

2
‖x‖2

)
+
(

g(x) + γ f

2
‖x‖2

)

we can “transfer” the strong convexity of f to g: letting f̃ = f − γ f ‖·‖2/2, g̃ =
g + γ f ‖·‖2/2, and γ = γ f + γg , we have now that g̃ is γ -convex. In addition,
∇ f̃ = ∇ f − γ f I , so that

x ′ = (I + τ̃ ∂ g̃)−1
(

x − τ̃∇ f̃ (x)) ⇔ x ′ = (I + τ∂g)−1(x − τ∇ f (x)
)

with

τ = τ̃

1 + γ f τ̃
, so that τ̃ := τ

1 − γ f τ
(28)

(observe that τ needs, as expected, to be less than 1/γ f > 1/L f ). In addition, we find
that ∇ f̃ is (L f − γ f )—Lipschitz. Hence in the following, to simplify we will just
assume that g is strongly convex (that is, γ f = 0, γ = γg), replacing assumption (iv)
with the simpler assumption:

(iv’) g is strongly convex with parameter γ > 0.

We must eventually mention here that in case f = 0, the dual problem, which has
the form miny g∗(−K ∗y)+h∗(y), is the sum of a smooth plus a nonsmooth objective
which could be tackled directly by more standard optimal methods [3,22,23] yielding
similar convergence rates (provided one knows how to compute the Lipschitz gradient
∇g∗, which is slightly different from the assumptions we use in this paper).

5.1 Convergence analysis

With this additional assumption, the descent rule (9) can be slightly improved: indeed,
thanks to the strong convexity of g, we can control an additional quadratic term on the
right-hand side. It follows that for any x ∈ X ,
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f (x) + g(x) + 1
τ

Dx (x, x̄) + L f
2 ‖x̂ − x̄‖2

≥ f (x̂) + g(x̂) + 〈K (x̂ − x), ỹ
〉+ 1

τ
Dx (x̂, x̄) + 1

τ
Dx (x, x̂) + γ

2 ‖x − x̂‖2.
(29)

It follows that (8) is also improved, with the additional term γ
2 ‖x − x̂‖2 on the left-

hand side. One sees that one will be able to obtain a good convergence rate whenever
the last two terms in (29) can be combined into one, which requires that Dx (x, x̂) =
1
2‖x − x̂‖22, that is, we must consider linear proximity operators in the x variable.1 To
simplify the notation we will drop the subscript “2” in the norm for x , in the rest of
this section.

Algorithm 4: O(1/N 2) Accelerated primal–dual algorithm

• Input: Operator norm L = ‖K‖, Lipschitz constant L f of ∇ f , parameter
γ of strong convexity of g, and Bregman distance function Dy, Dx (x, x ′) =
1
2‖x − x ′‖22

• Initialization: Choose x−1 = x0 ∈ X , τ0, σ0, θ0 > 0 which satisfy (34).
• Iterations: For each n ≥ 0 let

{(
xn+1, yn+1

)
= PDτn ,σn

(
xn, yn, xn + θn

(
xn − xn−1

)
, yn+1

)

τn+1, σn+1, θn+1 satisfy (32), (33), (34).
(30)

Now, we can specialize “à la” [5]. That is, we choose in (8) ỹ = ŷ = yn+1, x̂ =
xn+1, x̃ = xn + θn(xn − xn−1), x̄ = xn, ȳ = yn , and make τ, σ depend also on the
iteration counter n. In particular, now, for any (x, y) ∈ X × Y ,

〈
K (x − x̂), ŷ − ỹ

〉− 〈K (x̂ − x̃), y − ŷ
〉

= −
〈
K (xn+1 − xn), y − yn+1

〉
+ θn

〈
K (xn − xn−1), y − yn+1

〉

= −
〈
K (xn+1 − xn), y − yn+1

〉
+ θn

〈
K (xn − xn−1), y − yn

〉

+ θn

〈
K (xn − xn−1), yn − yn+1

〉
.

The last term is simply controlled by observing that

θn

〈
K (xn − xn−1), yn − yn+1

〉

≥ −θn L‖xn − xn−1‖‖yn − yn+1‖ ≥ −θn L

(

μ
‖xn − xn−1‖

2

2

+ ‖yn − yn+1‖
2μ

2
)

1 It must be observed here that the right assumption on g to obtain an accelerated scheme with an arbitrary
Bregman distance Dx should be that g is “strongly convex with respect to ψx ”, in the sense that g − γψx
is convex. The proof would then be similar. However, it is not clear whether this covers very interesting
situations beyond the standard case.
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for any μ > 0, and choosing μ = θn Lσn we obtain

〈
K (x − x̂), ŷ − ỹ

〉− 〈K (x̂ − x̃), y − ŷ
〉

≥ −
〈
K (xn+1 − xn), y − yn+1

〉
+ θn

〈
K (xn − xn−1), y − yn

〉

− ‖yn+1 − yn‖
2σn

2

− (θ2n L2σn)
‖xn − xn−1‖

2

2

.

