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Abstract Weconsider a class of stochastic optimization problems that features bench-
marking preference relations among random vectors representing multiple random
performance measures (criteria) of interest. Given a benchmark random performance
vector, preference relations are incorporated into the model as constraints, which
require the decision-based random vector to be preferred to the benchmark according
to a relation based on multivariate conditional value-at-risk (CVaR) or second-order
stochastic dominance (SSD). We develop alternative mixed-integer programming for-
mulations and solution methods for cut generation problems arising in optimization
under such multivariate risk constraints. The cut generation problems for CVaR- and
SSD-based models involve the epigraphs of two distinct piecewise linear concave
functions, which we refer to as reverse concave sets. We give the complete linear
description of the linearization polytopes of these two non-convex substructures. We
present computational results that show the effectiveness of our proposed models and
methods.
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1 Introduction

In many decision making problems, such as those arising in relief network design,
homeland security budget allocation, and financial management, there are multiple
random performance measures of interest. In such problems, comparing the potential
decisions requires specifying preference relations among random vectors, where each
dimension of a vector corresponds to a performance measure (or decision criterion).
Moreover, it is often crucial to take into account decision makers’ risk preferences.
Incorporating stochastic multivariate preference relations into optimization models is
a fairly recent research area. The existing models feature benchmarking preference
relations as constraints, requiring the decision-based random vectors to be preferred
(according to the specified preference rules) to some benchmark random vectors. The
literature mainly focuses on multivariate risk-averse preference relations based on
SSD or CVaR.

The SSD relation has received significant attention due to its correspondence with
risk-averse preferences [10]. In this regard, the majority of existing studies on opti-
mization models with multivariate risk constraints extend the univariate SSD rule to
the multivariate case. In this line of research, scalar-based preferences are extended to
vector-valued random variables by considering a family of linear scalarization func-
tions and requiring that all scalarized versions of the random vectors conform to the
specified univariate preference relation. Scalarization coefficients can be interpreted
as weights representing the subjective importance of each decision criterion. Thus, the
scalarization approach is closely related to the weighted summethod, which is widely
used in multicriteria decision making (see, e.g., [8]). In such decision-making situa-
tions, enforcing a preference relation over a family of scalarization vectors allows the
representation of a wider range of views and differing opinions of multiple experts (for
motivating discussions see, e.g., [15]). Dentcheva and Ruszczyński [5] consider linear
scalarization with all nonnegative coefficients (this set can be equivalently truncated
to a unit simplex), and provide a theoretical background for the multivariate SSD-
constrained problems. On the other hand, Homem-de-Mello and Mehrotra [12] and
Hu et al. [14] allow arbitrary polyhedral and convex scalarization sets, respectively.

Optimization models with univariate SSD constraints can be formulated as linear
programs with a potentially large number of scenario-dependent variables and con-
straints (see, e.g., [4,16,18]). While efficient cut generation methods can be employed
to solve such large-scale linear programs [6,9,20], enforcing these constraints for infi-
nitely many scalarization vectors causes additional challenges. For finite probability
spaces, Homem-de-Mello andMehrotra [12] show that infinitelymany risk constraints
(associated with polyhedral scalarization sets) reduce to finitely (typically exponen-
tially) many scalar-based risk constraints for the SSD case, naturally leading to a
finitely convergent cut generation algorithm. However, such an algorithm is compu-
tationally demanding as it requires the iterative solution of non-convex (difference of
convex functions) cut generation subproblems. The authors formulate the cut gener-
ation problem as a binary mixed-integer program (MIP) by linearizing the piecewise
linear shortfall terms, and develop a branch-and-cut algorithm. They also propose
concavity and convexity inequalities, and a big-M improvement method within the
branch-and-cut tree to strengthen the MIP. However, it appears that for the practi-
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cal applications, the authors directly solve the MIP formulation of the cut generation
problem [13,14]. In another line of work, Dentcheva and Wolfhagen [7] use methods
from difference of convex (DC) programming to perform cut generation for the mul-
tivariate SSD-constrained problem. The authors also provide a finite representation of
the multivariate SSD relation if the decisions are taken in a finite dimensional space,
even if the probability space is not finite.

A few studies [1,11] consider the multivariate SSD relation based on multidimen-
sional utility functions instead of using scalarization functions. The resulting models
enforce stricter dominance relations (than those based on the scalarization approach)
but they can be formulated as linear programs, and hence, are computationally more
tractable. On the other hand, the scalarization approach allows us to use univariate
SSD constraints, which are less conservative than the multivariate version, and also
offers the flexibility to control the degree of conservatism by varying the scalarization
sets. However, the scalarization-based multivariate SSD relation can still be overly
conservative in practice and leads to infeasible formulations. As an alternative, Noyan
and Rudolf [17] propose the use of constraints based on coherent risk measures, which
provide sufficient flexibility to lead to feasible problem formulations while still being
able to capture a broad range of risk preferences. In particular, they focus on the widely
applied risk measure CVaR, and replace the multivariate SSD relation by a collection
of multivariate CVaR constraints at various confidence levels. This is a very natural
relaxation due to the well-known fact that the univariate SSD relation is equivalent to
a continuum of CVaR inequalities [4]; we note that a similar idea also led to a cut-
ting plane algorithm for the optimization models with univariate SSD constraints [2].
Noyan and Rudolf [17] define the multivariate CVaR constraints based on the poly-
hedral scalarization sets; as a result, their modeling approach strikes a good balance
between tractability and flexibility. They show that, similar to the SSD-constrained
counterpart, it is sufficient to consider finitely many scalarization vectors, and pro-
pose a finitely convergent cut generation algorithm. The corresponding cut generation
problem has the DC programming structure, as in the SSD case, with similar MIP
reformulations involving big-M type constraints. In addition, the authors utilize alter-
native optimization representations of CVaR to develop MIP formulations for the cut
generation problem for the polyhedral CVaR-constrained problem.

Despite the existing algorithmic developments, solving the MIP formulations of
the cut generation problems can increasingly become a computational bottleneck
as the number of scenarios increases. According to the results presented in Hu et
al. [13] and Noyan and Rudolf [17], the cut generation generally takes no less than
90–95% of the total time spent. The DC functions encountered in the cut genera-
tion problems have polyhedral structure that can be exploited to devise enhanced and
easy-to-implement models. In line with these discussions, this paper contributes to
the literature by providing more effective and easy-to-implement methods to solve the
cut generation problems arising in optimization under multivariate polyhedral SSD
and CVaR constraints. For SSD-constrained problems, the cut generation problems
naturally decompose by scenarios, and the main difficulty is due to the weakness of
the MIP formulation involving big-M type constraints. A similar difficulty arises in
CVaR-constrained problems.However, in this case, an additional challenge stems from
the combinatorial structure required to identify the α-quantile of the decision-based
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random variables. Therefore, this study is mainly dedicated to developing computa-
tionally efficient methods for the multivariate CVaR-constrained models. However,
we also describe how our results can be applied in the SSD case. As in the previous
studies, we focus on finite probability spaces, and our approaches can naturally be
used in a framework based on sample average approximation.

In the next section, we present the general forms of the optimization models fea-
turing the multivariate polyhedral risk preferences as constraints. In Sect. 3, we study
the cut generation problem arising in CVaR-constrained models. We give a new MIP
formulation, and several classes of valid inequalities that improve this formulation.
In addition, we propose variable fixing methods that are highly effective in certain
classes of problems. The cut generation problem involves the epigraph of a piecewise
linear concave function, which we refer to as a reverse concave set. We give the com-
plete linear description of this non-convex substructure. In Sect. 4, we give analogous
results for SSD-constrained models. We emphasize that the reverse concave sets fea-
tured in CVaR and SSD cut generation problems are fundamental sets that may appear
in other problems. In Sect. 5, we present our computational experiments on two data
sets: a previously studied budget allocation problem and a set of randomly generated
test instances. Our results show that the proposed methods lead to more effective cut
generation-based algorithms to solve the multivariate risk-constrained optimization
models. We conclude the paper in Sect. 6.

2 Optimization with multivariate risk constraints

In this section, we present the general forms of the optimization models featuring
multivariate CVaR and SSD constraints based on polyhedral scalarization. Before
proceeding, we need to make a note of some conventions used throughout the paper.
Larger values of random variables, as well as larger values of risk measures, are
considered to be preferable. In this context, risk measures are often referred to as
acceptability functionals, since higher values indicate less risky random outcomes.
The set of the first n positive integers is denoted by [n] = {1, . . . , n}, while the
positive part of a number x ∈ R is denoted by [x]+ = max{x, 0}. Throughout this
paper, we assume that all random variables are defined on some finite probability
spaces, and simplify our exposition accordingly when possible.

We consider a decision making problem where the multiple random performance
measures associated with the decision vector z are represented by the random outcome
vector G(z). Let (Ω, 2Ω,P) be a finite probability space with Ω = {ω1, . . . , ωn} and
P(ωi ) = pi . The set of feasible decisions is denoted by Z and the random outcomes
are determined according to the mapping G : Z × Ω → Rd . Let f : Z → R be
a continuous objective function and C ⊂ Rd+ be a polytope of scalarization vectors.
Considering the interpretation of the scalarization vectors and the fact that larger
outcomes are preferred, we naturally assume that C ⊆ {c ∈ Rd+ : ∑

i∈[d] ci = 1}.
Given the benchmark (reference) random outcome vector Y and the confidence level
α ∈ (0, 1], the optimization problems involving the multivariate polyhedral CVaR and
SSD constraints take, respectively, the following forms:
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(G − MCVaR) max f (z)

s.t. CVaRα(c�G(z)) ≥ CVaRα(c�Y), ∀ c ∈ C, (1)

z ∈ Z .

(G − MSSD) max f (z)

s.t. c�G(z) 	
(2) c�Y, ∀ c ∈ C, (2)

z ∈ Z ,

where X �(2) Y denotes that the univariate random variable X dominates Y in the
second order. While Y is allowed to be defined on a probability space different from
Ω , it is often constructed from a benchmark decision z̄ ∈ Z , i.e., Y = G(z̄). For ease
of exposition, we present the formulations with a single multivariate risk constraint.
However, we can also consider multiple benchmarks, multiple confidence levels, and
varying scalarization sets.

According to the results on finite representations of the scalarization polyhedra, it is
sufficient to consider finitely many scalarization vectors in (1) and (2). However, these
vectors correspond to the vertices of some higher dimensional polyhedra, and there-
fore, there are still potentially exponentially many scalarization-based risk constraints.
A natural approach is to solve some relaxations of the above problems obtained by
replacing the set C with a finite subset (can be even empty). This subset is augmented
by adding the scalarization vectors generated in an iterative fashion. In this spirit, at
each iteration of such a cut generation algorithm, given a current decision vector, we
attempt to find a scalarization vector for which the corresponding risk constraint [of
the form (1) or (2)] is violated. The corresponding cut generation problem is the main
focus of our study.

