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Abstract We study the Asymmetric Traveling Salesman Problem (ATSP), and our
focus is on negative results in the framework of the Sherali–Adams (SA) Lift and
Project method. Our main result pertains to the standard linear programming (LP)
relaxation of ATSP, due to Dantzig, Fulkerson, and Johnson. For any fixed integer
t ≥ 0 and small ε, 0 < ε � 1, there exists a digraph G on ν = ν(t, ε) = O(t/ε)
vertices such that the integrality ratio for level t of the SA system starting with the
standard LP on G is ≥1 + 1−ε

2t+3 ≈ 4
3 ,

6
5 ,

8
7 , . . .. Thus, in terms of the input size, the

result holds for any t = 0, 1, . . . , Θ(ν) levels. Our key contribution is to identify a
structural property of digraphs that allows us to construct fractional feasible solutions
for any level t of the SA system starting from the standard LP. Our hard instances
are simple and satisfy the structural property. There is a further relaxation of the
standard LP called the balanced LP, and our methods simplify considerably when the
starting LP for the SA system is the balanced LP; in particular, the relevant structural

An extended abstract of this work appeared in the proceedings of the 40th International Colloquium on
Automata, Languages, and Programming (ICALP 2013).
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2 J. Cheriyan et al.

property (of digraphs) simplifies such that it is satisfied by the digraphs given by the
well-known construction of Charikar, Goemans andKarloff (CGK). Consequently, the
CGK digraphs serve as hard instances, and we obtain an integrality ratio of 1 + 1−ε

t+1
for any level t of the SA system, where 0 < ε � 1 and the number of vertices
is ν(t, ε) = O((t/ε)(t/ε)). Also, our results for the standard LP extend to the path
ATSP (find a min cost Hamiltonian dipath from a given source vertex to a given sink
vertex).

Keywords Asymmetric TSP · Sherali–Adams hierarchy · Integrality ratios

Mathematics Subject Classification 90C05 · 90C27

1 Introduction

The Traveling Salesman Problem (TSP) is a celebrated problem in combinatorial
optimization, with many connections to theory and practice. The problem is to find a
minimum cost tour of a set of cities; the tour should visit each city exactly once. The
most well known version of this probelm is the symmetric one (denoted TSP), where
the distance (a.k.a. cost) from city i to city j is equal to the distance (cost) from city j
to city i . The more general version is called the asymmetric TSP (denoted ATSP), and
it does not have the symmetry restriction on the costs. Throughout, we assume that
the costs satisfy the triangle inequalities, i.e., the costs are metric.

Linear programming (LP) relaxations play a central role in solving TSP or ATSP,
both in practice and in the theoretical setting of approximation algorithms. Many LP
relaxations are known for ATSP, see [19] for a recent survey. The most well-known
relaxation (and the one that is most useful for theory and practice) is due to Dantzig,
Fulkerson and Johnson; we call it the standard LP or the DFJ LP. It has a constraint for
every nontrivial cut, and has an indegree and an outdegree constraint for each vertex;
see Sect. 2.1. There is a further relaxation of the standard LP that is of interest; we
call it the balanced LP (Bal LP); it is obtained from the standard LP by replacing the
indegree and outdegree constraint at each vertex by a balance (equation) constraint.
For metric costs, the optimal value of the standard LP is the same as the optimal value
of the balanced LP; this is a well-known fact, see [19], [7, Footnote 3].

One key question in the area is the quality of the objective value computed by the
standard LP. This is measured by the integrality ratio (a.k.a. integrality gap) of the
relaxation, and is defined to be the supremum over all instances of the integrality ratio
of the instance. The integrality ratio of an instance I is given by opt(I )/dfj(I ), where
opt(I ) denotes the optimum (minimum cost of a tour) of I , and dfj(I ) denotes the
optimal value of the standard LP relaxation of I ; we assume that the optima exist and
that dfj(I ) �= 0.1

For both TSP andATSP, significant research efforts have been devoted over several
decades to prove bounds on the integrality ratio of the standard LP. For TSP, methods

1 Although the term integrality ratio is used in two different senses—one refers to an instance, the other
to a relaxation (i.e., all instances)—the context will resolve the ambiguity.
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On integrality ratios for asymmetric TSP in the Sherali... 3

based on Christofides’ algorithm show that the integrality ratio is ≤ 3
2 , whereas the

best lower bound known on the integrality ratio is 4
3 . Closing this gap is a major

open problem in the area. For ATSP, a result of Asadpour et al. [3] showed that the
integrality ratio is ≤O(log n/ log log n). Recently, Anari et al. [1] improved the upper
bound on the integrality ratio to polyloglog(n) forATSP. On the other hand, Charikar,
et al. [7] showed a lower bound of 2 on the integrality ratio, thereby refuting an earlier
conjecture of Carr and Vempala [6] that the integrality ratio is ≤ 4

3 .
Lampis [14] and Papadimitriou and later Vempala [18], respectively, have proved

hardness-of-approximation thresholds of 185
184 for TSP and 117

116 for ATSP; both results
assume that P �=NP. Recently, Karpinski et al. [13] have improved both hardness-of-
approximation thresholds to 123/122 and 75/74, respectively, assuming that P �=NP.

Our goal is to prove lower boundson the integrality ratios forATSP for the tighterLP
relaxations obtained by applying the Sherali–Adams Lift-and-Project method. Before
stating our results, we present an overview of Lift-and-Project methods.

1.1 Hierarchies of convex relaxations

Over the past 25years, several methods have been developed in order to obtain tight-
enings of relaxations in a systematic manner. Assume that each variable yi is in the
interval [0, 1], i.e., the integral solutions are zero/one, and let n denote the number of
variables in the original relaxation. The goal is to start with a simple relaxation, and
then iteratively obtain a sequence of stronger/tighter relaxations such that the asso-
ciated polytopes form a nested family that contains (and converges to) the integral
hull.2

These procedures, usually called Lift-and-Project hierarchies (or systems, or meth-
ods, or procedures), use polynomial reasonings together with the fact that in the 0/1
domain, general polynomials can be reduced to multilinear polynomials (utilizing the
identity y2i = yi ), and then finally obtain a stronger relaxation by applying lineariza-
tion (e.g., for subsets S of {1, . . . , n}, the term ∏

i∈S yi is replaced by a variable yS).
In this overview, we gloss over the Project step. In particular, Sherali and Adams [20]
devised the Sherali–Adams (SA) system, Lovász and Schrijver [17] devised the
Lovász–Schrijver (LS) system, and Lasserre [15] devised the Lasserre system. See
Laurent [16] for a survey of these systems; several other Lift-and-Project systems are
known, see [4,10].

The index of each relaxation in the sequence of tightened relaxations is known as
the level in the hierarchy; the level of the original relaxation is defined to be zero.
The relaxation at level n is exact, i.e., the associated polytope is equal to the integral
hull. For Lovász–Schrijver hierarchy and Sherali–Adams hierarchy, and for any
t = O(1), it is known that the relaxation at level t of the hierarchy can be solved to
optimality in polynomial time, assuming that the original relaxation has a polynomial-
time separation oracle, [21].

2 By the integral hull we mean the convex hull of the zero-one solutions that are feasible for the original
relaxation.
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4 J. Cheriyan et al.

Over the last two decades, a number of important improvements on approximation
guarantees have been achieved based on relaxations obtained from Lift-and-Project
systems. See [10] for a recent survey of many such positive results.

Starting with the work of Arora et al. [2], substantial research efforts have been
devoted to showing that tightened relaxations (for many levels) fail to reduce the
integrality ratio for many combinatorial optimization problems (see [10] for a list of
negative results). This task seems especially difficult for the SA system because it
strengthens relaxations in a “global manner;” this enhances its algorithmic leverage
for deriving positive results, but makes it more challenging to design instances with
bad integrality ratios. Moreover, an integrality ratio for the SA system may be viewed
as an unconditional inapproximability result for a restricted model of computation,
whereas, hardness-of-approximation results are usually provedunder somecomplexity
assumptions, such as P �= NP. The SA system is known to be more powerful than the
LS system, while it is weaker than the Lasserre system; it is incomparable with the
LS+ system (the positive-semidefinite version of the Lovász–Schrijver system [17]).

A key paper by Fernández de la Vega and Kenyon-Mathieu [11] introduced a
probabilistic interpretation of the SA system, and based on this, negative results (for
the SA system) have been proved for a number of combinatorial problems; also see
Charikar et al. [8] and Benabbas et al. [5]. At the moment, it is not clear that methods
based on [11] could give negative results for TSP and its variants, because the natural
LP relaxations (of TSP and related problems) have “global constraints.”

To the best of our knowledge, there are only two previous papers with negative
results for Lift-and-Project methods applied toTSP and its variants. Cheung [9] proves
an integrality ratio of 4

3 forTSP, for O(1) levels of LS+. ForATSP,Watson [22] proves
an integrality ratio of 3

2 for level 1 of the Lovász–Schrijver hieararchy, starting from
the balanced LP (in fact, both the hierarchies LS and SA give the same relaxation at
level one).

We mention that Cheung’s results [9] for TSP do not apply to ATSP, although at
level 0, it is well known that any integrality ratio for the standard LP for TSP applies
also to the standard LP for ATSP (this relationship does not hold for level 1 or higher).

1.2 Our results and their significance

Our main contribution is a generic construction of fractional feasible solutions for any
level t of the SA system starting from the standard LP relaxation of ATSP. We have a
similar but considerably simpler construction when the starting LP for the SA system
is the balanced LP. Our results on integrality ratios are direct corollaries.