To sum up, it follows from (8), with the additional strong convexity term from (29),
that for any (x, y), using also that Dy(yn+1, yn) ≥ 1

2‖yn+1 − yn‖2,

‖x − xn‖
2τn

2

+ Dy(y, yn)

σn
− θn

〈
K (xn − xn−1), y − yn

〉
+ θ2n L2σn

2
‖xn − xn−1‖2

≥ L(xn+1, y) − L(x, yn+1) + 1 + γ τn

2τn
‖x − xn+1‖2

+ Dy(y, yn+1)

σn
−
〈
K (xn+1 − xn), y − yn+1

〉
+ 1 − L f τn

2τn
‖xn+1 − xn‖2.(31)

Assume the sequences θn, τn, σn satisfy for all n ≥ 0

1 + γ τn

τn
≥ 1

θn+1τn+1
, (32)

1

σn
= 1

θn+1σn+1
, (33)

L2σn ≤ 1

τn
− L f . (34)

Then (31) becomes (using θ2n L2σn = θn L2σn−1, thanks to (33))

‖x − xn‖
2τn

2

+ Dy(y, yn)

2σn
+ θn

(
L2σn−1

‖xn − xn−1‖
2

2

−
〈
K (xn −xn−1), y − yn

〉 )

≥ L(xn+1, y) − L(x, yn+1) + 1

θn+1

(‖x − xn+1‖
2τn+1

2

+ Dy(y, yn+1)

2σn+1

+ θn+1

(
L2σn

‖xn+1 − xn‖
2

2

−
〈
K (xn+1 − xn), y − yn+1

〉 ))
. (35)

Observe that from (33),
∏N

n=1 θn = σ0/σN . We now let

TN =
N∑

n=1

σn−1

σ0
, X N = 1

TN

N∑

n=1

σn−1

σ0
xn, Y N = 1

TN

N∑

n=1

σn−1

σ0
yn . (36)
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Then, summing (35) (first multiplied on both sides by σn/σ0) from n = 0 to n = N −1
and assuming x−1 = x0, using also the convexity of (ξ, η) �→ L(ξ, y) −L(x, η) (for
fixed x, y), we deduce

TN

(
L(X N , y) − L(x, Y N )

)
+ σN

σ0

(‖x − x N ‖
2τN

2

+ Dy(y, yN )

σN

+ θN

(
L2σN−1

‖x N − x N−1‖
2

2

−
〈
K (x N − x N−1), y − yN

〉 ))

≤ ‖x − x0‖
2τ0

2

+ Dy(y, y0)

σ0
.

Considering eventually that [using again (33)]

〈
K (x N − x N−1), y − yN

〉
≤ Dy(y, yN )

θN σN
+ L2σN−1

2
‖x N − x N−1‖2,

we deduce the following result.

Theorem 4 Assume Dx (x, x ′) = 1
2‖x − x ′‖2x . Let (xn, yn) be a sequence generated

by Algorithm 4, and let (X N , Y N ) and (TN ) be the ergodic averages given by (36).
Then, for all x and y, for all N ≥ 1, one has the estimate

TN

(
L(X N , y) − L(x, Y N )

)
+ σN

σ0

‖x − x N ‖
2τN

2

≤ ‖x − x0‖
2τ0

2

+ Dy(y, y0)

σ0
. (37)

Remark 9 Notice that, taking (x, y) = (x∗, y∗) a saddle-point in (37), we find that X N

and x N are bounded (and converge to x∗). If we assume that h has full domain, so that
h∗(y)/|y| → ∞ as |y| → ∞, we deduce that also Y N is bounded (since otherwise
−L(x∗, Y N ) would go to infinity), and it follows that the (x, y) which realize the
supremum in the expression L(X N , y) − L(x, Y N ) are also globally bounded. It
follows the global estimate on the gap

sup
x,y

L(X N , y) − L(x, Y N ) ≤ C

TN
. (38)

5.2 Parameter choices

It turns out that it is possible to choose sequences (τn, σn, θn) satisfying (32), (33), (34)
in order to have 1/TN = O(1/N 2). A possible choice, similar to [5], to ensure (32),
(33), (34) is to keep the product σnτn constant and let

θn+1 = 1√
1 + γ τn

, τn+1 = θn+1τn , σn+1 = σn/θn+1. (39)
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Then, letting

τ0 = 1

2L f
, σ0 = L f

L2

(or τ0 = σ0 = 1/L if L f = 0), we find that by induction, since τn+1/τn = σn/σn+1 <

1 for each n, (34) will be satisfied. We refer to [5] for a proof that this choice ensures
that σn ∼ γ n/(4L2), so that TN ∼ γ N 2/(4L f ).

