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Abstract Weconsider in this paper a class of composite optimization problemswhose
objective function is given by the summation of a general smooth and nonsmooth
component, together with a relatively simple nonsmooth term. We present a new
class of first-order methods, namely the gradient sliding algorithms, which can skip
the computation of the gradient for the smooth component from time to time. As
a consequence, these algorithms require only O(1/

√
ε) gradient evaluations for the

smooth component in order to find an ε-solution for the composite problem, while still
maintaining the optimalO(1/ε2) bound on the total number of subgradient evaluations
for the nonsmooth component. We then present a stochastic counterpart for these
algorithms and establish similar complexity bounds for solving an important class of
stochastic composite optimization problems. Moreover, if the smooth component in
the composite function is strongly convex, the developed gradient sliding algorithms
can significantly reduce the number of graduate and subgradient evaluations for the
smooth and nonsmooth component toO(log(1/ε)) andO(1/ε), respectively. Finally,
we generalize these algorithms to the case when the smooth component is replaced
by a nonsmooth one possessing a certain bi-linear saddle point structure.
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1 Introduction

In this paper, we consider a class of composite convex programming (CP) problems
given in the form of

Ψ ∗ ≡ min
x∈X {Ψ (x) := f (x) + h(x) + X (x)} . (1.1)

Here, X ⊆ R
n is a closed convex set, X is a relatively simple convex function, and

f : X → R and h : X → R, respectively, are general smooth and nonsmooth convex
functions satisfying

f (x) ≤ f (y) + 〈∇ f (y), x − y〉 + L

2
‖x − y‖2, ∀x, y ∈ X, (1.2)

h(x) ≤ h(y) + 〈h′(y), x − y〉 + M‖x − y‖, ∀x, y ∈ X, (1.3)

for some L > 0 and M > 0, where h′(x) ∈ ∂h(x). Composite problem of this type
appears inmany data analysis applications, where either f or h corresponds to a certain
data fidelity term, while the other components in Ψ denote regularization terms used
to enforce certain structural properties for the obtained solutions.

Throughout this paper, we assume that one can access the first-order information
of f and h separately. More specifically, in the deterministic setting, we can compute
the exact gradient ∇ f (x) and a subgradient h′(x) ∈ ∂h(x) for any x ∈ X . We also
consider the stochastic situation where only a stochastic subgradient of the nonsmooth
component h is available. The main goal of this paper to provide a better theoretical
understanding on how many number of gradient evaluations of ∇ f and subgradient
evaluations of h′ are needed in order to find a certain approximate solution of (1.1).

Most existing first-order methods for solving (1.1) require the computation of both
∇ f and h′ in each iteration. In particular, since the objective function Ψ in (1.1) is
nonsmooth, these algorithms would require O(1/ε2) first-order iterations, and hence
O(1/ε2) evaluations for both ∇ f and h′ to find an ε-solution of (1.1), i.e., a point
x̄ ∈ X s.t. Ψ (x̄) − Ψ ∗ ≤ ε. Much recent research effort has been directed to reducing
the impact of the Lipschitz constant L on the aforementioned complexity bounds for
composite optimization. For example, Juditsky, Nemirovski and Travel showed in [8]
that by using a variant of the mirror-prox method, the number of evaluations for ∇ f
and h′ required to find an ε-solution of (1.1) can be bounded by

O
(
L f

ε
+ M2

ε2

)
.

Bydeveloping an enhanced version ofNesterov’s accelerated gradientmethod [15,16],
Lan [11] further showed that the above bound can be improved to
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O
(√

L f

ε
+ M2

ε2

)
. (1.4)

It is also shown in [11] that similar bounds hold for the stochastic case where only
unbiased estimators for ∇ f and h′ are available. It is observed in [11] that such a
complexity bound is not improvable if one can only access the first-order information
for the summation of f and h all together.

Note, however, that it is unclear whether the complexity bound in (1.4) is optimal if
one does have access to the first-order information of f and h separately. In particular,
one would expect that the number of evaluations for∇ f can be bounded byO(1/

√
ε),

if the nonsmooth term h in (1.1) does not appear (see [3,18,22]). However, it is
unclear whether such a bound still holds for the more general composite problem in
(1.1) without significantly increasing the bound in (1.4) on the number of subgradient
evaluations for h′. It should be pointed out that in many applications the bottleneck of
first-order methods exist in the computation of ∇ f rather than that of h′. To motivate
our study, let us mention a few such examples.

(a) In many inverse problems, we need to enforce certain block sparsity (e.g., total
variation and overlapped group Lasso) by solving the problem of minx∈Rn ‖Ax −
b‖22 + r(Bx). Here A : Rn → R

m is a given linear operator, b ∈ R
m denotes

the collected observations, r : Rp → R is a relatively simple nonsmooth convex
function (e.g., r = ‖ · ‖1), and B : Rn → R

p is a very sparse matrix. In this
case, evaluating the gradient of ‖Ax −b‖2 requiresO(mn) arithmetic operations,
while the computation of r ′(Bx) only needs O(n + p) arithmetic operations.

(b) In many machine learning problems, we need to minimize a regularized loss
function given by minx∈Rn Eξ [l(x, ξ)] + q(Bx). Here l : Rn ×R

d → R denotes
a certain simple loss function, ξ is a random variable with unknown distribution, q
is a certain smooth convex function, and B : Rn → R

p is a given linear operator.
In this case, the computation of the stochastic subgradient for the loss function
Eξ [l(x, ξ)] requires only O(n + d) arithmetic operations, while evaluating the
gradient of q(Bx) needs O(np) arithmetic operations.

(c) In some cases, the computation of∇ f involves a black-box simulation procedure,
the solution of an optimization problem, or a partial differential equation, while
the computation of h′ is given explicitly.

In all these cases mentioned above, it is desirable to reduce the number of gradient
evaluations of∇ f to improve the overall efficiency for solving the composite problem
(1.1).

Our contribution can be briefly summarized as follows. Firstly, we present a new
class of first-order methods, namely the gradient sliding algorithms, and show that
the number of gradient evaluations for ∇ f required by these algorithms to find an
ε-solution of (1.1) can be significantly reduced from (1.4) to

O
(√

L

ε

)
, (1.5)
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while the total number of subgradient evaluations for h′ is still bounded by (1.4). The
basic scheme of these algorithms is to skip the computation of∇ f from time to time so
that onlyO(1/

√
ε) gradient evaluations are needed in theO(1/ε2) iterations required

to solve (1.1). Such an algorithmic framework originated from the simple idea of
incorporating an iterative procedure to solve the subproblems in the aforementioned
accelerated proximal gradient methods, although the analysis of these gradient sliding
algorithms appears to be more technical and involved.

Secondly, we consider the stochastic case where the nonsmooth term h is repre-
sented by a stochastic oracle (SO), which, for a given search point ut ∈ X , outputs a
vector H(ut , ξt ) such that (s.t.)

E[H(ut , ξt )] = h′(ut ) ∈ ∂h(ut ), (1.6)

E

[∥∥H(ut , ξt ) − h′(ut )
∥∥2∗
]

≤ σ 2, (1.7)

where ξt is a random vector independent of the search points ut . Note that H(ut , ξt )
is referred to as a stochastic subgradient of h at ut and its computation is often much
cheaper than the exact subgradient h′. Based on the gradient sliding techniques, we
develop a new class of stochastic approximation type algorithms and show that the total
number gradient evaluations of ∇ f required by these algorithms to find a stochastic
ε-solution of (1.1), i.e., a point x̄ ∈ X s.t. E[Ψ (x̄) − Ψ ∗] ≤ ε, can still be bounded
by (1.5), while the total number of stochastic subgradient evaluations can be bounded
by

O
(√

L

ε
+ M2 + σ 2

ε2

)
.

We also establish large-deviation results associated with these complexity bounds
under certain “light-tail” assumptions on the stochastic subgradients returned by the
SO.

Thirdly, we generalize the gradient sliding algorithms for solving two important
classes of composite problems given in the form of (1.1), but with f satisfying addi-
tional or alterative assumptions. We first assume that f is not only smooth, but also
strongly convex, and show that the number of evaluations for ∇ f and h′ can be
significantly reduced from O(1/

√
ε) and O(1/ε2), respectively, to O(log(1/ε)) and

O(1/ε). We then consider the case when f is nonsmooth, but can be closely approx-
imated by a class of smooth functions. By incorporating a novel smoothing scheme
due to Nesterov [17] into the gradient sliding algorithms, we show that the number of
gradient evaluations can be bounded byO(1/ε), while the optimalO(1/ε2) bound on
the number of subgradient evaluations of h′ is still retained.

This paper is organized as follows. In Sect. 2.1, we provide some preliminaries
on the prox-functions and a brief review on existing proximal gradient methods for
solving (1.1). In Sect. 3, we present the gradient sliding algorithms and establish their
convergence properties for solving problem (1.1). Section 4 is devoted to stochastic
gradient sliding algorithms for solving a class of stochastic composite problems. In
Sect. 5, we generalize the gradient sliding algorithms for the situation where f is
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smooth and strongly convex, and for the case when f is nonsmooth but can be closely
approximated by a class of smooth functions. Finally, some concluding remarks are
made in Sect. 6.

Notation and terminology We use ‖ · ‖ to denote an arbitrary norm in R
n , which

is not necessarily associated the inner product 〈·, ·〉. We also use ‖ · ‖∗ to denote the
conjugate norm of ‖ · ‖. For any p ≥ 1, ‖ · ‖p denotes the standard p-norm inRn , i.e.,

‖x‖p
p =

n∑
i=1

|xi |p, for any x ∈ R
n .