3 Cut generation for optimization with multivariate CVaR constraints

In this section, we first briefly describe the cut generation problem arising in optimiza-
tion problems of the form (G − MCVaR). Then we proceed to discuss the existing
mathematical programming formulations of this cut generation problem, which con-
stitute a basis for our new developments. The rest of the section is dedicated to the
proposed, computationally more effective formulations and methods.

Consider an iteration of the cut generation-based algorithm (proposed in Noyan
and Rudolf [17]), and let X = G(z∗) be the random outcome vector associated with
the decision vector z∗ obtained by solving the current relaxation of (G − MCVaR) .
The aim is to either find a vector c ∈ C for which the corresponding univariate CVaR
constraint (1) is violated or to show that such a vector does not exist. In this regard, we
solve the cut generation problem at confidence level α ∈ (0, 1] of the general form

(CutGen_CVaR) min
c∈C CVaRα

(
c�X

)
− CVaRα

(
c�Y

)
.

Observe that (CutGen_CVaR) involves the minimization of the difference of two
concave functions, because CVaRα(X), given by (Rockafellar and Uryasev [19])
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CVaRα(X) = max

{

η − 1

α
E ([η − X ]+) : η ∈ R

}

, (3)

is a concave function of a scalar-based random variable X . It is well known that the
maximum in definition (3) is attained at the α-quantile, also known as the value-
at-risk at confidence level α denoted by VaRα(X). If the optimal objective value
of (CutGen_CVaR) is non-negative, it follows that z∗ is an optimal solution of
(G − MCVaR) . Otherwise, there exists an optimal solution c∗ ∈ C for which the
corresponding constraint CVaRα(c∗�X) ≥ CVaRα(c∗�Y) is violated by the current
solution.

Note that we can easily calculate the realizations of the random outcome X =
G(z∗) given the decision vector z∗. In the rest of the paper, we focus on solving
the cut generation problems given two d-dimensional random vectors X and Y with
realizations x1, . . . , xn and y1, . . . , ym , respectively. Let p1, . . . , pn and q1, . . . , qm
denote the corresponding probabilities.

3.1 Existing mathematical programming formulations

In this section, we present one of the existing mathematical programming for-
mulations of (CutGen_CVaR). The second nonlinear term (−CVaRα(c�Y)) in
(CutGen_CVaR) can be expressed with linear inequalities and continuous variables
because it involves the maximization of a piecewise linear concave function (see
(3)). What makes it difficult to solve (CutGen_CVaR) is the minimization of the
first concave term (CVaRα(c�X)). Using two alternative optimization representations
of CVaR, Noyan and Rudolf [17] first formulate (CutGen_CVaR) as a (generally
nonconvex) quadratic program. Then instead of dealing with the quadratic problem,
the authors propose MIP formulations which are considered to be potentially more
tractable.

Note that for finite probability spaces VaRα(c�X) = c�xk for at least one k ∈ [n],
implying

CVaRα

(
c�X

)
= VaRα

(
c�X

)
− 1

α

∑

i∈[n]
pi [VaRα

(
c�X

)
− c�xi ]+ (4)

= max
k∈[n]

⎧
⎨

⎩
c�xk − 1

α

∑

i∈[n]
pi [c�xk − c�xi ]+

⎫
⎬

⎭
. (5)

This key observation leads to the following formulation of (CutGen_CVaR) [17]:

(MIP_CVaR) min μ − η + 1

α

∑

l∈[m]
qlwl

s.t. wl ≥ η − c�yl , ∀ l ∈ [m], (6)

c ∈ C, w ∈ Rm+, (7)
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μ ≥ c�xk − 1

α

∑

i∈[n]
pivik, ∀ k ∈ [n], (8)

vik − δik = c�xk − c�xi , ∀ i ∈ [n], k ∈ [n], (9)

vik ≤ Mikβik, ∀ i ∈ [n], k ∈ [n], (10)

δik ≤ M̂ik(1 − βik), ∀ i ∈ [n], k ∈ [n], (11)

βik ∈ {0, 1}, ∀ i ∈ [n], k ∈ [n], (12)

v ∈ Rn×n+ , δ ∈ Rn×n+ . (13)

Here, the continuous variables η and w together with the linear inequalities (6) are
used to express CVaRα(c�Y) according to (3). On the other hand, μ represents
CVaRα(c�X) according to the relation (5), which can be incorporated into the model
using the following non-convex constraint

μ ≥ c�xk − 1

α

∑

i∈[n]
pi

[
c�xk − c�xi

]

+ , ∀k ∈ [n].

This non-convex constraint corresponds to the epigraph of a piecewise linear concave
function, and the variables vik and δik are introduced to linearize the shortfall terms
[c�xk − c�xi ]+. In addition, Mik and M̂ik are sufficiently large constants (big-M
coefficients) to make constraints (10) and (11) redundant whenever the right-hand
side is positive. Due to constraints (10)–(13) only one of the variables vik and δik is
positive. Then, constraint (9) ensures that vik = [c�xk − c�xi ]+ for all pairs of i and
k. A similar linearization is used for the SSD case described in Sect. 4.

Remark 3.1 (Big-M Coefficients) It is well-known that the choice of the big-M coef-
ficients is crucial in obtaining stronger MIP formulations. In (MIP_CVaR) , we can
set

Mik = max

{

max
c∈C

{
c�xk − c�xi

}
, 0

}

and

M̂ik = Mki = max

{

max
c∈C

{
c�xi − c�xk

}
, 0

}

.

These parameters can easily be obtained by solving very simple LPs. Furthermore,
in practical applications, the dimension of the decision vector c and the number of
vertices of the polytope C would be small; e.g., in the homeland security problem in
our computational study d = 4. Suppose that the vertices of the polytopeC are known
and given as {ĉ1, . . . , ĉN }. Then, Mik = max{max j∈[N ] ĉ�

j (xk − xi ), 0}.
In the special case when all the outcomes of X are equally likely, Noyan and

Rudolf [17] propose an alternate MIP formulation which involves only O(n) binary
variables instead of O(n2). We refer to the existing paper for the complete formulation
of this special MIP, which is referred to as (MIP_Special) in our study. In the next
section, we develop new formulations and methods based on integer programming
approaches. We only focus on the general probability case; it turns out that even these
general formulations perform better than (MIP_Special) as we show in Sect. 5.
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3.2 New developments

In this section, we first propose several simple improvements to the existing MIP
formulations. Then, we introduce a MIP formulation based on a new representation of
VaR.We propose valid inequalities that strengthen the resultingMIPs.We also give the
complete linear description of the linearization polytope of a non-convex substructure
appearing in the new formulation.

3.2.1 Computational enhancements

We first present valid inequalities based on the bounds for CVaRα(c�X), and
then describe two approaches to reduce the number of variables and constraints of
(MIP_CVaR).

Bounds onCVaRα(c�X). Suppose that we have a lower bound Lμ and an upper bound
Uμ for CVaRα(c�X). Then, (MIP_CVaR) can be strengthened using the following
valid inequalities:

Lμ ≤ μ ≤ Uμ. (14)

For example, consider two discrete random variables Xmin and Xmax with realizations
minc∈C {c�xi }, i ∈ [n], and maxc∈C {c�xi }, i ∈ [n], respectively. The random vari-
able Xmin is no larger than c�X with probability one for any c ∈ C . Similarly, Xmax
is no smaller than c�X with probability one for any c ∈ C . Therefore, we can set Lμ

and Uμ as CVaRα(Xmin) and CVaRα(Xmax), respectively. Note that the calculation
of the realizations of Xmin and Xmax requires solving n small (d-dimensional) LPs.

Variable reduction using symmetry. We observe the symmetric relation between the δ

and v variables (δik = vki for all pairs of i ∈ [n] and k ∈ [n]), and substitute vki for
δik to obtain a more compact formulation. In this regard, we only need to define βik
for i, k ∈ [n] such that i < k, and write constraints (9)–(11) for i, k ∈ [n] : i < k.
Furthermore, we substitute Mki for M̂ik , and let vkk = 0 in (8). We refer to the result-
ing simplified MIP as (SMIP_CVaR); the number of binary variables and constraints
(9)–(11) associated with the shortfall terms is reduced by half. Furthermore, the lin-
earization polytope defined by (9)–(13) can be strengthened using valid inequalities.
In Sect. 4.2, we study the linearization polytope corresponding to [c�xk − c�xi ]+ for
a given pair i, k ∈ [n]. This substructure also arises in the cut generation problems
with multivariate SSD constraints.

Preprocessing. Let K be a set of scenarios for which c�xk cannot be equal to
VaRα(c�X) for any c ∈ C . Preprocessing methods can be used to identify the set
K , which would allow us to enforce constraint (8) for a reduced set of scenarios
k ∈ K̄ := [n]\K . This would also result in reduced number of variables and con-
straints (9)–(13) that are used to represent the shortfall terms. In particular, we need
to define the variables vik only for all k ∈ K̄ , i ∈ [n] and for i ∈ K̄ , k ∈ K . In
addition, we define variables βik and constraints (9)–(11) for i, k ∈ K̄ , i < k and for
k ∈ K̄ , i ∈ K (note that due to the elimination of some of the v variables, the symme-
try argument does not hold for the latter condition, so we do not have the restriction
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that i < k unless i, k ∈ K̄ ). We refer to the resulting more compact MIP, which also
involves (14), as (RSMIP_CVaR).

Next, we elaborate on how to identify K that yields a reduced set of scenarios
K̄ . Recall that we focus on the left tail of the probability distributions; for example,
under equal probabilities, VaRb/n(c�X) is the bth smallest realization of c�X where
b is a small integer. Thus, c�xk values which definitely take relatively larger values
cannot correspond to VaRb/n(c�X). In line with these discussions, we use the next
proposition to identify the set K̄ = [n]\K .

Proposition 3.1 Suppose that the parameters Mki are calculated as described in
Remark 3.1. For a scenario index k ∈ [n], let Lk = {i ∈ [n]\k: Mki = 0} and
Hk = {i ∈ [n]\k: Mik = 0}. If ∑i∈Lk

pi ≥ α then c�xk = VaRα(c�X) cannot hold
for any c ∈ C, implying k ∈ K. Moreover, i ∈ K for all i ∈ Hk.

Proof Note that for any k ∈ [n] and i ∈ Lk , Mki = 0 implies that c�xi ≤ c�xk for all
c ∈ C . Thus, the first claim immediately follows from the following VaR definition:
Let c�x(1) ≤ c�x(2) ≤ · · · ≤ c�x(n) denote an ordering of the realizations of c�X
for a given c. Then, for a given confidence level α ∈ (0, 1],

VaRα

(
c�X

)
= c�x(k), where k = min

⎧
⎨

⎩
j ∈ [n] :

∑

i∈[ j]
p(i) ≥ α

⎫
⎬

⎭
. (15)

Similarly, the second claim holds because Lk ⊆ Li for all i ∈ Hk . �

Note that if for some k ∈ [n]we have non-empty sets Lk or Hk , then we can employ

variable fixing by letting βik = 1, βki = 0 for i ∈ Lk and βik = 0, βki = 1 for i ∈ Hk .
Another method can utilize the bounds on VaRα(c�X) while identifying the set K̄ .
Suppose that we have a lower bound L and an upper bound U for VaRα(c�X). If
maxc∈C c�xk < L or minc∈C c�xk > U , then k /∈ K̄ . Similar to the case of CVaR,
we can calculate the bounds L and U using the random variables Xmin and Xmax:
L = VaRα(Xmin) and U = VaRα(Xmax).