A simpler (still slightly suboptimal) choice is to take σ0 > 0 arbitrary, and

τn = 2

γ n + 2(L f + L2σ0)
, σn = σ0 + γ nσ0

γ + 2(L f + L2σ0)
. (40)

Then, (32), (33), (34) hold, and

TN = N + N (N − 1)

2

γ

γ + 2(L f + L2σ0)
. (41)

Observe that in this case,

θn+1 = σn

σn+1
= γ (n + 1) + 2(L f + L2σ0)

γ (n + 2) + 2(L f + L2σ0)

and

θn+1τn+1 = 2

γ (n + 2) + 2(L f + L2σ0)
= τn

1 + γ τn
,

that is, the equality holds in (32).
The optimal rule should consist in choosing equalities in (32), (33) and (34). We

find that σ0 > 0 can be chosen arbitrarily,

τ0 = 1

L f + L2σ0
,

and then:

1 + γ τn = τn

τn+1

σn+1

σn
= τ 2n

τ 2n+1

1 − L f τn+1

1 − L f τn
,

τ 2n+1

1 − L f τn+1
= τ 2n

(1 + γ τn)(1 − L f τn)
=: β2

n+1

so that, assuming L f τn < 1 (which is true for n = 0),
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τn+1 = βn+1

(√

1 + L2
f
4 β2

n+1 − L f

2
βn+1

)

= βn+1√

1 + L2
f
4 β2

n+1 + L f
2 βn+1

= τn√

(1 + γ τn)(1 − L f τn) + L2
f
4 τ 2n + L f

2 τn

≤τn,

and

θn+1 =

√

(1 + γ τn)(1 − L f τn) + L2
f
4 τ 2n + L f

2 τn

1 + γ τn
∈
(

1

1 + γ τn
,

1√
1 + γ τn

)
.

Let us denote τ
opt
n , σ

opt
n and T opt

N the τn, σn and TN obtained by this “optimal” rule
(and the corresponding TN ) and let us keep the notation τn, σn, TN for the expressions
in (40) and (41). These choices, in particular, satisfy the equality in (32), (33), but a
strict inequality (for n ≥ 1) in (34). We assume that the starting point σ0 = σ

opt
0 is the

same, then of course also τ0 = τ
opt
0 . Then one has:

Lemma 2 For each n ≥ 0, σ opt
n ≥ σn, and T opt

n ≥ Tn ∼ cn2.

Proof We proceed by induction. We assume σ
opt
n ≥ σn , which is true for n = 0.

For practical reasons, let us set Xopt
n = L2σ

opt
n , Y opt

n = −1/τ opt
n , Xn = L2σn , and

Yn = −1/τn . Then from the equality in (32), we have for all n

Xn+1Yn+1 = XnYn − γ Xn, Xopt
n+1Y opt

n+1 = Xopt
n Y opt

n − γ Xopt
n , (42)

We also assume �n := XnYn ≥ �
opt
n := Xopt

n Y opt
n , which is true at n = 0. It follows

then that from (42) and Xopt
n ≥ Xn that�n+1 ≥ �

opt
n+1. Observe that being this product

negative, it means in fact that |�n+1| ≤ |�opt
n+1|.

On the other hand, from (34), one has that

�n+1 := Xn+1 + Yn+1 ≤ −L f = Xopt
n+1 + Y opt

n+1 =: �
opt
n+1 ≤ 0

(and, again, |�n+1| ≥ |�opt
n+1|).

One has then

Xn+1 =
�n+1 +

√
�2

n+1 − 4�n+1

2
=
√

�2
n+1 + 4|�n+1| −

√
�2

n+1

2
,

which, by concavity of
√· and since �2

n+1 ≥ (�
opt
n+1)

2, |�n+1| ≤ |�opt
n+1|, is less than

the similar expression for Xopt
n+1. This shows the Lemma. ��
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6 Acceleration for smooth and strongly convex problems

In this section, we finally make the additional assumption that

(v) h∗ is strongly convex with parameter δ > 0.

Equivalently,h has (1/δ)-Lipschitz gradient, so that the primal objective is both smooth
and strongly convex. Then, as expected, the rate can be improved, to linear conver-
gence. In this section, we must assume that the Bregman distance functions satisfy
Dx (x, x ′) = 1

2‖x − x ′‖22 and Dy(y, y′) = 1
2‖y − y′‖22, that is, we are for both vari-

ables in the Euclidean/Hilbertian setting. For simplicity we will drop the subscript “2”
in the rest of this section.

We show here how to modify the proof of the previous case to obtain a linear
convergence rate on the gap. This slightly improves the results in [4,5] which only
give a rate on the iterates. In contrast to [5], we do not show here convergence for a
large range of relaxation parameters θ , but the proof presented can handle the explicit
term ∇ f and yields a similar convergence rate.

6.1 Convergence analysis

Algorithm 5: O(θ N ) Accelerated primal–dual algorithm

• Input:Operator norm L = ‖K‖, Lipschitz constant L f of∇ f , parameters γ, δ

of strong convexity of g and h∗, Dx (x, x ′) = 1
2‖x − x ′‖2x and Dy(y, y′) =

1
2‖y − y′‖2y .