For any convex function h, ∂h(x) is the set of subdifferential at x . Given any X ⊆ R
n ,

we say that h : X → R is a general Lipschitz convex function if |h(x) − h(y)| ≤
Mh‖x − y‖ for any x, y ∈ X . In this case, it can be shown that (1.3) holds with
M = 2Mh (see Lemma 2 of [11]). We say that a convex function f : X → R is
smooth if it is Lipschitz continuously differentiable with Lipschitz constant L > 0,
i.e., ‖∇ f (y) − ∇ f (x)‖∗ ≤ L‖y − x‖ for any x, y ∈ X , which clearly implies (1.2).

For any real number r , �r� and �r� denote the nearest integer to r from above
and below, respectively. R+ and R++, respectively, denote the set of nonnegative and
positive real numbers. N denotes the set of natural numbers {1, 2, . . .}.

2 Review of the proximal gradient methods

In this section, we provide a brief review on the proximal gradient methods from
which the proposed gradient sliding algorithms originate, and point out a few problems
associated with these existing algorithms when applied to solve problem (1.1).

2.1 Preliminary: distance generating function and prox-function

In this subsection,we review the concept of prox-function (i.e., proximity control func-
tion), which plays an important role in the recent development of first-order methods
for convex programming. The goal of using the prox-function in place of the usual
Euclidean distance is to allow the developed algorithms to get adapted to the geometry
of the feasible sets.

We say that a function ω : X → R is a distance generating function with modulus
ν > 0 with respect to ‖ · ‖, if ω is continuously differentiable and strongly convex
with parameter ν with respect to ‖ · ‖, i.e.,

〈x − z,∇ω(x) − ∇ω(z)〉 ≥ ν‖x − z‖2, ∀x, z ∈ X. (2.1)

The prox-function associated with ω is given by

V (x, z) ≡ Vω(x, z) = ω(z) − [ω(x) + 〈∇ω(x), z − x〉]. (2.2)

The prox-function V (·, ·) is also called the Bregman’s distance, which was initially
studied by Bregman [4] and later by many others (see [1,2,9] and references therein).
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In this paper, we assume that the prox-function V (x, z) is chosen such that the solution
of

argmin
u∈X {〈g, u〉 + V (x, u) + X (u)} (2.3)

is easily computable for any g ∈ E∗ and x ∈ X . Someexamples of these prox-functions
are given in [5].

If there exists a constantQ such that V (x, z) ≤ Q‖x−z‖2/2 for any x, z ∈ X , then
we say that the prox-function V (·, ·) is growing quadratically. Moreover, the smallest
constant Q satisfying the previous relation is called the quadratic growth constant
of V (·, ·). Without loss of generality, we assume that Q = 1 for the prox-function
V (x, z) if it grows quadratically, i.e.,

V (x, z) ≤ 1

2
‖x − z‖2, ∀x, z ∈ X. (2.4)

Indeed, if Q �= 1, we can multiply the corresponding distance generating function ω

by 1/Q and the resulting prox-function will satisfy (2.4).

2.2 Proximal gradient methods

In this subsection, we briefly review a few possible first-order methods for solving
problem (1.1).

We start with the simplest proximal gradient methodwhich works for the case when
the nonsmooth component h does not appear or is relatively simple (e.g., h is affine).
For a given x ∈ X , let

mΨ (x, u) := l f (x, u) + h(u) + X (u), ∀u ∈ X, (2.5)

where

l f (x; y) := f (x) + 〈∇ f (x), y − x〉. (2.6)

Clearly, by the convexity of f and (1.2), we have

mΨ (x, u) ≤ Ψ (u) ≤ mΨ (x, u) + L

2
‖u − x‖2 ≤ mΨ (x, u) + L

ν
V (x, u)

for any u ∈ X , where the last inequality follows from the strong convexity of ω.
Hence, mΨ (x, u) is a good approximation of Ψ (u) when u is “close” enough to x . In
view of this observation, we update the search point xk ∈ X at the k-th iteration of the
proximal gradient method by

xk = argmin
u∈X

{
l f (xk−1, u) + h(u) + X (u) + βkV (xk−1, u)

}
, (2.7)

Here, βk > 0 is a parameter which determines how well we “trust” the proximity
between mΨ (xk−1, u) and Ψ (u). In particular, a larger value of βk implies less con-
fidence on mΨ (xk−1, u) and results in a smaller step moving from xk−1 to xk . It can
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be shown that the number of iterations required by the proximal gradient method for
finding an ε-solution of (1.1) can be bounded by O(1/ε) (see, e.g., Theorem 2.1.14
of [16]).

The efficiency of the above proximal gradient method can be significantly improved
by incorporating a multi-step acceleration scheme. The basic idea of this scheme is to
introduce three closely related search sequences, namely, {xk}, {xk}, and {x̄k}, which
will be used to build the model mΨ , control the proximity between mΨ and Ψ , and
compute the output solution, respectively. More specifically, these three sequences are
updated according to

xk = (1 − γk)x̄k−1 + γk xk−1, (2.8)

xk = argmin
u∈X

{
Φk(u) := l f (xk, u) + h(u) + X (u) + βkV (xk−1, u)

}
, (2.9)

x̄k = (1 − γk)x̄k−1 + γk xk, (2.10)

where βk ≥ 0 and γk ∈ [0, 1] are given parameters for the algorithm. Clearly, (2.8)–
(2.10) reduces to (2.7), if x̄0 = x0 and γk is set to 1. However, by properly specifyingβk

and γk , e.g., βk = 2L/k and γk = 2/(k + 2), one can show that the above accelerated
proximal gradient method can find an ε-solution of (1.1) in at mostO(1/

√
ε) iterations

[see [22] for the analysis of the scheme in (2.8)–(2.10)]. Since each iteration of this
algorithm requires only one evaluation of∇ f , the total number of gradient evaluations
of ∇ f can also be bounded by O(1/

√
ε).

One crucial problem associated with the aforementioned proximal gradient type
methods is that the subproblems (2.7) and (2.9) are difficult to solve when h is a
general nonsmooth convex function. To address this issue, one can possibly apply an
enhanced accelerated gradient method by Lan [11] (see also [5,6]). This algorithm is
obtained by replacing h(u) in (2.9) with

lh(xk; u) := h(xk) + 〈h′(xk), u − xk〉 (2.11)

for some h′(xk) ∈ ∂h(xk). As a result, the subproblems in this algorithm become
easier to solve. Moreover, with a proper selection of {βk} and {γk}, this approach can
find an ε-solution of (1.1) in at most

O
{√

LV (x0, x∗)
ε

+ M2V (x0, x∗)
ε2

}
(2.12)

iterations. Since each iteration requires one computation of∇ f and h′, the total number
of evaluations for f and h′ is bounded byO(1/ε2). As pointed out in [11], this bound
in (2.12) is not improvable if one can only compute the subgradient of the composite
function f (x) + h(x) as a whole. However, as noted in Sect. 1, we do have access to
separate first-order information about f and h in many applications. One interesting
problem is whether we can further improve the performance of proximal gradient type
methods in the latter case.
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3 Deterministic gradient sliding

Throughout this section, we consider the deterministic case where exact subgradients
of h are available. By presenting a new class of proximal gradient methods, namely the
gradient sliding (GS) method, we show that one can significantly reduce the number
of gradient evaluations for ∇ f required to solve (1.1), while maintaining the optimal
bound on the total number of subgradient evaluations for h′.

The basic idea of the GS method is to incorporate an iterative procedure to approx-
imately solve the subproblem (2.9) in the accelerated proximal gradient methods. A
critical observation in our development of the GS method is that one needs to com-
pute a pair of closely related approximate solutions of problem (2.9). One of them
will be used in place of xk in (2.8) to construct the model mΨ , while the other one
will be used in place of xk in (2.10) to compute the output solution x̄k . Moreover, we
show that such a pair of approximation solutions can be obtained by applying a simple
subgradient projection type subroutine. We now formally describe this algorithm as
follows.

Algorithm 1 The gradient sliding (GS) algorithm
Input: Initial point x0 ∈ X and iteration limit N .
Let βk ∈ R++, γk ∈ R+, and Tk ∈ N , k = 1, 2, . . ., be given and set x̄0 = x0.
for k = 1, 2, . . . , N do

1. Set xk = (1 − γk )x̄k−1 + γk xk−1, and let gk (·) ≡ l f (xk , ·) be defined in (2.6).
2. Set

(xk , x̃k ) = PS(gk , xk−1, βk , Tk ); (3.1)

3. Set x̄k = (1 − γk )x̄k−1 + γk x̃k .
end for
Output: x̄N .

The PS (prox-sliding) procedure called at step 2 is stated as follows.
procedure (x+, x̃+) = PS(g, x , β, T )

Let the parameters pt ∈ R++ and θt ∈ [0, 1], t = 1, . . ., be given. Set u0 = ũ0 = x .
for t = 1, 2, . . . , T do

ut = argminu∈X
{
g(u) + lh(ut−1, u) + βV (x, u) + βpt V (ut−1, u) + X (u)

}
, (3.2)

ũt = (1 − θt )ũt−1 + θt ut . (3.3)

end for
Set x+ = uT and x̃+ = ũT .

end procedure

Observe that when supplied with an affine function g(·), prox-center x ∈ X , para-
meter β, and sliding period T , the PS procedure computes a pair of approximate
solutions (x+, x̃+) ∈ X × X for the problem of:

argmin
u∈X

{Φ(u) := g(u) + h(u) + βV (x, u) + X (u)} . (3.4)
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Clearly, problem (3.4) is equivalent to (2.9) when the input parameters are set to (3.1).
Since the same affine function g(·) = l f (xk−1, ·) has been used throughout the T
iterations of the PS procedure, we skip the computation of the gradients of f when
performing the T projection steps in (3.2). This differs from the accelerated gradient
method in [11], where one needs to compute ∇ f + h′ in each projection step.