In our numerical study, we have observed that the above methods can significantly
impact the computational performance (see Sect. 5).

3.2.2 An alternative model based on a new representation of VaR

When the realizations are based on a decision, we cannot know their ordering in
advance. While the structure of the objective function makes it easy to express VaR in
the context of VaR or CVaR maximization, in our cut generation problem we need a
new representation of VaR. Recall that we can use the classical definition of CVaR in
the second CVaR term appearing in the objective function of (CutGen_CVaR), but
for the first CVaR term we need alternative representations of CVaR to develop new
computationally more efficient solution methods. The main challenge is to express
CVaRα(c�X), which depends on VaRα(c�X). The next theorem provides a set of
inequalities to calculate VaRα(c�X) when c is a decision vector. Before proceeding,
we first introduce some big-M coefficients. Throughout the paper, we use the notation,
M , to emphasize that the associated parameter is used in a big-M type variable upper
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bounding (VUB) constraint [see, e.g., Mik defined in Remark 3.1 as the maximum
possible value of vik = [c�(xk − xi )]+ over all c ∈ C , used in the VUB constraint
(10)]. Let Mi∗ = maxk∈[n] Mik , be the maximum possible value of [c�(xk − xi )]+
taken over all k ∈ [n] for a given i ∈ [n]. Similarly, let M∗i = maxk∈[n] Mki for
i ∈ [n]. Finally, let M̃� = max{c� : c ∈ C} for � ∈ [d] be the maximum possible
value of c� (note that M̃� ≤ 1 because C is a subset of the unit simplex).

Theorem 3.1 Suppose that X is a random vector with realizations x1, . . . , xn and
corresponding probabilities pi , i ∈ [n]. For a given confidence level α and any
decision vector c ∈ C, the equality z = VaRα(c�X) holds if and only if there exists a
vector (z,β, ζ , u) satisfying the following system:

z ≤ c�xi + βi Mi∗, i ∈ [n], (16)

z ≥ c�xi − (1 − βi )M∗i , i ∈ [n], (17)
∑

i∈[n]
piβi ≥ α, (18)

∑

i∈[n]
piβi −

∑

i∈[n]
piui ≤ α − ε, (19)

z =
∑

i∈[n]
ζ�
i xi , (20)

ζi� ≤ M̃�ui , i ∈ [n], � ∈ [d], (21)
∑

i∈[n]
ζi� = c�, � ∈ [d], (22)

∑

i∈[n]
ui = 1, (23)

ui ≤ βi , i ∈ [n], (24)

β ∈ {0, 1}n, ζ ∈ Rn×d+ , u ∈ {0, 1}n . (25)

In constraint (19), ε is a very small constant to ensure that the left-hand side is strictly
smaller than α.

Proof Suppose that z = VaRα(c�X) for a decision vector c ∈ C . Let π be a permu-
tation describing a non-decreasing ordering of the realizations of the random vector
c�X, i.e., c�xπ(1) ≤ · · · ≤ c�xπ(n). Defining

k∗ = min

⎧
⎨

⎩
k ∈ [n]:

∑

i∈[k]
pπ(i) ≥ α

⎫
⎬

⎭
and K ∗ = {

π(1), . . . , π
(
k∗)} , (26)

and using (15) we have z = c�xπ(k∗). Then, a feasible solution of (16)–(25) can be
obtained as follows:

βi =
{
1 i ∈ K ∗
0 otherwise

, ui =
{
1 i = k∗
0 otherwise

, ζi� =
{
c� i = k∗
0 otherwise.
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For the reverse implication, let us consider a feasible solution (z,β, ζ , u) of (16)–
(25) and let K̄ = {i ∈ [n]: βi = 1}. To prove our claim, it is sufficient to show that
there exists a permutation π where K̄ = K ∗ and z = c�xπ(k∗) = c�xk̄ for a scenario
index k̄ ∈ arg maxi∈K̄ {c�xi } [K ∗ and k∗ are defined as in (26)].

We first focus on the intermediate set of linear inequalities (16)–(19), (23)–(24),
and the quadratic equality

z =
∑

i∈[n]
uic�xi . (27)

By the definition of K̄ and inequalities (16)–(17) we have z ≤ c�xi , i ∈ [n]\K̄ , and
z ≥ c�xi , i ∈ K̄ . Since βi = 0 for all i ∈ [n]\K̄ , (24) ensures that ui = 0 for all
i ∈ [n]\K̄ . Then, (23) and (24) guarantee that z = ∑

i∈K̄ uic�xi = c�xk̄ for a scenario
index k̄ such that c�xk̄ = maxi∈K̄ {c�xi }. Thus, ui = 1 for i = k̄, and 0, otherwise.

Then, from (18) and (19), P(c�X ≤ z) = ∑
i∈K̄ pi ≥ α and

∑
i∈K̄\k̄ pi < α. It

follows that, according to the definition in (15), VaRα(c�X) = c�xk̄ = z.
Since c is a decision vector, equality (27) involves quadratic terms of the form ui c�.

First observe that ui c� = c�, � ∈ [d], for exactly one scenario index i , implying∑
i∈[n] ui c� = c�, � ∈ [d], at any feasible solution satisfying (16)–(19), (23)–(25),

and (27). Therefore, it is easy to show that we can linearize the ui c� terms by replacing
them with the new decision variables ζi� ∈ R+ in (27) to obtain (20), and enforcing
the additional constraints (21)–(22). This completes our proof. �

Corollary 3.1 The cut generation problem (CutGen_CVaR) is equivalent to the fol-
lowing optimization problem, referred to as (NewMIP_CVaR) :

min z − 1

α

∑

i∈[n]
pivi − η + 1

α

∑

l∈[m]
qlwl (28)

s.t. (6)−(7), (16)−(25),

vi − δi = z − c�xi , i ∈ [n], (29)

vi ≤ Mi∗βi , i ∈ [n], (30)

δi ≤ M∗i (1 − βi ), i ∈ [n], (31)

v ∈ Rn+, δ ∈ Rn+, (32)

L ≤ z ≤ U. (33)

Proof We represent CVaRα(c�Y) in (CutGen_CVaR) using the classical formu-
lation (3). On the other hand, we express CVaRα(c�X) using the formula (4), i.e.,
CVaRα(c�X) = z− 1

α

∑
i∈[n] pi [z− c�xi ]+, where z = VaRα(c�X), and ensure the

exact calculation of z for any c ∈ C by enforcing (16)–(25), from Theorem 3.1. Then,
by simple manipulation and linearizing the terms [z − c�xi ]+ =: vi using (29)–(32),
we obtain the desired formulation. �


Note that there are O(n) binary variables in (NewMIP_CVaR) compared to O(n2)
binary variables in (RSMIP_CVaR). We next describe valid inequalities, which we
refer to as ordering inequalities, to strengthen the formulation (NewMIP_CVaR).
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Proposition 3.2 Suppose that the parameters Mki are calculated as described in
Remark 3.1. For a scenario index k ∈ [n], let Lk = {i ∈ [n]\k: Mki = 0} and
Hk = {i ∈ [n]\k: Mik = 0}. Then the following sets of inequalities are valid for
(NewMIP_CVaR):

βk ≤ βi , k ∈ [n], i ∈ Lk, (34)

or equivalently,
βi ≤ βk, k ∈ [n], i ∈ Hk . (35)

Proof If i ∈ Lk , thenMki = maxc∈C [c�(xi−xk)]+ = 0. In otherwords, c�xk ≥ c�xi
for all c ∈ C . Now if z > c�xk for some c ∈ C , then βk = 1. Because c�xk ≥ c�xi ,
we also have βi = 1. On the other hand, if z < c�xi for some c ∈ C , then βi = 0.
Because z < c�xi ≤ c�xk , we also have βk = 0. Thus, inequality (34) is valid. The
validity proof of inequality (35) follows similarly. �


Introducing inequalities (34) or (35) to (NewMIP_CVaR) provides us with a
stronger formulation. When the number of such inequalities is considered to be large,
we may opt to introduce them only for a selected set of scenarios. For example, we fix
the values of a subset of βi variables using preprocessing methods when possible, and
introduce the ordering inequalities for those that cannot be fixed. The trivial variable
fixing sets βi = 0 or βi = 1 for all i ∈ [n] such that Mi∗ = 0 or M∗i = 0, respectively.
In addition, we propose a more elaborate variable fixing, which relies on Proposition
3.1 to identify the scenarios for which the corresponding realizations are too large
to be equal to VaRα(c�X). Suppose we show that k is among such scenarios, i.e.,
k /∈ K̄ . Then, at any feasible solution we have βk = 0, and consequently, βi = 0 for
all i ∈ Hk . One can also employ variable fixing by using the bounds on VaRα(c�X).
In particular, let βi = 1 if maxc∈C c�xi < L and let βi = 0 if minc∈C c�xi > U . We
note that the proposed ordering inequalities and variable fixing methods can also be
applied to other relevant MIP formulations involving βi decisions. In such MIPs, e.g.,
(MIP_Special), the set {k ∈ [n]: βk = 1} corresponds to the realizations which are
less than or equal to VaRα(c�X).

3.2.3 Linearization of (z−x� c)+ in (CutGen_CVaR)

Consider the convex function g(z, c) = [z − x�
i c]+ := max{0, z − x�

i c} for (z, c) ∈
Rd+1+ and i ∈ [n] such that∑ j∈[d] c j = 1, which appears in (4) with z = VaRα(c�X).
Using formula (4) in (CutGen_CVaR) leads to a concaveminimization. Therefore,we
study the linearization of the set (referred to as a reverse concave set) corresponding to
the epigraph of −g(z, c), given by (29)–(32) in (NewMIP_CVaR). We propose valid
inequalities that give a complete linear description of this linearization set for a given
i ∈ [n]. As a result, these valid inequalities can be used to strengthen the formulation
(NewMIP_CVaR) (as will be shown in our computational study in Sect. 5).

Throughout this subsection, we drop the scenario indices and focus on the lineariza-
tion of one term of the form [z − x�c]+. Due to the translation invariance of CVaR,
we assume without loss of generality that all the realizations of X are non-negative.
Therefore, x j ≥ 0, j ∈ [d]. This implies the nonnegativity of z = VaRα(c�X), since
c ≥ 0. In addition, to avoid trivial cases, we assume that x j > 0 for some j ∈ [d],
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because otherwise, we can let z = v and δ = 0. We are interested in the polytope
defined by

v − δ = z −
∑

j∈[d]
x j c j , (36)

v ≤ Mvβ, (37)

δ ≤ Mδ(1 − β), (38)
∑

j∈[d]
c j = 1, (39)

c, v, δ ≥ 0, (40)

β ∈ {0, 1}, (41)

0 ≤ z ≤ Ū . (42)

At this time, we let Ū = maxs∈[n],k∈[d]{xsk}, i.e, the largest component of xs over
all s ∈ [n], which is a trivial upper bound on VaRα(c�X). Also let Mv = Ū −
mink∈[d]{xk} be the big-M coefficient for the variable v = [z − ∑

j∈[d] x j c j ]+, and
Mδ = maxk∈[d]{xk} be the big-M coefficient for the variable δ = [∑ j∈[d] x j c j − z]+.
Let Q = {(c, v, δ, β, z) : (36)−(42)}.