• Initialization: Choose x−1 = x0 ∈ X , τ, σ, θ > 0 which satisfy (44) and (45).
• Iterations: For each n ≥ 0 let

(xn+1, yn+1) = PDτ,σ (xn, yn, xn + θ(xn − xn−1), yn+1) (43)

A first remark is that the inequality (31), in case h∗ is δ-convex, can be written

‖x − xn‖
2τ

2

+ ‖y − yn‖
2σ

2

− θ
〈
K (xn − xn−1), y − yn

〉
+ θ2L2σ

2
‖xn − xn−1‖2

≥ L(xn+1, y) − L(x, yn+1) + 1 + γ τ

2τ
‖x − xn+1‖2

+ 1 + δσ

2σ
‖y − yn+1‖2 −

〈
K (xn+1 − xn), y − yn+1

〉
+ 1 − L f τ

2τ
‖xn+1−xn‖2.

It follows that if one can choose τ, σ, θ so that

1 + γ τ = 1 + δσ = 1

θ
(44)

1 − L f τ

τ
≥ θ L2σ (45)

123



274 A. Chambolle, T. Pock

then, multiplying the inequality by θ−n and summing from n = 0 to N − 1, we get
(assuming x−1 = x0)

‖x − x0‖
2τ

2

+ ‖y − y0‖
2σ

2

≥
N∑

n=1

1

θn−1 (L(xn, y) − L(x, yn))

+ 1

θ N

(
‖x − x N ‖

2τ

2

+ ‖y − yN ‖
2σ

2

− θ
〈
K (x N − x N−1), y − yN

〉)

+ 1 − L f τ

2τθ N−1 ‖x N − x N−1‖2.

Using (45) again, we deduce

N∑

n=1

1

θn−1 (L(xn, y) − L(x, yn)) + ‖x − x N ‖
2τθ N

2

≤ ‖x − x0‖
2τ

2

+ ‖y − y0‖
2σ

2

.

Hence, letting now

TN =
N∑

n=1

θ−n+1 = 1 − θ N

1 − θ

1

θ N−1 and Z N = (X N , Y N )= 1

TN

N∑

n=1

θ−n+1zn (46)

we obtain the following result

Theorem 5 Assume Dx (x, x ′) = 1
2‖x − x ′‖2x and Dy(y, y′) = 1

2‖y − y′‖2y . Let

(xn, yn) be a sequence generated by Algorithm 5, and let (X N , Y N ) and (TN ) be
the ergodic averages defined in (46). Then, for all x and y, for all N ≥ 1, one has the
estimate

L(X N , y) − L(x, Y N ) + θ(1 − θ)

1 − θ N

‖x − x N ‖
2τ

2

≤ 1

TN

(
‖x − x0‖

2τ

2

+ ‖y − y0‖
2σ

2
)

(47)
which yields a linear convergence rate.

6.2 Parameter choices

Solving the Eqs. (44) for τ, σ, θ , we obtain, letting2

μ = δ(γ + L f )

2L2

(√

1 + 4
γ L2

δ(γ + L f )2
− 1

)

∈ (0, 1) :

τ = μ

γ (1 − μ)
, σ = μ

δ(1 − μ)
, θ = 1 − μ. (48)

2 Using WolframAlpha to check our calculations.
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In case L f = 0, one has

μ = δγ

2L2

⎛

⎝

√

1 + 4
L2

δγ
− 1

⎞

⎠

and the above formulas simplify to

τ = δ
1 +

√
1 + 4 L2

γ δ

2L2 , σ = γ
1 +

√
1 + 4 L2

γ δ

2L2 , θ = 1 − δγ

2L2

⎛

⎝

√

1 + 4
L2

δγ
− 1

⎞

⎠ .

(49)
In this case, if δγ � L2, then the linear rate of convergence is governed by the

factor

θ ≤ 1 −
√

δγ

L
+ δγ

2L2 ≈ 1 −
√

δγ

L
:

we remark that this is of the same order as the rate found in [5] (which was not a bound
on the gap though). Note however that a more refined analysis in [5] allowed to obtain
better rates, for a larger choice of parameters θ . A similar analysis with L f �= 0 would
probably lead to close results through very tedious calculations. On the other hand,
the new proof allows for slightly larger steps than in [5].

7 Computational examples

In this section we demonstrate the practical performance of the proposed algorithms
on a number of randomly generated instances of classical optimization problems.

7.1 Matrix games

Here, we consider the following min–max matrix game:

min
x∈�l

max
y∈�k

L(x, y) = 〈K x, y〉 , (50)

where �k and �l denote the standard unit simplices in R
k and R

l and K ∈ R
k×l .