It should also be noted that there has been some related work on the accelerated
gradient methods with inexact solution of the proximal mapping step (3.4) (see, e.g.,
[19,23]). The results basically state that the approximation error at each step has to
decrease very fast to maintain the accelerated convergence rate. Since (3.4) is strongly
convex, one can apply the subgradient method to solve it efficiently. However, one
needs to carefully deal with some difficulties in this intuitive approach. Firstly, one has
to define an appropriate termination criterion for solving (3.4). It turns out that using the
natural functional optimality gap as the termination criterion for this subproblem could
not lead to the desirable convergence rates, and we need to use in the GS algorithm
a special termination criterion defined by the summation of the functional optimality
gap and the distance to the optimal solution [see (3.9) below]. Secondly, even though
(3.4) is strongly convex, it is nonsmooth and the strong convexity modulus decreases
as the number of iterations increases. Hence, one has to carefully determine the spec-
ification of these nested (accelerated) subgradient algorithms. Thirdly, one important
modification that we incorporated in the GS method is to use two different approxi-
mate solutions in the two interpolation updates in the accelerated gradient methods.
Otherwise, one could not obtain the optimal complexity bounds on the computation
of both ∇ f and h′.

A few more remarks about the above GS algorithm are in order. Firstly, we say that
an outer iteration of the GS algorithm occurs whenever k in Algorithm 1 increments
by 1. Each outer iteration of the GS algorithm involves the computation of the gradi-
ent ∇ f (xk−1) and a call to the PS procedure to update xk and x̃k . Secondly, the PS
procedure solves problem (3.4) iteratively. Each iteration of this procedure consists of
the computation of subgradient h′(ut−1) and the solution of the projection subprob-
lem (3.2), which is assumed to be relatively easy to solve (see Sect. 2.1). For notational
convenience, we refer to an iteration of the PS procedure as an inner iteration of the
GS algorithm. Thirdly, the GS algorithm described above is conceptual only since we
have not yet specified the selection of {βk}, {γk}, {Tk}, {pt } and {θt }. We will return to
this issue after establishing some convergence properties of the generic GS algorithm
described above.

We first present a result which summarizes some important convergence properties
of the PS procedure. The following two technical results are needed to establish the
convergence of this procedure.

The first technical result below characterizes the solution of the projection step
(3.1). The proof of this result can be found in Lemma 2 of [5].

Lemma 1 Let the convex function q : X → R, the points x̃, ỹ ∈ X and the scalars
μ1, μ2 ∈ R+ be given. Letω : X → R be a differentiable convex function and V (x, z)
be defined in (2.2). If

u∗ ∈ Argmin{q(u) + μ1V (x̃, u) + μ2V (ỹ, u) : u ∈ X},

123
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then for any u ∈ X, we have

q(u∗) + μ1V (x̃, u∗) + μ2V (ỹ, u∗) ≤ q(u) + μ1V (x̃, u) + μ2V (ỹ, u)

− (μ1 + μ2)V (u∗, u).

The second technical result slightly generalizes Lemma 3 of [12] to provide a
convenient way to analyze sequences with sublinear rate of convergence.

Lemma 2 Let wk ∈ (0, 1], k = 1, 2, . . ., and W1 > 0 be given and define

Wk := (1 − wk)Wk−1, k ≥ 2. (3.5)

Suppose that Wk > 0 for all k ≥ 2 and that the sequence {δk}k≥0 satisfies

δk ≤ (1 − wk)δk−1 + Bk, k = 1, 2, . . . . (3.6)

Then for any k ≥ 1, we have

δk ≤ Wk

[
1 − w1

W1
δ0 +

k∑
i=1

Bi
Wi

]
. (3.7)

Proof The result follows from dividing both sides of (3.6) by Wk and then summing
up the resulting inequalities. ��

We are now ready to establish the convergence of the PS procedure.

Proposition 1 If {pt } and {θt } in the PS procedure satisfy

θt = Pt−1 − Pt
(1 − Pt )Pt−1

with Pt :=
{
1, t = 0,

pt (1 + pt )−1Pt−1, t ≥ 1,
(3.8)

then, for any t ≥ 1 and u ∈ X,

β(1 − Pt )
−1V (ut , u) + [Φ(ũt ) − Φ(u)]

≤ Pt (1 − Pt )
−1

[
βV (u0, u) + M2

2νβ

t∑
i=1

(p2i Pi−1)
−1

]
, (3.9)

where Φ is defined in (3.4).

Proof By (1.3) and the definition of lh in (2.11), we have h(ut ) ≤ lh(ut−1, ut ) +
M‖ut − ut−1‖. Adding g(ut ) + βV (x, ut ) + X (ut ) to both sides of this inequality
and using the definition of Φ in (3.4), we obtain

Φ(ut ) ≤ g(ut ) + lh(ut−1, ut ) + βV (x, ut ) + X (ut ) + M‖ut − ut−1‖. (3.10)
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Now applying Lemma 1 to (3.2), we obtain

g(ut ) + lh(ut−1, ut ) + βV (x, ut ) + X (ut ) + βpt V (ut−1, ut )

≤ g(u) + lh(ut−1, u) + βV (x, u) + X (u) + βpt V (ut−1, u) − β(1 + pt )V (ut , u)

≤ g(u) + h(u) + βV (x, u) + X (u) + βpt V (ut−1, u) − β(1 + pt )V (ut , u)

= Φ(u) + βpt V (ut−1, u) − β(1 + pt )V (ut , u),

where the second inequality follows from the convexity of h. Moreover, by the strong
convexity of ω,

−βpt V (ut−1, ut ) + M‖ut − ut−1‖ ≤ −νβpt
2

‖ut − ut−1‖2 + M‖ut − ut−1‖

≤ M2

2νβpt
,

where the last inequality follows from the simple fact that −at2/2 + bt ≤ b2/(2a)

for any a > 0. Combining the previous three inequalities, we conclude that

Φ(ut ) − Φ(u) ≤ βpt V (ut−1, u) − β(1 + pt )V (ut , u) + M2

2νβpt
.

Dividing both sides by 1 + pt and rearranging the terms, we obtain

βV (ut , u) + Φ(ut ) − Φ(u)

1 + pt
≤ βpt

1 + pt
V (ut−1, u) + M2

2νβ(1 + pt )pt
,

which, in view of the definition of Pt in (3.8) and Lemma 2 (with k = t , wk =
1/(1 + pt ) and Wk = Pt ), then implies that

β

Pt
V (ut , u) +

t∑
i=1

Φ(ui ) − Φ(u)

Pi (1 + pi )
≤ βV (u0, u) + M2

2νβ

t∑
i=1

1

Pi (1 + pi )pi

= βV (u0, u) + M2

2νβ

t∑
i=1

(p2i Pi−1)
−1, (3.11)

where the last identity also follows from the definition of Pt in (3.8). Also note that
by the definition of ũt in the PS procedure and (3.8), we have

ũt = Pt
1 − Pt

(
1 − Pt−1

Pt−1
ũt−1 + 1

Pt (1 + pt )
ut

)
.

Applying this relation inductively and using the fact that P0 = 1, we can easily see
that
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ũt = Pt
1 − Pt

[
1 − Pt−2

Pt−2
ũt−2 + 1

Pt−1(1 + pt−1)
ut−1 + 1

Pt (1 + pt )
ut

]

= · · · = Pt
1 − Pt

t∑
i=1

1

Pi (1 + pi )
ui ,

which, in view of the convexity of Φ, then implies that

Φ(ũt ) − Φ(u) ≤ Pt
1 − Pt

t∑
i=1

Φ(ui ) − Φ(u)

Pi (1 + pi )
. (3.12)

Combining the above inequality with (3.11) and rearranging the terms, we obtain (3.9).
��

Setting u to be the optimal solution of (3.4), we can see that both xk and x̃k are
approximate solutions of (3.4) if the right hand side (RHS) of (3.9) is small enough.
With the help of this result, we can establish an important recursion from which the
convergence of the GS algorithm easily follows.

Proposition 2 Suppose that {pt } and {θt } in the PS procedure satisfy (3.8). Also
assume that {βk} and {γk} in the GS algorithm satisfy

γ1 = 1 and νβk − Lγk ≥ 0, k ≥ 1. (3.13)

Then for any u ∈ X and k ≥ 1,

Ψ (x̄k) − Ψ (u) ≤(1 − γk)[Ψ (x̄k−1) − Ψ (u)] + γk(1 − PTk )
−1

⎡
⎣βkV (xk−1, u) − βkV (xk, u) + M2PTk

2νβk

Tk∑
i=1

(p2i Pi−1)
−1

⎤
⎦ .

(3.14)

Proof First, notice that by the definition of x̄k and xk , we have x̄k−xk = γk(x̃k−xk−1).
Using this observation, (1.2), the definition of l f in (2.6), and the convexity of f , we
obtain

f (x̄k) ≤ l f (xk, x̄k) + L

2
‖x̄k − xk‖2

= (1 − γk)l f (xk, x̄k−1) + γkl f (xk, x̃k) + Lγ 2
k

2
‖x̃k − xk−1‖2

≤ (1 − γk) f (x̄k−1) + γk
[
l f (xk, x̃k) + βkV (xk−1, x̃k)

]

− γkβkV (xk−1, x̃k) + Lγ 2
k

2
‖x̃k − xk−1‖2
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≤ (1 − γk) f (x̄k−1) + γk
[
l f (xk, x̃k) + βkV (xk−1, x̃k)

]

−
(

γkβk − Lγ 2
k

ν

)
V (xk−1, x̃k)

≤ (1 − γk) f (x̄k−1) + γk
[
l f (xk, x̃k) + βkV (xk−1, x̃k)

]
, (3.15)

where the third inequality follows from the strong convexity ofω and the last inequality
follows from (3.13). By the convexity of h and X , we have

h(x̄k) + X (x̄k) ≤ (1 − γk)[h(x̄k−1) + X (x̄k−1)] + γk[h(x̃k) + X (x̃k)]. (3.16)

Adding up the previous two inequalities, and using the definitions of Ψ in (1.1) and
Φk in (2.9), we have

Ψ (x̄k) ≤ (1 − γk)Ψ (x̄k−1) + γkΦk(x̃k).