First, we characterize the extreme points of conv(Q). Throughout, we let ek denote
the d-dimensional unit vector with 1 in the kth entry and zeroes elsewhere.

Proposition 3.3 The extreme points (c, v, δ, β, z) of conv(Q) are as follows:

QEP1k (ek, 0, xk, 0, 0) for all k ∈ [d] with xk > 0,
QEP2k (ek, 0, 0, 0, xk) for all k ∈ [d],
QEP3k (ek, 0, 0, 1, xk) for all k ∈ [d],
QEP4k (ek, Ū − xk, 0, 1, Ū ) for all k ∈ [d] with xk < Ū .

Proof First, note that, from the definitions of Ū , Mv, and Mδ , we have xk ≤ Mδ ≤ Ū ,
and 0 ≤ Ū − xk ≤ Mv for all k ∈ [d]. Hence, points QEP1k–QEP4k are feasible
and they cannot be expressed as a convex combination of any other feasible points
of conv(Q). Finally, observe that any other feasible point with 0 < c j < 1 for some
j ∈ [d] cannot be an extreme point, because it can be written as a convex combination
of QEP1k–QEP4k . �


Note that if xk = 0 for some k ∈ [d], then QEP1k is equivalent to QEP2k .
Therefore, we only define QEP1k for k ∈ [d] with xk > 0. Similarly, if xk = Ū for
some k ∈ [d], then QEP4k is equivalent to QEP3k . Therefore, we only define QEP4k
for k ∈ [d] with xk < Ū .

Next we give valid inequalities for Q.

Proposition 3.4 For k ∈ [d], the inequality

v ≤
∑

j∈[d]
[xk − x j ]+c j + (

Ū − xk
)
β (43)
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is valid for Q. Similarly, for k ∈ [d], the inequality

δ ≤
∑

j∈[d]
[x j − xk]+c j + xk(1 − β) (44)

is valid for Q.

Proof First, we prove the validity of inequality (43). If β = 0, then v = 0 from (37).
Because c ≥ 0, inequality (43) holds trivially. If β = 1, then δ = 0 from (38). Thus,
for any k ∈ [d],

v − δ = v = z −
∑

j∈[d]
x j c j + xk

⎛

⎝
∑

j∈[d]
c j − 1

⎞

⎠ = z +
∑

j∈[d]
(xk − x j )c j − xk

≤
∑

j∈[d]
[xk − x j ]+c j + Ū − xk =

∑

j∈[d]
[xk − x j ]+c j + (Ū − xk)β,

where the last inequality follows from (42). Thus, inequality (43) is valid.
Next, we prove the validity of inequality (44). If β = 1, then δ = 0 from (38).

Because c ≥ 0, inequality (44) holds trivially. If β = 0, then v = 0 from (38). Thus,
for any k ∈ [d],

δ =
∑

j∈[d]
x j c j − z ≤

∑

j∈[d]
(x j − xk)c j + xk ≤

∑

j∈[d]
[x j − xk]+c j + xk(1 − β).

Hence, inequality (44) is valid. �

Theorem 3.2 conv(Q) is completely described by equalities (36) and (39), and
inequalities (40), (43), and (44).

Proof Let O(γ , γ v, γ δ, γ β, γ z), denote the index set of extreme point optimal solu-
tions to the problem min{γ �c + γ vv + γ δδ + γ ββ + γ z z : (c, v, δ, β, z) ∈
conv(Q)}, where (γ , γ v, γ δ, γ β, γ z) ∈ Rd+4 is an arbitrary objective vector, not
perpendicular to the smallest affine subspace containing conv(Q). In other words,
(γ , γ v, γ δ, γ β, γ z) �= λ(−x,−1, 1, 0, 1) and (γ , γ v, γ δ, γ β, γ z) �= λ(1, 0, 0, 0, 0)
for λ ∈ R. Therefore, the set of optimal solutions is not conv(Q) (conv(Q) �= ∅). We
prove the theorem by giving an inequality among (40), (43), and (44) that is satisfied at
equality by (cκ , vκ , δκ , βκ, zκ) for all κ ∈ O(γ , γ v, γ δ, γ β, γ z) for the given objec-
tive vector. Then, since (γ , γ v, γ δ, γ β, γ z) is arbitrary, for every facet of conv(Q),
there is an inequality among (40), (43), and (44) that defines it. Throughout the proof,
without loss of generality, we assume that x1 ≤ x2 ≤ · · · ≤ xd . We consider all
possible cases.

Case A Suppose that γ β ≥ 0. Without loss of generality we can assume that γ δ = 0
by adding γ δ(v − δ − z+∑

j∈[d] x j c j ) to the objective. From Eq. (36) the added term
is equal to zero, and so this operation does not change the set of optimal solutions.
Furthermore, we can also assume that γ j ≥ 0 for all j ∈ [d]without loss of generality
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by subtracting γk∗(
∑

j∈[d] c j ) from the objective, where k∗ := argmin{γ j , j ∈ [d]}.
From Eq. (39), the subtracted term is a constant (γk∗), and so this operation does not
change the set of optimal solutions. Therefore, for the case that γ β ≥ 0,we assume that
γ δ = 0, γ j ≥ 0 for all j ∈ [d], and γk∗ = 0. Under these assumptions, we can express
the cost of each extreme point solution (denoted by C(·)) given in Proposition 3.3:

C(QEP1k) = γk for k ∈ [d] with xk > 0,
C(QEP2k) = γk + γ z xk for k ∈ [d],
C(QEP3k) = γk + γ z xk + γ β for k ∈ [d],
C(QEP4k) = γk + γ zŪ + γ β + γ v(Ū − xk) for k ∈ [d] with xk < Ū .

Note that QEP1k for k ∈ [d] with xk > 0 are the only extreme points with δ > 0, and
QEP4k for k ∈ [d] with xk < Ū are the only extreme points with v > 0. We use this
observation in the following cases we consider.

(i) γ z < 0. In this case, C(QEP2k)< C(QEP1k) for all k ∈ [d] with xk > 0.
Therefore, δκ = 0 for all κ ∈ O(γ , γ v, γ δ, γ β, γ z).

(ii) γ z ≥ 0. In this case, C(QEP1k)≤ C(QEP2k)≤ C(QEP3k) for all k ∈ [d].
Note that C(QEP4k)= C(QEP3k)+(γ z + γ v)(Ū − xk), k ∈ [d]. Therefore,
if γ z + γ v > 0, then C(QEP4k)> C(QEP3k) for all k ∈ [d], and hence
extreme points QEP4k, k ∈ [d] are never optimal. As a result, vκ = 0 for
all κ ∈ O(γ , γ v, γ δ, γ β, γ z). So we can assume that γ z + γ v ≤ 0. Because
γ z ≥ 0, we must have γ v ≤ 0. Let φk := γ zŪ + γ β + γ v(Ū − xk) for
k ∈ [d]. Therefore, C(QEP4k) = γk + φk . Note that φ1 ≤ φ2 ≤ · · · ≤ φd

because x1 ≤ x2 ≤ · · · ≤ xd ≤ Ū and γ v ≤ 0 by assumption. If φ1 > 0,
then φk > 0 and so C(QEP4k)> C(QEP1k) for all k ∈ [d]. Therefore,
extreme points QEP4k, k ∈ [d] are never optimal. Hence, vκ = 0 for all
κ ∈ O(γ , γ v, γ δ, γ β, γ z). Similarly, if φd < 0, then φk < 0 for all k ∈ [d].
Therefore, extreme points QEP1k, k ∈ [d] are never optimal. Hence, δκ = 0
for all κ ∈ O(γ , γ v, γ δ, γ β, γ z). As a result, we can assume that φ1 ≤ 0 and
φd ≥ 0. If there exists j ∈ [d] such that γ j > 0 and γ j + φ j > 0, then
C(QEP1k∗ )= 0 < C(QEP1 j )≤ C(QEP2 j )≤ C(QEP3 j )< C(QEP4 j ). Hence,
cκ
j = 0 for all κ ∈ O(γ , γ v, γ δ, γ β, γ z). As a result, we can assume that either

γk = 0 or γk + φk ≤ 0 for all k ∈ [d]. If there exists j ∈ [d] such that γ j > 0
and γ j + φ j < 0 = C(QEP1k∗ ), then extreme points QEP1k, k ∈ [d] are never
optimal. Hence, δκ = 0 for all κ ∈ O(γ , γ v, γ δ, γ β, γ z). As a result, we can
assume that for every k ∈ [d], either γk = 0 or γk + φk = 0.
(a) If γ β > 0, then the optimal extreme point solutions are QEP1 j for all j ∈ [d]

such that γ j = 0; QEP2 j for all j ∈ [d] such that γ j = 0 if γ z = 0; and
QEP4k for all k ∈ [d] such that γk+φk = 0. Let k′ := max{ j ∈ [d] : φ j ≤ 0}.
Note that φ j > 0 for j > k′ by definition, which implies that γ j + φ j > 0.
Therefore, we must have γ j = 0 for j > k′. Then inequality (43) for k′ holds
at equality for all optimal solutions O(γ , γ v, γ δ, γ β, γ z).

(b) If γ β = 0 and γ z > 0, then the optimal extreme point solutions are QEP1 j

for all j ∈ [d] such that γ j = 0 and QEP4k for all k ∈ [d] such that γk +
φk = 0. Then inequality (43) for k′ holds at equality for all optimal solutions
O(γ , γ v, γ δ, γ β, γ z).
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(c) The only case left to consider is if γ β = γ z = 0. In this case, because we
assume that γ v ≤ 0, there are two cases to consider. If γ v = 0, then φk = 0
for all k ∈ [d] and we must have γk = 0 for all k ∈ [d], which contradicts our
initial assumption that (γ , γ v, γ δ, γ β, γ z) �= λ(1, 0, 0, 0, 0) for any λ ∈ R.
Therefore, we must have γ v < 0. In this case, φk < 0 for all k ∈ [d].
Suppose there exists k∗ ∈ [d] (with γk∗ = 0) such that xk∗ < Ū . Then,
C(QEP4k∗ )< 0 = C(QEP1k∗ ). Because C(QEP1k∗ )≤ C(QEP1 j ) for all
j ∈ [d], extreme points QEP1 j , j ∈ [d] are never optimal. Hence, δκ = 0 for
all κ ∈ O(γ , γ v, γ δ, γ β, γ z). The only case left to consider is when xk = Ū
for all k with γk = 0. In this case, inequality (43) for k∗ holds at equality for
all optimal solutions O(γ , γ v, γ δ, γ β, γ z). This completes the proof of Case
A.