This class of min–max matrix games can be used for approximately finding the Nash
equilibrium of two-person zero-summatrix games such as two-person Texas Hold’em
Poker. Following the computational experiments in [23], the entries of K are indepen-
dently and uniformly distributed in the interval [−1, 1]. We denote by L = ‖K‖ the
operator norm of K . We can also easily compute the primal–dual gap of a feasible pair
(x, y). For this we observe that argminx∈�l L(x, y) = e j , where e j ∈ �l is the j-th
standard basis vector corresponding to the smallest entry of the vector K T y. Likewise,
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argmaxy∈�k L(x, y) = ei , where i corresponds to the coordinate of the largest entry
of K x . Hence, the primal–dual gap is computed as

G(x, y) =
[
P(x) = max

i
(K x)i

]
−
[
D(y) = min

j
(K T y) j

]

7.1.1 Linear and nonlinear primal–dual algorithms

We first consider different Bregman distance settings of the nonlinear primal–dual
algorithm presented in Algorithm 1. The initial points (x0, y0) are chosen to be the
centers of the simplices, that is x0j = 1/ l and y0i = 1/k for all i, j . There are two
obvious choices for the Bregman distance functions:

1. Euclidean setting In the Euclidean setting, ‖·‖x = ‖·‖y = ‖·‖2, Dx (x, x ′) =
1
2‖x − x ′‖2, and Dy(y, y′) = 1

2‖y − y′‖2. It follows that maxx∈�l Dx (x, x0) =
(1 − 1

l )/2 and likewise maxy∈�k Dy(y, y0) = (1 − 1
k )/2. The operator norm

is computed as the largest singular value L2 = smax(K ). In the iterates of the
algorithm, we need to solve subproblems of the following form:

x̂ = arg min
x∈�l

〈x, ξ 〉 + ‖x − x̄‖
2τ

2

⇔ x̂ = proj�l
(x̄ − τξ) ,

where we are using the n log n algorithm described in [12] to compute the orthog-
onal projections on the unit simplices. Taking the supremum on the right hand side
of (17), the ergodic O(1/N ) rate for the primal–dual gap bounded by

G
(

X N , Y N
)

≤ 2

N

(
1 − 1

l

2τ
+ 1 − 1

k

2σ

)

.

Since τσ L2
2 = 1, the right hand side is minimized by setting

τ = 1

L2

√√√√1 − 1
l

1 − 1
k

, σ = 1

L2

√√√√1 − 1
k

1 − 1
l

.

Hence we get the following final estimate for the gap

G
(

X N , Y N
)

≤
2
√(

1 − 1
l

) (
1 − 1

k

)

N
L2.

2. Entropy setting In the entropy setting we choose ‖·‖x = ‖·‖y = ‖·‖1 and the Breg-
man distance functions are given by Dx (x, x ′) =∑ j x j (log x j −log x ′

j )−x j +x ′
j

and Dy(y, y′) =∑i yi (log yi − log y′
i )− yi + y′

i , which are 1-convex with respect
to the 1-norm. Now, maxx∈�l Dx (x, x0) = log l and maxy∈�k Dy(y, y0) = log k.
The operator norm is given by L1 = sup‖x‖1=1 ‖K x‖∞ = maxi, j |Ki, j |.
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It is well known that in the entropy setting, the iterates of the algorithm are explicit:

x̂ = arg min
x∈�l

〈x, ξ 〉 + 1

τ
Dx (x, x̄) ⇔ x̂ j = x̄ j exp(−τξ j )

∑l
j=1 x̄ j exp(−τξ j )

In turn, the ergodic O(1/N ) rate in (17) specializes to

G
(

X N , Y N
)

≤ 2

N

(
log l

τ
+ log k

σ

)
.

Again, the right hand side is minimized by choosing

τ = 1

L1

√
log l

log k
, σ = 1

L1

√
log k

log l

We obtain the final estimate as

G
(

X N , Y N
)

≤ 4
√
log l log k

N
L1.

Remark 10 Since the entries of K are uniformly distributed in [−1, 1], the solutions
of the min–max matrix games always cluster around the simplex centers 1/k and 1/ l.
In this region, the entropy functions are strongly k- and l-convex, respectively, and
hence for small variations around the center,

Dx (x, x ′) � 1

2

(√
l‖x − x ′‖2

)2
, Dy(y, y′) � 1

2

(√
k‖y − y′‖2

)2
.

With this information we can get a better (local) estimate of the operator norm:

Lcent ≈ sup
‖x‖2≤1/

√
l

‖K x‖2/
√

k = L2/
√

kl

In practice, we observed that slightly larger values, e.g. 1.7 · Lcent worked very well in
our experiments. It would be of great interest to find a method which is able to exploit
this variability, unfortunately we were not able to find a rigorous and efficient method.

First let us observe that our theoretical worst case bounds for the matrix games
are exactly the same as the corresponding worst case bounds in [23]. In Table 1
we report the number of iterations of the O(1/N ) primal–dual algorithms using the
Euclidean setting and the entropy setting to reach a primal–dual gap that is less than
ε. One can see that the entropy-based algorithm is consistently faster compared to the
Euclidean-based algorithm. Furthermore, one can see that the complexity for finding
an ε accurate solution grows, as predicted in Theorem 1, with a factor of order 1/ε.
Indeed, one can see that reducing ε by a factor of 10 roughly leads to ten times
more iterations. Comparing the results with the results reported in [23] the proposed
algorithms are significantly faster. Also observe that counterintuitively, less iterations
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Table 1 Computational results
of Algorithm 1 applied to the
matrix game problem (50)

ε = 10−3 ε = 10−4

k/l Euclidean Entropy Euclidean Entropy

100/100 942 730 9394 7292

100/500 760 750 7671 7378

100/1000 1138 960 11330 9862

500/100 1085 648 10743 6474

500/500 483 333 4782 3290

500/1000 480 350 4796 3430

1000/100 1537 640 15,394 6284

1000/500 547 297 5434 2905

1000/1000 381 261 3797 2546

are needed for larger problems. This might be due to the fact that the value of the
gap of theses problems at the centers of the simplices goes to zero as the size goes to
infinity, making this initialization more beneficial for larger problems.