We have the following results pertaining to the balanced LP relaxation of ATSP:
We formulate a property of digraphs that we call the good decomposition property,
and given any digraph with this property, we construct a vector y on the edges such
that y is a fractional feasible solution to the level t tightening of the balanced LP by
the Sherali–Adams system. Charikar, Goemans, and Karloff (CGK) [7] constructed
a family of digraphs for which the balanced LP has an integrality ratio of 2. We show
that the digraphs in the CGK family have the good decomposition property, hence,
we obtain an integrality ratio for level t of SA. In more detail, we prove that for any
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On integrality ratios for asymmetric TSP in the Sherali... 5

integer t ≥ 0 and small enough ε > 0, there is a digraph G from the CGK family
on ν = ν(t, ε) = O((t/ε)t/ε) vertices such that the integrality ratio of the level-t
tightening of Bal LP is at least 1 + 1−ε

t+1 ≈ 2, 3
2 ,

4
3 ,

5
4 , . . . (where t = 0 identifies the

original relaxation).
Our main result pertains to the standard LP relaxation of ATSP. Our key contribu-

tion is to identify a structural property of digraphs that allows us to construct fractional
feasible solutions for the level t tightening of the standard LP by the Sherali–Adams
system. This construction is much more difficult than the construction for the bal-
anced LP. We present a simple family of digraphs that satisfy the structural property,
and this immediately gives our results on integrality ratios. We prove that for any
integer t ≥ 0 and small enough ε > 0, there are digraphs G on ν = ν(t, ε) = O(t/ε)
vertices such that the integrality ratio of the level t tightening of the standard LP on G
is at least 1 + 1−ε

2t+3 ≈ 4
3 ,

6
5 ,

8
7 ,

10
9 , . . .. The rank of a starting relaxation (or polytope)

is defined to be the minimum number of tightenings required to find the integral hull
(in the worst case). An immediate corollary is that the SA-rank of the standard LP
relaxation on a digraph G = (V, E) is at least linear in |V |, whereas, the rank in terms
of the number of edges is Ω(

√|E |) (since the LP is on a complete digraph, namely,
the metric completion).

Our results for the balanced LP and for the standard LP are incomparable, because
the SA system starting from the standard LP is strictly stronger than the SA system
starting from the balanced LP, although both the level zero LPs have the same optimal
value, assuming metric costs. (In fact, there is an example on 5 vertices [12, Fig-
ure 4.4, p. 60] such that the optimal values of the level 1 tightenings are different: 9 1

3
for the balanced LP and 10 for the standard LP.)

Finally, we extend our main results to the natural relaxation of path ATSP (min
cost Hamiltonian dipath from a given source vertex to a given sink vertex), and we
obtain integrality ratios ≥1 + 2−ε

3t+4 ≈ 3
2 ,

9
7 ,

6
5 ,

15
13 , . . . for the level-t SA tightenings.

Our result on path ATSP is obtained by “reducing” from the result for ATSP; the
idea behind this comes from an analogous result of Watson [22] in the symmetric
setting; Watson gives a method for transforming Cheung’s [9] result on the integrality
ratio for TSP to obtain a lower bound on the integrality ratio for path TSP.

The solutions given by our constructions are not positive semidefinite; thus, they
do not apply to the LS+ hierarchy nor to the Lasserre hierarchy.

Let us assess our results, and place them in context. Observe that our integrality
ratios fade out as the level of the SA tightening increases, and for t ≥ 35 (roughly) our
integrality ratio falls below the hardness threshold of 75

74 of [13]. Thus, our integrality
ratios cannot be optimal, and it is possible that an integrality ratio of 2 can be proved
for O(1) levels of the SA system.

On the other hand, our results are not restricted to t = O(1). For example, para-
meterized with respect to the number of vertices in the input ν, our lower bound for
the standard LP holds even for level t = Ω(ν), and our lower bound for the bal-
anced LP (which improves on our lower bound for the standard LP) holds even for
level t = Ω(log ν/ log log ν), thus giving unconditional inapproximability results for
these restricted algorithms, even allowing super-polynomial running time.
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6 J. Cheriyan et al.

Moreover, our results (and the fact that they are not optimal) should be contrasted
with the known integrality ratio results for the level zero standard LP, a topic that has
been studied for decades.

2 Preliminaries

When discussing a digraph (directed graph), we use the terms dicycle (directed cycle),
etc., butweuse the termedge rather thandirected edgeor arc. For a digraphG = (V, E)

and U ⊆ V , δout (U ) denotes {(v,w) ∈ E : v ∈ U, w /∈ U }, the set of edges outgoing
from U , and δin(U ) denotes {(v,w) ∈ E : v /∈ U, w ∈ U }. For x ∈ R

E and S ⊆ E ,
x(S) denotes

∑
e∈S xe.

By the metric completion of a digraph G = (V, E) with nonnegative edge costs
c ∈ R

E , we mean the complete digraph G ′ on V with the edge costs c′, where c′(v,w)

is taken to be the minimum cost (w.r.t. c) of a v,w dipath of G.
An Eulerian subdigraph of G is defined as follows: the vertex set is V and the

edge set is a “multi-subset” of E (that is, each edge in E occurs zero or more times)
such that (i) the indegree of every vertex equals its outdegree, and (ii) the subdigraph
is weakly connected (i.e., the underlying undirected graph is connected). The ATSP
on the metric completion G ′ of G is equivalent to finding a minimum cost Eulerian
subdigraph of G.

For a positive integer t and a ground setU , letPt denote the family of subsets ofU of
size at most t , i.e.,Pt = {S : S ⊆ U, |S| ≤ t}. We usually take the ground set to be the
set of edges of a fixed digraph. Now, let G be a digraph, and let the ground set (for Pt )
be E = E(G). Let E ′ be a subset of E . Let 1E ′, t denote a vector indexed by elements
of Pt such that for any S ∈ Pt , 1E ′, t

S = 1 if S ⊆ E ′, and 1E ′, t
S = 0, otherwise. Note

that 1E ′, 1 has the entry for ∅ at 1, and the other entries give the incidence vector of E ′.
We denote set difference by−, andwe denote the addition (removal) of a single item

e to (from) a set S by S + e (respectively, S − e), rather than by S ∪ {e} (respectively,
S − {e}).

2.1 LP relaxations for asymmetric TSP

Let G = (V, E) be a digraph with nonnegative edge costs c. Let ÂTSPDF J (G) be
the feasible region (polytope) of the following linear program that has a variable xe

for each edge e of G:

minimize
∑

e

cexe

subject to x
(
δin(S)

)
≥ 1, ∀S : ∅ ⊂ S ⊂ V

x
(
δout (S)

) ≥ 1, ∀S : ∅ ⊂ S ⊂ V

x
(
δin({v})

)
= 1, x

(
δout ({v})) = 1, ∀v ∈ V

0 ≤ x ≤ 1
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On integrality ratios for asymmetric TSP in the Sherali... 7

In particular, when G is a complete digraphwithmetric costs, the above linear program
is the standard LP relaxation of ATSP (a.k.a. DFJ LP).

We obtain the balanced LP (Bal LP) from the standard LP by replacing the two
constraints x

(
δin({v})) = 1, x

(
δout ({v})) = 1 by the constraint x

(
δin({v})) =

x
(
δout ({v})), for each vertex v. Let ÂTSPB AL(G) be the feasible region (polytope)

of Bal LP.

minimize
∑

e

cexe

subject to

x
(
δin(S)

)
≥ 1, ∀S : ∅ ⊂ S ⊂ V

x
(
δout (S)

) ≥ 1, ∀S : ∅ ⊂ S ⊂ V

x
(
δout ({v})) = x

(
δin({v})

)
, ∀v ∈ V

0 ≤ x ≤ 1

In particular, when G is a complete digraphwithmetric costs, the above linear program
is the balanced LP relaxation of ATSP.

Our construction of fractional feasible solutions exploits the structure of the original
digraph. This is the reason for discussing the polytopes on the original digraph (and
not only on the complete digraph). To justify this, we observe that any feasible solution
for the original digraph can be extended to a feasible solution for the complete digraph
by “padding with zeros.” (This argument is formalized in Sect. 2.2.1).

2.2 The Sherali–Adams system

Definition 1 (The Sherali–Adams it system) Consider a polytope P̂ ⊆ [0, 1]n over
the variables y1, . . . , yn , and its description by a system of linear constraints of the
form

∑n
i=1 ai yi ≥ b; note that the constraints yi ≥ 0 and yi ≤ 1 for all i ∈ {1, . . . , n}

are included in the system. The level-t Sherali–Adams tightened relaxation SAt (P̂)

of P̂ , is an LP over the variables {yS : S ⊆ {1, 2, . . . , n}, |S| ≤ t + 1} (thus, y ∈
R
Pt+1 where Pt+1 has ground set {1, 2, . . . , n}); moreover, we have y∅ = 1. For

every constraint
∑n

i=1 ai yi ≥ b of P̂ and for every disjoint S, Q ⊆ {1, . . . , n} with
|S| + |Q| ≤ t , the following is a constraint of the level-t Sherali–Adams relaxation.

n∑

i=1

ai

∑

∅⊆T ⊆Q

(−1)|T |yS∪T ∪{i} ≥ b
∑

∅⊆T ⊆Q

(−1)|T |yS∪T . (1)

We will use a convenient abbreviation:

zS,Q :=
∑

∅⊆T ⊆Q

(−1)|T |yS∪T ,

where zS,Q are auxiliary variables between 0 and 1.
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8 J. Cheriyan et al.

Informally speaking, the level-t Sherali–Adams relaxation is derived by multi-
plying any constraint of the original relaxation by the high degree polynomial

∏

j∈S

yi

∏

j∈Q

(1 − yi ),

where S, Q are disjoint subsets of {1, . . . , n} with |S| + |Q| ≤ t . After expanding the
products, we obtain a polynomial of degree at most t + 1. Replacing any occurrences
of

∏
i∈S yi by the corresponding variable yS for all S ⊆ {1, . . . , n} gives the constraint

described in Inequality (1) (Definition 1).
There are a number of approaches for certifying that y ∈ SAt (P̂) for a given y. One

popular approach is to give a probabilistic interpretation to the entries of y, satisfying
certain conditions. We follow an alternative approach, that is standard, see [16], [21,
Lemma 2.9], but has been rarely used in the context of integrality ratios.