Case B Suppose that γ β < 0. As before, we can assume that γ j ≥ 0 for all j ∈
[d], and that γk∗ = 0 for some k∗ ∈ [d]. Finally, we can assume that γ v = 0 by
subtracting γ v(v−δ− z+∑

j∈[d] x j c j ) from the objective. Under these assumptions,
we can express the cost of each extreme point solution (denoted by C(·)) given in
Proposition 3.3:

C(QEP1k) = γk + γ δxk for k ∈ [d] with xk > 0,
C(QEP2k) = γk + γ z xk for k ∈ [d],
C(QEP3k) = γk + γ z xk + γ β for k ∈ [d],
C(QEP4k) = γk + γ zŪ + γ β for k ∈ [d] with xk < Ū .

Note that due to the assumption that γ β < 0, C(QEP2k)> C(QEP3k) for all k ∈ [d].
So the extreme pointsQEP2k, k ∈ [d] are never optimal under these cost assumptions.
We use this observation in the following cases we consider.

(i) γ z > 0. In this case, C(QEP4k)> C(QEP3k) for all k ∈ [d]. (Recall that QEP4k
exists for some k ∈ [d] only if Ū > xk .) So the extreme points QEP4k, k ∈ [d]
are never optimal under these cost assumptions. Hence, vκ = 0 for all κ ∈
O(γ , γ v, γ δ, γ β, γ z).

(ii) γ z ≤ 0. If γ z ≤ γ δ , then C(QEP1k)> C(QEP3k) for all k ∈ [d]. There-
fore, extreme points QEP1k, k ∈ [d] are never optimal. Hence, δκ = 0 for
all κ ∈ O(γ , γ v, γ δ, γ β, γ z). As a result, we can assume that γ δ < γ z ≤ 0
and C(QEP4k)≤ C(QEP3k) for all k ∈ [d]. Note that because γ δ < 0, 0 >

γ δx1 ≥ γ δx2 ≥ · · · ≥ γ δxd . In addition, mink∈[d]{C(QEP4k)} = C(QEP4k∗ )=
γ zŪ + γ β . If γ δxd > γ zŪ + γ β , then extreme points QEP1k, k ∈ [d] are never
optimal. Hence, δκ = 0 for all κ ∈ O(γ , γ v, γ δ, γ β, γ z). So we can assume that
γ δxd ≤ γ zŪ + γ β . If γ δx1 < γ zŪ + γ β , then extreme points QEP4k, k ∈ [d]
are never optimal. Hence, vκ = 0 for all κ ∈ O(γ , γ v, γ δ, γ β, γ z). So we can
assume that γ δx1 ≥ γ zŪ + γ β . Let k̄ := min{ j ∈ [d] : γ δx j ≤ γ zŪ + γ β}.
If there exists j ≥ k̄ such that C(QEP1 j )= γ j + γ δx j < γ zŪ + γ β =
C(QEP4k∗ )≤ C(QEP4k) for all k ∈ [d], then extreme points QEP4k, k ∈ [d]
are never optimal. Hence, vκ = 0 for all κ ∈ O(γ , γ v, γ δ, γ β, γ z). Therefore,
we have γ j + γ δx j = γ zŪ + γ β for all j ≥ k̄. Under these assumptions, the
optimal solutions are QEP1 j for j ≥ k̄; QEP4k for k ∈ [d] such that γk = 0;
and QEP3k for k ∈ [d] such that γk = 0 if γ z = 0. Then inequality (44) for k̄
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holds at equality for all optimal solutions O(γ , γ v, γ δ, γ β, γ z). This completes
the proof. �


Note that in the definition of the setQ, we usedweaker bounds on v, δ and z than are
available using the improvements proposed in Sect. 3. In particular, we can let z ≤ U ,
where U is the upper bound on VaR obtained by using the quantile information (as
described in Sect. 3.2.1); in most cases, U < Ū . Then, we simply update inequality
(43) as

v ≤
∑

j∈[d]
[xk − x j ]+c j + (U − xk)β. (45)

In addition, we can let z ≥ L , using the lower bound information onVaR, and typically
L > 0. If this is the case, then we can define new variables z′ = z− L and δ′ = δ − L ,
and let M ′

z = Ū − L and M ′
δ = Mδ − L , and obtain a linearization polytope of the

same form asQ in the (c, v, δ′, β, z′) space. The updated inequality (44) in the original
space becomes

δ ≤
∑

j∈[d]
[x j − xk]+c j + (xk − L)(1 − β). (46)

Therefore, our results hold for L > 0 with this translation of variables.
Finally, from Sect. 3, we know that v ≤ Mi∗β and δ ≤ M∗i (1 − β) for the given

scenario i ∈ [n] for which the linearization polytope is written. Again, in most cases,
Mi∗ ≤ Mv and M∗i ≤ Mδ . In this case, we cannot have ck = 1 and z = L for k such
that xk−L > M∗i , because otherwise δ = [∑ j∈[d] c j x j−z]+ = xk−L > M∗i , which
violates the constraint δ ≤ M∗i (1−β). Hence for all k with xk − L > M∗i , if ck > 0
and z = L , then we must have c� = 1−ck for some � ∈ [d]with x� − L < M∗i . Then,
δ = M∗i in such an extreme point solution. In this case, we can construct an equivalent
polyhedron where we let x�

k = M∗i + L for all k ∈ [d] such that xk − L > M∗i and
� ∈ [d] such that x� − L < M∗i . Similarly, we cannot have ck = 1 and z = U for k
such thatU−xk > Mi∗, because otherwise v = [z−∑

j∈[d] c j x j ]+ = U−xk > Mi ·,
which violates the constraint v ≤ Mi ·β. If ck > 0 for k with U − xk > Mi∗, then we
must have c� = 1 − ck for some � ∈ [d] with U − x� < Mi∗. Then v = Mi∗ in such
an extreme point solution. In this case, we can construct an equivalent polyhedron
where we let x̄�

k = U − Mi∗ for all k ∈ [d] such that U − xk > Mi∗ and � ∈ [d]
such that U − x� < Mi∗. The resulting polyhedron satisfies the bound assumptions
in the definition of Q, and the non-trivial inequalities that define its convex hull are
given by (45) for k ∈ [d] such that U − xk ≤ Mi∗, and inequality (46) for k ∈ [d]
such that xk − L ≤ M∗i . Note that after this update inequalities (45) for k ∈ [d] such
that U − xk = Mi∗ reduces to v ≤ Mi∗β, and inequality (46) for k ∈ [d] such that
xk − L = M∗i reduces to δ ≤ M∗i (1 − β). Translating back to the original space of
variables and re-introducing the scenario indices we have the following corollary.

Corollary 3.2 For i ∈ [n], consider the polyhedronQ′
i = {(c, vi , δi , βi , z) ∈ Rd+4+ :

(29)−(31), (33), (39), βi ∈ {0, 1}}. Then conv(Q′
i ) is completely described by adding

inequalities
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vi ≤
∑

j∈[d]
[xik − xi j ]+c j + (U − xik)βi , ∀ k ∈ [d]: U − xik < Mi∗, (47)

δi ≤
∑

j∈[d]
[xi j − xik]+c j + (xik − L)(1 − βi ), ∀ k ∈ [d] : xik − L < M∗i (48)

to the original constraints (29)–(31),(33), and (39).

In this section and in Sect. 4.2, we derive valid inequalities and convex hull descrip-
tions using only the condition that C is a unit simplex. However, we note that the unit
simplex condition applies, without loss of generality, to all scalarization sets of inter-
est, and therefore, the presented inequalities are valid even if there are additional
constraints on the scalarization vectors, i.e., even if C is a strict subset of the unit
simplex.

4 Cut generation for optimization with multivariate SSD constraints

In this section,we study the cut generation problem arising in optimization problems of
the form (G − MSSD) . As in Sect. 3, we focus on solving the cut generation problems
given two d-dimensional random vectors X and Y with realizations x1, . . . , xn and
y1, . . . , ym , respectively. Let p1, . . . , pn and q1, . . . , qm denote the corresponding
probabilities, and let C be a polytope of scalarization vectors.

The random vector X is said to dominate Y in polyhedral linear second order with
respect to C if and only if

E

([
c�yl − c�X

]

+

)

≤E

([
c�yl − c�Y

]

+

)

, ∀ l ∈ [m], c∈C, or equivalently,

∑

i∈[n]
pi

[
c�yl − c�xi

]

+ ≤
∑

k∈[m]
qk

[
c�yl − c�yk

]

+ , ∀ l ∈ [m], c ∈ C. (49)

As discussed in Sect. 2, Homem-de-Mello and Mehrotra [12] show that for finite
probability spaces it is sufficient to consider a finite subset of scalarization vectors,
obtained as projections of the vertices of m polyhedra. Specifically, each polyhe-
dron corresponds to a realization of the benchmark random vector Y and is given
by Pl = {wk ≥ c�yl − c�yk, k ∈ [m], c ∈ C, w ∈ Rm+} for l ∈ [m]. Thus,
(G − MSSD) can be reformulated as an optimization problem with exponentially
many constraints, and solved using a delayed constraint generation algorithm [12].
The SSD constraints corresponding to a subset of the scalarization vectors are initially
present in the formulation. Then given a solution to this intermediate relaxed problem,
a cut generation problem is solved to identify whether there is a constraint violated by
the current solution.

Due to the structure of the SSD relation (49), a separate cut generation problem
is defined for each realization of the benchmark random vector. Thus, in contrast to
the CVaR-constrained models, the number of cut generation problems depends on the
number of benchmark realizations. The cut generation problem associated with the
lth realization of the benchmark vector Y is given by
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(CutGen_SSD) min
c∈C

∑

k∈[m]
qk

[
c�yl − c�yk

]

+ −
∑

i∈[n]
pi

[
c�yl − c�xi

]

+ .

4.1 Existing mathematical programming approaches

Note that (CutGen_SSD) involves a minimization of the difference of convex func-
tions. Dentcheva and Wolfhagen [7] use methods from DC programming to solve this
problem directly. Similar to the case of univariate SSD constraints [3], we can easily
linearize the first type of shortfalls featured in the objective function:

min

⎧
⎨

⎩

∑

k∈[m]
qkwk −

∑

i∈[n]
pi

[
c�yl − c�xi

]

+ : (c, w) ∈ Pl

⎫
⎬

⎭
, (50)

which results in a concave minimization with potentially many local minima. If the
optimal objective function value of (50) is smaller than 0, then there is a scalarization
vector for which the SSD condition associated with the lth realization is violated. Note
that it is crucial to solve the cut generation problem exactly for the correct execution
of the solution method for (G − MSSD) . Otherwise, if we obtain a local minimum
and the objective is positive, then we might prematurely stop the algorithm.