7.1.2 Ergodic versus nonergodic sequence

We also tested the performance of the nonergodic sequences, i.e. the rate of conver-
gence of the primal–dual gap of the iterates (xn, yn). Figure 1 depicts logarithmic
convergence plots in the setting k = l = 1000, for both the Euclidean and the entropy
setting. It shows that in the Euclidean setting, the nonergodic sequence converges
even faster than the ergodic sequence. In the entropy setting however, we observed the
contrary. The nonergodic sequence converges much slower than the ergodic sequence.

100 101 102 103 10410−5

10−4

10−3

10−2

10−1

100

Fig. 1 Comparison between the performance of the ergodic and the nonergodic sequences of Algorithm 1
applied to the matrix game problem (50)
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We do not know the reason for this behavior. For both ergodic sequences, the gap
decreases exactly at rate O(1/N ) as predicted by the analysis.

7.1.3 Overrelaxed and inertial primal–dual algorithms

In this section, we evaluate the performance of the overrelaxed and inertial version of
the Euclidean primal–dual algorithmdetailed inAlgorithm2 andAlgorithm3.Wevary
the relaxation parameter ρ and the inertial parameter α (which are kept constant during
the iterations) and record the number of iterations that are necessary to reach a primal–
dual gap which is less a tolerance of ε = 10−4. For both, the inertial and overrelaxed
versions, we observe that the algorithms are still converging for the theoretical limits
ρ = 2 and α = 1/3.

In Table 2, we report the number of iterations using different values of the relaxation
parameter ρ. As predicted in Theorem 2, the number of iterations are approximately
proportional to the factor 1/ρ. In Table 3, we report the number of iterations using
different inertial parameters α. Again, as predicted in Theorem 3, the number of
iterations roughly correspond to the factor 1 − 1/α.

Table 2 Computational results of Algorithm 2 applied to the matrix game problem (50)

k/l ρ = 1 ρ = 5/4 ρ = 3/2 ρ = 7/4 ρ = 2

100/100 9394 7224 5784 4825 4075

100/500 7671 5853 4748 3983 3337

100/1000 11,330 8861 7225 6063 5151

500/100 10,743 8389 6818 5721 4691

500/500 4782 3651 2924 2402 2051

500/1000 4796 3809 3156 2696 2346

1000/100 15,394 11,982 9721 8126 6835

1000/500 5434 4224 3426 2860 2437

1000/1000 3797 2975 2433 2050 1881

Table 3 Computational results of Algorithm 3 applied to matrix game problem (50)

k/l α = 0 α = 1/12 α = 1/6 α = 1/4 α = 1/3

100/100 9394 8660 7939 7234 6545

100/500 7671 7065 6467 5882 5328

100/1000 11,330 10,420 9520 8632 7751

500/100 10,743 9882 9034 8203 7411

500/500 4782 4401 4026 3655 3291

500/1000 4796 4410 4029 3656 3299

1000/100 15,394 14,147 12,912 11,692 10,514

1000/500 5434 4996 4563 4134 3721

1000/1000 3797 3492 3191 2897 2613
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7.2 Simplex constrained least squares problem

In this section, we consider the following class of simplex-constrained least squares
problems

min
x∈�l

P(x) = 1

2
‖K x − b‖2, (51)

where �l again denotes the standard unit simplex in R
l and K ∈ R

k×l , and b ∈ R
k .

Several standard optimization problems used in machine learning such as the support
vectormachine can be obtained as special cases from (51). Here, K and b are randomly
generated with their entries uniformly and independently distributed in the interval
[−1, 1]. We again denote by L = ‖K‖ the operator norm of K . The saddle-point
formulation of (51) is given by

min
x∈�l

max
y

L(x, y) = 〈K x, y〉 − bT y − 1

2
‖y‖2. (52)

Furthermore, the dual problem is given by

max
y

D(y) = min
j

(K T y) j − bT y − 1

2
‖y‖2

In turn, the primal–dual gap for a pair (x, y) can be easily computed by observing that
argminx∈�l L(x, y) = e j and also argmaxy L(x, y) = K x − b:

G(x, y) =
[
1

2
‖K x − b‖2

]
−
[
min

j
(K T y) j − bT y − 1

2
‖y‖2

]

7.2.1 Accelerated primal–dual algorithms

Note that since the saddle-point problem is strongly convex in y, we can use the
accelerated primal–dual algorithm presented in Algorithm 4 (by interchanging the role
of the primal and the dual variables). Since L f = 0, we apply the simple parameter
choice (39). We initialize the algorithms with the obvious choice (x0) j = 1/ l for all j
and y0 = K x0−b. Recall that in the accelerated algorithm, we have fixed ‖·‖y = ‖·‖2
and hence Dy(y, y′) = 1