Subtracting Ψ (u) from both sides of the above inequality, we obtain

Ψ (x̄k) − Ψ (u) ≤ (1 − γk)[Ψ (x̄k−1) − Ψ (u)] + γk[Φk(x̃k) − Ψ (u)]. (3.17)

Also note that by the definition of Φk in (2.9) and the convexity of f ,

Φk(u) ≤ f (u) + h(u) + X (u) + βkV (xk−1, u) = Ψ (u) + βkV (xk−1, u), ∀u∈ X.

(3.18)

Combining these two inequalities (i.e., replacing the third Ψ (u) in (3.17) by φk(u) −
βkV (xk−1, u)), we obtain

Ψ (x̄k) − Ψ (u) ≤ (1 − γk)[Ψ (x̄k−1) − Ψ (u)]
+ γk[Φk(x̃k) − Φk(u) + βkV (xk−1, u)]. (3.19)

Now, in view of the definition of Φk in (2.9) and the origin of (xk, x̃k) in (3.1), we
can apply Proposition 1 with φ = φk , u0 = xk−1, ut = xk , ũt = x̃k , and β = βk , and
conclude that for any u ∈ X and k ≥ 1,

βk

1 − PTk
V (xk, u) + [Φk(x̃k) − Φk(u)]

≤ PTk
1 − PTk

⎡
⎣βkV (xk−1, u) + M2

2νβk

Tk∑
i=1

(p2i Pi−1)
−1

⎤
⎦ .

Plugging the above bound on Φk(x̃k) − Φk(u) into (3.19), we obtain (3.14). ��
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We are now ready to establish themain convergence properties of the GS algorithm.
Note that the following quantity will be used in our analysis of this algorithm.

�k =
{
1, k = 1,

(1 − γk)�k−1, k ≥ 2.
(3.20)

Theorem 1 Assume that {pt } and {θt } in the PS procedure satisfy (3.8), and also that
{βk} and {γk} in the GS algorithm satisfy (3.13).

(a) If for any k ≥ 2,

γkβk

�k(1 − PTk )
≤ γk−1βk−1

�k−1(1 − PTk−1)
, (3.21)

then we have, for any N ≥ 1,

Ψ (x̄N ) − Ψ (x∗) ≤ Bd(N ) := �Nβ1

1 − PT1
V (x0, x

∗)

+ M2�N

2ν

N∑
k=1

Tk∑
i=1

γk PTk
�kβk(1 − PTk )p

2
i Pi−1

,

(3.22)

where x∗ ∈ X is an arbitrary optimal solution of problem (1.1), and Pt and �k

are defined in (3.8) and (3.20), respectively.
(b) If X is compact, and for any k ≥ 2,

γkβk

�k(1 − PTk )
≥ γk−1βk−1

�k−1(1 − PTk−1)
, (3.23)

then (3.22) still holds by simply replacing the first term in the definition of Bd(N )

with γNβN V̄ (x∗)/(1 − PTN ), where V̄ (u) = maxx∈X V (x, u).

Proof We conclude from (3.14) and Lemma 2 that

Ψ (x̄N ) − Ψ (u) ≤ �N
1 − γ1

�1
[Ψ (x̄0) − Ψ (u)]

+�N

N∑
k=1

βkγk

�k(1 − PTk )

[
V (xk−1, u) − V (xk, u)

]

+ M2�N

2ν

N∑
k=1

Tk∑
i=1

γk PTk
�kβk(1 − PTk )p

2
i Pi−1

= �N

N∑
k=1

βkγk

�k(1 − PTk )

[
V (xk−1, u) − V (xk, u)

]

+ M2�N

2ν

N∑
k=1

Tk∑
i=1

γk PTk
�kβk(1 − PTk )p

2
i Pi−1

, (3.24)
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where the last identity follows from the fact that γ1 = 1. Now it follows from (3.21)
that

N∑
k=1

βkγk

�k(1 − PTk )

[
V (xk−1, u) − V (xk, u)

]

≤ β1γ1

�1(1 − PT1)
V (x0, u) − βNγN

�N (1 − PTN )
V (xN , u) ≤ β1

1 − PT1
V (x0, u),

(3.25)

where the last inequality follows from the facts that γ1 = �1 = 1, PTN ≤ 1, and
V (xN , u) ≥ 0. The result in part a) then clearly follows from the previous two inequal-
ities with u = x∗. Moreover, using (3.23) and the fact V (xk, u) ≤ V̄ (u), we conclude
that

N∑
k=1

βkγk

�k(1 − PTk )

[
V (xk−1, u) − V (xk, u)

]

≤ β1

1 − PT1
V̄ (u) −

N∑
k=2

[
βk−1γk−1

�k−1(1 − PTk−1)
− βkγk

�k(1 − PTk )

]
V̄ (u)

= γNβN

�N (1 − PTN )
V̄ (u). (3.26)

Part b) then follows from the above observation and (3.24) with u = x∗. ��
Clearly, there are various options for specifying the parameters {pt }, {θt }, {βk},

{γk}, and {Tk} to guarantee the convergence of the GS algorithm. Below we provide
a few such selections which lead to the best possible rate of convergence for solving
problem (1.1). In particular, Corollary 1(a) provides a set of such parameters for the
case when the feasible region X is unbounded and the iteration limit N is given a
priori, while the one in Corollary 1(b) works only for the case when X is compact, but
does not require N to be given in advance.

Corollary 1 Assume that {pt } and {θt } in the PS procedure are set to

pt = t

2
and θt = 2(t + 1)

t (t + 3)
, ∀ t ≥ 1. (3.27)

(a) If N is fixed a priori, and {βk}, {γk}, and {Tk} are set to

βk = 2L

vk
, γk = 2

k + 1
, and Tk =

⌈
M2Nk2

D̃L2

⌉
(3.28)

for some D̃ > 0, then

Ψ (x̄N ) − Ψ (x∗) ≤ 2L

N (N + 1)

[
3V (x0, x∗)

ν
+ 2D̃

]
, ∀N ≥ 1. (3.29)
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(b) If X is compact, and {βk}, {γk}, and {Tk} are set to

βk = 9L(1 − PTk )

2ν(k + 1)
, γk = 3

k + 2
, and Tk =

⌈
M2(k + 1)3

D̃L2

⌉
, (3.30)

for some D̃ > 0, then

Ψ (x̄N ) − Ψ (x∗) ≤ L

(N + 1)(N + 2)

(
27V̄ (x∗)

2ν
+ 8D̃

3

)
, ∀N ≥ 1. (3.31)

Proof We first show part a). By the definitions of Pt and pt in (3.8) and (3.27), we
have

Pt = t Pt−1

t + 2
= · · · = 2

(t + 1)(t + 2)
. (3.32)

Using the above identity and (3.27), we can easily see that the condition in (3.8) holds.
It also follows from (3.32) and the definition of Tk in (3.28) that

PTk ≤ PTk−1 ≤ · · · ≤ PT1 ≤ 1

3
. (3.33)

Now, it can be easily seen from the definition of βk and γk in (3.28) that (3.13) holds.
It also follows from (3.20) and (3.28) that

�k = 2

k(k + 1)
. (3.34)

By (3.28), (3.33), and (3.34), we have

γkβk

�k(1 − PTk )
= 2L

ν(1 − PTk )
≤ 2L

ν(1 − PTk−1)
= γk−1βk−1

�k−1(1 − PTk−1)
,

from which (3.21) follows. Now, by (3.32) and the fact that pt = t/2, we have

Tk∑
i=1

1

p2i Pi−1
= 2

Tk∑
i=1

i + 1

i
≤ 4Tk, (3.35)

which, together with (3.28) and (3.34), then imply that

Tk∑
i=1

γk PTk
�kβk(1 − PTk )p

2
i Pi−1

≤ 4γk PTk Tk
�kβk(1 − PTk )

= 4νk2

L(Tk + 3)
. (3.36)
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Using this observation, (3.22), (3.33), and (3.34), we have

Bd(N ) ≤ 4LV (x0, x∗)
νN (N + 1)(1 − PT1)

+ 4M2

LN (N + 1)

N∑
k=1

k2

Tk + 3

≤ 6LV (x0, x∗)
νN (N + 1)

+ 4M2

LN (N + 1)

N∑
k=1

k2

Tk + 3
,

which, in view of Theorem 1(a) and the definition of Tk in (3.28), then clearly implies
(3.29).

Now let us show that part (b) holds. It follows from (3.33), and the definition of βk

and γk in (3.30) that

βk ≥ 3L

ν(k + 1)
≥ Lγk

ν
(3.37)

and hence that (3.13) holds. It also follows from (3.20) and (3.30) that

�k = 6

k(k + 1)(k + 2)
, k ≥ 1, (3.38)

and hence that

γkβk

�k(1 − PTk )
= k(k + 1)

2

9L

2ν(k + 1)
= 9Lk

4ν
, (3.39)

which implies that (3.23) holds. Using (3.30), (3.33), (3.35), and (3.37), we have

Tk∑
i=1

γk PTk
�kβk(1 − PTk )p

2
i Pi−1

≤ 4γk PTk Tk
�kβk(1 − PTk )

= 4νk(k + 1)2PTk Tk
9L(1 − PTk )

2

= 8νk(k + 1)2(Tk + 1)(Tk + 2)

9LTk(Tk + 3)2
≤ 8νk(k + 1)2

9LTk
.