First, we introduce some notation. Given a polytope P̂ ⊆ [0, 1]n , consider the cone
P = {y∅(1, y): y∅ ≥ 0, y ∈ P̂}. (Throughout the paper, we use an accented symbol to
denote a polytope, e.g., P̂ , and the symbol (without accent) to denote the associated
cone, e.g., P .) It is not difficult to see that the SA system can be applied to the cone
P , so that the projection in the n original variables can be obtained by projecting any
y ∈ SAt (P) with y∅ = 1 on the n original variables. Note that SAt (P) is a cone,
hence, we may have y ∈ SAt (P) with y∅ �= 1; but if y∅ �= 0, we can replace y by
1
y∅ y. Also, note that SAt (P̂) = {y: y∅ = 1, y ∈ SAt (P)} by Definition 1.
For a vector y indexed by subsets of {1, . . . , n} of size at most t + 1, define a shift

operator “∗” as follows: for every e ∈ {1, . . . , n}, let e ∗ y to be a vector indexed
by subsets of {1, . . . , n} of size at most t , such that (e ∗ y)S := yS+e. We have the
following folklore fact, [21, Lemma 2.9].

Fact 1 y ∈ SAt (P) if and only if e ∗ y ∈ SAt−1(P), and y − e ∗ y ∈ SAt−1(P),

∀e ∈ {1, . . . , n}.
The reader familiarwith theLovász–Schrijver systemmay recognize the similarity

of its definition with the characterization of the Sherali–Adams system of Fact 1.
In fact, the SA system differs from the LS system only in that it imposes additional
consistency conditions; namely, the moment vector y, indexed by subsets of size t +1,
has to be fixed beforehand. This seemingly small detail gives the SA system enhanced
power compared to the LS system.

2.2.1 Eliminating variables to 0

In our discussion of the standard LP and the balanced LP, it will be convenient to
restrict the support to the edge set of a given digraph rather than the complete digraph.
Thus, we assume that some of the variables are absent. Formally, this is equivalent to
setting these variables in advance to zero. As long as the nonzero variables induce a
feasible solution, we are justified in setting the other variables to zero. The following
result formalizes the arguments.

123



On integrality ratios for asymmetric TSP in the Sherali... 9

Proposition 1 Let P̂ be the feasible region (polytope) of a linear program. Let C be
a set of indices (of the variables) that does not contain the support of any “positive
constraint” of P̂, where a constraint

∑n
i=1 ai yi ≥ b of P̂ is called positive if b > 0.

Let P̂C be the feasible region (polytope) of the linear program obtained by removing all
variables with indices in C from the constraints of the linear program of P̂ (informally,
the new LP fixes all variables with indices in C at zero). Then, for the SA system, for
any feasible solution y to the level-t tightening of P̂C , there exists a feasible solution
y′ to the level-t tightening of P̂; moreover, y′ is obtained from y by fixing variables,
indexed by subsets intersecting C, to zero.

Proof For y ∈ SAt (P̂C ), the “extension” y′ of y is defined as follows:

y′
S =

{
yS, if S ∩ C = ∅
0, otherwise

For the corresponding auxiliary variables z, this would imply that

z′
S,Q =

{
0, if S ∩ C �= ∅
zS,Q−C , otherwise .

In order to show that y′ ∈ SAt (P̂), we need to verify that for every pair of sets S, Q
as in Definition 1, we have

∑n
i=1 ai z′

S∪{i},Q ≥ bz′
S,Q .

First we note that if S ∩ C �= ∅, then for every i we have z′
S∪{i},Q = z′

S,Q = 0, and
hence the constraint is satisfied trivially.

For the remaining case S ∩ C = ∅, we have

n∑

i=1

ai z
′
S∪{i},Q =

∑

i∈C

ai z
′
S∪{i},Q +

∑

i /∈C

ai z
′
S∪{i},Q

=
∑

i /∈C

ai z
′
S∪{i},Q

=
∑

i /∈C

ai zS∪{i},Q−C

≥ b zS,Q−C

= b z′
S,Q−C

= b z′
S,Q, (2)

where (2) follows from the validity of the corresponding constraint of P̂C ; here, we use
the fact that C does not contain the support of any positive constraint—otherwise, the
summation

∑
i /∈C (. . . ) would be zero since the index set {i :i /∈ C} would be empty,

and hence, the inequality 0 = ∑
i /∈C (. . . ) ≥ b zS,Q−C would fail to hold for b > 0

and zS,Q−C > 0.

123



10 J. Cheriyan et al.

3 SA applied to the balanced LP relaxation of ATSP

3.1 Certifying a feasible solution

A strongly connected digraph G = (V, E) is said to have a good decomposition
with witness set F if the following hold

(i) E partitions into edge-disjoint dicycles C1, C2, . . . , CN , that is, there exist edge-
disjoint dicycles C1, C2, . . . , CN such that E = ⋃

1≤ j≤N E(C j ); let N denote
the set of indices of these dicycles, thus N = {1, . . . , N };

(ii) moreover, there exists a nonempty subset F of N such that for each j ∈ F the
digraph G − E(C j ) is strongly connected.

Let F denote N − F . For an edge e, we use index(e) to denote the index j of the
dicycle C j , j ∈ N that contains e. In this section, by a dicycle Ci , C j , etc., we mean
one of the dicycles C1, . . . , CN , and we identify a dicycle C j with its edge set, E(C j ).
See Fig. 1 for an illustration of a good decomposition of a digraph.

Informally speaking, our plan is as follows: for digraph G that has a good decom-

position with witness set F , we construct a feasible solution to SAt (ÂTSPB AL(G))

by assigning the same fractional value to the edges of the dicycles C j with j ∈ F ,
while assigning the value 1 to the edges of the dicycles Ci with i ∈ F (this is not
completely correct; we will refine this plan). LetATSPB AL(G) be the associated cone

of ÂTSPB AL(G).

Definition 2 Let t be a nonnegative integer. For any set S ⊆ E of size≤ t +1, and any
subset I ofF , let FI(S) denote the set of indices j ∈ F−I such that E(C j )∩ S �= ∅;
moreover, let f I(S) denote |FI(S)|, namely, the number of dicycles C j with indices
in F − I that intersect S.

Definition 3 For a nonnegative integer t and for any subset I ofF , let yI, t be a vector
indexed by the elements of Pt+1 and defined as follows:

yI, t
S = t + 2 − f I(S)

t + 2
, ∀S ∈ Pt+1

Fig. 1 A digraph G with a good decomposition given by the dicycle with thick edges, and the length 2
dicycles C j formed by the anti-parallel pairs of thin edges; G − E(C j ) is strongly connected for each
dicycle C j
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On integrality ratios for asymmetric TSP in the Sherali... 11

Theorem 2 Let G = (V, E) be a strongly connected digraph that has a good decom-
position, and let F be the witness set. Then

yI, t ∈ SAt (ÂTSPB AL(G)), ∀t ∈ Z+,∀I ⊆ F .

In order to prove our integrality ratio result for ÂTSPB AL , we will invoke Theorem 2
for I = ∅ (the more general setting of the theorem is essential for our induction proof;
we give a high-level explanation in the last paragraph of the proof of Theorem2below).
Since also only the values of y∅, t indexed at singleton edges affect the integrality ratio,
it is worthwhile to summarize all relevant quantities in the next corollary.

Corollary 1 We have

y∅, t ∈ SAt (ÂTSPB AL(G)), ∀t ∈ Z+.

Moreover, for each dicycle C j , j ∈ N , and each edge e of C j we have

y∅, t
e =

{
t+1
t+2 , if j ∈ F
1, otherwise.

(3)

Informally speaking, we assign the value 1 (rather than a fractional value) to the
edges of the dicycles C j with j ∈ I ⊆ F . For the sake of exposition, we call the
dicycles C j with j ∈ F−I the fractional dicycles, and we call the remaining dicycles
Ci (thus i ∈ I ∪ F) the integral dicycles.

Proof (Proof of Theorem 2): To prove Theorem 2, we need to prove

yI, t ∈ SAt (ATSPB AL(G)).

We prove this by induction on t .
Note that yI, t

∅ = 1 by Definition 3.
The induction basis is important, and it follows easily from the good decomposition

property. InLemma1 (below)we show that y∅, 0 ∈ SA0(ATSPB AL(G)).We conclude
that yI, 0 satisfies the first two sets of constraints of ATSPB AL(G), since yI, 0 ≥
y∅, 0 (this follows from Definitions 2, 3, since FI(S) ⊆ F∅(S)). As for the balance
constraints, it is enough to observe that every vertex of our instance (see Fig. 1)
is incident to pairs of outgoing and ingoing edges, which due to Definition 3 are
assigned the same value. Finally, again by Definition 3, and for all edges e, we have
0 ≤ yI, 0

e ≤ 1. All the above imply that yI, 0 ∈ SA0(ATSPB AL(G)), ∀I ⊆ F , as
wanted.

In the induction step, we assume that yI, t ∈ SAt (ATSPB AL(G)) for some integer
t ≥ 0 (the induction hypothesis), and we apply the recursive definition based on the
shift operator, namely, yI, t+1 ∈ SAt+1(ATSPB AL(G)) iff for each e ∈ E

e ∗ yI, t+1 ∈ SAt (ATSPB AL(G)), (4)

yI, t+1 − e ∗ yI, t+1 ∈ SAt (ATSPB AL(G)). (5)
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12 J. Cheriyan et al.

Lemma 2 (below) proves (4) and Lemma 3 (below) proves (5).