2‖y − y′‖2. Let us now consider two different setups of the
algorithm:

1. Euclidean setting In the Euclidean setting, we set ‖·‖x = ‖·‖2 and hence
Dx (x, x ′) = 1

2‖x − x ′‖2. The operator norm L2 = ‖K‖ is again given by
smax(K ). According to (37), we guaranteed that after N iterations for all (x, y) it
holds that

TN

(
L(X N , y) − L(x, Y N )

)
≤ ‖x − x0‖2

2τ0
+ ‖y − y0‖2

2σ0
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Substituting y = argmaxy L(X N , y) = K X N − b, we obtain for all x

TN

(
P(X N ) − L(x, Y N )

)
≤ ‖x − x0‖2

2τ0
+ ‖K (X N − x0)‖2

2σ0

Taking the supremum with respect to x on both sides, it follows

TNG(X N , Y N ) ≤ sup
x∈�l

‖x − x0‖2
2τ0

+ ‖K (X N − x0)‖2
2σ0

≤ 1 − 1
l

2τ0
+ ‖K (X N − x0)‖2

2σ0

≤ 1 − 1
l

2τ0
+ (1 − 1

l )

2σ0
L2
2.

The right hand side is minimized by choosing τ0 = 1/L2
2 and σ0 = 1 which gives

the final estimate

G(X N , Y N ) ≤ 1 − 1
l

TN
L2
2,

where TN ∼ O(N 2) is defined in (36).
2. Entropy setting In the entropy setting, we choose ‖·‖x = ‖·‖1 and Dx (x, x ′) =∑

j x j (log x j − log x ′
j ) − x j + x ′

j . The operator norm is now given by L12 =
‖K‖ = sup‖x‖1≤1 ‖K x‖2 = max j ‖K j‖2 where K j denotes the j-th column of
K , which is typically smaller than L2. In analogy to the above calculations, we
have

TNG(X N , Y N ) ≤ sup
x

Dx (x, x0)

τ0
+ ‖K (X N − x0)‖2

2σ0

≤ log l

τ0
+ L2

2(1 − 1
l )

2σ0
.

The optimal choice for τ0 and σ0 is now

τ0 =
√

2 log l

L2
12L2

2(1 − 1
l )

, σ0 =
√

L2
2(1 − 1

l )

2L2
12 log l

,

which yields the final estimate

G(X N , Y N ) ≤ L12L2

√
(1− 1

l ) log l
2

TN
.
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Table 4 Computational results
of Algorithm 4 applied to the
simplex constrained least
squares problem (51)

ε = 10−3 ε = 10−4

k/l Euclidean Entropy Euclidean Entropy

100/100 423 128 1264 396

100/500 645 179 1881 563

100/1000 1008 191 2946 600

500/100 1039 243 3187 726

500/500 1399 329 4276 1026

500/1000 1530 365 4570 1142

1000/100 1752 367 5508 1115

1000/500 2257 459 7079 1425

1000/1000 2418 499 7507 1554

We also observed that in the entropy setting, we can choose larger step sizes:
choosing L12 = 0.35 · max j ‖K j‖2 gave experimentally good results. In Table 4,
we report the number of iterations for Algorithm 4 in the Euclidean and the entropy
setting. One can see that in the entropy setting, the algorithm converges significantly
faster. Furthermore, one can see that the number of iterations which are necessary to
reach a primal–dual gap less than ε nicely reflect the O(1/N 2) rate of Algorithm 4.
Indeed, reducing ε by a factor of 10 roughly leads to

√
10 ≈ 3.16 more iterations.

7.2.2 Ergodic versus nonergodic sequence

We also investigated the performance difference between the ergodic and the noner-
godic sequences. Figure 2 shows a comparison between the ergodic and the nonergodic
sequences for both the Euclidean and the entropy setup for the simplex constrained

100 101 102 103 10410−6

10−4

10−2

100

102

Fig. 2 Comparison between the performance of the ergodic and the nonergodic sequences of Algorithm 4
applied to the simplex constrained least squares problem (51)
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least squares problem (51) using k = 100, l = 1000. While the ergodic sequences
both show a O(1/N 2) rate, the nonergodic sequences show a completely different
behavior. In the entropy setting, the nonergodic sequence converges a little bit faster
but is seems to be quite unstable. In the Euclidean setting, the nonergodic sequence
converges extremely fast. We do not know the reason for this, but it will be interesting
to find an alternative proof for the convergence rate that does not rely on the ergodic
sequence.