(3.40)

Using this observation, (3.30), (3.38), and Theorem 1(b), we conclude that

Ψ (x̄N ) − Ψ (x∗) ≤ γNβN V̄ (x∗)
(1 − PTN )

+ M2�N

2ν

N∑
k=1

8νk(k + 1)2

9LTk

≤ γNβN V̄ (x∗)
(1 − PTN )

+ 8L D̃

3(N + 1)(N + 2)

≤ L

(N + 1)(N + 2)

(
27V̄ (x∗)

2ν
+ 8D̃

3

)
.

��
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Observe that by (3.3) and (3.32), when the selection of pt = t/2, the definition of
ũt in the PS procedure can be simplified as

ũt = (t + 2)(t − 1)

t (t + 3)
ũt−1 + 2(t + 1)

t (t + 3)
ut .

In view of Corollary 1, we can establish the complexity of the GS algorithm for
finding an ε-solution of problem (1.1).

Corollary 2 Suppose that {pt } and {θt } are set to (3.27). Also assume that there exists
an estimate DX > 0 s.t.

V (x, y) ≤ DX , ∀x, y ∈ X. (3.41)

If {βk}, {γk}, and {Tk} are set to (3.28) with D̃ = 3DX/(2ν) for some N > 0, then the
total number of evaluations for ∇ f and h′ can be bounded by

O
(√

LDX

νε

)
(3.42)

and

O
{
M2DX

νε2
+
√

LDX

νε

}
, (3.43)

respectively. Moreover, the above two complexity bounds also hold if X is bounded,
and {βk}, {γk}, and {Tk} are set to (3.30) with D̃ = 81DX/(16ν).

Proof In view of Corollary 1(a), if {βk}, {γk}, and {Tk} are set to (3.28), the total
number of outer iterations (or gradient evaluations) performed by the GS algorithm to
find an ε-solution of (1.1) can be bounded by

N ≤
√

L

ε

[
3V (x0, x∗)

ν
+ 2D̃

]
≤
√
6LDX

νε
. (3.44)

Moreover, using the definition of Tk in (3.28), we conclude that the total number of
inner iterations (or subgradient evaluations) can be bounded by

N∑
k=1

Tk ≤
N∑

k=1

(
M2Nk2

D̃L2
+ 1

)
≤ M2N (N + 1)3

3D̃L2
+ N = 2νM2N (N + 1)3

9DX L2 + N ,

which, in view of (3.44), then clearly implies the bound in (3.43). Using Corollary 1(b)
and similar arguments, we can show that the complexity bounds (3.42) and (3.43) also
hold when X is bounded, and {βk}, {γk}, and {Tk} are set to (3.30) . ��
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In view of Corollary 2, the GS algorithm can achieve the optimal complexity bound
for solving problem (1.1) in terms of the number of evaluations for both ∇ f and h′.
To the best of our knowledge, this is the first time that this type of algorithm has been
developed in the literature.

It is also worth noting that we can relax the requirement on DX in (3.41) to
V (x0, x∗) ≤ DX or maxx∈X V (x, x∗) ≤ DX , respectively, when the stepsize policies
in (3.28) or in (3.30) is used. Accordingly, we can tighten the complexity bounds in
(3.42) and (3.43) by a constant factor.

4 Stochastic gradient sliding

In this section, we consider the situation when the computation of stochastic subgra-
dients of h is much easier than that of exact subgradients. This situation happens, for
example, when h is given in the form of an expectation or as the summation of many
nonsmooth components. By presenting a stochastic gradient sliding (SGS) method,
we show that similar complexity bounds as in Sect. 3 for solving problem (1.1) can
still be obtained in expectation or with high probability, but the iteration cost of the
SGS method can be substantially smaller than that of the GS method.

More specifically, we assume that the nonsmooth component h is represented by a
stochastic oracle (SO) satisfying (1.6) and (1.7). Sometimes, we augment (1.7) by a
“light-tail” assumption:

E[exp(‖H(u, ξ) − h′(u)‖2∗/σ 2)] ≤ exp(1). (4.1)

It can be easily seen that (4.1) implies (1.7) by Jensen’s inequality.
The stochastic gradient sliding (SGS) algorithm is obtained by simply replacing

the exact subgradients in the PS procedure with the stochastic subgradients returned
by the SO. This algorithm is formally described as follows.

Algorithm 2 The stochastic gradient sliding (SGS) algorithm
The algorithm is the same as GS except that the identity (3.2) in the PS procedure is replaced by

ut = argminu∈X
{
g(u) + 〈H(ut−1, ξt−1), u〉 + βV (x, u) + βpt V (ut−1, u) + X (u)

}
. (4.2)

The above modified PS procedure is called the SPS (stochastic PS) procedure.

We add a few remarks about the above SGS algorithm. Firstly, in this algorithm,
we assume that the exact gradient of f will be used throughout the Tk inner iterations.
This is different from the accelerated stochastic approximation in [11], where one
needs to compute ∇ f at each subgradient projection step. Secondly, let us denote

l̃h(ut−1, u) := h(ut−1) + 〈H(ut−1, ξt−1), u − ut−1〉. (4.3)
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It can be easily seen that (4.2) is equivalent to

ut = argmin
u∈X

{
g(u) + l̃h(ut−1, u) + βV (x, u) + βpt V (ut−1, u) + X (u)

}
.

(4.4)

This problem reduces to (3.2) if there is no stochastic noise associated with the SO,
i.e., σ = 0 in (1.7). Thirdly, note that we have not provided the specification of {βk},
{γk}, {Tk}, {pt } and {θt } in the SGS algorithm. Similarly to Sect. 3, we will return
to this issue after establishing some convergence properties about the generic SPS
procedure and SGS algorithm.

The following result describes some important convergence properties of the SPS
procedure.

Proposition 3 Assume that {pt } and {θt } in the SPS procedure satisfy condspstheta).
Then for any t ≥ 1 and u ∈ X,

β(1 − Pt )
−1V (ut , u) + [Φ(ũt ) − Φ(u)] ≤ βPt (1 − Pt )

−1V (ut−1, u)

+ Pt (1 − Pt )
−1

t∑
i=1

(pi Pi−1)
−1

[
(M + ‖δi‖∗)2

2νβpi
+ 〈δi , u − ui−1〉

]
, (4.5)

where Φ is defined in genericspssubproblem)

δt := H(ut−1, ξt−1) − h′(ut−1), and h′(ut−1) = E[H(ut−1, ξt−1)]. (4.6)

Proof Let l̃h(ut−1, u) be defined in (4.3). Clearly, we have l̃h(ut−1, u)−lh(ut−1, u) =
〈δt , u − ut−1〉. Using this observation and (3.10), we obtain

Φ(ut ) ≤ g(u) + lh(ut−1, ut ) + βV (x, ut ) + X (ut ) + M‖ut − ut−1‖
= g(u) + l̃h(ut−1, ut ) − 〈δt , ut − ut−1〉 + βV (x, ut ) + X (ut ) + M‖ut−ut−1‖
≤ g(u) + l̃h(ut−1, ut ) + βV (x, ut ) + X (ut ) + (M + ‖δt‖∗)‖ut − ut−1‖,

where the last inequality follows from the Cauchy–Schwarz inequality. Now applying
Lemma 1 to (4.2), we obtain

g(ut ) + l̃h(ut−1, ut ) + βV (x, ut ) + βpt V (ut−1, ut ) + X (ut )

≤ g(u) + l̃h(ut−1, u) + βV (x, u) + βpt V (ut−1, u) + X (u) − β(1 + pt )V (ut , u)

= g(u) + lh(ut−1, u) + 〈δt , u − ut−1〉
+ βV (x, u) + βpt V (ut−1, u) + X (u) − β(1 + pt )V (ut , u)

≤ Φ(u) + βpt V (ut−1, u) − β(1 + pt )V (ut , u) + 〈δt , u − ut−1〉,
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where the last inequality follows from the convexity of h and (3.4). Moreover, by the
strong convexity of ω,

− βpt V (ut−1, ut ) + (M + ‖δt‖∗)‖ut − ut−1‖

≤ −νβpt
2

‖ut − ut−1‖2 + (M + ‖δt‖∗)‖ut − ut−1‖ ≤ (M + ‖δt‖∗)2

2νβpt
,

where the last inequality follows from the simple fact that −at2/2 + bt ≤ b2/(2a)

for any a > 0. Combining the previous three inequalities, we conclude that

Φ(ut ) − Φ(u) ≤ βpt V (ut−1, u) − β(1 + pt )V (ut , u)

+ (M + ‖δt‖∗)2

2νβpt
+ 〈δt , u − ut−1〉.

Now dividing both sides of the above inequality by 1+ pt and re-arranging the terms,
we obtain

βV (ut , u) + Φ(ut ) − Φ(u)

1 + pt
≤ βpt

1 + pt
V (ut−1, u) + (M + ‖δt‖∗)2

2νβ(1 + pt )pt

+ 〈δt , u − ut−1〉
1 + pt

,

which, in view of Lemma 2, then implies that

β

Pt
V (ut , u) +

t∑
i=1

Φ(ui ) − Φ(u)

Pi (1 + pi )

≤ βV (u0, u) +
t∑

i=1

[
(M + ‖δi‖∗)2

2νβPi (1 + pi )pi
+ 〈δi , u − ui−1〉

Pi (1 + pi )

]
. (4.7)

The result then immediately follows from the above inequality and (3.12). ��

It should be noted that the search points {ut } generated by different calls to the SPS
procedure in different outer iterations of the SGS algorithm are distinct from each
other. To avoid ambiguity, we use uk,t , k ≥ 1, t ≥ 0, to denote the search points
generated by the SPS procedure in the k-th outer iteration. Accordingly, we use

δk,t−1 := H(uk,t−1, ξt−1) − h′(uk,t−1), k ≥ 1, t ≥ 1, (4.8)

to denote the stochastic noises associated with the SO. Then, by (4.5), the definition
of Φk in (2.9), and the origin of (xk, x̃k) in the SGS algorithm, we have

123



222 G. Lan

βk(1 − PTk )
−1V (xk, u) + [Φk(x̃k) − Φk(u)]

≤ βk PTk (1 − PTk )
−1V (xk−1, u) + PTk (1 − PTk )

−1
Tk∑
i=1

1

pi Pi−1

×
[(

M + ‖δk,i−1‖∗
)2

2νβk pi
+ 〈δk,i−1, u − uk,i−1〉

]
(4.9)

for any u ∈ X and k ≥ 1.
With the help of (4.9),we are now ready to establish themain convergence properties

of the SGS algorithm.