The methods based on DC programming and concave minimization may not fully
utilize the polyhedral nature of the objective and the constraints. In addition, DC
methods can only guarantee local optimality. The main challenge in the cut generation
problem (50) is to linearize the second type of shortfalls appearing in the objective
function. In this regard, Homem-de-Mello and Mehrotra [12] introduce additional
variables and constraints, andobtain the followingMIP formulationof (CutGen_SSD)

associated with the lth realization of the benchmark vector Y:

(MIP_SSDl) min
∑

k∈[m]
qkwk −

∑

i∈[n]
pivi

s.t. wk ≥ c�yl − c�yk, ∀ k ∈ [m],
(51)

w ∈ Rm+, (52)

vi − δi = c�yl − c�xi , ∀ i ∈ [n],
(53)

vi ≤ Miβi , ∀ i ∈ [n],
(54)

δi ≤ M̂i (1 − βi ), ∀ i ∈ [n],
(55)

c ∈ C, v ∈ Rn+, δ ∈ Rn+, β ∈ {0, 1}n . (56)
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Here we can set Mi = max{maxc∈C {c�yl − c�xi }, 0} and M̂i

= −min{minc∈C {c�yl − c�xi }, 0}. This formulation guarantees that vi = [c�yl −
c�xi ]+ for all i ∈ [n].

The authors also propose concavity and convexity cuts to strengthen the formulation
(MIP_SSDl). However, the concavity cuts require the complete enumeration of a set
of edge directions (may be exponential), and solving a system of linear equations based
on this enumeration. Hence, this may not be practicable. In addition, the convexity cuts
require the solution of another cut generation LP in higher dimension. Indeed, in their
computational study, Hu et al. [13] do not utilize these cuts and solve (MIP_SSDl)

directly. They also note that this step is the bottleneck taking over 90% of the total
solution time, and it needs to be improved.

4.2 New developments

We begin by presenting an analogue of Proposition 3.2, which provides valid ordering
inequalities that strengthen the formulation (MIP_SSDl). Then, we study the structure
of a generalization of the linearization polytope defined by (53)–(56) for a given
l ∈ [m] and i ∈ [n]. We give two classes of valid inequalities analogous to those in
Proposition 3.4 for this polytope. Furthermore, we show that these inequalities are
enough to give the complete linear description when added to the formulation with
C = {c ∈ Rd+ : ∑

j∈[d] c j = 1}.
Lemma 4.1 The ordering inequalities (34)–(35) are also valid for (MIP_SSDl) given
lth realization of the benchmark random vector Y.

This claim immediately follows from the trivial observation that z can be replaced by
c�yl in (29) (and also in the proof of Proposition 3.2) for any l ∈ [m]. Next we give
a polyhedral study of the set defining the linearization of the piecewise linear convex
shortfall terms.

Linearization of [a�c]+ in (CutGen_SSD). For a given vector a ∈ Rd , consider the
convex function h(c) = [a�c]+ := max{0, a�c} for c ∈ Rd+ such that

∑
j∈[d] c j = 1.

This function appears in the cut generation problems for optimization under multi-
variate risk given in (50), where a = yl − xi for some l ∈ [m] and i ∈ [n]. An MIP
linearizing this term is given in (MIP_SSDl). Therefore, we study the linearization of
the set (also a reverse concave set) corresponding to the epigraph of −h(c). (Note that
this structure also appears in the cut generation problem for CVaR (9)–(13), where we
let a = xk−xi , for i, k ∈ [n].)We propose valid inequalities that give a complete linear
description of this linearization set for a given i ∈ [n]. As a result, these valid inequal-
ities can be used to strengthen the formulations involving such linearization terms.

Let D+ = { j ∈ [d] : a j ≥ 0} and D− = { j ∈ [d] : a j < 0}. Due to the nature of
the cut generation problems, we can assume that D+ �= ∅ and D− �= ∅ (otherwise,
we can fix the corresponding binary variables). Without loss of generality, we assume
that D+ = {1, . . . , d1} with a1 ≤ a2 ≤ · · · ≤ ad1 , and D− = {d1 + 1, . . . , d} with
−ad1+1 ≤ −ad1+2 ≤ · · · ≤ −ad .

In this subsection, we drop the scenario indices, and study the polytope given by
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v − δ =
∑

j∈[d]
a j c j , (57)

v ≤ M̄vβ, (58)

δ ≤ M̄δ(1 − β), (59)
∑

j∈[d]
c j = 1, (60)

c, v, δ ≥ 0, (61)

β ∈ {0, 1}, (62)

where M̄v = ad1 is the big-M coefficient associated with the variable v =
[∑ j∈[d] a j c j ]+, and M̄δ = −ad is the big-M coefficient associated with the vari-
able δ = [∑ j∈[d] −a j c j ]+.

Let S = {(c, v, δ, β) : (57)−(62)}. First, we characterize the extreme points of
conv(S). Recall that ek denotes the d-dimensional unit vector with 1 in the kth entry
and zeroes elsewhere.

Proposition 4.1 The extreme points (c, v, δ, β) of conv(S) are as follows:

EP1k (ek, ak, 0, 1) for all k ∈ D+,
EP2� (e�, 0,−a�, 0) for all � ∈ D−,
EP3k,�

( −a�

ak−a�
ek + ak

ak−a�
e�, 0, 0, 1

)
for all k ∈ D+ and � ∈ D−,

EP4k,�
( −a�

ak−a�
ek + ak

ak−a�
e�, 0, 0, 0

)
for all k ∈ D+ and � ∈ D−.

Proof First, note that, from the definition of M̄v, M̄δ , D+ and D−, we have 0 ≤ ak ≤
M̄v for all k ∈ D+ and 0 < −a� ≤ M̄δ for � ∈ D−. Hence, points EP1k and EP2� are
feasible and they cannot be expressed as a convex combination of any other feasible
points of conv(S). Finally, observe that any other feasible point with 0 < ck < 1
for some k ∈ D+ must have c� = 1 − ck for some � ∈ D− in any extreme point of
conv(S) such that ckak + c�a� = 0 = v = δ. In this case, we can have either β = 0 or
β = 1. As a result, we obtain the extreme points EP3k,� and EP4k,�. This completes
the proof. �


Next we give valid inequalities for S.
Proposition 4.2 For k = 1, . . . , d1, the inequality

v ≤
d1∑

j=1

[a j − ak]+c j + akβ (63)

is valid for S. Similarly, for k = d1 + 1, . . . , d, the inequality

δ ≤
d∑

j=d1+1

[ak − a j ]+c j − ak(1 − β) (64)

is valid for S.
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Proof If β = 0, then v = 0 from (58). Because c ≥ 0, inequality (63) holds trivially.
If β = 1, then δ = 0 from (59). Thus, for any k = 1, . . . , d1,

v − δ = v =
∑

j∈[d]
a j c j ≤

d1∑

j=1

a j c j =
d1∑

j=1

(a j − ak)c j + ak

d1∑

j=1

c j

≤
d1∑

j=1

[a j − ak]+c j + ak =
d1∑

j=1

[a j − ak]+c j + akβ,

where the last inequality follows from (60).
To see the validity of inequality (64), note that equality (57) can be rewritten as

δ − v = ∑
j∈[d](−a j )c j . Thus, we obtain an equivalent set where v and δ, and D+

and D− are interchanged. �

Remark 4.1 Inequality (58) is a special case of (63) with k = d1, and inequality (59)
is a special case of (64) with k = d.

Remark 4.2 Note that β ≥ 0 is implied by inequality (58), and β ≤ 1 is implied by
(59).

Remark 4.3 Consider a related set, T , where constraint (60) is relaxed to
∑

j∈[d] c j ≤
1.This set canbewritten in the formof the setS with c ∈ Rd+1,where D = {0, . . . , d},
and a0 = 0. In this case, inequality (63) for k = 0 is given by v ≤ ∑d1

j=1 a j c j .

Theorem 4.1 conv(S) is completely described by equalities (57) and (60), and
inequalities (61), (63), and (64).

Proof Let O(γ , γ v, γ δ, γ β), denote the index set of extreme point optimal solu-
tions to the problem min{γ �c + γ vv + γ δδ + γ ββ : (c, v, δ, β) ∈ conv(S)},
where (γ , γ v, γ δ, γ β) ∈ Rd+3 is an arbitrary objective vector, not perpendicular
to the smallest affine subspace containing conv(S). In other words, (γ , γ v, γ δ, γ β) �=
λ(a,−1, 1, 0) and (γ , γ v, γ δ, γ β) �= λ(1, 0, 0, 0) for λ ∈ R. Therefore, the set of
optimal solutions is not conv(S) (conv(S) �= ∅). We prove the theorem by giving an
inequality among (61), (63), and (64) that is satisfied at equality by (cκ , vκ , δκ , βκ) for
all κ ∈ O(γ , γ v, γ δ, γ β) for the given objective vector. Then, since (γ , γ v, γ δ, γ β)

is arbitrary, for every facet of conv(S), there is an inequality among (61), (63), and
(64) that defines it. We consider all possible cases.

Case A Suppose that γ β ≥ 0. Without loss of generality we can assume that γ δ = 0
by adding γ δ(v − δ − ∑

j∈[d] a j c j ) to the objective. From Eq. (57) the added term
is equal to zero, and so this operation does not change the set of optimal solutions.
Furthermore, we can also assume that γ j ≥ 0 for all j ∈ D without loss of generality
by subtracting γmin(

∑
j∈[d] c j ) from the objective, where γmin := min j∈[d]{γ j }. From

Eq. (60), the added term is a constant (−γmin), and so this operation does not change
the set of optimal solutions. Note also that after this update γmin = 0. Therefore, for
the case that γ β ≥ 0, we assume that γ δ = 0 and γmin = 0. Under these assumptions,
we can express the cost of each extreme point solution (denoted by C(·)) given in
Proposition 4.1:
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C(EP1k) = γk + γ vak + γ β for k ∈ D+,
C(EP2�) = γ� for � ∈ D−,
C(EP3k,�) = γk

−a�

ak−a�
+ γ�

ak
ak−a�

+ γ β for k ∈ D+ and � ∈ D−,
C(EP4k,�) = γk

−a�

ak−a�
+ γ�

ak
ak−a�

for k ∈ D+ and � ∈ D−.

Let k∗ ∈ argmin{γ j , j ∈ D+} and �∗ ∈ argmin{γ j , j ∈ D−}. Note that
min{γk∗ , γ�∗} = γmin = 0. Observe that C(EP2�)< C(EP4k,�) for k ∈ D+ and
� ∈ D− if γ� < γk . On the other hand, if γ� > γk , then C(EP2�)> C(EP4k,�) for
k ∈ D+ and � ∈ D−. Also, the only extreme points for which δ > 0 are EP2� for
� ∈ D− with −a� > 0, and the only extreme points for which v > 0 are EP1k for
k ∈ D+ with ak > 0. We use these observations in the following cases we consider.