We prove that e ∗ yI, t+1 is in SAt (ATSPB AL(G)) by showing that for some edges
e, e ∗ yI, t+1 is a scalar multiple of yI ′, t , where I ′

� I (see Eq. 6 in Lemma 2); thus,
the induction hinges on the use of I.

Lemma 1 We have y∅, 0 ∈ SA0(ATSPB AL(G)).

Proof Observe that y∅, 0 has |E | + 1 elements, and y∅, 0
∅ = 1 (by Definition 3); the

other |E | elements are indexed by the singleton sets of E . For notational convenience,
let y ∈ R

E denote the restriction of y∅, 0 to indices that are singleton sets; thus,
ye = y∅, 0

{e} ,∀e ∈ E . By Definition 3, ye = 1/2 if e ∈ E(C j ) where j ∈ F , and

ye = 1, otherwise. We claim that y is a feasible solution to ÂTSPB AL(G).
y is clearly in [0, 1]E . Moreover, y satisfies the balance-constraint at each vertex

because it assigns the same value (either 1/2 or 1) to every edge in a dicycle C j ,
∀ j ∈ N .

To show feasibility of the cut-constraints, consider any cut ∅ �= U ⊂ V . Since
1E is a feasible solution, there exists an edge e ∈ E crossing from U to V − U . If
e ∈ E(C j ), j ∈ F , then we have ye = 1, which implies y(δout (U )) = y(δin(U )) ≥ 1
(from the balance-constraints at the vertices). Otherwise, we have e ∈ E(C j ), j ∈ F .
Applying the good-decomposition property of G, we see that there exists an edge
e′( �= e) ∈ E − E(C j ) such that e′ ∈ δout (U ), i.e., |δout (U )| ≥ 2. Since ye ≥ 1

2 for
each e ∈ E , the cut-constraints y(δin(U )) = y(δout (U )) ≥ 1 are satisfied.

Before proving Lemmas 2, 3, we show that yI, t+1, restricted to Pt+1 (the family
of subsets of E of size at most t + 1), can be written as a convex combination of yI, t

and the integral feasible solution 1E, t+1. This is used in the proof of Lemma 2; for
some of the edges e ∈ E , we show that e ∗ yI, t+1 = yI, t+1 (see Eq. 6), and then we
have to show that the latter is in SAt (ATSPB AL(G)).

Fact 3 Let t be a nonnegative integer and let I be a subset ofF . Then for any S ∈ Pt+1

we have yI, t+1
S = t + 2

t + 3
yI, t

S + 1

t + 3
1E, t+1

S .

Proof We have S ⊆ E , |S| ≤ t +1, and we get 1E, t+1
S = 1 from the definition. Thus,

yI, t+1
S = t + 3 − f I(S)

t + 3
= t + 2 − f I(S)

t + 3
+ 1

t + 3
= t + 2

t + 3
yI, t

S + 1

t + 3
1E, t+1

S .

Lemma 2 Suppose that yI, t ∈ SAt (ATSPB AL(G)), for each I ⊆ F . Then for all
e ∈ E and for all I ⊆ F we have e ∗ yI, t+1 ∈ SAt (ATSPB AL(G))

Proof For any S ∈ Pt+1, the definition of the shift operator gives (e ∗ yI, t+1)S =
yI, t+1

S+e .LetC(e) denote the dicycle containing edge e, and recall that index(e) denotes
the index of C(e).
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On integrality ratios for asymmetric TSP in the Sherali... 13

We first show that

e ∗ yI, t+1
S =

{
t+2
t+3 yI+index(e), t

S if index(e) ∈ F − I
yI, t+1

S otherwise
(6)

If index(e) ∈ I ∪ F , that is, the dicycle C(e) is not “fractional,” then Definition 3
directly gives yI, t+1

S+e = yI, t+1
S . Otherwise, if index(e) ∈ F−I, then fromDefinition 3

we see that if C(e) ∩ S �= ∅, then FI(S + e) = FI(S), and otherwise, f I(S + e) =
f I(S) + 1. Hence,

(e ∗ yI, t+1)S =
{

t+3− f I (S)
t+3 ifC(e) ∩ S �= ∅

t+2− f I (S)
t+3 ifC(e) ∩ S = ∅ (7)

(e ∗ yI, t+1)S = t + 2

t + 3
yI+index(e), t

S (8)

where in the last line we use Definition 3 to infer that f I+index(e)(S) = f I(S) − 1, if
C(e) ∩ S �= ∅, and f I+index(e)(S) = f I(S), otherwise.

Note that Fact 3 along with yI, t ∈ SAt (ATSPB AL(G)) implies that yI, t+1,
restricted toPt+1, is inSAt (ATSPB AL(G)) because it can bewritten as a convex com-
bination of yI, t and an integral feasible solution 1E, t+1. Equation (6) proves Lemma 2
because both yI+index(e), t and yI, t+1 (restricted toPt+1) are in SAt (ATSPB AL(G)).

Lemma 3 Suppose that yI, t ∈ SAt (ATSPB AL(G)), for each I ⊆ F . Then for all
e ∈ E and for all I ⊆ F we have yI, t+1 − e ∗ yI, t+1 ∈ SAt (ATSPB AL(G)).

Proof Let C(e) denote the dicycle containing edge e, and recall that index(e) denotes
the index ofC(e). If index(e) ∈ I∪F , then we have FI(S+e) = FI(S),∀S ∈ Pt+1,
hence, we have yI, t+1 = e ∗ yI, t+1, and the lemma follows.

Otherwise, we have index(e) ∈ F − I. Then, for any S ∈ Pt+1, Equation (7) gives

(yI, t+1 − e ∗ yI, t+1)S =
{
0 ifC(e) ∩ S �= ∅
1

t+3 ifC(e) ∩ S = ∅ (9)

= 1

t + 3
1E−C(e), t+1

S (10)

The good-decomposition property of G implies that 1E−C(e), t+1 is a feasible integral
solution of SAt (ATSPB AL(G)).

The next result presents our first lower bound on the integrality ratio for the level t
relaxation of the Sherali–Adams procedure starting with the balanced LP. The rele-
vant instance is a simple digraph on Θ(t) vertices; see Fig. 1. In the next subsection,
we present better integrality ratios using the CGK construction, but the CGK digraph
is not as simple and it has Θ(t t ) vertices.

123



14 J. Cheriyan et al.

Theorem 4 Let t be a nonnegative integer, and let ε ∈ R satisfy 0 < ε � 1. There
exists a digraph on ν = ν(t, ε) = Θ(t/ε) vertices such that the integrality ratio for
the level t tightening of the balanced LP (Bal LP) (by the Sherali–Adams system) is
≥ 1 + 1−ε

2t+3 .

Proof Let G be the digraph together with the good decomposition shown in Figure 1,
and let the cost of each edge in G be 1. We call an edge of G a thin edge if it is
contained in a dicycle of length 2; we call the other edges of G the thick edges; see
the illustration in Fig. 1. Consider the metric completion H of G. It can be seen that
the optimal value of an integral solution of ATSP on H (equivalent to the minimum
cost Eulerian subdigraph of G) is ≥4�+ 2, where � is the length of the “middle path.”
(This can be proved by induction on �, using similar arguments as in Cheung [9,
Claim 3 of Theorem 11].)

Given t and ε, we fix � = 2(2t + 3)/ε to get a digraph G (and its edge costs) from
the above family.

By Corollary 1 the fractional solution y∅, t (Definition 3) is in SAt (ÂTSPB AL(G)):
we have y∅, t

e = 1 for each thick edge e, and y∅, t
e = t+1

t+2 for each thin edge e. By

Sect. 2.2.1, we can extend y∅, t to a feasible solution of SAt (ÂTSPB AL(H)).
Hence, the integrality ratio is

≥ 4� + 2

2� + 4 + 2� t+1
t+2

≥ 2(t + 2)

2t + 3
− 2

�
≥ 1 + 1 − ε

2t + 3
.

3.2 Charikar–Goemans–Karloff (CGK) construction

We briefly explain the CGK [7] construction and show in Theorem 7 that the resulting
digraph has a good decomposition. This theorem along with a lemma from [7] shows
that the integrality ratio is ≥ 1 + 1−ε

t+1 for t rounds of the Sherali–Adams procedure
starting with the Balanced LP, for any given 0 < ε � 1, see Theorem 8.

Let r be a fixed positive integer. Let G0 be the digraph with a single vertex. Let G1
consist of a bidirected path of r + 2 vertices, starting at the “source” p and ending
at the “sink” q, whose 2(r + 1) edges have cost 1 (see Fig. 2). We call E(G1) the
external edge set of G1 (we use this in the proof of Lemma 4).

For each k ≥ 2, we construct Gk by taking r copies of Gk−1, additional source and
sink vertices p and q, a dipath from p to q of r + 1 edges visiting the sources of the r
copies in the order u1, u2, . . . , ur , and another dipath from q to p of r+1 edges visiting
the sinks of the r copies in the order vr , vr−1, . . . , v1 where ui , vi denote the source
and sink of the i-th copy of Gk−1 (see Fig. 3). All the new edges have cost rk−1. Denote
the i-th copy ofGk−1 byG(i)

k−1. Let Ek = E(Gk)−∪1≤i≤r E(G(i)
k−1). Let {G(i, j)

k−2 }1≤ j≤r

(a) G0

C1 C2 C3 C4p q

(b) G1

Fig. 2 G0 and G1 for r = 3
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On integrality ratios for asymmetric TSP in the Sherali... 15

u1

v1

u2

v2

u3

v3

G
(1,1)
k−2

G
(1,2)
k−2

G
(1,3)
k−2

G
(2,1)
k−2

G
(2,2)
k−2

G
(2,3)
k−2

G
(3,1)
k−2

G
(3,2)
k−2

G
(3,3)
k−2

p q

Fig. 3 Gk and Lk for k ≥ 2 and r = 3

be the r copies of Gk−2 in G(i)
k−1. Let E (i)

k−1 = E(G(i)
k−1)−⋃

1≤ j≤r E(G(i, j)
k−2 ). Let A(i)

be the dipath from ui to vi in E (i)
k−1 and let B(i) be the dipath from vi to ui in E (i)

k−1.