Theorem 2 Suppose that {pt }, {θt }, {βk}, and {γk} in the SGS algorithm satisfy (3.8)
and (3.13).

(a) If relation (3.21) holds, then under Assumptions (1.6) and (1.7), we have, for any
N ≥ 1,

E
[
Ψ (x̄N ) − Ψ (x∗)

] ≤ B̃d(N ) := �Nβ1

1 − PT1
V (x0, u)

+�N

ν

N∑
k=1

Tk∑
i=1

(M2 + σ 2)γk PTk
βk�k(1 − PTk )p

2
i Pi−1

,

(4.10)

where x∗ is an arbitrary optimal solution of (1.1), and Pt and �k are defined in
(3.3) and (3.20), respectively.

(b) If in addition, X is compact and Assumption (4.1) holds, then

Prob
{
Ψ (x̄N ) − Ψ (x∗) ≥ B̃d(N ) + λBp(N )

}
≤ exp

{
−2λ2/3

}
+ exp {−λ} ,

(4.11)

for any λ > 0 and N ≥ 1, where

B̃p(N ) := σ�N

⎧⎨
⎩
2V̄ (x∗)

ν

N∑
k=1

Tk∑
i=1

[
γk PTk

�k(1 − PTk )pi Pi−1

]2⎫⎬
⎭

1
2

+ �N

ν

N∑
k=1

Tk∑
i=1

σ 2γk PTk
βk�k(1 − PTk )p

2
i Pi−1

. (4.12)

(c) If X is compact and relation (3.23) [instead of (3.21)] holds, then both part (a)
and part (b) still hold by replacing the first term in the definition of B̃d(N ) with
γNβN V̄ (x∗)/(1 − PTN ).
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Proof Using (3.19) and (4.9), we have

Ψ (x̄k) − Ψ (u)

≤ (1 − γk)[Ψ (x̄k−1) − Ψ (u)] + γk

⎧⎨
⎩

βk

1 − PTk
[V (xk−1, u) − V (xk, u)]

+ PTk
1 − PTk

Tk∑
i=1

1

pi Pi−1

[(
M + ‖δk,i−1‖∗

)2
2νβk pi

+ 〈δk,i−1, u − uk,i−1〉
]⎫⎬
⎭ .

Using the above inequality and Lemma 2, we conclude that

Ψ (x̄N ) − Ψ (u)

≤ �N (1 − γ1)[Ψ (x̄0) − Ψ (u)] + �N

N∑
k=1

βkγk

�k(1 − PTk )

[
V (xk−1, u) − V (xk, u)

]

+ �N

N∑
k=1

γk PTk
�k(1 − PTk )

Tk∑
i=1

1

pi Pi−1

[(
M + ‖δk,i−1‖∗

)2
2νβk pi

+〈δk,i−1, u − uk,i−1〉
]
.

The above relation, in view of (3.25) and the fact that γ1 = 1, then implies that

Ψ (x̄N ) − Ψ (u) ≤ βk

1 − PT1
V (x0, u) + �N

N∑
k=1

γk PTk
�k(1 − PTk )

×
Tk∑
i=1

1

pi Pi−1

[
M2 + ‖δk,i−1‖2∗

νβk pi
+ 〈δk,i−1, u − uk,i−1〉

]
. (4.13)

We now provide bounds on the RHS of (4.13) in expectation or with high probability.
We first show part a). Note that by our assumptions on the SO, the random variable

δk,i−1 is independent of the search point uk,i−1 and hence E[〈�k,i−1, x∗ −uk,i 〉] = 0.
In addition, Assumption (1.7) implies thatE[‖δk,i−1‖2∗] ≤ σ 2. Using the previous two
observations and taking expectation on both sides of (4.13) (with u = x∗), we obtain
(4.10).

We now show that part b) holds. Note that by our assumptions on the SO and
the definition of uk,i , the sequence {〈δk,i−1, x∗ − uk,i−1〉}k≥1,1≤i≤Tk is a martingale-
difference sequence. Denoting

αk,i := γk PTk
�k(1 − PTk )pi Pi−1

,

and using the large-deviation theorem for martingale-difference sequence (e.g.,
Lemma 2 of [13]) and the fact that
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E

[
exp

{
να2

k,i 〈δk,i−1, x
∗ − uk,i 〉2/

(
2α2

k,i V̄ (x∗)σ 2
)}]

≤ E

[
exp

{
να2

k,i‖δk,i−1‖2∗‖x∗ − uk,i‖2/
(
2V̄ (x∗)σ 2

)}]

≤ E

[
exp

{
‖δk,i−1‖2∗V (uk,i , x

∗)/
(
V̄ (x∗)σ 2

)}]

≤ E

[
exp

{
‖δk,i−1‖2∗/σ 2

}]
≤ exp{1},

we conclude that

Prob

⎧⎨
⎩

N∑
k=1

Tk∑
i=1

αk,i 〈δk,i−1, x
∗ − uk,i−1〉 > λσ

√√√√2V̄ (x∗)
ν

N∑
k=1

Tk∑
i=1

α2
k,i

⎫⎬
⎭

≤ exp{−λ2/3}, ∀λ > 0. (4.14)

Now let

Sk,i := γk PTk
βk�k(1 − PTk )p

2
i Pi−1

and S :=∑N
k=1
∑Tk

i=1 Sk,i . By the convexity of exponential function, we have

E

⎡
⎣exp

⎧⎨
⎩
1

S

N∑
k=1

Tk∑
i=1

Sk,i‖δk,i‖2∗/σ 2

⎫⎬
⎭
⎤
⎦

≤ E

⎡
⎣ 1

S

N∑
k=1

Tk∑
i=1

Siexp
{
‖δk,i‖2∗/σ 2

}⎤⎦ ≤ exp{1}.

where the last inequality follows from Assumption (4.1). Therefore, by Markov’s
inequality, for all λ > 0,

Prob

⎧⎨
⎩

N∑
k=1

Tk∑
i=1

Sk,i‖δk,i−1‖2∗ > (1 + λ)σ 2
N∑

k=1

Tk∑
i=1

Sk,i

⎫⎬
⎭

= Prob

⎧⎨
⎩exp

⎧⎨
⎩
1

S

N∑
k=1

Tk∑
i=1

Sk,i‖δk,i−1‖2∗/σ 2

⎫⎬
⎭ ≥ exp{1 + λ}

⎫⎬
⎭ ≤ exp{−λ}. (4.15)

Our result now directly follows from (4.13), (4.14) and (4.15). The proof of part c) is
very similar to part (a) and (b) in view of the bound in (3.26), and hence the details
are skipped. ��

We now provide some specific choices for the parameters {βk}, {γk}, {Tk}, {pt }, and
{θt } used in the SGS algorithm. In particular, while the stepsize policy in Corollary 3(a)
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requires the number of iterations N given a priori, such an assumption is not needed
in Corollary 3(b) given that X is bounded. However, in order to provide some large-
deviation results associated with the rate of convergence for the SGS algorithm [see
(4.18) and (4.21) below], we need to assume the boundness of X in both Corollary 3(a)
and Corollary 3(b).

Corollary 3 Assume that {pt } and {θt } in the SPS procedure are set to (3.27).

(a) If N is given a priori, {βk} and {γk} are set to (3.28), and {Tk} is given by

Tk =
⌈
N (M2 + σ 2)k2

D̃L2

⌉
(4.16)

for some D̃ > 0. Then under Assumptions (1.6) and (1.7), we have

E
[
Ψ (x̄N ) − Ψ (x∗)

] ≤ 2L

N (N + 1)

[
3V (x0, x∗)

ν
+ 4D̃

]
, ∀N ≥ 1. (4.17)

If in addition, X is compact and Assumption (4.1) holds, then

Prob

⎧⎨
⎩Ψ (x̄N ) − Ψ (x∗) ≥ 2L

N (N + 1)

⎡
⎣3V (x0, x∗)

ν
+ 4(1 + λ)D̃ + 4λ

√
D̃V̄ (x∗)√
3ν

⎤
⎦
⎫⎬
⎭

≤ exp
{−2λ2/3

}+ exp {−λ} , ∀λ > 0, ∀N ≥ 1. (4.18)

(b) If X is compact, {βk} and {γk} are set to (3.30), and {Tk} is given by

Tk =
⌈

(M2 + σ 2)(k + 1)3

D̃L2

⌉
(4.19)

for some D̃ > 0. Then under Assumptions (1.6) and (1.7), we have

E
[
Ψ (x̄N ) − Ψ (x∗)

] ≤ L

(N + 1)(N + 2)

[
27V̄ (x∗)

2ν
+ 16D̃

3

]
, ∀N ≥ 1.