(i) γ�∗ = 0 < γk∗ . In this case,EP4k,� cannot be an optimal solution for any k ∈ D+
and � ∈ D−. Furthermore, because of the assumption that γ β ≥ 0,EP3k,� cannot
be an optimal solution for any k ∈ D+ and � ∈ D− either.
(a) If there exists j ∈ D+ such thatC(EP1 j )=γ j +γ va j +γ β > 0 = C(EP2�∗ ),

then cκ
j = 0 for all κ ∈ O(γ , γ v, γ δ, γ β). So we can assume that γk +γ vak +

γ β ≤ 0 for all k ∈ D+. Now suppose that γ j + γ va j + γ β < 0 for some
j ∈ D+. In this case, C(EP1 j )< C(EP2�) for all � ∈ D−. Therefore, δκ = 0
for all κ ∈ O(γ , γ v, γ δ, γ β). So we can assume that γk + γ vak + γ β = 0
for all k ∈ D+.

(b) If there exists j ∈ D− such that C(EP2 j )=γ j > 0 = C(EP2�∗ ), then cκ
j = 0

for all κ ∈ O(γ , γ v, γ δ, γ β). So we can assume that γ� = 0 for all � ∈
D−. In summary, for the case that γ β ≥ 0 and γ�∗ = 0 < γk∗ , we have
γk + γ vak + γ β = 0 for all k ∈ D+ and γ� = 0 for all � ∈ D−. In this case,
the set O(γ , γ v, γ δ, γ β) is given by EP1k for all k ∈ D+ and EP2� for all
� ∈ D−. Inequality (63) for k = 1 is tight for all these extreme point optimal
solutions. Hence, the proof is complete for this case.

(ii) γ�∗ > γk∗ = 0. Recall that, in this case, C(EP4k∗,�)< C(EP2�) for all � ∈ D−.
Therefore, δκ = 0 for all κ ∈ O(γ , γ v, γ δ, γ β). Hence, the proof is complete
for this case.

(iii) γ�∗ = γk∗ = 0.
(a) If there exists j ∈ D− such that γ j > 0, then cκ

j = 0 for all κ ∈
O(γ , γ v, γ δ, γ β). So we can assume that γ� = 0 for all � ∈ D−.

(b) Suppose that γ j + γ va j + γ β < 0 for some j ∈ D+. In this case, EP1 j has a
strictly better objective value thanEP2�,EP3k,�, andEP4k,� for all k ∈ D+ and
� ∈ D−. Therefore, δκ = 0 for all κ ∈ O(γ , γ v, γ δ, γ β). So we can assume
that γk + γ vak + γ β ≥ 0 for all k ∈ D+. If there exists j ∈ D+ such that
γ j > 0 and γ j +γ va j +γ β > 0, then cκ

j = 0 for all κ ∈ O(γ , γ v, γ δ, γ β). So

we can assume that at least one of the conditions γk = 0 or γk+γ vak+γ β = 0
holds for all k ∈ D+. Let D+

0 = { j ∈ D+ : γ j = 0} and D+
1 = D+\D+

0 .
Note that k∗ ∈ D+

0 and γk + γ vak + γ β = 0 for all k ∈ D+
1 .

(c) Suppose that γk = 0 for all k ∈ D+ (i.e., D+
1 = ∅). Recall that we also

have γ� = 0 for all � ∈ D−, γ δ = 0 and γ β ≥ 0. If γ β = 0, then γ v

cannot equal to 0 (then all solutions are optimal). Suppose that γ β = 0, then
γ v > 0 (because we showed that γk + γ vak + γ β ≥ 0 for all k ∈ D+). Then
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vκ = 0 for all κ ∈ O(γ , γ v, γ δ, γ β). So we can assume that γ β > 0. If
γ v ≥ 0, then EP1k is not optimal for any k ∈ D+. Therefore, vκ = 0 for all
κ ∈ O(γ , γ v, γ δ, γ β). So we can assume that γ v < 0. Because we showed
that γk + γ vak + γ β ≥ 0 for all k ∈ D+, and we assume that γk = 0 for
all k ∈ D+, we have γ β ≥ −γ vad1 . If γ vad1 + γ β > 0, then EP1k is not
optimal for any k ∈ D+. Therefore, vκ = 0 for all κ ∈ O(γ , γ v, γ δ, γ β), and
we can assume that γ vad1 + γ β = 0. In this case, inequality (63) for k = d1
holds at equality for the set of all optimal extreme solutions O(γ , γ v, γ δ, γ β)

(namely, EP1k for k ∈ D+ with ak = ad1 , EP2� and EP4 j,� for all j ∈ D+
and � ∈ D−).

(d) There exists k ∈ D+ such that γk > 0 (i.e., D+
1 �= ∅). In this case, for k ∈ D+

1 ,
γk = −γ vak −γ β > 0. Because γ β ≥ 0, wemust have γ v < 0 and ak > 0 for
k ∈ D+

1 . In this case, we cannot have γ β = 0 (unless a j = 0 for all j ∈ D+
0 ),

because otherwise γ j + γ va j + γ β < 0 for j ∈ D+
0 with a j > 0 violating

the condition in part (b) that γk + γ vak + γ β ≥ 0 for all k ∈ D+. So γ β > 0
and EP3 j,� is not optimal for any j ∈ D+, � ∈ D−. Let k1 = min{ j ∈ D+

1 },
then we must have k ∈ D+

1 for all k ∈ D+ with k > k1. In this case, the
set of all optimal solutions is given by EP1k for k ∈ D+

1 , EP2� and EP4 j,�

for all j ∈ D+
0 and � ∈ D−, where the optimal objective value is zero. Then

inequality (63) for k = k1 holds at equality for the set of all optimal extreme
solutions O(γ , γ v, γ δ, γ β). The last case to consider is that a j = 0 for all
j ∈ D+

0 and hence γ β = 0. In this case, inequality (63) for k = k∗ holds at
equality for the set of all optimal extreme solutions O(γ , γ v, γ δ, γ β) (namely,
EP1k for k ∈ D+, EP2�, EP3 j,� and EP4 j,� for all j ∈ D+

0 and � ∈ D−).

Case B Suppose that γ β < 0. Without loss of generality we can assume that γ v = 0
by subtracting γ v(v − δ − ∑

j∈[d] a j c j ) from the objective. From Eq. (57), the sub-
tracted term is equal to zero, and so this operation does not change the set of optimal
solutions. As argued in the proof of the validity of (64), equality (57) can be rewritten
as δ − v = ∑

j∈[d](−a j )c j . Thus, we obtain an equivalent set where v and δ, and D+
and D− are interchanged. Thus, the proof is complete, using the same arguments as
in Case A and inequalities (64). �


In line with the above analysis, we introduce ai j = (yl − xi ) j , D
+
i = { j ∈ [d] :

ai j ≥ 0} and D−
i = { j ∈ [d] : ai j < 0} for all i ∈ [n]. Then, an enhanced MIP

formulation of (CutGen_SSD) for the lth realization of Y is obtained by replacing
(54)–(55) in (MIP_SSDl) with the following constraints:

vi ≤
∑

j∈D+
i

[ai j − aik]+c j + aikβi , ∀ i ∈ [n], k ∈ D+
i , (65)

δi ≤
∑

j∈D−
i

[aik − ai j ]+c j − aik(1 − βi ), ∀ i ∈ [n], k ∈ D−
i . (66)
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5 Computational study

The goals of our computational study are two-fold. In the first part, we demonstrate
that the methods developed in Sect. 3.2—including variable fixing, bounding, and
incorporating valid inequalities—are effective in solving (CutGen_CVaR). In the
second part, we perform a similar analysis for the methods presented in Sect. 4 for
(CutGen_SSD).

All the optimization problems are modeled with the AMPL mathematical pro-
gramming language. All runs were executed on 4 threads of a Lenovo(R) workstation
with two Intel® Xeon® 2.30GHz CE5-2630 CPUs and 64GB memory running on
Microsoft Windows Server 8.1 Pro x64 Edition. All reported times are elapsed times,
and the time limit is set to 5400s. CPLEX 12.2 is invoked with its default set of
options and parameters. If optimality is not proven within the time allotted, we record
both the best lower bound on the optimal objective value (retrieved from CPLEX and
denoted by LB) and the best available objective value (denoted by UB). In cut gen-
eration problems, the optimal objective function can take any value including 0, and
so in order to provide more insight, we calculate two types of relative optimality gap:
G1 = |LB−UB |/(|UB |) and G2 = |LB−UB |/(|LB |). It is easy to see that the
maximum of G1 and G2 is an upper bound on the actual relative optimality gap; we
do not report G1 when |UB | = 0 or CPLEX yields a trivial lower bound of −∞.

Wewould like to remind the reader that during a cut generation-based algorithm, the
solution procedure of the cut generation problem is allowed to terminate early without
finding the most violated cut. However, when such a heuristic procedure cannot find
a violated cut, it is still required to prove that the optimal objective function value
is non-negative. Therefore, in our experiments we opt for solving the cut generation
problem to optimality.

5.1 Generation of the problem instances

In this section, we describe two sets of data used for our computational experiments.

5.1.1 Homeland security budget allocation

We test the computational effectiveness of our proposed methods on a homeland secu-
rity budget allocation (HSBA) problem presented in Hu et al. [13] for optimization
under multivariate polyhedral SSD constraints. We follow the related data generation
scheme described in Noyan and Rudolf [17], where the polyhedral SSD constraints are
replaced by the CVaR-based ones. Themain problem is to allocate a fixed budget to ten
urban areas in order to prevent, respond to, and recover fromnational disasters. The risk
share of each area is based on four criteria: property losses, fatalities, air departures, and
average daily bridge traffic. The penalty for allocations under the risk share is expressed
by a budget misallocation function associated with each criterion, and these functions
are used as the multiple random performance measures of interest. In order to be con-
sistent with our convention of preferring larger values, we construct random outcome
vectors of interest from the negative of the budget misallocation functions associated
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with four criteria. Two different benchmarks are considered: one based on average gov-
ernment allocations by the Department of Homeland Security’s Urban Areas Security
Initiative, and one based on suggestions in the RAND report by Willis et al. [21].
The scalarization polytope is of the form C = {

c ∈ R4: ‖c‖1 = 1, ci ≥ c∗
i − θ

3

}
,

where c∗ ∈ R4 is a center satisfying ‖c∗‖1 = 1, and θ ∈ [0, 1] is a constant for
which θ

3 ≤ mini∈{1,...,4} c∗
i holds. We consider the “base case” with θ = 0.25 and

c∗ = ( 1
4 ,

1
4 ,

1
4 ,

1
4

)
, unless otherwise stated. We refer the reader to Hu et al. [13] and

Noyan and Rudolf [17] for more details on the data generation.
For this set of instances, Noyan and Rudolf [17] report computational results with

the formulation (MIP_Special)—developed for the multivariate CVaR-constrained
problem under the special case of equal probabilities. For example, for the largest
problem instances with 500 scenarios and α = 0.05 (resp., α = 0.01), on average,
two (resp., 1.6) cut generation problems need to be solved taking 14,386 (resp., 11,507)
seconds (around 99.8% of overall solution time). We note that in the initialization step
of the algorithm, four risk constraints are additionally generated based on the vertices
of C . Similarly, for the multivariate SSD-constrained problems, Hu et al. [13] report
that for the largest test problems with 300 scenarios, only one cut generation problem
is solved taking 1318s (96% of overall solution time). Since the cut generation is
the main bottleneck, in our computational study we only focus on solving the cut
generation problems. Hence, different from the existing studies, we also explain how
we obtain the realizations of the random vector X. In accordance with the existing
studies, the risk constraints associated with the vertices of the scalarization polytope
C are initially added to the intermediate relaxed problem. In the base case, the polytope
C is a three-dimensional simplex with the vertices ĉ1, . . . , ĉ4, where the i th element of
ĉi is equal to 0.5, and other elements are 0.5/3.We solve the master problem once, and
use its optimal solution to calculate the realizations of the associated 4-dimensional
random vector X. Note that it is clear how to obtain the realizations of the random
vector Y, since the benchmark allocations are given.