Let E [r ]
k−1 = ∪1≤i≤r E (i)

k−1. We call Ek ∪ E [r ]
k−1 the external edge set of Gk . The other

edges form the internal edge set of Gk .
For each k ≥ 2, the digraph Lk is constructed from Gk by removing vertices

p and q, and adding the edges (ur , u1) and (v1, vr ), both of cost rk−1. Let E
′
k =

(Ek ∪ {(ur , u1), (v1, vr )}) − {(p, u1), (v1, p), (ur , q), (q, vr )}. We call E
′
k ∪ E [r ]

k−1
the external edge set of Lk . The other edges form the internal edge set of Lk . (Our
description of the CGK construction is essentially the same as in [7], but they use s
and t to denote the source and sink vertices, whereas we use p and q; this is to avoid
conflict with our symbol t for the number of rounds of the SA procedure.)

Fact 5 Let k ≥ 2 be a positive integer. The external edge set of Lk, i.e., E
′
k ∪ E [r ]

k−1,
can be partitioned into r dicycles C ′

1, . . . , C ′
r such that

C ′
i = {(ui , ui+1), (vi+1, vi )} ∪ B(i) ∪ A(i+1), for 1 ≤ i ≤ r − 1, and

C ′
r = {(ur , u1), (v1, vr )} ∪ B(r) ∪ A(1).

Moreover, for each dicycle C ′
i , i = 1, . . . , r , Lk − E(C ′

i ) is strongly connected.

We denote the decomposition of the external edge set of Lk by CLk (E
′
k ∪ E [r ]

k−1) =
{C ′

1, . . . , C ′
r }.

Fact 6 Let k ≥ 2 be a positive integer. The external edge set of Gk, i.e., Ek ∪ E [r ]
k−1,

can be partitioned into r + 1 dicycles C0, C1, . . . , Cr such that

Ci = {(ui , ui+1), (vi+1, vi )} ∪ B(i) ∪ A(i+1), for 1 ≤ i ≤ r − 1,
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16 J. Cheriyan et al.

C0 = {(p, u1), (v1, p)} ∪ A(1), and
Cr = {(ur , q), (q, vr )} ∪ B(r).

Moreover, for each dicycle Ci , i = 0, 1, . . . , r , Gk−E(Ci ) has two strongly-connected
components, where one contains the source p and the other one contains the sink q.

We denote the decomposition of the external edge set of Gk by CGk (Ek ∪ E [r ]
k−1) =

{C0, C1, . . . , Cr }. Next we identify a structural property that will allow us to prove
that Lk has a good decomposition.

Definition 4 We say that Gk has a (p, q)-good decomposition, if the edge set of Gk

can be partitioned into dicycles C1, C2, . . . , CN such that for each 1 ≤ i ≤ N , either

(1) Ci consists of external edges, and moreover, Gk − E(Ci ) has two strongly con-
nected components, one containing the source p and the other one containing the
sink q.

(2) Ci consists of internal edges of Gk , and moreover, Gk − E(Ci ) is strongly con-
nected.

Lemma 4 For all k ≥ 1, Gk has a (p, q)-good decomposition.

Proof We prove the result by strong induction on k. For the base cases, consider
G1 and G2. For G1, we take the dicycles C1, . . . , CN to be the length 2 dicycles
formed by two anti-parallel edges; thus, N = r + 1 (see Fig. 2). For G2, we use the
decomposition of the external edge set given by Fact 6.

For the induction step, we have k ≥ 3; we assume that the statement holds for
1, 2, . . . , k − 1 and prove that it holds for k. By the induction hypothesis, for each
1 ≤ i, j ≤ r , we know that G(i, j)

k−2 has a (p, q)-good decomposition C(E(G(i, j)
k−2 )) =

{C (i, j)
1 , C (i, j)

2 , . . . , C (i, j)
N(i, j)

}. Consider the decomposition of E(Gk) into edge-disjoint

dicycles given by Ĉ = CGk (Ek ∪ E [r ]
k−1) ∪ ⋃

1≤i, j≤r C(E(G(i, j)
k−2 )). We claim that Ĉ is

a (p, q)-good decomposition of Gk . Clearly, for C ∈ Ĉ such that E(C) ⊆ Ek ∪ E [r ]
k−1,

we are done by Fact 6. Now, consider one of the other dicycles C ∈ Ĉ; thus C consists
of some internal edges of Gk . Then, there exists an i and j (1 ≤ i, j ≤ r ) such that
C ∈ C(E(G(i, j)

k−2 )). We have two cases, since either condition (1) or (2) of (p, q)-good

decomposition of G(i, j)
k−2 applies to C . In the first case, G(i, j)

k−2 − E(C) has two strongly

connected components, where one contains the source p(i, j) of G(i, j)
k−2 and the other

one contains the sink q(i, j) of G(i, j)
k−2 . Note that the external edge set of Gk “strongly

connects” p(i, j) and q(i, j), hence,Gk −E(C) is strongly connected. In the second case,
G(i, j)

k−2 − E(C) is strongly connected; then clearly, Gk − E(C) is strongly connected.
Thus Ĉ is a (p, q)-good decomposition of Gk .

Theorem 7 For k ≥ 2, Lk has a good decomposition with witness set F such that
F = N , i.e. every edge in any cycle in the decomposition can be assigned a fractional
value.

Proof Let CLk (E
′
k ∪E [r ]

k−1) be the decomposition of the external edge set of Lk given by
Fact 5. If k = 2, then we are done (we have a good decomposition of Lk withF = N ).
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On integrality ratios for asymmetric TSP in the Sherali... 17

Otherwise, we use the decomposition Ĉ = CLk (E
′
k ∪ E [r ]

k−1) ∪ ⋃
1≤i, j≤r C(E(G(i, j)

k−2 )),

where C(E(G(i, j)
k−2 )) is a (p, q)-good decomposition of G(i, j)

k−2 . Using similar arguments
as in the proof of Lemma 4, it can be seen that Ĉ is a good decomposition withF = N .

Lemma 5 (Lemma 3.2 [7]) For k ≥ 2 and r ≥ 3, the minimum cost of the Eulerian
subdigraph of Lk is ≥(2k − 1)(r − 1)rk−1.

Theorem 8 Let t be a nonnegative integer, and let ε ∈ R satisfy 0 < ε � 1. There
exists a digraph on ν = ν(t, ε) = O((t/ε)(t/ε)) vertices such that the integrality ratio
for the level t tightening of the balanced LP for ATSP (Bal LP) (by theSherali–Adams
system) is ≥1 + 1−ε

t+1 .

Proof Given t and ε, we apply the CGK construction with k = r = 5(t + 1)/ε to get
the digraph Lk and its edge costs. Let Hk be the metric completion of Lk .

We know fromCGK [7] that the total cost of the edges in Lk is≤ 2k(r +1)rk−1. By
Theorem 7, Lk has a good decomposition C1, . . . , CN such that each of the dicycles
C j has its index in the witness set F (informally, each edge is assigned to a fractional
dicycle). Hence, Corollary 1 implies that the fractional solution that assigns the value
t+1
t+2 to (the variable of) each edge is feasible for SAt (ÂTSPB AL(Lk)). By Sect. 2.2.1,

this feasible solution can be extended to a feasible solution in SAt (ÂTSPB AL(Hk)).
Then, using Lemma 5, we see that the integrality ratio of SAt (ÂTSPB AL(Hk)) is

≥ (2k − 1)(r − 1)rk−1

( t+1
t+2 )2k(r + 1)rk−1

= 1 + 1

t + 1
− 5r − 1

t+1
t+2 (r + 1)(2r)

≥1 + 1

t + 1
− 5

t+1
t+2

1

(2r)

≥1 + 1 − ε

t + 1
.

4 SA applied to the standard (DFJ LP) relaxation of ATSP

Let G = (V, E) be a strongly connected digraph that has a good decomposition, and
moreover, has both indegree and outdegree ≤ 2 for every vertex. We use the same
notation as in Sect. 3.1, i.e., C1, C2, . . . , CN denote the edge disjoint dicycles of the
decomposition, and there exists F ⊆ N = {1, . . . , N } such that F is nonempty and
G − E(C j ) is strongly connected for all j ∈ F . For an illustration of important notions
introduced in this section, the reader may consult Figs. 4, 5, 6, 7.

We define a splitting operation that splits every vertex that has indegree 2 (and
outdegree 2) into two vertices (along with some edges); our definition depends on the
given good decomposition of the digraph. The purpose of the splitting operation will
be clear from Fact 9.

Splitting Operation: Let v ∈ V (G) whose indegree and outdegree is 2. Suppose
Ci , C j are the dicycles in the good decomposition going through v. Let ei1 =
(vi1, v), e j1 = (v j1, v) and ei2 = (v, vi2), e j2 = (v, v j2) be the edges in δin(v),
δout (v), respectively, where ei1, ei2 ∈ Ci and e j1, e j2 ∈ C j . We split v into vu, vb as
follows:

123



18 J. Cheriyan et al.

ei1

ei2ej1

ej2

enewi1

enewi2enewj1

enewj2

e0 e0

Fig. 4 An illustration of the vertex splitting operation used for mapping G to Gnew

– Replace ei1, e j2 by enew
i1 = (vi1, v

u), enew
j2 = (vu, v j2) (the new edges are called

solid edges)
– Replace ei2, e j1 by enew

i2 = (vb, vi2), enew
j1 = (v j1, v

b) (the new edges are called
solid edges)

– Add the auxiliary edges (also called dashed edges) e0 = (vb, vu), e′
0 = (vu, vb).