(4.20)

If in addition, Assumption (4.1) holds, then

Prob

⎧⎨
⎩Ψ (x̄N ) − Ψ (x∗) ≥ L

N (N + 2)

⎡
⎣27V̄ (x∗)

2ν
+ 8

3
(2 + λ)D̃ + 12λ

√
2D̃V̄ (x∗)√
3ν

⎤
⎦
⎫⎬
⎭

≤ exp
{−2λ2/3

}+ exp {−λ} , ∀λ > 0, ∀N ≥ 1. (4.21)
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Proof We first show part (a). It can be easily seen from (3.34) that (3.13) holds.
Moreover, Using (3.28), (3.33), and (3.34), we can easily see that (3.21) holds. By
(3.33), (3.34), (3.36), (4.10), and (4.16), we have

B̃d(N ) ≤ 4LV (x0, x∗)
νN (N + 1)(1 − PT1)

+ 8
(
M2 + σ 2

)
LN (N + 1)

N∑
k=1

k2

Tk + 3

≤ 6L

νN (N + 1)
+ 8

(
M2 + σ 2

)
LN (N + 1)

N∑
k=1

k2

Tk + 3

≤ 2L

N (N + 1)

[
3V (x0, x∗)

ν
+ 4D̃

]
, (4.22)

which, in view of Theorem 2(a), then clearly implies (4.17). Now observe that by the
definition of γk in (3.28) and relation (3.34),

Tk∑
i=1

[
γk PTk

�k(1 − PTk )pi Pi−1

]2
=
(

2k

Tk(Tk + 3)

)2 Tk∑
i=1

(i + 1)2

=
(

2k

Tk(Tk + 3)

)2
(Tk + 1)(Tk + 2)(2Tk + 3)

6
≤ 8k2

3Tk
,

which together with (3.34), (3.36), and (4.12) then imply that

B̃p(N ) ≤ 2σ

N (N + 1)

[
2V̄ (x∗)

ν

N∑
k=1

8k2

3Tk

] 1
2

+ 8σ 2

LN (N + 1)

N∑
k=1

k2

Tk + 3

≤ 2σ

N (N + 1)

[
16D̃L2V̄ (x∗)
3ν(M2 + σ 2)

] 1
2

+ 8D̃Lσ 2

N (N + 1)(M2 + σ 2)

≤ 8L

N (N + 1)

⎛
⎝
√
D̃V̄ (x∗)√

3ν
+ D̃

⎞
⎠ .

Using the above inequality, (4.22), Theorem 2(b), we obtain (4.18).
We now show that part b) holds. Note that Pt and �k are given by (3.32) and (3.38),

respectively. It then follows from (3.37) and (3.39) that both (3.13) and (3.23) hold.
Using (3.40), the definitions of γk and βk in (3.30), (4.19), and Theorem 2(c), we
conclude that

E
[
Ψ (x̄N ) − Ψ (x∗)

] ≤ γNβN V̄ (x∗)
(1 − PTN )

+ �N (M2 + σ 2)

ν

N∑
k=1

Tk∑
i=1

γk PTk
βk�k(1 − PTk )p

2
i Pi−1

≤ γNβN V̄ (x∗)
(1 − PTN )

+ 16L D̃

3ν(N + 1)(N + 2)

≤ L

(N + 1)(N + 2)

(
27V̄ (x∗)

2ν
+ 16D̃

3

)
. (4.23)
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Now observe that by the definition of γk in (3.30), the fact that pt = t/2, (3.32),
and (3.38), we have

Tk∑
i=1

[
γk PTk

�k(1 − PTk )pi Pi−1

]2
=
(

k(k + 1)

Tk(Tk + 3)

)2 Tk∑
i=1

(i + 1)2

=
(

k(k + 1)

Tk(Tk + 3)

)2
(Tk + 1)(Tk + 2)(2Tk + 3)

6
≤ 8k4

3Tk
,

which together with (3.38), (3.40), and (4.12) then imply that

B̃p(N ) ≤ 6

N (N + 1)(N + 2)

⎡
⎢⎣σ

(
2V̄ (x∗)

ν

N∑
k=1

8k4

3Tk

) 1
2

+ 4σ 2

9L

N∑
k=1

k(k + 1)2

Tk

⎤
⎥⎦

= 6

N (N + 1)(N + 2)

⎡
⎣σ

(
8V̄ (x∗)D̃L2N (N + 1)

3ν(M2 + σ 2)

) 1
2

+ 4σ 2L D̃N

9(M2 + σ 2)

⎤
⎦

≤ 6L

N (N + 2)

⎛
⎝2
√
2V̄ (x∗)D̃√

3ν
+ 4D̃

9

⎞
⎠ .

The relation in (4.21) then immediately follows from the above inequality, (4.23), and
Theorem 2(c). ��

Corollary 4belowstates the complexity of theSGSalgorithm for finding a stochastic
ε-solution of (1.1), i.e., a point x̄ ∈ X s.t.E[Ψ (x̄)−Ψ ∗] ≤ ε for some ε > 0, as well as
a stochastic (ε,�)-solution of (1.1), i.e., a point x̄ ∈ X s.t. Prob {Ψ (x̄) − Ψ ∗ ≤ ε} >

1 − � for some ε > 0 and � ∈ (0, 1). Since this result follows as an immediate
consequence of Corollary 3, we skipped the details of its proof.

Corollary 4 Suppose that {pt } and {θt } are set to (3.27). Also assume that there exists
an estimate DX > 0 s.t. (3.41) holds.

(a) If {βk} and {γk} are set to (3.28), and {Tk} is given by (4.16) with D̃ = 3DX/(4ν)

for some N > 0, then the number of evaluations for ∇ f and h′, respectively,
required by the SGS algorithm to find a stochastic ε-solution of (1.1) can be
bounded by

O
(√

LDX

νε

)
(4.24)

and

O
{

(M2 + σ 2)DX

νε2
+
√

LDX

νε

}
. (4.25)
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(b) If in addition, Assumption (4.1) holds, then the number of evaluations for∇ f and
h′, respectively, required by the SGS algorithm to find a stochastic (ε,�)-solution
of (1.1) can be bounded by

O
{√

LDX

νε
max

(
1, log

1

�

)}
(4.26)

and

O
{
M2DX

νε2
max

(
1, log2

1

�

)
+
√

LDX

νε
max

(
1, log

1

�

)}
. (4.27)

(c) The above bounds in part (a) and (b) still hold if X is bounded, {βk} and {γk} are
set to (3.30), and {Tk} is given by (4.19) with D̃ = 81DX/(32ν).

Observe that both bounds in (4.24) and (4.25) on the number of evaluations for
∇ f and h′ are essentially not improvable. In fact, to the best of our knowledge, this
is the first time that theO(1/

√
ε) complexity bound on gradient evaluations has been

established in the literature for stochastic approximation type algorithms applied to
solve the composite problem in (1.1).

5 Generalization to strongly convex and structured nonsmooth
optimization

Our goal in this section is to show that the gradient sliding techniques developed
in Sects. 3 and 4 can be further generalized to some other important classes of CP
problems. More specifically, we first study in Sect. 5.1 the composite CP problems
in (1.1) with f being strongly convex, and then consider in Sect. 5.2 the case where
f is a special nonsmooth function given in a bi-linear saddle point form. Throughout
this section, we assume that the nonsmooth component h is represented by a SO (see
Sect. 1). It is clear that our discussion covers also the deterministic composite problems
as certain special cases by setting σ = 0 in (1.7) and (4.1).

5.1 Strongly convex optimization

In this section, we assume that the smooth component f in (1.1) is strongly convex,
i.e., ∃μ > 0 such that

f (x) ≥ f (y) + 〈∇ f (y), x − y〉 + μ

2
‖x − y‖2, ∀x, y ∈ X. (5.1)

In addition, throughout this section, we assume that the prox-function grows quadrat-
ically so that (2.4) is satisfied.

One way to solve these strongly convex composite problems is to apply the
aforementioned accelerated stochastic approximation algorithm which would require
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O(1/ε) evaluations for ∇ f and h′ to find an ε-solution of (1.1) [5,6]. However, we
will show in this subsection that this bound on the number of evaluations for ∇ f can
be significantly reduced to O(log(1/ε)), by properly restarting the SGS algorithm in
Sect. 4. This multi-phase stochastic gradient sliding (M-SGS) algorithm is formally
described as follows.

Algorithm 3 The multi-phase stochastic gradient sliding (M-SGS) algorithm
Input: Initial point y0 ∈ X , iteration limit N0, and an initial estimate �0 s.t. Ψ (y0) − Ψ ∗ ≤ �0.

for s = 1, 2, . . . , S do
Run the SGS algorithm with x0 = ys−1, N = N0, {pt } and {θt } in (3.27), {βk } and {γk } in (3.28),

and {Tk } in (4.16) with D̃ = �0/(νμ2s ), and let ys be its output solution.
end for
Output: yS .

We now establish the main convergence properties of the M-SGS algorithm
described above.

Theorem 3 If N0 = ⌈4√2L/(νμ)
⌉
in the MGS algorithm, then

E[Ψ (ys) − Ψ ∗] ≤ �0

2s
, s ≥ 0. (5.2)

Asa consequence, the total number of evaluations for∇ f and H, respectively, required
by the M-SGS algorithm to find a stochastic ε-solution of (1.1) can be bounded by

O
(√

L

νμ
log2 max

{
�0

ε
, 1

})
(5.3)

and

O
(
M2 + σ 2

νμε
+
√

L

νμ
log2 max

{
�0

ε
, 1

})
. (5.4)

Proof We show (5.2) by induction. Note that (5.2) clearly holds for s = 0 by our
assumption on �0. Now assume that (5.2) holds at phase s − 1, i.e., Ψ (ys−1) − Ψ ∗ ≤
�0/2(s−1) for some s ≥ 1. In view of Corollary 3 and the definition of ys , we have

E[Ψ (ys) − Ψ ∗|ys−1] ≤ 2L

N0(N0 + 1)

[
3V (ys−1, x∗)

ν
+ 4D̃

]

≤ 2L

N 2
0

[
6

νμ
(Ψ (ys−1) − Ψ ∗) + 4D̃

]
.

where the second inequality follows from the strong convexity of Ψ and (2.4). Now
taking expectation on both sides of the above inequality w.r.t. ys−1, and using the
induction hypothesis and the definition of D̃ in the M-SGS algorithm, we conclude
that
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E[Ψ (ys) − Ψ ∗] ≤ 2L

N 2
0

8�0

νμ2s−1 ≤ �0

2s
,

where the last inequality follows from the definition of N0. Now, by (5.2), the
total number of phases performed by the M-SGS algorithm can be bounded by
S = ⌈

log2 max
{

�0
ε

, 1
}⌉
. Using this observation, we can easily see that the total

number of gradient evaluations of ∇ f is given by N0S, which is bounded by (5.3).
Now let us provide a bound on total number of stochastic subgradient evaluations of
h′. Without loss of generality, let us assume that �0 > ε. Using the previous bound
on S and the definition of Tk , the total number of stochastic subgradient evaluations
of h′ can be bounded by

S∑
s=1

N0∑
k=1

Tk ≤
S∑

s=1

N0∑
k=1

(
νμN0(M2 + σ 2)k2

�0L2 2s + 1

)

≤
S∑

s=1

[
νμN0(M2 + σ 2)

3�0L2 (N0 + 1)32s + N0

]

≤ νμN0(N0 + 1)3(M2 + σ 2)

3�0L2 2S+1 + N0S

≤ 4νμN0(N0 + 1)3(M2 + σ 2)

3εL2 + N0S.