5.1.2 Randomly generated data

To further analyze the computational performance of the proposed methods, we con-
sider a different type of problem (inspired by Dentcheva and Wolfhagen [7]):

max
{
f (z): Rz � Y, z ∈ R100+

}
,

where R : Ω �→ [0, 1]d×100 is a random matrix and the relation � represents a
stochastic multivariate preference relation. In our setup, the relation � represents
�C

CVaRα
and�C

(2) for the multivariate polyhedral CVaR and SSD relation, respectively.

We assume that the benchmark vector Y takes the form of R̄z̄, where R̄ is also a
d × 100-dimensional random matrix and z̄ ∈ R100+ is a given benchmark decision.
The entries of the matrices R and R̄ are independently generated from the uniform
distribution on the interval [0, 1]. Since we directly focus on solving the associated
cut generation problems, we also randomly generated the decision variables z and
z̄; in particular, they are independently and uniformly generated from the interval
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[100, 500]. This data generation scheme directly provides us with the realizations of
two d-dimensional random vectors X = Rz and Y = R̄z̄.

5.2 Computational performance: cut generation for (G − MCVaR)

First,we study the effectiveness of alternativeMIP formulations for (CutGen_CVaR).
In these experiments, we assume that each scenario is equally likely, and consider con-
fidence levels of the form α = k/n. For an arbitrary confidence level ᾱ, we calculate k
as �ᾱn�. In Table 1, we present our experiments on the performances of four alternative
formulations: (1) theMIPmodel—(MIP_Special)—developed for the special case of
equal probabilities [17], (2) theMIPmodel—(MIP_CVaR)—for general probabilities
presented in Noyan and Rudolf [17], (3) themore compact model—(SMIP_CVaR)—
proposed in Sect. 3.2.1, and (4) the new model—(NewMIP_CVaR)—proposed in
Sect. 3.2.2. We report the results averaged over two instances (based on Government
and RAND benchmarks) for each combination of α and n. We see that the new formu-
lation using the VaR representation is highly effective in reducing the solution time for
these instances. Problem instances that are not solvable within the time limit of 5400s
with the existing formulation (MIP_CVaR) and its enhancement (SMIP_CVaR), is
now solvable in 6min for all instances but one (HSBA data, n = 1000, α = 0.05),
which is also solved well within the time limit. We observe that (MIP_CVaR) termi-
nates at the root node for large instances with no integer feasible solution available.
This may be due to the large size of the formulation (quadratic number of binary vari-
ables). In contrast, (NewMIP_CVaR) contains a linear number of binary variables.
What is also surprising is that even the formulation (MIP_Special), which uses more
information due to the equal probability assumption, is not able to solve many of the
instances. For theHSBAdata set, (MIP_Special) has inferior performancewhen com-
pared to (SMIP_CVaR) for problems with 300 or more scenarios. On the other hand,
for the random data set (described in Sect. 5.1.2) (MIP_Special) performs better than
(MIP_CVaR) and (SMIP_CVaR). However, it still cannot solve larger instanceswith
500 or more scenarios. In contrast, (NewMIP_CVaR) solves these problems within
a few minutes. We would also like to note that the total time spent on preprocess-
ing for (NewMIP_CVaR) (calculation of the parameters L ,U, Mik, Mi∗, M∗i , Hk),
which is not included in the times reported, is negligible. Therefore, we can con-
clude that (NewMIP_CVaR) is a better formulation than the existing formulations
(MIP_Special), (MIP_CVaR) and its enhancement (SMIP_CVaR).

Next we study the effectiveness of various classes of valid inequalities and pre-
processing strategies described in Sects. 3.2.2 and 3.2.3. Note that when we test the
performance of a class of inequalities,we add all inequalities a priori to the formulation,
because there are polynomially many of them. We consider two sets of data as before,
one with HSBA data (Table 2), and one with the randomly generated data (Table 3). In
Tables 2 and 3, the relative improvements and optimality gaps are given as percentages
and all presented results are averaged over the two instanceswith different benchmarks.
In the first two columns of Table 2, we compare the performance of (RSMIP_CVaR),
which is the original formulation enhanced with variable reduction due to symmetry,
variable fixing and bounding, against the new formulation (NewMIP_CVaR) with-
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out any enhancements. In the third column of Table 2, we report the performance
of (NewMIP_CVaR) with variable fixing and bounding. Finally, in the fourth col-
umn, we report the performance of (NewMIP_CVaR) with variable fixing, bounding
and ordering inequalities (34). Comparing the first two columns of Table 2, we see
that fixing and bounding the variables are highly effective strategies, and as a result
(RSMIP_CVaR) outperforms (NewMIP_CVaR). However, it cannot solve the larger
instances within the time limit, and in general stops with a large relative optimality
gap. On the other hand, when these strategies are also applied to (NewMIP_CVaR),
all test instances are solved within the time limit, as observed from the third column.
The reduction in solution time comparing columns 2 and 3 can be attributed to the
large reduction in the binary variables due to variable fixing; fewer than 7 and 17%
of the binary variables remain in the formulation for instances with α = 0.01 and
α = 0.05, respectively. The reduction in binary variables is primarily a result of the
observation in Proposition 3.1. We did not observe any additional fixing based on the
bounds on VaR in our experiments. Finally, from the last column we see that ordering
inequalities are highly effective and have the best performance, when used in addition
to fixing and bounding, compared to the other settings that do not use these inequal-
ities. Because a large number of variables are fixed and a relatively large number of
ordering relations (34) across scenarios exist in these instances, we did not see much
benefit of inequalities (47)–(48). We note that this behavior is highly data-dependent
as we see in Table 3. In this table, we compare different settings in the first three
columns: (1) (NewMIP_CVaR) without any enhancements, (2) (NewMIP_CVaR)

with fixing, bounding, and ordering inequalities (34), and (3) (NewMIP_CVaR)with
fixing, bounding, and all classes of cuts ((34) and (47)–(48)). We do not report our
detailed results for (NewMIP_CVaR) with fixing and bounding, because the conclu-
sions are similar to Table 2. For these instances, while a significant number of binary
variables can be fixed, the percentage of remaining variables is higher than that for the
HSBA data. In this case, the setting with all enhancements and valid inequalities yields
the best performance in most cases, with close to 50% reduction in solution time for
several instances. The inequalities (47)–(48) are useful when added on to the setting
with all other improvements, in the most difficult cases. Overall, with this setting, all
instances are solved within the time limit with much fewer branch-and-bound (B&B)
nodes explored.

5.3 Computational performance: cut generation for (G − MSSD)

In Table 4, we report our computational experiments with the randomly generated
data described in Sect. 5.1.2 to illustrate the effectiveness of the strategies proposed
formultivariate SSD-constrained optimization problems.Recall that the cut generation
problems decompose by benchmark realizations for SSD. In these experiments, we
solve the cut generation problem for �m/20� of the benchmark realizations. Because
we solvemultiple cut generation problems for each setting, we let n ∈ {200, 300, 500}.
For each setting, we generate two instances and report their average statistics. We
report the average and the standard deviation of the solution times taken over all
tested benchmark realizations for a given setting. We compare the performance of
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two formulations: (MIP_SSDl) and (MIP_SSDl) with variable fixing and ordering
inequalities. In the first column, we report the elapsed time statistics (in seconds) for
(MIP_SSDl) without any computational enhancements. From the standard deviation
columns, we observe a high variability in the solution times. In fact, the minimum
solution times are in a few seconds, whereas the maximum solution times are at the
time limit of 5400s.We also report the number of instances that were not solvedwithin
the time limit under the column “# Unslvd”.

Note that unlike the CVaR case, which benefits from additional information on
VaR for fixing variables, in the SSD case not many binary variables can be fixed.
On average, over 65% of the binary variables remain in the formulation. Next, we
analyze the performance of ordering inequalities (34), in addition to fixing, reported
in the second column. In the last column of Table 4, we report the average number
of ordering inequalities added to the formulation (MIP_SSDl). We recognize that
the ordering inequalities are highly effective, as they reduce the average solution time
significantly, enabling the solution of all instances within the time limit.We also tested
the performance of the formulation with inequalities (65)–(66) on these instances, but
observed that it does not perform better than the version with ordering inequalities. In
our experience, ordering inequalities,when a large number of themexist, are preferable
because they are sparse and they provide information on the realizations undermultiple
scenarios. In contrast, inequalities (65)–(66) are denser with very small coefficients
for the instances tested, and they provide information on the correct calculation of the
nonlinear shortfall term for a single scenario at a time. As a result, if a much larger
number of ordering relations (34) across scenarios exist than the number of inequalities
(65)–(66) (given by the multiplication of remaining number of scenarios and d), then
it is preferable to use only the ordering inequalities in a brute force method that adds
all inequalities a priori to the formulation. Alternatively, a branch-and-cut method can
be implemented, with a more elaborate cut management system so as to benefit from
both types of cuts. Furthermore, inequalities (65)–(66) can be strengthened using the
ordering relation information for a scenario under which the realization is known to
be smaller than the realization under another scenario. On the other hand, when the
number of ordering relations is relatively small, the additional information provided
by inequalities (65)–(66) could be more useful (see Table 3 for the performance of the
analogue of inequalities (65)–(66) for the CVaR case).

6 Conclusions

In this paper, we develop alternative mixed-integer programming formulations and
solution methods for cut generation problems arising in a class of stochastic optimiza-
tion problems that features benchmarking constraints based onmultivariate polyhedral
conditional value-at-risk.Wepropose amixed-integer programming formulation of the
cut generation problem that involves a new representation of value-at-risk. We show
that this new formulation is highly effective in solving the cut generation problems.
In addition, we describe computational enhancements involving variable fixing and
bounding. Furthermore, we give a class of valid inequalities, which establish a relative
order between scenario-dependent binary variables when possible. Finally, we give the
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convex hull description of a polytope describing the linearization of a non-convex sub-
structure arising in this cut generation problem.Our computational results illustrate the
effectiveness of our proposedmodels andmethods for theCVaR-constrained optimiza-
tionproblems. In addition,we show that the proposed computational enhancements can
be adapted to cut generation problems for multivariate polyhedral SSD-constrained
optimization. We give the convex hull description of a polytope describing the lin-
earization of a non-convex substructure arising in the SSD cut generation problem for
each benchmark realization. However, these inequalities need to be further strength-
ened to improve their practical performance. One possible area of future research is
to study the intersection of these linearization polytopes for two or more different
realizations of the random vector of interest.
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