See Fig. 4 for an illustration.
We obtain Gnew = (V new, Enew) from G by applying the splitting operation to

every vertex in G whose indegree and outdegree is 2.Wemap each dicycleC j , j ∈ N ,
of G to a set of edges of Gnew that we call a cycle and that wewill (temporarily) denote
by Cnew

j . We define Cnew
j to be the following set of edges: for every edge of C j , its

image (in Gnew) is in Cnew
j ; moreover, for every splitted vertex v of G incident to C j ,

note that one of vu or vb (the two images of v) is the head of one of the two edges
of Cnew

j incident to {vu, vb}, and one of the two auxiliary edges e0, e′
0 has its head at

the same vertex; we place this auxiliary edge also in Cnew
j . Note that Cnew

j is not a
directed cycle. For example, in Fig. 4, the cycle Cnew

i contains the edges enew
i1 (image

of ei1), enew
i2 (image of ei2), and the auxiliary edge e0, whereas the cycleCnew

j contains
the edges enew

j1 , enew
j2 , and the auxiliary edge e′

0.
In what follows, we simplify the notation for the cycles of Gnew to C j (rather than

Cnew
j ); there is some danger of ambiguity, but the context will resolve this. We denote

the set of auxiliary edges (also called the dashed edges) of a cycle C j = Cnew
j by

D(C j ), and we denote the set of remaining edges of C j = Cnew
j by E(C j ). Note that

Enew = E(Gnew) = ⋃
j∈N (E(C j ) ∪ D(C j )). Clearly, there is a bijection between

the edges of E(C j ) = E(Cnew
j ) in Gnew and the edges of E(C j ) in G. Also, observe

that in Gnew, the dashed edges are partitioned among the cycles Cnew
j , j ∈ N .

Fact 9 Consider a digraph G = (V, E) that has a good decomposition, and consider
x ∈ R

E such that (1) 0 ≤ x ≤ 1, (2) for every dicycle C j , j ∈ N , xe is the
same for all edges e of C j , and (3) for every vertex v with indegree = 1 = outdegree,
x(δin(v)) = x(δout (v)) = 1. Then, for the digraph Gnew = (V new, Enew) obtained by
applying the splitting operations, there exists xnew ∈ R

Enew
such that 0 ≤ xnew ≤ 1,

and xnew(δin(v)) = xnew(δout (v)) = 1,∀v ∈ V new.

Proof For each j ∈ N , we consider the dicycle C j . Let α j be the x-value associated
with the dicycle C j of G, i.e., xe = α j ,∀e ∈ E(C j ). Then, in xnew and Gnew, we
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fix xe = α j ,∀e ∈ E(C j ) = E(Cnew
j ), and we fix xe = (1 − α j ),∀e ∈ D(C j ) =

D(Cnew
j ). It can be seen that xnew satisfies the given conditions.

Definition 5 Consider the digraph Gnew. For any j ∈ F , let tour( j) := D(C j ) ∪⋃
i∈(N− j) E(Ci ).

Thus tour( j) consists of all the solid edges except those in C j together with all the
dashed edges of C j . Note that each vertex in Gnew has exactly one incoming edge
and exactly one outgoing edge in tour( j). Thus tour( j) forms a set of vertex-disjoint
dicycles that partition V new.

Definition 6 Let G be a digraph with indegree and outdegree ≤ 2 at every vertex,
and suppose that G has a good decomposition with witness set F . Let Gnew be the
digraph obtained by applying splitting operations to G and its good decomposition.
Then G is said to have the good tours property if tour( j) is connected (i.e., tour( j)
forms a Hamiltonian dicycle of Gnew) for each j ∈ F .

Fig. 5 Digraph from Fig. 1 after the splitting operation

Fig. 6 Transforming a dicycle
C j formed by an anti-parallel
pair of thin edges in Fig. 1 to
Cnew

j by the splitting operation

(a) (b)

e

Fig. 7 tour(e)
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4.1 Certifying a feasible solution

In what follows, we assume that G is a digraph that satisfies the conditions stated in
Definition 6. We focus on the digraph Gnew obtained by applying splitting operations
to G; observe that Gnew depends on G as well as on the given good decomposition of

G. Let ATSPDF J (Gnew) be the associated cone of ÂTSPDF J (Gnew).
Let E denote the set of images of the edges of G (the solid edges), and let D denote

the set of auxiliary edges (the dashed edges). Given S ⊆ E and I ⊆ F , let FI(S)

denote the set of indices j ∈ F−I such that E(C j ) intersects S, and let f I(S) denote
the size of this set; thus, f I(S) denotes the number of “fractional cycles” that intersect
S in the solid edges.

Note that each (solid or dashed) edge e is in a unique cycle C(e); let index(e)
denote the index of C(e) in N ; if index(e) ∈ F − I, then we use tour(e) to denote
tour(index(e)).

Let t be a nonnegative integer. We define the feasible solution y for the level t
tightening of the DFJ-LP (of ATSP, by the SA system) as follows:

Definition 7 For a nonnegative integer t and for any subset I ofF , let yI, t be a vector
indexed by the elements of Pt+1 and defined as follows:

(yI, t )S =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

t+2− f I (S)
t+2 if S ∩ D = ∅ (S has no dashed edges)

1
t+2 if S ∩ D �= ∅ and ∃i ∈ F − I : tour(i) ⊇ S

(S contains some dashed edges and is contained in a tour)

0 otherwise

(11)

Observe that the second case applies when the set S has one or more dashed edges,
and moreover, S is contained in a tour(i), i ∈ F − I; also, observe that there is at
most one tour that contains S, because the dashed edges are partitioned among the
cycles C j , j ∈ N , so each dashed edge in S belongs to a unique tour.

To show the feasibility of yI, t for the level t tightening of the DFJ-LP, we need the
size of F to be large. In fact, we require |F | ≥ |I| + t + 2.

Theorem 10 Let G = (V, E) be a strongly connected digraph that has a good decom-
position with witness set F , and moreover, has (i) both indegree and outdegree ≤ 2 for
every vertex, and (ii) satisfies the “good tours” property. Then, for any nonnegative
integer t , and any I ⊆ F with |I| ≤ |F | − (t + 2), we have

yI, t ∈ SAt (ÂTSPDF J (Gnew)).

Proof Note that yI, t
∅ = 1 by Definition 7. Thus, we only need to prove yI, t ∈

SAt (ATSPDF J (Gnew)). The proof is by induction on t . The base case is impor-
tant, and it follows easily from the good decomposition property and the “good
tours” property of G. This is done in Lemma 6 below, where we show that yI, 0 ∈
SA0(ATSPDF J (Gnew)), ∀I ⊆ F , |I| ≤ |F | − 2.
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In the induction step, we assume that yI, t ∈ SAt (ATSPDF J (Gnew)) for some
integer t ≥ 0 (the induction hypothesis), andwe apply the recursive definition based on
the shift operator, namely, yI, t+1 ∈ SAt+1(ATSPDF J (Gnew)) iff for each e ∈ Enew

e ∗ yI, t+1 ∈ SAt (ATSPDF J (Gnew)), (12)

yI, t+1 − e ∗ yI, t+1 ∈ SAt (ATSPDF J (Gnew)). (13)

Lemma 7 (below) proves (12) and Lemma 9 (below) proves (13).

The next lemma proves the base case for the induction; it follows from the “good
tours” property of the digraph.

Lemma 6

yI, 0 ∈ SA0(ATSPDF J (Gnew)), ∀I ⊆ F , |I| ≤ |F | − 2

Proof Note that yI, 0
∅ = 1. Let z be the subvector of yI, 0 on the singleton sets {ei }.

We need to prove that z is a feasible solution of the DFJ LP. It can be seen that z is
as follows: if index(e) ∈ F − I, then ze = 1

2 , otherwise, if e ∈ E (e is a solid edge),
then ze = 1, otherwise, if e ∈ D (e is a dashed edge), then ze = 0. Clearly, z is in
[0, 1]Enew

, and z satisfies the degree constraints (see the proof of Fact 9). Now, we
need to verify that z satisfies the cut constraints in the digraph Gnew. Consider any
nonempty set of vertices U �= V , and the cut δout (U ).

Observe that |F − I| ≥ 2, hence, there are at least two indices i, j such that
i, j ∈ F − I. Hence, both tour(i) and tour( j) exist; moreover, every edge e (either
solid or dashed) in either tour(i) or tour( j) has ze ≥ 1

2 . Clearly, each of tour(i) and
tour( j) has at least one edge in δout (U ). Let e j be an edge of tour( j) that is in δout (U ).
If ze j = 1, then we are done, since we have z(δout (U )) ≥ ze j = 1. Thus, we may

assume ze j = 1
2 . Now, we have two cases.

First, suppose that e j is a dashed edge. Then, note that the edge of tour(i) in δout (U ),
call it ei , is distinct from e j (since the tours are disjoint on the dashed edges), and
again we are done, since z(δout (U )) ≥ zei + ze j ≥ 1.

In the remaining case, e j ∈ tour( j) is a solid edge and ze j = 1
2 . Then, index(e j ) ∈

F − I, and so tour(e j ) exists and it has at least one edge e′ in δout (U ); moreover,
e′ �= e j because tour(e j ) contains none of the solid edges of the cycle Cindex(e j ). Thus,
we are done, since z(δout (U )) ≥ ze j + ze′ ≥ 1. It follows that z staisfies all of the cut
constraints.

The following fact summarizes some easy observations; this fact is used in the next
lemma.

Fact 11 Let I be a subset of F . Suppose that S is not contained in any tour( j),
j ∈ F − I. (1) Then, for any edge e, S + e is also not contained in any tour( j),
j ∈ F − I. (2) Similary, for any index h ∈ F , S is not contained in any tour( j),
j ∈ F − (I + h).