7.3 Elastic net problem

Finally,we consider the elastic net problemwhich has been extensively used for feature
selection and sparse coding. It is written as the following optimization problem:

min
x

P(x) = 1

2
‖K x − b‖2 + λ1‖x‖1 + λ2

2
‖x‖2, (53)

where K ∈ R
k×l is a matrix where its columns are features and b ∈ R

k is the
measurement vector. For λ2 = 0, the elastic net is equivalent to the well-known
LASSO problem. It can be rewritten as the following saddle-point problem:

min
x

max
y

L(x, y) = 〈K x, y〉 + λ1‖x‖1 + λ2‖x‖2 − 1

2
‖y‖2 − bT y

Observe that the above problem is λ2-strongly convex in x and 1-strongly convex in
y. Hence, we can make use of the linearly converging Algorithm 5. The dual problem
is computed as

max
y

D(y) = − 1

2λ2
‖(|K T y| − λ1)

+‖2 − 1

2
‖y‖2 − bT y,

where the expressions |K T y| and (t)+ = max(0, t) are understood element-wise. In
turn the primal–dual gap can be computed as

G(x, y) =
[
1

2
‖K x − b‖2 + λ1‖x‖1 + λ2

2
‖x‖2

]

−
[
− 1

2λ2
‖(|K T y| − λ1)

+‖2 − 1

2
‖y‖2 − bT y

]
. (54)

In our experiments, we again choose the entries of K and b uniformly and indepen-
dently in the interval [−1, 1] and we again denote by L2 = ‖K‖ = smax(K ) the
largest singular value of K . We compute the values for τ, σ and θ using the formulas
provided in (49) and we choose x0 = 0, y0 = K x0 − b. According to (47), after N
iterations, we have for all (x, y):

TN

(
L(X N , y) − L(x, Y N )

)
≤ ‖x − x0‖2

2τ
+ ‖y − y0‖2

2σ
.
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Taking the supremum on the left hand with respect to (x, y) we find x = (|K T Y N | −
λ1)

+ · sgn(−K T Y N )/λ2 and y = K X N − b. Substituting back we obtain the final
estimate

TNG(X N , Y N ) ≤ ‖(|K T Y N | − λ1)
+‖2

2τλ22
+ L2

2‖X N ‖2
2σ

< ∞,

where TN ∼ O(θ−N ) is defined in (46) and τ, σ are chosen according to (49).
For the implementation of the algorithm we need to solve the proximal map with

respect to themixed �1-�2 norm appearing in the primal problem. The solution is given
by:

x̂ = argmin
x

λ1‖x‖1 + λ2

2
‖x‖2 + 1

2τ
‖x − x̄‖2 ⇔ x̂ = max(0, |x̄ | − τλ1) · sgn(x̄)

1 + τλ2
,

where the operations are understood element-wise.
In Table 5 we evaluate Algorithm 5 for different problem instances of (53). We set

λ1 = 1 and used different values of λ2 in order to study the behavior of the algorithm
for different degrees of convexity. The table reports the number of iterations that were
needed to achieve a primal–dual gap less than the error tolerance ε. One can see that
in general, a smaller value of λ2 leads to a smaller strong convexity parameter of the
primal problem and hence the problem appears more difficult to the algorithm. Thanks
to the O(θ N ) linear convergence rate of the algorithm, reducing the required tolerance
by a factor of 10 only leads to a small increase of the required iterations.

7.3.1 Ergodic versus nonergodic sequence

Finally Fig. 3 shows the performance difference between the ergodic sequence and the
nonergodic sequence for the elastic net problem using k = 100, l = 1000, λ1 = 1,
and λ2 = 10−3. One can see that while the performance of the ergodic sequence is

Table 5 Computational results
of Algorithm 5 applied to the
elastic net problem (53)

k/l ε = 10−3 ε = 10−4

λ2 = 10−2 λ2 = 10−3 λ2 = 10−2 λ2 = 10−3

100/100 445 1405 577 1823

100/500 446 1339 624 1940

100/1000 459 1319 703 2143

500/100 1015 3209 1227 3879

500/500 1189 3759 1486 4697

500/1000 924 2869 1258 3950

1000/100 1421 4494 1696 5363

1000/500 1753 5542 2109 6667

1000/1000 1707 5397 2123 6714
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Fig. 3 Comparison between the performance of the ergodic and the nonergodic sequences of Algorithm 5
applied to the elastic net problem (53)

again well predicted by the worst case rate O(θ N ), the performance of the nonergodic
sequence is again superior.

8 Conclusion

In this work, we have presented refined ergodic convergence rates for a first-order
primal–dual algorithm for composite convex–concave saddle-point problems. Some
of the presented proofs are quite elementary and easily extend to non-linear Bregman
distance functions and inertial or overrelaxed variants of the algorithm. Furthermore,
we have given refined ergodic convergence rates in terms of the primal–dual gap
function for accelerated variants of the algorithm. We have illustrated the theoreti-
cal results by applying the algorithms to a number of standard convex optimization
problems including matrix games, simplex constrained least squares problems and the
elastic net selector. The numerical results show a behaviour which corresponds nicely
to the theoretical predictions. We have also observed that in the Euclidean setting, the
nonergodic sequences very often convergemuch faster than the ergodic sequences.We
will investigate this issue in more detail in our future research. Furthermore, it will be
interesting to investigate strategies to dynamically adjust the step sizes (τn, σn and θn)
to the local smoothness of the problem, which can vary a lot during the optimization
(see Remark 10).
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