This observation, in view of the definition of N0, then clearly implies the bound in
(5.4). ��

We now add a few remarks about the results obtained in Theorem 3. Firstly, the
M-SGS algorithm possesses optimal complexity bounds in terms of the number of gra-
dient evaluations for∇ f and subgradient evaluations for h′, while existing algorithms
only exhibit optimal complexity bounds on the number of stochastic subgradient eval-
uations (see [6]). Secondly, in Theorem 3, we only establish the optimal convergence
of the M-SGS algorithm in expectation. It is also possible to establish the optimal
convergence of this algorithm with high probability by making use of the light-tail
assumption in (4.1) and a domain shrinking procedure similarly to the one studied in
Section 3 of [6].

5.2 Structured nonsmooth problems

Our goal in this subsection is to further generalize the gradient sliding algorithms
to the situation when f is nonsmooth, but can be closely approximated by a certain
smooth convex function.

More specifically, we assume that f is given in the form of

f (x) = max
y∈Y 〈Ax, y〉 − J (y), (5.5)
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where A : Rn → R
m denotes a linear operator, Y is a closed convex set, and J : Y →

� is a relatively simple, proper, convex, and lower semi-continuous (l.s.c.) function
(i.e., problem (5.8) below is easy to solve). Observe that if J is the convex conjugate
of some convex function F and Y ≡ Y , then problem (1.1) with f given in (5.5) can
be written equivalently as

min
x∈X h(x) + F(Ax),

Similarly to the previous subsection,we focus on the situationwhen h is represented by
a SO. Stochastic composite problems in this form have wide applications in machine
learning, for example, to minimize the regularized loss function of

min
x∈X Eξ [l(x, ξ)] + F(Ax),

where l(·, ξ) is a convex loss function for any ξ ∈ � and F(Kx) is a certain reg-
ularization (e.g., low rank tensor [10,21], overlapped group lasso [7,14], and graph
regularization [7,20]).

Since f in (5.5) is nonsmooth,we cannot directly apply the gradient slidingmethods
developed in the previous sections. However, as shown by Nesterov [17], the function
f (·) in (5.5) can be closely approximated by a class of smooth convex functions. More
specifically, for a given strongly convex function v : Y → R such that

v(y) ≥ v(x) + 〈∇v(x), y − x〉 + ν′

2
‖y − x‖2, ∀x, y ∈ Y (5.6)

for some ν′ > 0, let us denote cv := argminy∈Y v(y), d(y) := v(y) − v(cv) −
〈∇v(cv), y − cv〉 and

DY := max
y∈Y d(y). (5.7)

Then the function f (·) in (5.5) can be closely approximated by

fη(x) := max
y

{〈Ax, y〉 − J (y) − η d(y) : y ∈ Y } . (5.8)

Indeed, by definition we have 0 ≤ V (y) ≤ DY and hence, for any η ≥ 0,

f (x) − ηDY ≤ fη(x) ≤ f (x), ∀x ∈ X. (5.9)

Moreover, Nesterov [17] shows that fη(·) is differentiable and its gradients are Lip-
schitz continuous with the Lipschitz constant given by

Lη := ‖A‖2
ην′ . (5.10)
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We are now ready to present a smoothing stochastic gradient sliding (S-SGS)
method and study its convergence properties.

Theorem 4 Let (x̄k, xk) be the search points generated by a smoothing stochastic
gradient sliding (S-SGS) method, which is obtained by replacing f with fη(·) in the
definition of gk in the SGS method. Suppose that {pt } and {θt } in the SPS procedure
are set to (3.27). Also assume that {βk} and {γk} are set to (3.28) and that Tk is given
by (4.16) with D̃ = 3DX/(4ν) for some N ≥ 1, where DX is given by (3.41). If

η = 2‖A‖
N

√
3DX

νν′DY
,

then the total number of outer iterations and inner iterations performed by the S-SGS
algorithm to find an ε-solution of (1.1) can be bounded by

O
(‖A‖√DXDY

ε
√

νν′

)
(5.11)

and

O
{

(M2 + σ 2)‖A‖2V (x0, x∗)
νε2

+ ‖A‖√DY V (x0, x∗)√
νν′ε

}
, (5.12)

respectively.

Proof Let us denote Ψη(x) = fη(x) + h(x) +X (x). In view of (4.17) and (5.10), we
have

E[Ψη(x̄N ) − Ψη(x)] ≤ 2Lη

N (N + 1)

[
3V (x0, x)

ν
+ 4D̃

]

= 2‖A‖2
ην′N (N + 1)

[
3V (x0, x)

ν
+ 4D̃

]
, ∀x ∈ X, N ≥ 1.

Moreover, it follows from (5.9) that

Ψη(x̄N ) − Ψη(x) ≥ Ψ (x̄N ) − Ψ (x) − ηDY .

Combining the above two inequalities, we obtain

E[Ψ (x̄N ) − Ψ (x)] ≤ 2‖A‖2
ην′N (N + 1)

[
3V (x0, x)

ν
+ 4D̃

]
+ ηDY , ∀x ∈ X,

which implies that

E[Ψ (x̄N ) − Ψ (x∗)] ≤ 2‖A‖2
ην′N (N + 1)

[
3DX

ν
+ 4D̃

]
+ ηDY . (5.13)
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Plugging the value of D̃ and η into the above bound, we can easily see that

E[Ψ (x̄N ) − Ψ (x∗)] ≤ 4
√
3‖A‖√DXDY√

νν′N
, ∀x ∈ X, N ≥ 1.

It then follows from the above relation that the total number of outer iterations to find
an ε-solution of problem (5.5) can be bounded by

N̄ (ε) = 4
√
3‖A‖√DXDY√

νν′ε
.

Now observe that the total number of inner iterations is bounded by

N̄ (ε)∑
k=1

Tk =
N̄ (ε)∑
k=1

[
(M2 + σ 2)N̄ (ε)k2

D̃L2
η

+ 1

]
=

N̄ (ε)∑
k=1

[
(M2 + σ 2)N̄ (ε)k2

D̃L2
η

+ 1

]
.

Combining these two observations, we conclude that the total number of inner itera-
tions is bounded by (4). ��

In view of Theorem 4, by using the smoothing SGS algorithm, we can significantly
reduce the number of outer iterations, andhence the number of times to access the linear
operator A and AT , from O(1/ε2) to O(1/ε) in order to find an ε-solution of (1.1),
while still maintaining the optimal bound on the total number of stochastic subgradient
evaluations for h′. It should be noted that, by using the result in Theorem 2(b), we
can show that the aforementioned savings on the access to the linear operator A and
AT also hold with overwhelming probability under the light-tail assumption in (4.1)
associated with the SO.

6 Concluding remarks

In this paper, we present a new class of first-order method which can significantly
reduce the number of gradient evaluations for ∇ f required to solve the composite
problems in (1.1). More specifically, we show that by using these algorithms, the
total number of gradient evaluations can be significantly reduced from O(1/ε2) to
O(1/

√
ε). As a result, these algorithms have the potential to significantly acceler-

ate first-order methods for solving the composite problem in (1.1), especially when
the bottleneck exists in the computation (or communication in the case of distributed
computing) of the gradient of the smooth component, as happened in many appli-
cations. We also establish similar complexity bounds for solving an important class
of stochastic composite optimization problems by developing the stochastic gradient
sliding methods. By properly restarting the gradient sliding algorithms, we demon-
strate that dramatic saving on gradient evaluations (from O(1/ε) to O(log(1/ε)) can
be achieved for solving strongly convex problems. Generalization to the case when f
is nonsmooth but possessing a bilinear saddle point structure has also been discussed.
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It should be pointed out that this paper focuses only on theoretical studies for the
convergence properties associated with the gradient sliding algorithms. The practical
performance for these algorithms, however, will certainly depend on our estimation
for a few problem parameters, e.g., the Lipschitz constants L and M . In addition, the
sliding periods {Tk} in both GS and SGS have been specified in a conservative way to
obtain the optimal complexity bounds for gradient and subgradient evaluations. We
expect that the practical performance of these algorithms will be further improved
with proper incorporation of certain adaptive search procedures on L , M , and {Tk},
which will be very interesting research topics in the future.

Moreover, we proposed SGS for composite problems where h′ is given by a sto-
chastic oracle. In some applications, instead of having a stochastic h, the smooth part
f may be stochastic. In this case, the number of stochastic gradients of f that we
need to compute will be bounded by O(1/ε2), which is not improvable in general.
Therefore, SGS cannot help in this general case. However, it will be interesting to
understand whether the SGS algorithm helps in some special cases, e.g., when the
variance of the stochastic gradients decreases as the algorithm proceeds.
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