Lemma 7 Suppose that for any nonnegative integer t and any I ′ ⊆ F with |I ′| ≤
|F | − (t + 2), we have yI ′, t ∈ SAt (ATSPDF J (Gnew)). Then for any I ⊆ F with
|I| ≤ |F | − (t + 3),
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e ∗ yI, t+1 ∈ SAt (ATSPDF J (Gnew)), ∀e ∈ Enew.

Proof For any edge e and any S ∈ Pt+1, the definition of the shift operator gives

(e ∗ yI, t+1)S = yI, t+1
S+e

Let C(e) denote the cycle containing edge e, and let index(e) denote the index of
C(e) in N .

We will show that

(e ∗ yI, t+1)S =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yI, t+1
S if e ∈ E(C j )where j ∈ I ∪ F

(e is a solid, integral edge)

0 if e ∈ D(C j )where j ∈ I ∪ F
(e is a dashed, integral edge)

t+2
t+3 yI+index(e), t

S if e ∈ E(C j )where j ∈ F − I
(e is a solid, f ractional edge)

1
t+31tour(e), t+1

S if e ∈ D(C j )where j ∈ F − I
(e is a dashed, f ractional edge)

(14)

Lemma 8 (below) shows that

yI, t+1
S = t + 2

t + 3
yI+h, t

S + 1

t + 3
1tour(h), t+1

S , ∀h ∈ F − I.

Hence, for every edge e (i.e., in every case), e ∗ yI, t+1 is in SAt (ATSPDF J (Gnew)).

Case 1. e ∈ E(C j )where j ∈ I∪F (e is a solid, integral edge).WeapplyDefinition11
(the definition of y), and consider the three cases in it:

Subcase 1.1. S ∩ D = ∅. Then we have (S + e) ∩ D = ∅, and moreover, we have
f I(S) = f I(S + e) (the number of “fractional cycles” intersecting
S ∩ E and (S + e) ∩ E is the same, since e is a non-fractional edge).
Hence, yI, t+1

(S+e) = yI, t+1
S .

Subcase 1.2. S ∩ D �= ∅ and ∃i ∈ F − I : tour(i) ⊇ S. Then it is clear that
(S + e) ∩ D �= ∅ and tour(i) ⊇ S + e, because tour(i) contains every
solid edge except those in the fractional cycle Ci . Hence, yI, t+1

S+e =
1

t+3 = yI, t+1
S .

Subcase 1.3. S∩D �= ∅ and∀ j ∈ F−I : tour( j) � S. Then it is easily seen that both

conditions apply to S + e (rather than S). Hence, yI, t+1
S+e = 0 = yI, t+1

S .

Case 2. We have e ∈ D(C j )where j ∈ I ∪F (e is a dashed, integral edge). We apply
Definition 11, noting that (S +e)∩ D �= ∅ and there exists no index i ∈ F−I
such that tour(i) ⊇ S + e (no “valid tour” contains a dashed, integral edge),
hence, yI, t+1

S+e = 0.
Case 3. We have e ∈ E(C j )where j ∈ F −I (e is a solid, fractional edge). We apply

Definition 11. We have two subcases, either S ∩ D = ∅, or not.
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Subcase 3.1. If S ∩ D = ∅, then (S + e) ∩ D = ∅. Thus, the analysis is the same as
in the previous section; in particular, see Eq. 6 in the proof of Lemma 2.
Hence, we have yI, t+1

S+e = t+2
t+3 yI+index(e), t

S .
Subcase 3.2. Otherwise, S ∩ D �= ∅. Then we have two further subcases: either there

is an i ∈ F − I with tour(i) ⊇ S or not.
Subcase 3.2.1. Consider the first subcase; thus, S ⊆ tour(i) where i ∈ F − I.

Note that S is not contained in other tours since S ∩ D �= ∅. We
have two further subcases, either e ∈ E(Ci ) or not.

Subcase 3.2.1.1. If e ∈ E(Ci ), then tour(i) � (S + e), hence, yI, t+1
S+e = 0

(by the last case in the definition of y); moreover, note that
tour(i) is the unique tour containing S but it is not a “valid
tour” w.r.t. I+ index(e), hence, yI+index(e), t

S = 0 (by the last
case in Definition 11).

Subcase 3.2.1.2. Otherwise, if e /∈ E(Ci ), then tour(i) ⊇ (S + e), and more-
over, tour(i) is a “valid tour” w.r.t. I + index(e) (since
i /∈ I and i �= index(e)), hence, we have yI, t+1

S+e = 1
t+3 =

t+2
t+3

1
t+2 = t+2

t+3 yI+index(e), t
S (by the second case in Defini-

tion 11, for both LHS and RHS).
Subcase 3.2.2. Consider the last subcase; thus, S � tour(i) for all i ∈ F − I.

Then by Fact 11, the same assertion holds w.r.t. (S + e) (rather than
S), as well as w.r.t. (I + index(e)) (rather than I). Hence, we have
yI, t+1

S+e = 0 = t+2
t+3 yI+index(e), t

S (by the last case in Definition 11,
for both LHS and RHS).

Case 4. We have e ∈ D(C j )where j ∈ F − I (e is a dashed, fractional edge). We
apply Definition 11, noting that (S+e)∩ D �= ∅.We have two subcases, either
tour(e) ⊇ S, or not. If tour(e) ⊇ S, then the second case of Definition 11
together with the fourth case of Equation (14) (the definition of e ∗ y) gives
yI, t+1

S+e = 1
t+3 = 1

t+31tour(e), t+1
S . Otherwise, tour(e) � S, and then we have

yI, t+1
S+e = 0 = 1

t+31tour(e), t+1
S ; note that the last case of Definition 11 applies

because tour(e) is the unique “valid tour” that could contain e.

Lemma 8 shows that yI, t+1, restricted to Pt+1, is in SAt (ATSPDF J (Gnew)); this
is used in Lemma 7 to show that e ∗ yI, t+1 is in SAt (ATSPDF J (Gnew)).

Lemma 8 For any nonnegative integer t , any S ∈ Pt+1, any I ⊆ F with |I| ≤
|F | − (t + 3), and any h ∈ F − I, we have

yI, t+1
S = t + 2

t + 3
yI+h, t

S + 1

t + 3
1tour(h), t+1

S (15)

Proof We have S ⊆ D ∪ E, |S| ≤ t + 1.
We apply Definition 11 (the definition of y) to yI, t+1, and we have three cases.

Case 1. S ∩ D = ∅. Then yI, t+1
S = (t+3)− f I (S)

t+3 . For the RHS, we have two subcases,
either tour(h) ⊇ S or not. In the first subcase, we have S ∩ E(Ch) = ∅ (since
tour(h) contains none of the solid edges of Ch), hence, f I+h(S) = f I(S),
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consequently, theRHS is t+2
t+3

(t+2)− f I (S)
t+2 + 1

t+3 ,which is the same as theLHS.
In the other subcase, tour(h) � S. Then, we have S ∩ E(Ch) �= ∅ (because
S ⊆ E and tour(h) contains all solid edges except those in Ch), hence,

f I+h(S) = f I(S)− 1, and consequently, the RHS is t+2
t+3

(t+3)− f I (S)
t+2 + 0 =

(t+3)− f I (S)
t+3 , which is the same as the LHS.

Case 2. S ∩ D �= ∅ and there exists j ∈ F − I such that tour( j) ⊇ S. Then
yI, t+1

S = 1
t+3 , by Definition 11. For the RHS, we have two subcases, either

j = h or not. In the first subcase, we have yI+h, t
S = 0, because tour(h) is the

unique tour containing S but it is not a “valid tour” w.r.t. I+h, hence, the last
case in Definition 11 applies. Thus, the RHS is 0 + 1

t+31tour(h), t+1
S = 1

t+3 ,
which is the same as the LHS. In the second subcase, j �= h. Then, in the
RHS, yI+h, t

S = 1
t+2 , because j ∈ F−(I+h) and tour( j) ⊇ S so the second

case in Definition 11 applies. Moreover, 1tour(h), t+1
S = 0, because j �= h,

and tour( j) is the unique tour containing S, so tour(h) � S. Thus, the RHS
is t+2

t+3
1

t+2 + 0 = 1
t+3 , which is the same as the LHS.

Case 3. S ∩ D �= ∅ and tour( j) � S, ∀ j ∈ F − I. Then yI, t+1
S = 0. In the RHS,

yI+h, t
S = 0, by the third case in Definition 11, since the relevant conditions

hold (by Fact 11). Moreover, 1tour(h), t+1
S = 0, because h ∈ F − I and

tour(h) � S. Thus, the RHS is 0, which is the same as the LHS.

This completes the proof of the lemma.

Lemma 9 Suppose that for any nonnegative integer t and any I ′ ⊆ F with |I ′| ≤
|F | − (t + 2), we have yI ′, t ∈ SAt (ATSPDF J (Gnew)). Then for any I ⊆ F with
|I| ≤ |F | − (t + 3),

yI, t+1 − e ∗ yI, t+1 ∈ SAt (ATSPDF J (Gnew)), ∀e ∈ Enew

Proof By Lemmas 7, 8, we have for each e ∈ Enew = E ∪ D and any S ∈ Pt+1,

(yI, t+1 − e ∗ yI, t+1)S =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if e ∈ E(C j )where j ∈ I ∪ F
(e is a solid, integral edge)

yI, t+1
S if e ∈ D(C j )where j ∈ I ∪ F

(e is a dashed, integral edge)
1

t+31tour(e), t+1
S if e ∈ E(C j )where j ∈ F − I

(e is a solid, f ractional edge)
t+2
t+3 yI+index(e), t

S if e ∈ D(C j )where j ∈ F − I
(e is a dashed, f ractional edge)

(16)

Hence, in every case, yI, t+1 − e ∗ yI, t+1 ∈ SAt (ATSPDF J (Gnew))
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Theorem 12 Let t be a nonnegative integer, and let ε ∈ R satisfy 0 < ε � 1. There
exists a digraph on ν = ν(t, ε) = Θ(t/ε) vertices such that the integrality ratio for
the level t tightening of the standard LP (DFJ LP) (for ATSP, by the Sherali–Adams
procedure) is ≥1 + 1−ε

2t+3 .

Proof Given t and ε, we fix � = 2(2t + 3)/ε to get a digraph G shown in Figure 1
where � is the length of the “middle path”. Let the cost of each edge in G be 1. Then
we construct Gnew from G. We keep the cost of edges in G to be 1 and fix the cost of
new edges to be 0. See Fig. 5; each solid edge has cost 1 and each dashed edge has
cost 0. In the proof of Theorem 4, we claimed that the minimum cost of an Eulerian
subdigraph of G is ≥4� + 2. It can be seen that the minimum cost of an Eulerian
subdigraph of Gnew is≥4�+2 (to see this, take an Eulerian subdigraph of Gnew, then
contract all dashed edges contained in it, to get an Eulerian subdigraph of G of the
same cost). Let H be the metric completion of Gnew. Then, the optimal value of the

integral solution in SAt (ÂTSPDF J (H)) is ≥4� + 2.
Now we invoke Theorem 10, according to which the fractional solution y∅, t (Def-

inition 7) is in SAt (ÂTSPDF J (Gnew)); see Fig. 5; we have y∅, t
e = 1 for each solid,

thick edge e (the solid edges of the outer cycle), y∅, t
e = t+1

t+2 for each solid, thin edge
e (the solid edges of the middle paths), while the value of the dashed edges do not
contribute to the value of the objective. By Sect. 2.2.1, this feasible solution can be

extended to a feasible solution in SAt (ÂTSPDF J (H)).
Hence, the integrality ratio of SAt (ÂTSPDF J (H)) is

≥ 4� + 2

2� + 4 + 2� t+1
t+2

≥ 2(t + 2)

2t + 3
− 2

�
≥ 1 + 1 − ε

2t + 3
.

5 Path ATSP

Let G = (V, E) be a digraph with nonnegative edge costs c, and let p and q be two

distinguished vertices. We define P̂ATSPp,q(G) to be the polytope of the following
LP that has a variable xe for each edge e of G:

minimize
∑

e

cexe

subject to

x
(
δin(S)

)
≥ 1, ∀S : ∅ ⊂ S ⊆ V − {p}

x
(
δout (S)

) ≥ 1, ∀S : ∅ ⊂ S ⊆ V − {q}
x

(
δin({v})

)
= 1, ∀v ∈ V − {p}

x
(
δout ({v})) = 1, ∀v ∈ V − {q}

x
(
δin({p})

)
= 0,

x
(
δout ({q})) = 0,

0 ≤ x ≤ 1
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In particular, when G is a complete digraph with metric costs, the above LP is the
standard relaxation for the p-q path ATSP, which is to compute a Hamiltonian (or,
spanning) dipath from p to q with minimum cost in the complete digraph with metric

costs. For P̂ATSPp,q(G), we denote the associated cone by PATSPp,q(G).
(In the literature, the notation for the two distinguished vertices is s, t , but we use

p, q to avoid conflict with our symbol t for the number of rounds of theSA procedure.)
An (p, q)-Eulerian subdigraph G of G is V together with a collection of edges of

G with multiplicities such that (i) for any v ∈ V − {p, q}, the indegree of v equals its
outdegree and (ii) the outdegree of p is larger than its indegree by 1 and the indegree of
q is larger than its outdegree by 1 and (iii) G is weakly connected (i.e., the underlying
undirected graph is connected). The p-q path ATSP on the metric completion H of G
is equivalent to finding a minimum cost (p, q)-Eulerian subdigraph of G.

For any subset V ′ of V , we use G(V ′) to denote the subdigraph of G induced by V ′.
As before, we use Pt to denote Pt (E) (for the groundset E). Also, by the restriction
of y on E ′ ⊆ E we mean the vector y|E ′ ∈ R

Pt+1(E ′) that is given by (y|E ′)S = yS

for all S ∈ Pt+1(E ′).

Lemma 10 Let t be a nonnegative integer. Let y ∈ SAt (ÂTSPDF J (G)). Suppose
that there exists a dipath Q ⊆ E from some vertex q to another vertex p such that
ye = 1 for each e ∈ Q. Let VQ denote the set of internal vertices of the dipath Q, and
let G ′ = G(V − VQ) = G − VQ. Then,

y|E(G ′) ∈ SAt (P̂ATSPp,q(G ′)).

Proof Let V ′ = V − VQ and let E ′ = E(G ′), i.e., G ′ = (V ′, E ′). The proof is by
induction on t . Denote y|E ′ by y′ for short. Clearly, y′

∅ = 1. Thus, we only need to
prove y′ ∈ SAt (PATSPp,q(G ′)).

Base case: t = 0. Let z be the subvector of y on the singleton sets {ei }, and let z′ be
the subvector of y′ on the singleton sets.

We have to prove that z′ is a feasible solution of P̂ATSPp,q(G ′). It is easy to see
that z′ is in [0, 1]E ′

and it satisfies the degree constraints. Thus, we are left with the
verification of the cut constraints. Observe that each positive edge (on which z is
positive) of G with its head (tail) in VQ has its tail (head) in VQ + q (VQ + p). Let
∅ �= U ⊆ V ′. If U ⊆ V ′ − {q}, then observe that every edge in δout

G (U ) has its head in
V − VQ − U = V ′ − U , hence, we have z′(δout

G ′ (U )) = z(δout
G (U )) ≥ 1. Similarly, if

U ⊆ V ′ −{p}, then we have z′(δin
G ′(U )) = z(δin

G (U )) ≥ 1; the equation holds because
every edge in δin

G (U ) has its tail in V − VQ − U = V ′ − U .

Induction step: For t ≥ 0, we know y′ ∈ SAt+1(PATSPp,q(G ′)) if and only if for
any e ∈ E ′,

e ∗ y′ ∈ SAt (PATSPp,q(G ′))
y′ − e ∗ y′ ∈ SAt (PATSPp,q(G ′)) (17)
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Since y is a feasible solution in SAt+1(ATSPDF J (G)), we have

e ∗ y ∈ SAt (ATSPDF J (G))

y − e ∗ y ∈ SAt (ATSPDF J (G)) (18)

Note that e ∈ E ′. For any S ⊆ E ′ such that |S| ≤ t+1, we have (e∗y′)S = y′
S∪{e} =

yS∪{e} = (e∗y)S . Thus, e∗y′ = (e∗y)|E ′ . Similarly,we have y′−e∗y′ = (y−e∗y)|E ′ .
For any ei ∈ Q, since yei = 1, we have y{e,ei } = ye (by the definition of the SA
procedure), hence, we have

(e ∗ y){ei } = y{e,ei } = ye = (e ∗ y)∅.

Similarly,

(y − e ∗ y){ei } = yei − y{e,ei } = 1 − ye = (y − e ∗ y)∅.

Case 1: (e ∗ y)∅ = 0. In this case, all items in e ∗ y are zero. This implies e ∗ y′ ∈
SAt (PATSPp,q(G ′)).

Case 2: (e ∗ y)∅ > 0. In this case, we consider e∗y
(e∗y)∅ . Note that (

e∗y
(e∗y)∅ ){ei } = 1

for any ei ∈ Q and e∗y
(e∗y)∅ ∈ SAt (ATSPDF J (G)) with value 1 at the item indexed

by ∅. By the inductive hypothesis, we have e∗y
(e∗y)∅ |E ′ ∈ SAt (PATSPp,q(G ′)), i.e.,

e∗y′
(e∗y′)∅ ∈ SAt (PATSPp,q(G ′)). Thus, e ∗ y′ ∈ SAt (PATSPp,q(G ′)).
Similarly, we have y′ − e ∗ y′ ∈ SAt (PATSPp,q(G ′)). This completes the proof.

From the last section, we know that y∅, t (Definition 7) is in SAt (ATSPDF J (G)),
where G is defined in Figure 5; note that G is obtained from the digraph and the good
decomposition given in Figure 1. The solid edges in G have cost 1 and the dashed
edges in G have cost 0.

Let q be the right-most vertex in the second row (incident to two dashed edges), let
p be the left-most vertex in the second row (incident to two dashed edges), and let Q
be the dipath of solid edges from q to p. By the definition of y∅, t , we have y∅, t

ei = 1
for each ei ∈ Q. Let G ′ = G(V ′) where V ′ = V − VQ where VQ is the set of internal
vertices of the dipath Q. The next result is a direct corollary of Lemma 10.

Corollary 2 We have

y∅, t |E(G ′) ∈ SAt (P̂ATSPp,q(G ′)), ∀t ∈ Z+.

The proof of the next lemma follows from arguments similar to those in the proof
of Theorem 12.

Lemma 11 The minimum cost of a (p, q)-Eulerian subdigraph of G ′ is ≥3�, where
� is the number of edges in the middle path in G.
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Theorem 13 Let t be a nonnegative integer, and let ε ∈ R satisfy 0 < ε � 1. There
exists a digraph on ν = ν(t, ε) = Θ(t/ε) vertices such that the integrality ratio for
the level t tightening of PATSP by the Sherali–Adams procedure is ≥ 1 + 2−ε

3t+4 .

Proof Given t and ε, we fix � = 2(3t + 4)/ε. Consider the metric completion H of
G ′. By Sect. 2.2.1, we can extend the feasible solution from Corollary 2 to a feasible

solution to SAt (P̂ATSPp,q(H)). This gives an upper bound on the optimal value of

a fractional feasible solution to SAt (P̂ATSPp,q(H)). On the other hand, Lemma 11
gives a lower bound on the optimal value of an integral solution. Thus, the integrality
ratio is at least

3�
t+1
t+22� + l + 2

≥ 1 + 2

3t + 4
− 2

�
≥ 1 + 2 − ε

3t + 4
.
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